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Abstract

The lack of fine-grained, large-scale datasets on water availability presents a criti-
cal barrier to applying machine learning (ML) for agricultural water management.
Since there are multiple natural and anthropogenic factors that influence water
availability, incorporating diverse multimodal features can significantly improve
modeling performance. However, integrating such heterogeneous data is challeng-
ing due to spatial misalignments, inconsistent formats, semantic label ambiguities,
and class imbalances. To address these challenges, we introduce IRRISIGHT, a
large-scale, multimodal dataset spanning 20 U.S. states. It consists of 1.4 million
pixel-aligned 224×224 patches that fuse satellite imagery with rich environmental
attributes. We develop a robust geospatial fusion pipeline that aligns raster, vector,
and point-based data on a unified 10m grid, and employ domain-informed struc-
tured prompts to convert tabular attributes into natural language. With irrigation
type classification as a representative problem, the dataset is AI-ready, offering a
spatially disjoint train/test split and extensive benchmarking with both vision and
vision–language models. Our results demonstrate that multimodal representations
substantially improve model performance, establishing a foundation for future
research on water availability. https://github.com/Nibir088/IRRISIGHT
https://huggingface.co/datasets/OBH30/IRRISIGHT

1 Introduction

Managing agricultural water use under increasing climate pressures is a growing challenge. Excessive
irrigation has contributed to declining groundwater levels and reduced river discharge, posing serious
threats to water security and ecosystem health [15, 79, 62, 24, 55]. A comprehensive view that
integrates irrigation practices, hydrology, soil properties, and crop types is essential for understanding
and managing water availability. While efficient irrigation methods can reduce water losses from
runoff—and help sustain crops during drought—they often require substantial investments from
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Figure 1: An overview of coverage and dataset structure. (a) Shows coverage of our dataset.
(b) Sample multi-modal (containing 37 meta features) ML-ready data from our dataset.

farmers [42]. Mapping water availability at high spatial resolution and across large regions is
therefore critical. Such maps not only inform sustainable water management but also support
climate adaptation strategies, track irrigation infrastructure investment trends, and enable regional or
basin-scale modeling of the environmental impacts of shifting irrigation practices [36, 54, 3].

Remote sensing, combined with deep learning, has been extensively applied for large-scale mapping
of agricultural features [35, 76, 46, 45, 12, 29, 1, 32, 23, 7, 60]. From the perspective of water
availability, numerous studies have focused on distinguishing irrigated from non-irrigated lands in
mixed-use agricultural areas. This has led to the creation of several prominent datasets at varying
spatiotemporal scales [13, 66, 63, 40, 65, 78, 33, 11]. Another important related area is cropland
monitoring [32, 31], as crop type directly influences irrigation decisions—such as the choice between
sprinkler, drip, or flood systems—and therefore impacts overall water consumption. Additionally,
water stress monitoring during droughts has been explored using remote sensing and deep learning
approaches [75]. This work builds on our previous efforts focused on irrigation type mapping [25, 27],
addressing several technical challenges identified in earlier research. A more detailed comparison
with these prior studies is provided in the related works section.

The lack of fine-grained, large-scale data presents a major challenge to deploying machine learn-
ing (ML) tools for optimizing agricultural water use. Although ML has achieved success in land
cover and crop classification using satellite imagery, applying these methods to water availability
problems is fundamentally more complex [27]. This complexity arises from three key challenges.
First, water availability is influenced by irrigation decisions as well as physical factors that depend not
only on visible surface features, but also on invisible factors, including soil properties, hydrological
characteristics, topography, water availability, climate patterns, and crop requirements. Second,
integrating these variables from heterogeneous data sources is non-trivial due to inconsistent for-
mats, spatial misalignment, missing data patterns, and varying temporal granularity. Aligning these
onto common spatial units requires reprojection, resampling, and interpolation strategies that must
preserve semantic integrity while avoiding aliasing or feature leakage. The lack of standard tools
and benchmarks for this fusion process increases the risk of bias and inconsistency across regions.
Third, the semantic ambiguity of class labels (in the case of irrigation type mapping for e.g., drip vs.
furrow vs. sprinkler) and high class imbalances in real-world settings make classification unstable
and unreliable without careful curation and domain knowledge.

Contributions. We present IRRISIGHT, the first large-scale, multimodal dataset designed to
enable generalizable machine learning for addressing water availability problems across the United
States (US). An ML-ready sample from this dataset is shown in Figure 1. Our contributions address
critical gaps in data availability, representation, and evaluation by integrating diverse datasets. This
is followed by extensive benchmarking using various state-of-the-art models. A summary of our
contributions is as follows.

• Novel Large-scale Multimodal Dataset: We construct a dataset of over 1.4 million pixel-
aligned 224×224 geospatial patches across twenty agriculturally important US states. Each patch
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integrates visual and non-visual modalities, including soil surveys, climate variables (precipitation,
evapotranspiration (ET)), and hydrologic data (groundwater, surface water). To our knowledge,
this is the first dataset to align such diverse modalities for water availability mapping.

• Automated Data Fusion and Standardization Pipeline: We develop a fully automated
pipeline (see Figure 2) that integrates heterogeneous geospatial inputs—raster, vector, and point-
based data—onto a common 10m grid using spatial joins, reprojection, masking, and resolution-
aware resampling. Our pipeline processes 6.8TB of raw geospatial data from 11 public sources,
performing standard filtering, spatial cropping, and quality control across the twenty states across
the contiguous US (covering 155 million acres of agricultural land). This scalable pipeline allows
us to continuously expand our geographic coverage.

• Text-augmented Representations via Structured Prompts: We convert non-visual features (e.g.,
soil texture, drainage, slope, hydrologic group) into natural language descriptions using a domain-
informed, rule-based system. These prompts enable alignment with vision–language models and
inject agronomic context that is not visible in imagery. Unlike one-hot or numerical feature vectors,
natural language provides a semantically dense, interpretable format that supports alignment with
multimodal models, facilitates human-in-the-loop analysis, and allows flexible conditioning in
generative or contrastive learning settings. Thus, the text modality serves not just as auxiliary
metadata, but as a linguistically structured, domain-informed signal that bridges spatial data with
real-world irrigation knowledge.

• ML-Ready Dataset and Evaluation Framework: Using irrigation type detection as a represen-
tative problem, our work uses labeled data from six states to develop a training dataset. We provide
a spatially disjoint training/testing split dataset, and an evaluation setup for states with irrigation
type labels. After processing and alignment, we have a total of 1,484,301 ML-ready patches
across 20 states, with 293,890 labeled and 1,190,206 unlabeled examples. Spatial correlations
and out-of-distribution generalizations are accounted for in the train-validate-test splitting. We also
provide model-predicted labels with corresponding confidence scores for unlabeled data.

• Extensive Benchmarking with Vision and Vision–Language Models: We benchmark a range
of models, including convolutional neural networks (CNNs), transformers, and vision-language
models on our dataset for cross-state supervised learning. Our experiments demonstrate that the
multimodal inputs with structured text prompts significantly improve cross-state generalization
compared to image-only baselines on labeled data.

2 Related Work

Existing irrigation mapping products derived by remote sensing. A range of remote sensing-
based datasets have been created to distinguish irrigated from non-irrigated areas without providing
information on specific irrigation methods. Recent efforts to map irrigation have increasingly focused
on higher-resolution datasets. For instance, the AIM-HPA dataset provides 30-meter resolution
irrigation maps, though it is limited to the High Plains region [11]. LANID [78] applies decision-
tree methods to generate annual irrigation maps over a 20-year span, accompanied by open-access
ground-truth data. IrrMapper [33] further leverages 60,000 point samples collected over 28 years,
integrating Landsat imagery with climate, meteorological, and terrain features to train a Random
Forest classifier. At coarser resolutions, the Moderate Resolution Irrigated Area Dataset (MIrAD)
offers 250-meter resolution maps but relies heavily on census-based statistics, which can lead to
considerable classification errors [6, 56]. However, none of these works address the problem of
identifying irrigation types, nor do they apply state-of-the-art ML techniques.

Related work from our team. This work is part of a series of works undertaken by our team
in mapping irrigation infrastructure [27, 25, 26, 43]. Our recent work [27] – Knowledge-Informed
Irrigation Mapping (KIIM) – takes the first steps toward integrating multimodal data for irrigation
classification. It contributes methods to improve classification performance with limited labeled data
and poor spatial coverage. Its precursor [25] – IrrNet – is a preliminary work undertaken where only
satellite imagery is used for the purpose. Our current work is motivated by the lessons learned and
challenges faced in these works. KIIM focuses on states with labeled data, and, as a result, is limited
in terms of scalability due to several structural constraints. It incorporates state-specific priors using a
projection matrix, which is unavailable for most of the states. We consolidated the dataset used in
KIIM and released it as IrrMap [43]. IrrMap includes labeled data for four states, along with satellite
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image patches, crop masks, derived indices, and land-use information. IRRISIGHT improves upon
IrrMap in both geographic coverage and feature richness. It incorporates labeled data from six states
and augments it with additional textual information from soil databases and hydrological sources
using LLMs. This multimodal dataset is also used to benchmark a broader set of models—including
visual–LLM models—beyond those evaluated in IrrMap. While IRRISIGHT builds on the foundation
of IrrMap, which focused specifically on irrigation type detection, it is designed to support a wider
range of water availability and management questions. In summary, while prior works such as
IrrMap and KIIM laid important groundwork in irrigation mapping and modality fusion, IRRISIGHT
advances the field by providing a large-scale, multimodal, and extensible benchmark designed for
modern vision–language and geospatial learning (see Section C in supplement).

Works on remote-sensing and multimodal data. Recent work in multimodal remote sensing
has introduced large-scale foundation models trained on diverse data types such as optical, SAR,
and multispectral imagery to support universal earth observation tasks [22, 16] and vision-language
applications like captioning [38], question answering [34, 30], and region-level reasoning [51].
Generative and contrastive frameworks further enable effective data assimilation and cross-modal
representation learning [58, 39]. These advancements are complemented by emerging benchmark
datasets that span modalities, spatial resolutions, and temporal dynamics, facilitating research in tasks
such as segmentation [50, 18], time-series forecasting [4, 5] and multimodal text-to-image generation
[41, 19]. In agriculture, these multimodal approaches improve monitoring by combining optical and
multispectral data to capture crop and land use dynamics [9, 10, 47, 64].

3 Data Collection

Our dataset integrates geospatial data from multiple public sources, spanning raster, vector, and
point-based formats. All data are harmonized to the Albers Equal Area Conic projection (EPSG:5070)
for spatial consistency. Table 1 summarizes the core data sources used. Below, we provide some
details about the data and its processing. More details are provided in the supplement.

Satellite imagery: Sentinel-2 imagery was obtained from USGS Earth Explorer. Data acquisition
focused on the peak irrigation season (July), a key period for assessing water use and crop conditions,
as imagery from other periods may capture snow cover, bare soil, or dormant vegetation, making
it less useful for irrigation analysis. Images were filtered out if they did not meet quality criteria or
were deemed redundant.

Irrigation labels: No national-scale irrigation label dataset is available. This data was obtained for
each of the six states for which it is publicly available (See Table in Supplement). These datasets vary
significantly in terms of temporal coverage, spatial granularity, and annotation standards. While all
sources include field-level polygons and associated attributes, such as irrigation status, method type,
crop classification, and water source, differences in data collection protocols introduce substantial
label noise. For Utah, Washington, and Colorado, we have complete statewide coverage of irrigated
lands. Furthermore, irrigation practices vary considerably by state. Notable class imbalances across
and within states pose additional challenges for model training.

Land use and crop type: We utilize two national-scale raster products to identify and contextualize
agricultural areas. The MRLC National Land Cover Database (NLCD) offers 30m-resolution land
cover classifications across 16 categories, including cultivated cropland and pasture (See Table 1).
Complementarily, the USDA Crop Data Layer (CDL) provides annual, per-pixel crop type labels from
2008 to 2023, with over 130 unique crop classes. Together, these layers are used to filter cropland
regions and enrich patch-level annotations with crop-specific information.

Water availability: We incorporate environmental observations from the USGS National Water
Information System (NWIS), which provides raw, site-specific measurements of groundwater depth,
surface water elevation, and precipitation at daily temporal resolution. We preprocess this data by
filtering for relevant sites within our study regions and aggregating the daily values into monthly
averages spanning 2010 to 2025.

Evapotranspiration: We incorporate monthly evapotranspiration (ET) rasters from the USGS
Famine Early Warning Systems Network (FEWS). This data provides regional-scale estimates of
water loss through soil evaporation and plant transpiration at 1km resolution. While ET is a critical
factor for understanding irrigation needs, it is challenging to integrate with fine-resolution satellite
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imagery due to its coarse spatial granularity and atmospheric dependencies. Nonetheless, we spatially
align ET values to image patches to provide a proxy for water stress and latent demand during peak
growing seasons.

Soil data: We utilize detailed soil information from the USDA NRCS SSURGO database. The
database contains a nationwide geospatial dataset compiled through extensive field surveys, lab
analysis, and expert interpretation. The data are provided as vector polygons (map units), where
each map unit is linked to a set of relational tables describing soil components, horizon-level
measurements, texture groups, and geomorphic features. We use attributes such as slope, hydrologic
group, composition percentage, organic matter, bulk density, soil texture descriptions, and geomorphic
landform classifications. These properties are crucial for assessing soil water retention, permeability,
and suitability for different irrigation methods.

Table 1: Summary of Data Sources Used in Dataset Construction.
Source Description Spatial Resolution Temporal

Coverage
Use

Sentinel-2 [2] Multispectral satellite imagery (10
bands)

10m (20m bands up-
sampled)

2014–2023
(July only)

Visual input for patch extraction

USGS Irrigated
Lands [69]

State-level irrigation maps 30m raster 2002–2017 Supervised labels for irrigation
type

MRLC NLCD
[48]

Land Use / Land Cover (LULC) clas-
sification

30m raster 2014–2023 Filtering non-agricultural
patches

USDA CDL [71] Crop Data Layer with per-pixel crop
types

30m raster 2008–2023 Crop-based filtering, auxiliary in-
put for prompts

USGS NWIS
[72]

Groundwater, surface water, and pre-
cipitation (station-level)

Point data (lat/lon) 2010–2025
(monthly)

Patch-level climate/hydrology
features

USGS FEWS ET
[73]

Monthly evapotranspiration rasters 1km raster 2014–2023 ET features per patch

USDA NRCS
SSURGO [52]

Soil map units, components, hori-
zons, texture, geomorphology

1:24,000 scale vec-
tor polygons

Static Text prompt generation, irriga-
tion suitability assessment

US Census
TIGER/Line [70]

County boundary polygons with
metadata (name, state, FIPS)

~1:500,000 scale
vector polygons

Static Regional referencing, county-
level context encoding

4 Data Processing Pipeline

An outline of the various steps involved in data acquisition, processing, and integration is provided
in Figure 2. Similarly, an outline of the preparation of the ML-ready dataset is provided in the
supplement. We provide a summary of each data processing step below (detailed descriptions are
provided in the supplement).

4.1 Data Acquisition

All datasets are summarized in Table 1. We retrieve Sentinel-2 metadata from the Copernicus
Data Space Catalogue, filtering for cloud-free acquisitions within the growing season window. We
remove duplicate scenes to ensure a balanced spatial coverage across the dataset. The associated
satellite imagery for the selected scenes are then downloaded via authenticated API requests. Using
state-level polygons, we extract overlapping land cover (from NLCD), crop type (from CDL), and
soil information (SSURGO). Extracted land use and crop type rasters are reprojected to a 10m grid
via nearest-neighbor interpolation. The SSURGO soil data provides polygonal soil map units with
associated horizon-level and component-level attributes. For hydrological data, we queried the USGS
National Water Information System to collect data for all active monitoring sites across the US states,
including geolocation and site identifiers.

4.2 Data Processing

Satellite imagery and other land masks. Sentinel-2 scenes are parsed into ten multispectral
bands (B02–B12) spanning 10m and 20m resolutions. These are aligned using equal-area projection
and bilinear sampling. Then the stacked bands are divided into fixed-size tiles of 224×224 pixels. We
retain patches only if at least 10% of pixels fall into cropland categories and contain valid reflectance
values. All land use and crop masks are reprojected using nearest-neighbor interpolation to preserve
categorical semantics.
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Figure 2: Multimodal Data Processing Pipeline.

Derived indices. To enhance surface property analysis for irrigation mapping, we compute a suite
of spectral indices capturing vegetation health, water presence, and soil conditions. These include
popular indices such as NDVI, GNDVI, CIgreen, NDWI, EVI, SAVI, and MSAVI. We have provided
the details in the supplement.

Soil data. We standardize gSSURGO soil survey data to construct spatially aligned soil features
suitable for ML tasks. Each mapped unit contains multiple overlapping soil components, each with its
own attributes, including: (i) horizon-level measurements depth-specific properties such as available
water capacity, organic matter, and hydraulic conductivity; (ii) soil texture: the relative proportions of
sand, silt, and clay; and (iii) geomorphic attributes landscape positions such as terraces or floodplains.
Each component differs in spatial dominance, which is defined by its areal proportion within the map
unit. To ensure consistency, we follow a structured aggregation technique by selecting irrigation-
relevant components with significant spatial coverage. The details of filtering and aggregation are in
the supplement.

Hydrological data. For each hydrological site, we retrieved daily measurements of gauge height,
groundwater level, or precipitation, and aggregated them (by taking the mean) into monthly means
from 2016 to 2025. Each time series was aligned to a complete (2016–2023) year–month index to
preserve temporal consistency and explicitly represent missing data.

4.2.1 Text-Prompt Generation

To supplement satellite imagery with non-visible but agronomically critical information not directly
observable at the pixel level, we generate structured, rule-based natural language prompts that encode
localized soil and landform characteristics. These prompts enrich the feature space with domain
knowledge reflecting soil and landscape attributes that influence irrigation suitability.
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Each image patch is spatially joined with soil map units from the USDA NRCS SSURGO database.
These polygons include: (i) a list of soil components (e.g., Hanford loamy sand) with their areal
composition percentages, and (ii) attributes for each component, such as texture, drainage class,
hydrologic group, slope range, geomorphic description, and horizon-level properties (e.g., bulk
density, available water capacity).

For each patch, we select up to two dominant components per map unit based on areal proportion
(typically >30%), representing the most influential soil types within that region. Structured attributes
are then converted into coherent text using handcrafted templates. For example, attributes such as soil
name (Tulare), drainage class (well drained), texture group (sandy loam), runoff class (moderate),
and slope (averages 3.2%) are concatenated into a standardized template:

“This soil unit contains Tulare. Soil texture includes sandy loam. It is classified as well
drained with moderate runoff. The average slope is 3.2%.”

If multiple soil components intersect a patch, their corresponding prompts are concatenated using a
delimiter (##) to preserve provenance and reduce ambiguity. The resulting textual prompt is assigned
to each image patch as a field named text_prompt.

4.3 Data Integration

To construct a unified multimodal dataset, we spatially align all heterogeneous geospatial in-
puts—satellite imagery, environmental variables, and soil attributes—into structured 224 × 224
patches. Each patch combines pixel-level reflectance with auxiliary domain features, including
evapotranspiration (ET), precipitation, groundwater depth, surface water elevation, and processed
soil properties. All inputs are reprojected to a common projection EPSG:5070. Patch-level values are
extracted using: (i) polygonal intersection for irrigation labels and soil map units; (ii) centroid-based
nearest neighbor lookup for point data (e.g., groundwater, precipitation); and (iii) raster sampling for
gridded layers (e.g., ET). Soil prompts are joined to each patch via spatial intersection; if multiple
soil units overlap, prompts are concatenated.

4.4 ML-ready Dataset Preparation

Here, we consider the representative problem of irrigation type mapping. However, our data can
also be applied to related tasks by reusing the same processing pipeline provided with the dataset.
After processing and alignment, we extract a total of 1,484,301 ML-ready patches across 20 states,
with 293,890 labeled and 1,190,206 unlabeled examples. The labeled subset comes from six states,
some with partial coverage (See Figure 1), enabling semi-supervised and pretraining applications.
After reprojecting, masking, and patch extraction, we obtain 5,649 processed tiles occupying 1,386.5
GB, which represents a 77% reduction from raw data in storage size compared to the original data
footprint.

Training and evaluation splits. We adopt two complementary strategies for splitting our dataset to
support both intra-state generalization and cross-regional evaluation: a 70:15:15 spatial split within
states, and a leave-one-state-out protocol across states. In the cross-state splitting, for each labeled
state the train-validate-test split is performed at the tile level (one satellite image) as opposed to
splitting the set of individual patches. It ensures that data from the same geographic region does not
appear in multiple splits—thereby preventing spatial leakage. This design is critical in remote sensing
settings, where nearby patches are highly correlated due to shared land cover and climate conditions.
To evaluate out-of-distribution generalization, we perform a leave-one-state-out split. A target state is
held out entirely for testing, while the remaining states contribute data to the training and validation
sets. For the training states, we again split at the tile level and reserve a small portion (typically 10%)
for validation. This setting simulates real-world scenarios where labeled data is unavailable in a new
geographic region, and the model must transfer knowledge learned from other states. The details are
in the supplement.

5 Dataset Benchmarking

We evaluate segmentation performance across three irrigation types (Flood, Sprinkler, and Drip)
using nine baseline models and multiple modalities using standard Dice and IoU metrics (details in

7



the supplement). Table 2 reports overall metrics, while Table 3 details per-state Dice scores under the
leave-one-state-out setting.

Architecture Comparison. Among RGB-only architectures, transformer-based models (e.g., Seg-
Former, FarSeg) outperform CNN baselines. However, performance improvements from architectural
changes are modest compared to those achieved by integrating additional modalities. Vision-language
models like RemoteCLIP leverage text supervision to improve generalization, while KIIM benefits
from structured auxiliary inputs (crop and land use). KIIM (RGB + Crop + Land) achieves the
highest performance across all types, with Dice scores of 93.6% (Flood), 95.8% (Sprinkler), and
94.6% (Drip). RemoteCLIP and CLIP, which incorporate textual prompts, also surpass all RGB-only
models. This indicates the utility of language-grounded supervision. These results underscore that
incorporating domain-specific context is more impactful than architecture alone for the irrigation
mapping task.

Cross-State Generalization. KIIM maintains strong performance across diverse states, likely due
to its explicit fusion of structured crop and land metadata with visual features, while RGB-only models
degrade significantly in out-of-distribution regions. CLIP and RemoteCLIP perform well in states
with clearer visual-text alignment (e.g., AZ, CO) but struggle in regions with less distinctive irrigation
patterns (e.g., WA, FL), which highlights the limits of vision-only and VLM-based generalization
without structured context. Among the irrigation types, sprinkler irrigation is consistently the easiest
to segment (due to its circular geometric shape), with most models achieving Dice greater than 85%.
Flood irrigation shows variability across states. Drip irrigation is the most challenging, particularly in
CO and UT, where even strong models like KIIM score below 15%, likely due to its irregular shapes
and fine-grained, low-contrast footprint.

Table 2: Performance (%) across irrigation types using different models and modalities.

Model Modality Flood Sprinkler Drip
Dice IoU Dice IoU Dice IoU

ResNet RGB 35.2 21.4 92.2 85.5 88.5 79.4
ViT RGB 82.9 70.9 89.9 81.7 84.1 72.6
FPN RGB 86.2 75.7 91.4 84.1 86.4 76.0
SegFormer RGB 86.2 75.8 91.7 84.7 85.9 75.3
DeepLabV3+ RGB 87.2 77.4 92.1 85.4 86.9 76.8
FarSeg RGB 88.2 78.9 92.3 85.7 89.2 80.5
CLIP RGB+Text 90.1 82.0 93.1 87.0 90.7 83.0
RemoteCLIP RGB+Text 90.9 83.3 93.7 88.2 92.3 85.7
KIIM RGB+Land+Crop 93.6 88.0 95.8 91.9 94.6 89.7

Table 3: Dice scores (%) for Flood, Sprinkler, and Drip irrigation types across 6 U.S. states and 9
model architectures. Flood is not applicable in Georgia.

State Type KIIM R-CLIP ViT FarSeg CLIP DLV3+ FPN SegFormer ResNet

AZ
Flood 74.6 67.0 72.1 70.6 66.7 70.69 71.33 70.07 70.88
Sprinkler 83.2 82.8 84.5 82.8 79.7 83.01 82.43 85.62 83.31
Drip 22.5 5.8 10.3 29.4 1.8 18.11 21.92 23.04 17.54

CO
Flood 52.8 12.1 53.1 52.2 44.1 50.31 49.44 46.98 50.52
Sprinkler 79.0 73.4 76.1 78.6 73.5 76.53 77.84 78.27 76.29
Drip 1.9 0.6 0.5 1.1 0.1 0.76 0.67 1.27 0.19

UT
Flood 61.6 28.1 60.6 60.3 54.9 59.60 57.98 60.09 59.71
Sprinkler 67.9 56.4 61.5 65.3 57.5 62.97 62.59 63.68 63.55
Drip 14.8 0.0 6.4 0.8 0.0 9.73 4.23 4.12 6.46

WA
Flood 29.5 19.7 21.6 25.6 18.3 19.91 22.83 23.65 22.23
Sprinkler 79.7 74.3 77.4 78.6 73.3 76.66 77.38 77.74 77.09
Drip 8.9 1.6 22.1 12.7 4.5 18.25 10.05 27.18 0.01

FL
Flood 11.6 3.0 0.8 17.3 2.2 1.60 8.46 5.11 17.91
Sprinkler 64.8 51.0 54.5 61.0 50.6 59.76 59.58 57.57 61.14
Drip 15.2 2.7 30.3 28.2 8.5 6.14 11.51 8.08 3.70

GE
Sprinkler 59.0 42.4 48.9 50.4 37.2 27.12 47.33 45.93 47.38
Drip 6.2 1.6 5.5 6.8 3.3 1.55 6.18 11.34 2.95
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Impact of Textual Prompts. As shown in Table 2, incorporating these text prompts substantially
improves model performance compared to RGB-only baselines. In RemoteCLIP, the textual prompt
serves as an independent semantic input encoded via a language encoder, complementing the visual
encoder rather than being concatenated as auxiliary features. For instance, RemoteCLIP achieves a
92.3% Dice score on drip irrigation, compared to 88.5% for an RGB-only ResNet, confirming that
structured domain knowledge enhances model discrimination across all irrigation types.

Label Generation for Unlabeled States. Following the performance of KIIM model, we generate
synthetic labels for 17 unlabeled states. We trained the KIIM model on all six labeled data and
generated irrigation maps for the unlabeled states. We show the confidence for synthetic labels in
Figure 3 for seven states.

6 Application of the Dataset

The IRRISIGHT dataset is designed to support a range of machine learning and agricultural modeling
tasks. A direct application is that it lays a pipeline for ingesting feature-rich ML-ready multimodal
dataset that can help address at the national-scale various questions in the context of water availability.

While irrigation type segmentation is the primary benchmark, IRRISIGHT was designed for broader
agricultural water management tasks. Its modular multimodal pipeline—integrating Sentinel-2 im-
agery with soil, hydrological, and crop metadata—enables generalization beyond irrigation mapping.
To illustrate this extensibility, we evaluated two downstream tasks: crop classification and environmen-
tal variable regression. The KIIM model retrained on IRRISIGHT data significantly outperformed the
USDA CropScape [49], achieving higher Macro-F1 scores across all states (Supplement Table S10).
Regression experiments using tree-based models also showed strong predictive accuracy for evapo-
transpiration, groundwater, precipitation, and surface water (Table 4), demonstrating IRRISIGHT’s
utility across diverse hydrological prediction tasks.

Furthermore, regression experiments using Random Forest, Gradient Boosting, and XGBoost models
were conducted to predict key environmental variables—evapotranspiration (ET), groundwater,
precipitation, and surface water—using other available features such as irrigation labels and geospatial
attributes.. All models achieved strong coefficients of determination (R2 ranging from 0.43 to 0.99)
across variables (Table 4), confirming that the dataset’s integrated structure enables robust learning
for hydrologically relevant targets.

Table 4: Regression performance (MAE, RMSE, and R2) for environmental variables using tree-
based models. Lower MAE/RMSE and higher R2 are better.

Variable (Unit) Model MAE RMSE R2

ET (mm) Random Forest 22.993 30.279 0.483
Gradient Boosting 24.751 31.705 0.433
XGBoost 23.075 30.328 0.481

Ground Water (ft) Random Forest 3.230 19.544 0.867
Gradient Boosting 16.314 36.546 0.536
XGBoost 10.683 28.671 0.715

Precipitation (in) Random Forest 0.001 0.005 0.988
Gradient Boosting 0.009 0.016 0.869
XGBoost 0.003 0.008 0.963

Surface Water (ft) Random Forest 5.782 64.259 0.986
Gradient Boosting 60.448 174.265 0.901
XGBoost 27.827 125.645 0.948

These findings provide strong empirical evidence that IRRISIGHT generalizes beyond irrigation
classification, supporting diverse supervised and regression-based tasks in agricultural water manage-
ment. By design, it enables research in drought assessment, fallowing detection, irrigation suitability
mapping, and crop–irrigation optimization. Some other example applications are provided below.

Irrigation Classification with Supervised and Semi-Supervised Learning: The labeled subset
enables training of supervised deep learning models for irrigation detection, while the large unlabeled
regions support semi-supervised approaches that leverage weak labels and spatial context.
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Figure 3: Distribution of model confidence scores across irrigation types (excluding non-irrigated)
for the top 7 high-confidence states. Each boxplot shows the variation in predicted confidence across
patches within a given irrigation class and state. Confidence values are derived from the model’s
softmax outputs, and higher scores indicate greater certainty in the predicted irrigation type.

Flash Drought Detection: A flash drought is a sudden onset drought that lasts long enough to impact
vegetation [37]. This dataset can be combined with flash drought data [e.g., 53] to develop models of
flash drought impact on crops and which irrigation practices are best at minimizing it.

Fallowing Detection and Prediction: Fallowing, where a field is not planted for a season, can be
done as part of a normal crop rotation sequence, or due to lack of water availability (drought), or as
part of a strategy for long-term water security [59, 57]. The dataset can be used to develop fallowing
detection and prediction models, which can in turn be used to discover normal crop rotation patterns
and to quantify the impact of drought.

Irrigation Suitability Mapping: By combining ET, precipitation, and groundwater data, the dataset
can be used to estimate irrigation feasibility in areas with limited infrastructure or policy-relevant
water stress.

Region-Specific Analysis for Crop Planning: Crop type labels, where available, enable downstream
tasks such as identifying crop-irrigation suitability patterns and generating region-specific irrigation
recommendations based on soil and water constraints.

7 Limitations

Here, we acknowledge some of the shortcomings of the IRRISIGHT datasets and describe possible
future directions. A major limitation is that pixel-level labels are included for only six states. Further,
not all states have full coverage. While KIIM [27] shows superior performance in irrigation type
mapping, the poor results on cross-state generalization suggest the importance of providing the model
with features and if possible sample labels corresponding to the target region for training to improve
performance. Also, for states where limited or no label information is present, validation becomes a
challenge. Using data such as US Agricultural Census, an aggregate-level validation based on county
data is a possibility but has its own challenges. Raster reprojection to a 10m grid (e.g., crop type, land
use) may cause misalignment or information loss, especially in heterogeneous landscapes. Our soil
aggregation emphasizes dominant components, potentially removing hydrologically relevant minority
types. In the future, we will explore rigorous evaluation strategies for unlabeled states, including
census-model alignment and expert review.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: This paper contributes a novel spatial dataset and an automated pipeline to generate
the same for future extensions to the data. These are summarized in the abstract and explained
in the introduction with background and motivation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A limitations section has been added.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides full description and details in the main part and the supplement.
Code and data are made open.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]
Justification: Code and data have been released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: All the details of training and model tuning are provided in the experiment setup
and the supplement.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Standard accuracy, F1-score metrics provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Compute environment is described.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper uses open datasets. No research involving human subjects or participants
conducted.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: The paper describes the various potential beneficial applications of the dataset for
the domain as well as development of novel methods.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: A static dataset is contributed.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The papers and websites have been cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets

21

paperswithcode.com/datasets


Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Documentation has been provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: Publicly available data sources used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
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Answer: [Yes]
Justification: Visual-LLM methods are applied in the pipeline for semi-automated data process-
ing. The exact methodology, inlcuding applied textual prompts, has been documented. Some
portions of the implementation (e.g., data preprocessing, visualization scripts) were assisted us-
ing large language models (LLMs) such as ChatGPT for coding support. All code was reviewed
and validated by the authors.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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