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Abstract

Representation learning and de novo generation of proteins are pivotal computational biology
tasks. Whilst natural language processing (NLP) techniques have proven highly effective
for protein sequence modelling, structure modelling presents a complex challenge, primarily
due to its continuous and three-dimensional nature. Motivated by this discrepancy, we
introduce an approach using a vector-quantized autoencoder that effectively tokenizes protein
structures into discrete representations. This method transforms the continuous, complex
space of protein structures into a manageable, discrete format with a codebook ranging
from 4096 to 64000 tokens, achieving high-fidelity reconstructions with backbone root mean
square deviations (RMSD) of approximately 1-4 Å. To demonstrate the efficacy of our
learned representations, we show that a simple GPT model trained on our codebooks can
generate novel, diverse, and designable protein structures. Our approach not only provides
representations of protein structure, but also mitigates the challenges of disparate modal
representations and sets a foundation for seamless, multi-modal integration, enhancing the
capabilities of computational methods in protein design.

1 Introduction

The application of machine learning to large-scale biological data has ushered in a transformative era
in computational biology, advancing both representation learning and de novo generation. Particularly,
the integration of machine learning in molecular biology has led to significant breakthroughs (Sapoval
et al., 2022; Chandra et al., 2023; Khakzad et al., 2023; Jänes and Beltrao, 2024), spanning many complex
and inhomogenous data modalities, from sequences and structures through to functional descriptors and
experimental assays, many of which are deeply interconnected and have attracted significant modelling efforts.

Currently, the deep learning landscape is increasingly converging towards a unified paradigm centered around
attention-based architectures (Vaswani et al., 2017) and sequence modeling. This shift has been driven by the
impressive performance and scalability of transformers, and even accelerated since treating non-standard data
modalities as sequence-modeling problems has proven highly effective. Indeed, transformers-based models are
leading methods in many machine learning domains, including image representation (Radford et al., 2021),
image (Chen et al., 2020; Chang et al., 2022) and audio generation (Ziv et al., 2024), and for Reinforcement
Learning (Chen et al., 2021; Boige et al., 2023). This trend has greatly benefited sequence-based biological
models, allowing for the direct application of NLP methodologies like GPT (Radford and Narasimhan, 2018)
and BERT (Devlin et al., 2019) with notable success (Ferruz et al., 2022; Lin et al., 2023b).

In particular, large multi-modal models (LMMs), leveraging transformer backbones, are emerging as a key
tool with applications in various fields such as: ubiquitous AI (GPT4 (Achiam et al., 2023), LLaVA (Liu
et al., 2024b), Gemini (Gemini et al., 2023), Flamingo (Alayrac et al., 2022)); text-conditioned generation of
images (Parti (Yu et al., 2022b), Muse (Chang et al., 2023)) or sounds (MusicGen (Copet et al., 2023)); and
even reinforcement learning (Reed et al., 2022). LMMs are also instantiated in biological settings, such as
medicine (MedLlama (Xie et al., 2024), Med-Gemini (Yang et al., 2024b) Med-PaLM (Tu et al., 2024)) and
genomics (ChatNT (Richard et al., 2024)). Core to all these LMMs is the use of pre-trained encoders as a
mechanism for combining modalities in sequence space. For instance, LLaVa (Liu et al., 2024b) and Flamingo
(Alayrac et al., 2022) used pre-trained vision encoders, ViT-L/14 (Radford et al., 2021) and Normalizer
Free ResNet (NFNet) (Alayrac et al., 2020) respectively, while Copet et al. (2023) leverages the the codec
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of Défossez et al. (2023). In general, training robust representations of specific modalities facilitates their
incorporation into state-of-the-art LMMs. However, to the best of our knowledge, there is no established
methodology that readily allows the application of sequence-modelling to protein structures.

Despite these advances in related domains, structure-based modeling of biological data such as proteins
remains a formidable challenge. Unlike sequences, protein structures are inherently three-dimensional and
continuous, which complicates the direct application of transformer models that primarily handle discrete data.
Instead, structure-based methods often design bespoke geometric deep learning methodologies to process
Euclidean data; for example graph-neutral network encoders (Dauparas et al., 2022; Krapp et al., 2023) and
structurally-aware modules such as those in AlphaFold (Jumper et al., 2021). Moreover, generative modelling
of structures is typically performed with methods designed for continuous variables; such as diffusion (Watson
et al., 2023; Yim et al., 2023) and flow matching (Bose et al., 2024), rather than the discrete-variable models
that have proved so successful in sequence modelling.

In this work, we aim to address this gap by learning learning a quantized representations of protein structures
enabling to efficiently leverage sequence-based language models. The key objectives of this this work are:

(i) To convert protein structures into the discrete domain We propose the transformation of
structural information of proteins into discrete sequential data, enabling seamless integration with
sequence-based models.

(ii) To learn a discrete and potentially low-dimensional latent space By learning a discrete
latent space through finite scalar quantization, we facilitate the mapping of continuous structures to
a finite set of vectors. This effectively builds a vocabulary for protein structures, and can be pushed
into low dimensions for applications with limited resources.

(iii) To achieve a low reconstruction error We aim to minimize the reconstruction error of the
learned discrete representation, typically within the range of 1-4 Ångströms.

Our contributions are threefold. First, we introduce a series of quantized autoencoders that effectively
discretize protein structures into sequences of tokens while preserving the necessary information for accurate
reconstruction. Second, we validate our autoencoders through qualitative and quantitative analysis, and
various ablation studies, supporting our design choices. Third, we demonstrate the efficacy and practicality
of the learned representations with experimental results from a simple GPT model trained on our learned
codebook, which successfully generates novel, diverse, and structurally viable protein structures. All source
code for experiments is publicly available online at [URL removed to preserve anonymity].

2 Method

2.1 Protein Structure Autoencoder

Our objective is to train an autoencoder that maps protein structures to and from a discrete latent space of
sequential codes. Following prior works (Yim et al., 2023; Wu et al., 2024), we consider the backbone atoms
of a protein, N− Cα − C− O, to define the overall structure.

For a protein consisting of N residues, we seek to map its structure, represented by the tensor of the backbone
atoms coordinates p ∈ RN×4×3, to a latent representation z̃ = [z̃1, . . . z̃N

r
], where a r is a downsampling ratio,

controlling the size of the representation. Note that each element z̃i can only take a finite number of values,
with the collection of all possible values defining a codebook C.

A schematic overview of the our autoencoder is depicted in Figure 1. In this section, we focus on the three
components of the model; the encoder eθ extracting a set of N

r embeddings of dimension c denoted z ∈ RN
r ×c

, the quantizer qϕ that discretizes z to obtain a quantized representation z̃, and the decoder dψ that predicts
a structure p̃ ∈ RN×4×3 from z̃. The learnable parameters are respectively denoted (θ, ϕ, ψ) and the learning
setting summarizes as:

p eθ7−→ z qϕ7−→ z̃ dψ7−→ p̃.
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Figure 1: Schematic overview of our approach. The protein structure is first encoded as a graph to extract
features from using a GNN. This embedding is then quantized before being fed to the decoder to estimate
the positions of all backbone atoms.

Encoder The encoder maps the backbone atoms positions p ∈ RN×4×3, to a continuous downsampled
continuous representation z ∈ RN

r ×c where r is the downsampling ratio:

eθ : p ∈ RN×4×3 7→ z ∈ R
N
r ×c (1)

Note that when the downsampling ratio r is set to 1, each component zi ∈ Rc can be interpreted as the
encoding of residue i.

This representation learning task is similar to the traditional task of mapping point-clouds to sequences (Yang
et al., 2024a; Boget et al., 2024). Inverse folding (Ingraham et al., 2019; Dauparas et al., 2022) is another
example, that aims at estimating the sequence of amino acids corresponding to a given a protein structure.
Recently, ProteinMPNN has shown remarkable capacity at the inverse folding task. We follow their design
choices and parameterize our encoder using a Message-Passing Neural Network (MPNN) (Dauparas et al.,
2022). In addition, we introduce a cross-attention mechanism, detailed in Appendix A.1 and Algorithm 2,
allowing to effectively compress the structure representation by a downsampling ratio r. We maintain locality
using a custom attention masking scheme in the downsampling layer (see Appendix A.1), ensuring that
each down-sampled node aggregates information from a small number of neighboring nodes in the original
sequence space.

MPNN operates on a graph consisting of a set of vertices and edges. We follow Dauparas et al. (2022);
Ganea et al. (2022) and set as initial node features a positional encoding that reflects the residue’s ordering
within the sequence, while for the edge features, we use a concatenation of pairwise distance features, relative
orientation features and relative positional embeddings. Note that as positional encoding, relative distance
and orientation are invariant with respect to the frame of reference, the input data fed to the model are
invariant to rotation and translation. This invariant encoding of the input structures guarantees the invariance
of the learned representation regardless of the chosen downstream architecture. The encoding scheme is
described in detail in Appendix A.2.

Quantization The quantizer plays a crucial role in our work by discretizing all continuous latent repre-
sentations into a sequence of discrete codes. Traditional methods typically involve direct learning of the
codebook (van den Oord et al., 2017; Razavi et al., 2019). However, in line with the literature, we suffered
several drawbacks associated with these approaches. Indeed, explicit vector quantization is particularly
expensive as it involves computation of pairwise distances, particularly problematic for long sequences and
large codebooks. Moreover, training instabilities arising from both the bias in the straight-through estimator
and the under-utilization of the codebook capacity, often referred to as codebook collapse, make learning a
discretized latent representation a hard optimization problem (Huh et al., 2023; Takida et al., 2024). To
address these challenges, we leverage the recent Finite Scalar Quantization (FSQ) framework (Mentzer et al.,
2024), which effectively resolves the aforementioned issues, notably by reducing straight-through gradient
estimation error.
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FSQ learns a discrete latent space by rounding a bounded low-dimensional encoding of the latent representation.
Consider zi ∈ Rc, the ith element of the continuous encodings z, and the quantization levels L = [L1, . . . , Ld] ∈
Nd. Its discretized counterpart, denoted as z̃i ∈ Zd, typically with d ≤ 8, is defined by:

z̃i = round
(

L
2 ⊙ tanh(Wzi)

)
(2)

where ⊙ the element-wise multiplication and W ∈ Rd×c is a projection weight matrix (see Appendix A.1 for
more details). In doing so, each quantized vector z̃i can be mapped to an index in {1, . . . ,

∏d
j=1 Lj}. This

implicitly defines a codebook by its indices, where each index is associated a unique combination of the each
dimension values. In our implementation, the quantized representation z̃ = [z̃0, . . . , z̃ N

r
] is then projected

back to the latent space with dimension c (line 5 of Algorithm 1). Optimization is then conducted using a
straight-through gradient estimator. Equation (2) ensures that the approximation error introduced by the
straight-through estimator is bounded.

Decoder The decoder module of our framework is tasked with estimating a structure p̂ from the latent
quantized representation z̃:

dψ : z̃ ∈ R
N
r ×c 7→ p̃ ∈ RN×4×3 (3)

The task our decoder addresses formulates more broadly as a sequence to point-cloud task. A paradigmatic
example of such a task in biology is the protein folding problem, where the confirmation of a protein is
estimated given its primary sequence of amino-acids. Jumper et al. (2021) successfully tackled this task
proposing a novel architecture for point cloud estimation from latent sequence of embeddings. Therefore, we
use AlphaFold-2 structure module to parameterize our decoder and learning the parameter from scratch.

Specifically, the structure module of AlphaFold parameterizes a point cloud using frames. A frame is defined
by a tuple T = (R, t) where R is the frames’ orientation (i.e. a rotation matrix) and t is the frame center
(i.e. a vector defining the translation of the center of the frame). The origin of the frame is set to the Cα
carbon, and the orientation is defined using the nitrogen and the other carbon atom. For a thorough and
mathematical description, we defer to Jumper et al. (2021). However, note that AlphaFold’s structure module
expects both a per-residue representation (si)i≤N and a pairwise representation (ki,j)i,j≤N between residues i
and j. The per-residue representation si is constructed by mirroring the cross-attention mechanism described
in Algorithm 2 used for downsampling in order to produce embeddings at the residue level by only varying
the size of the initial input queries. The process for constructing the pairwise representation (ki,j)i,j≤N used
for reconstruction is described in Algorithm 3 and Appendix A.1.

2.2 Training

Objective The Frame Align Point Error (FAPE) loss, introduced in Jumper et al. (2021), is a function
that enables the comparison between point clouds. Since there is no guarantee that the coordinates provided
by the decoding module are expressed in the same basis as the input structure, direct comparison of the
coordinates between the two point clouds becomes challenging. The core concept behind the FAPE loss is to
ensure that coordinates are expressed in the same global frame, thereby enabling the computation of the
mean squared error. To do so, given a ground-truth frame Ti and ground-truth atom position xj expressed
in Ti, and their respective predictions Tp

i and xp
j , the FAPE Loss is defined as:

LFAPE = ∥Tp
i

−1(xp
j )−Ti

−1(xj)∥ (4)

In Equation (4), the predicted coordinates of atom j (xp
j ), expressed in the predicted local frame of residue i

(Tp
i ), are compared to the corresponding true atom positions relative to the true local frame, enabling the

joint optimization of both the frames and the coordinates. We found that clamping the FAPE loss with a
threshold of 10 improves the training stability.

Dataset We use approximately 310000 entries available in the Protein Data Bank (PDB) (Berman et al.,
2000) as training data. The presence of large groups of proteins causes imbalances in the data set, with
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many protein from the same family sharing structural similarities. To mitigate this issue, we sample the data
inversely proportional to the size of the cluster it belongs to when clustering the data by sequence similarity
using MMseqs21. We filter all chains shorter than 50 residues and crop the structures that have more than
512 residues by randomly selecting 512 consecutive amino acids in the corresponding sequences. We randomly
select 90% of the clusters for training and use the remaining as test set. Amongst these 10% withhold protein
structures clusters, we retain 20% for validation, the remaining 80% being used for test.

Model Hyperparameters For the encoder, we use a 3 layers message passing neural network following
the architecture and implementation proposed in Dauparas et al. (2022) and utilize the swish activation
function. The graph sparsity is set to 50 neighbours per residue. When the downsampling ratio is r > 1, the
resampling operation consists in a stack of 3 resampling layers as described in Algorithm 2, the initial queries
being defined as the positional encodings. We strictly follow the implementation of AlphaFold (Jumper et al.,
2021) regarding the structure module and use 6 structure layers.

Optimization and Training Details The optimization is conducted using AdamW (Loshchilov and
Hutter, 2019) with β1 = 0.9, β2 = 0.95 and a weight decay of 0.1. We use a learning rate warm-up scheduler,
progressively increasing the learning rate from 10−6 to 10−3, and train the model for 250 epochs on 128 TPU
v4-8 with a batch size 1024.

3 Experiments

The primary focus of our work is to develop an effective method to encode and quantize 3D structures with
high fidelity. In this section we first evaluate, both qualitatively and quantitatively, our vector-quantized
autoencoder by considering the compression and reconstruction performance and demonstrate that our
tokenizer indeed permits high-accuracy reconstruction of protein sequences. We then further highlight how
this can be adapted to downstream tasks, by effectively training a de novo generative model for protein
structures using a vanilla decoder-only transformer model trained on the next token prediction task.

3.1 Autoencoder Evaluation

Experiments We trained six versions of the quantized autoencoder; with small (K = 4096 codes) and large
(K = 64000) codebooks and increasing downsampling ratio (r) (from 1 to 4), and in doing so, varying the
information bottleneck of our model. For each codebook we evaluate the reconstruction performance achieved
on the held out test set, to understand the trade-offs between compression and expressivity associated with
these hyperparameter choices. To further assess the compression capacity of our model, we also train two
additional quantized autoencoders with smaller codebook sizes, K = 1728 and K = 1728.

Metrics To assess the reconstruction performances of the models, we rely on standard metrics commonly
used in structural biology when comparing the similarity of two protein structures. The root mean square
distance (RMSD) between two structures is computed by calculating the square root of the average of the
squared distances between corresponding atoms of the structures after the optimal superposition has been
found. The TM-score (Y. and J., 2005) is a normalised measure of how similar two structures are, with a
score of 1 denoting the structures are identical. For context, two structures are considered to have similar fold
when their TM-score exceeds 0.5 (Xu and Y., 2010) and a RMSD below 2Å is usually seen as approaching
experimental resolution.

Results Our results are summarised in Table 1. We find that with a codebook of K = 64000 and a
downsampling of r = 1; our average reconstruction has 1.59 Å RSMD and a TM-score of 0.95. For comparison,
we also report the reconstruction performance of the exact same models without latent quantization. Whilst
increasing the model capacity may allow these scores to be improved even further, this is already approaching
the limit of experimental resolution (which is to say, the reconstruction errors are on par with the experimental
errors in resolving the structures).

1The cluster size is readily available in the PDB data set: https://www.rcsb.org/docs/grouping-structures/
sequence-based-clustering
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Table 1: Average Test set reconstruction results of our discrete auto-encoding method for several down-
sampling ratios and (implicit) codebook sizes. For CASP-15 we report the median of the metrics due to the
limited dataset size. Note that a RMSD below 2Å is considered of the order of experimental resolution and
two proteins with a TM-score > 0.5 are considered to have the same fold. The compression is defined as: the
number of bits necessary to store the N × 4× 3 backbone positions divided by the number of bits necessary
to store the N

r tokens multiplied by log2(#Codes)
.

Downsampling Ratio Number of Codes Compression Factor Results CASP15
RMSD (↓) TM-Score (↑) RMSD (↓) TM-Score (↑)

1

432 88 2.09 Å 0.91 1.75 Å 0.89
1728 71 1.79 Å 0.93 1.33 Å 0.94
4096 64 1.55 Å 0.94 1.25 Å 0.94
64000 48 1.22 Å 0.96 0.94 Å 0.97

without quantization − 0.97 Å 0.98 1.07 Å 0.93

2

4096 128 2.22 Å 0.90 1.73 Å 0.89
64000 96 1.95 Å 0.92 1.82 Å 0.90

without quantization − 1.45 Å 0.95 1.44 Å 0.90

4

4096 256 4.10 Å 0.81 2.79 Å 0.77
64000 192 2.96 Å 0.86 2.55 Å 0.80

without quantization − 2.19 Å 0.91 1.98 Å 0.84

Table 1 clearly indicates that increasing the downsampling factor or decreasing the codebook size correspond-
ingly impacts the reconstruction accuracy. This is expected as it essentially enforces greater compression
in our autoencoder leading to a loss of information - nevertheless in all cases we find that the achievable
reconstruction performance is still within a few angstrom with TM-scores clearly exceeding the 0.5 threshold
on average. The fact that the performances improve with increasing the codebook size also shows that our
method does not suffer from codebook collapse (i.e. only a subset of the codes being used by the trained
model), an issue well known and documented with other quantization methods (Huh et al., 2023; Takida et al.,
2024). This is also noticeable in Figure 2 that shows that, given a downsampling ratio, larger codebooks
effectively decrease the reconstruction errors. Finally, comparing to continuous autoencoders, our learned
quantization demonstrates significant information compression at the expense of only a small decrease in
the reconstruction precision of the order of 0.5 − 1 Å. Additionally, we provide in Appendix A.3 detailed
distribution of the RMSD and TM-Scores for both CASP-15 and the held-out test set. Notably, we can see
that increasing the downsampling ratio, or decreasing the codebook size tends to thickens the right tail (resp.
the left) of the distribution for the RMSD (resp. the TM score).

# codes = 432 # codes = 1728 # codes = 4096 # codes = 640000
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Figure 2: Evolution of the RMSD (left) and TM-score (right) distribution with the codebook size for a
dowsampling ratio of 1 on CASP-15 data.

The reconstruction performance is illustrated in Figure 3, where examples of the model’s outputs are
superimposed with their corresponding targets in the case of a downsampling factor of r = 2 and K = 64000
codes. Visually, our model demonstrates its ability to capture the global structure of each protein. Additionally,
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our model faithfully reconstructs local conformation of each protein preserving essential secondary structures
elements of the protein such as the α-helices and β-sheets.

Figure 3: Visualisation of the model reconstruction (blue) super-imposed with the original structures (green)
for a downsampling factor of r = 2 and K = 64000 codes (fourth column of Table 1). Each row shows a
different structures seen from a different rotation angle (column). The length and reconstruction RMSD are
also given on the left of the most left column.

3.2 De novo protein structure generation

Experiment We now demonstrate that our learned discrete autoencoder can be effectively leveraged for
downstream tasks. In particular, we consider generation of protein structures from a model trained in our
latent space as a paradigmatic demonstration of our tokenizers utility. This is not just because generative
models for de novo protein design are of great interest for drug discovery – enabling rapid in silco exploration
of the design space – but also as it directly leverages our compressed representation of protein structures
using established sequence modelling architectures.

Specifically, we tokenize our dataset (defined in Section 2.2; full details on dataset preparation for this
experiment can be found in Appendix A.4.1) using a downsampling factor of 1 and a codebook with 4096
codes (first line of Table 1). This choice is motivated by the trade-off between reconstruction performance (this
model achieves results close to experimental resolution), extensive datasets (GPT training benefits from large
datasets, so we favor a low downsampling ratio, choosing r = 1), and parameter efficiency (smaller codebooks
imply fewer parameters , we set K = 4096). More specifically, we train an out-of-the-box decoder-only
transformer model with 20 layers, 16-heads and an embedding dimension of 1024 (344M parameters) on a
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Table 2: Structure generation metrics for our method alongside baselines (and nature)specifically designed
for protein structure generation. Self-consistent TM-score (scTM) and self-consistent RMSD (scRMSD) are
two different ways to asses the designability of the generated structure. Note that while high novelty score is
desirable, structures that are too far from the reference dataset can also be a sign of unfeasible proteins.

Method scTM (↑) scRMSD (↑) Novelty Diversity
Ours 87.22 % 61.83% 23.3% 60.11 %
FrameDiff 75.77% 25.31% 56.64% 82.0%
RFDiffusion 97.07% 71.14% 86.11% 95.0%
Validation Set 97.67% 82.36 % − 70.1%

next-token-prediction task on the training split. This decoder-only model is used to generate new sequences
of tokens which are then mapped back to 3D protein structures using our pre-trained decoder.

Metrics We evaluate the generated structures on different aspects: designability, novelty and diversity.
Designability, or self-consistency, uses ProteinMPNN (Dauparas et al., 2022) to predict a potential sequence
for the generated structure and refolds it using ESMFold (Lin et al., 2022) to report the structural similarity
between the original and redesigned structure. We follow the literature and report the proportion of designed
proteins with self-consistent TM-score (scTM) above 0.5 respectively the number of designed proteins with
self-consistent RMSD (scRMSD) below 2Å. The rationale is that generated structures should be sufficiently
natural that established methodologies recognise them and agree on the fundamental biophysical properties.

Moreover, a useful generative model will provide samples that are varied and not simple replications of
previously existing structures. To assess this, we measure the diversity and novelty of our generation. Diversity
characterizes the structural similarities between the generated structures and is defined using structural
clustering. Specifically, we report the number of clusters obtained when using the TM-score as the similarity
metric, normalised by the number of generated sequences. Novelty compares the structural similarity of the
generated structure with a dataset of reference. Here again, we use the TM-score as our similarity metric
and consider a structure as novel if its maximum TM-score against the reference dataset is below 0.5. As is
commonly done, we only report the proportion of novel samples in our generated dataset. Overall, we follow
Yim et al. (2023) for the implementation of these metrics and refer the reader to Appendix A.4.2 for more
details on the validation pipeline.

Baselines To gauge how our structure generation GPT model fares against specifically designed protein
design methods, we compare our model with FrameDiff (Yim et al., 2023) and RFDiffusion (Watson et al.,
2023). Both use bespoke SE(3) diffusion models specifically designed and trained the structure generation task.
Note that, the state-of-the-art RFDiffusion leverages the extensive pre-training of RoseTTAFold (Baek et al.,
2021) on a large dataset and requires considerable computational cost. On the contrary, our generation model
is a standard GPT and the objective here is to show how one can readily use the tokenized representation
learned with our method for protein design.

Results The results for the different metrics are given in Table 2 with the sampling strategy used for each
method described in Appendix A.4.3. It is noteworthy that while not specifically designed for the protein
structure generation task, even our simple GPT model is able to generate protein structures of quality in par
with a method specific to protein design such as FrameDiff. For comparison, and to set an upper bound of
what to expect in terms of the designability scores, we compute self-consistency and diversity metrics for
1600 randomly sampled structures from our validation and report them in Table 2. While our method shows
competitive performance at generative designable domains, the results are more nuanced for the novelty
and diversity scores. Especially, our model seems to generate domains that are structurally closer to the
reference data set than the ones generated by the baselines. One explanation for this can be found in the
sampling method where the chosen parameters favored samples closer to the modes of the data distribution
as discussed in Appendix A.4.3. Although generating structures that are novel and diverse is desirable,
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Figure 4: Visualisation of generated samples (green) super-imposed with their self-consistent ESM-predicted
structures (blue).

structures that differ too much from the natural proteins found in the reference dataset, can also indicate
unrealistic structures, making the novelty and diversity metrics harder to interpret on their own. Indeed,
when visualizing novelty against designability (see Figure 20), we can see that while FrameDiff generates
more novel but less designable structures (lower-right corner), our structures are more designable at the
expense of lower novelty. In the light of Figure 20, we compute the number of structures with cathTM < 0.5
(novel) and scRMSD < 2Å(designable) and find that 9.01 % (70 out of 777) of our samples are designable
and novel relative to 8.18 % (53 out of 648) for FrameDiff and 58.58 % (379 out of 647) for RFDiffusion. We
provide additional results and analyses in Appendix A.4.4.

In Figure 4, we visualize random samples from our model super-imposed with the ESM-predicted structure
used in designability metric. We first notice that the generated sample exhibit diverse structure, with non
trivial secondary secondary elements (α-helices and β-sheets). We also note that the ESM-predicted structures
are closely aligned with the original samples, showing the designability aspect of the generated structures.

4 Related Works

Learning from Protein Structures. Learning from protein structure is thriving research field that
encompasses a wide variety of tasks crucial task. For instance, inverse folding (Ingraham et al., 2019; Hsu
et al., 2022; Dauparas et al., 2022; Jing et al., 2021) or binding site estimation (Krapp et al., 2023; Ganea
et al., 2022) are critically enabling for drug design (Scott et al., 2016). Others (Consortium, 2006; Robinson
et al., 2023; Kucera et al., 2023; Gligorijević et al., 2021) focus on learning from protein structure to provide a
better understanding of the role of the structure, hence pushing the knowledge frontier of biological processes.

Representation Learning of Protein Structures. Eguchi et al. (2022) learns a VAE using as inputs
matrix distances and predicting 3D coordinates. The supervision is done by comparing distance matrices.
Despite the straightforward nature of sampling from a VAE latent space, it often yields subpar sample quality,
see Kingma et al. (2016).

Discrete representation learning for protein structures has recently garnered increasing attention. Foldseek
(van Kempen et al., 2024) introduces a quantized autoencoder to encode local protein geometry, demonstrating
success in database search tasks. However, as it focuses solely on local features at the residue level, it lacks
the capacity to provide global representation of protein structures. This limitation restricts its application
in tasks like structure generation or binding prediction, where global information is critical (Krapp et al.,
2023). Building on the 3Di-alphabet introduced by Foldseek, Su et al. (2024); Heinzinger et al. (2023) propose
structure-aware protein language models that integrate structure tokens with sequence tokens. Additionally,
Li et al. (2024) combines a structural autoencoder with K-means clustering applied to the latent representation
of a fixed reference dataset.
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More closely related to our work, Gao et al. (2023) adapts VQ-VAE (van den Oord et al., 2017) for protein
structures. However, its limited reconstruction performance constrains its applicability. Lin et al. (2023a)
explores discrete structural representation learned by such VQ-VAEs (van den Oord et al., 2017), while Liu
et al. (2023) trains a diffusion model on the discrete latent space derived from this approach. Similarly, and
concurrently with our work, Liu et al. (2024a) combines finite scalar quantization (Mentzer et al., 2024) with
a specialized transformer-based autoencoder for proteins, RNA, and small molecules.

Very recently, efforts have emerged to combine quantized structural representation with discrete sequence
representation, enabling multimodal generative models trained on a joint discrete latent space. FoldToken
(Gao et al., 2024b;a), is a concurrent approach that shares conceptual similarities with our work but differs
in key methodological and application-oriented aspects. FoldToken employs joint quantization of sequence
and structure, enabling integration across modalities, whereas our method focuses exclusively on structural
information. This decoupling allows for mode-specific pretraining, aligning with strategies from subsequent
works (Hayes et al., 2024; Lu et al., 2024). Methodologically, FoldToken introduces a series of improvements
to existing VQ methods (van den Oord et al., 2017) aimed at enhancing reconstruction accuracy; whereas
we adopt the FSQ framework, which reduces the straight-through gradient estimation gap inherent to VQ
methods while improving codebook utilization. Furthermore, while FoldToken primarily emphasizes backbone
inpainting and antibody design (Gao et al., 2024b;a), our work considers de novo generation of complete
structures.

Generation of Protein Structures. A substantial body of literature addresses the challenge of sampling
the protein structure space. Numerous studies have advocated for the use of diffusion-based models (Wu
et al., 2024; Yim et al., 2023; Watson et al., 2023) or flow matching techniques (Bose et al., 2024). While
many of these works, such as those by Yim et al. (2023); Watson et al. (2023); Bose et al. (2024), employ
complex architectures to ensure invariance to rigid-body transformations, Wu et al. (2024) opted for an
alternative parameterization directly preserving symmetries allowing the authors to capitalize on conventional
architectures, yet working only on small protein crops. Recently, Wang et al. (2024b) employs a lookup-free
quantizer (Yu et al., 2024) as a structure tokenizer and trains a diffusion protein language model (Wang
et al., 2024a) on the concatenated sequence and structure tokens. Other works (Hayes et al., 2024; Lu et al.,
2024) simply uses VQ-VAEs (van den Oord et al., 2017) to tokenize the structures and train large language
models (LLM) on the combination of sequence and structure tokens.

5 Conclusion

This work demonstrates a methodology for learning a discrete representation of a protein geometry; allowing
the mapping of structures into sequences of integers whilst still recovering near native conformations upon
decoding. This sequential representation not only simplifies the data format but also significantly compresses
it compared to traditional 3D coordinates. Our belief is that the primary contribution of our work lies in
setting the stage for applying standard sequence-modelling techniques to protein structures.

A prerequisite for such development is the expressiveness of the tokenized representation, which must capture
the necessary information to enable hight fidelity reconstructionf of the 3D structures. Both empirical and
visual inspection confirm this to be the case for our proposed methodology. Indeed, as codebook collapse is
effectively mitigated by the use of FSQ, larger codebook vocabularies and an increased tokens usageprovide
straightforward recipes for improving the reconstruction accuracy by reducing the information bottleneck of
the autoencoder

The first step towards sequence-based modelling of structures is the proof-of-concept GPT model, trained on
tokenized PDB entries, that serves as a simple de novo generating protein backbones. That the achieved
results are competitive with some recent diffusion-based model underlines the promise of this paradigm.
While a simple GPT does not yet match seminal approaches like RFDiffusion, it is important to recognize
that the performances of the latter stem from extensive developments in 3D generative modeling. Given the
remarkable performance of sequence-modelling algorithms across a diversity of data modalities, equivalent
efforts could also provide simpler and more powerful treatments of protein structure. This represents a
promising direction for future research based on this work.
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A Appendix

A.1 Architectures

We provide in this section additional details on the autoencoder architecture.

Quantizer For the FSQ quantizer, we use linear projections for encoding and decoding of the codes
following the original work of (Mentzer et al., 2024). For all the experiments, we fix the dimension of the
codes to d = 6. Then, we quantize each channel into L unique values L1, . . . , Ld and refer to the quantization
levels as L = [L1, . . . , Ld]. The size of the codebook C is given by the product of the quantization levels:
|C| =

∏d
j=1 Lj . For the experiments with small codebooks with |C| = 4096, we use L = [4, 4, 4, 4, 4, 4] and for

large codebooks experiments, |C| = 64000, we take L = [8, 8, 8, 5, 5, 5].

In more details the FSQ quantizer writes as Algorithm 1:

Algorithm 1 Finite Scalar Quantization
1: Input: zi ∈ Rc (residue embedding), Wproj ∈ Rc×d Wup−proj ∈ Rd×c (weight matrices), L number of

levels
2: Output: z̃i (Quantized output)

// Compute low dimensional embedding
3: zi = Wproj · zi

// Bound each element zij between [−Lj/2, Lj/2]
4: zij = Li

2 tanh(zij)
// Round each element to the nearest integer

5: z̃i = Wup−proj · round(zi)
6: return z̃i

The product Wproj zi facilitates scalar quantization within a lower-dimensional latent space, thereby defining a
compact codebook. This is similar to the low dimensional space used for code index lookup in Yu et al. (2022a).
The subsequent up-projection operation then restores the quantized code to its original dimensionality.

Resampling The cross-attention based resampling layer can be used for both down (resp. up) sampling,
effectively reduces (resp. increases) the length of the sequence of embeddings is described in Algorithm 2.

Algorithm 2 Resampling Layer with Positional Encoding
1: Input: Inputs ∈ RT×d , Mask, target size: p, features dim: d , Queries: [Optional]
2: Output: Queries, Inputs
3: If Queries = None then:
4: Queries← SinPositionalEncoding(p) ∈ Rp×d

5: Queries, Keys, Values← Linear(Queries), Linear(Inputs), Linear(Inputs)
6: AttentionWeights = Softmax

(
Queries·Keyst√

d
∗ Mask

)
∈ Rp×d

7: Output = AttentionWeights · Values ∈ Rp×d

8: Queries← MLP(Output)
9: Inputs← MLP(Inputs)

10: return (Queries, Inputs)

Local Cross-Attention Masking The encoder network used in this work preserves the notion of residue
order, as defined in the primary structure of a protein (i.e. its ordered sequence of amino acids). We do not
provide our algorithm with information regarding the amino-acids. However, we do include the order of the
residues from which extract the atoms coordinates. When downsampling the encoder representations using a
standard cross-attention operation, the resulting output virtually includes information from any other residue
embeddings, irrespective of their relative position in the sequence. In order to encourage the downsampled
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representation to carry local information, we propose to use local masks in the CrossAttention update of
the resampling layer defined in Algorithm 2. This will guide the network towards local positions (in the
sequence) and prevent information from distant embeddings. We illustrated the local masking in Figure 5,
where only the direct neighbors are kept in the attention update.

Input
Embeddings

Attention
Mask

Downsampled
Embedding

Figure 5: Illustration of the local attention mechanism when using 2 neighbors for aggregation.

Decoder For the decoder, we re-purpose the Structure Module (SM) of AlphaFold (Jumper et al., 2021).
In Jumper et al. (2021), a pair of 1D and 2D features (called the single representation and pair representation
respectively) is extracted from the data by the Evoformer and fed to the SM to reconstruct the 3D structure.
Contrary to AlphaFold, we encode the structures with a set of 1D features - the sequence of discrete codes
obtained after tokenization. Inspired by the OuterProductMean module of the Evoformer (Alg. 10 in SM of
Jumper et al. (2021)), we compute a pairwise representation of the structure by computing the outer product
of the quantized sequence after projection, and concatenating the mean with the pair relative positional
encoding, as defined in Algorithm 3.

Algorithm 3 Pairwise Module
1: Input: s = (si)i≤N
2: Output: k = (kij)i,j≤N

// linear transforms of the initial embedding
3: sleft = Wleft.s, sright = Wright.s

// (n = k): protein length, d: embedding dim
4: k = einsum(nd, kd -> nkd, sleft, sright)
5: k = MLP(kij ,RelativePositionalEncoding(i, j)i,j≤N )
6: return k = (kij)i,j≤N

Overall algorithm, the encoding and decoding processes write as described in Algorithm 4

A.2 Training Details and Metrics

Data Preprocessing We consider the graph G = (V, E) consisting of a set of vertices - or nodes - V
(the residues) with features f1

V . . . f
|V |
V and a set of edges E with features f1

E . . . f
|E|
E . For the node features,

we use a sinusoidal encoding of sequence position such that for the i-th residue, the positional encoding
is

(
ϕ(i, 1) . . . ϕ(i, d)

)
where d is the embedding size. For the edge features we follow Ganea et al. (2022).

More specifically, for each defined by residue vi, a local coordinate system is formed by (a) the unit vector ti
pointing from the α-carbon atom to the nitrogen atom, (b) the unit vector ui pointing from the α-carbon to
the carbon atom of the carboxyl (−CO−) and (c) the normal of the plane defined by ti and ui: ni = ui×ti

∥ui×ti∥ .
Finally, setting: qi = ni × ui, the edge features are then defined as the concatenation of the following:

• relative positional edge features: pj→i = (nTi uTi qTi )(xj − xi),

• relative orientation edge features: qj→i = (nTi uTi qTi )nj , kj→i = (nTi uTi qTi )uj , tj→i = (nTi uTi qTi )vj ,
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Algorithm 4 Overall Algorithm Pseudo-Code
1: Input: p ∈ Rn×4×3, (θ, ϕ, ψ)
2: Output: z̃, p̃

// Compute embedding at the residue-level
3: z = GNN(p)

// Downsample N → N/r
4: z = Resampling(z)

// Quantize
5: z̃ = qϕ(z)

// Upsample N/r → N
6: s = Resampling(z̃)

// Make pairwise representation for decoding
7: k = PairWiseModule(s)

// Decode
8: p̃ = StructureModule(s,k)
9: return z̃, p̃ (Quantized output)

• distance-based edge features, defined as radial basis functions: fj→i,r = e
−

∥xj−xi∥2

2σ2
r , r = 1, 2...R where

R = 15 and σr = 1.5.

Regularization We found that introducing a scheduled commitment loss, similar to the original VQ-VAE
approach van den Oord et al. (2017), significantly improves late-stage stability in training. However, imposing
this penalty too early can harm encoder expressivity. To address this, we delay the onset of the commitment
loss until step 20000 and then linearly increase its weight from 0 at step 20000 to a maximum value of
λmax = 0.2. Concretely, the auxiliary loss takes the form:

Laux(step, zi) = λ(step)
∥∥ zi − stopgrad

(
rounded(zi)

)∥∥, (5)

where the schedule function λ(step) is given by

λ(step) =


0, if step < 20000,

λmax
step− 20000
T − 20000 , if 20000 ≤ step ≤ T,

λmax, if step > T,

(6)

and T is the step at which the ramp-up completes. This delayed, gradually increasing penalty ensures that
the encoder can initially learn expressive representations, then become more stable in later training.

Compression Factor We define the compression factor of Table 1 as the ratio between the number of bits
necessary for encoding the backbone position atoms and the number of bits necessary to store the latent
codes. With positions stored as 64-bit floats and latent codes stored as 16-bit unsigned integers (since the
highest number of latent codes is 64000 < 216), we can write the compression factor as:

Compression Factor = N × 4× 3× 64
N × 16/r = r × 48 (7)

A.3 Additional Results: Structures Autoencoding

In Figures 6 and 7 we detail the evolution of the RMSD and TM-scores on CASP-15 dataset when varying the
downsampling ratio with a fixed codebook size of 4096. The results indicate that the average error increases
alongside the standard deviation of the error distribution.
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Figure 6: Evolution of the RMSD distribution on CASP-15 dataset with the downsampling ratio, with a
fixed codebook size of 4096

Figure 7: Evolution of the TM-Score distribution on CASP-15 dataset with the downsampling ratio, with a
fixed codebook size of 4096

A.4 De novo Structure Generation

A.4.1 Training details

GPT hyperparameters We use a standard decoder only transformer following the implementation of
(Hoffmann et al., 2022) with pre-layer normalization and a dropout rate of 10% during training. We follow
Hoffmann et al. (2022) for the parameters choice with 20 layers, 16 heads per layers, a model dimension of
1024 and a query size of 64, resulting in a model with 344M parameters.

Training and Optimization Given the tokenization of PDB training set, we respectively prepend a <bos>
and append <eos> tokens and pad all sequences with <pad> token so that all sequences are of size 514. Hence,
the maximum number of actual structural token per sequence is 512. The loss associated to <pad> tokens is
masked out.

For the optimization, we utilize a ADAMw with β1 = 0.95, β2 = 0.9 and a weight decay of 0.1. We also
employ a learning rate scheduling linearly warming-up increasing the learning rate up to 5.10−5 for the
first 1000. Following the seminal work of Radford and Narasimhan (2018), we employ embedding, residual
and attention dropout with rate of 10% rate. We found the batch size to have a crucial importance on the
optimization and adopt a batch size 65,792 tokens per batch.
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Figure 8: Evolution of the RMSD distribution on CASP-15 dataset with the downsampling ratio, with a
fixed codebook size of 4096

Figure 9: Evolution of the TM-Score distribution on CASP-15 dataset with the downsampling ratio, with a
fixed codebook size of 4096

The total number of actual structural tokens is 70M. In that perspective, and in line with works such as
Hoffmann et al. (2022), we believe that leveraging large dataset of predicted structures such as AlphaFold 2

can provide significant improvements when training the latent generative model.

A.4.2 Structure generation metrics

Designability We adopt the same framework than (Yim et al., 2023; Trippe et al., 2023; Wu et al., 2024)
to compute the designability or self-consistency score:

• Compute 8 putative sequences from ProteinMPNN (Dauparas et al., 2022) with a temperature
sampling of 0.1.

• Fold each of the 8 amino-acid sequences using ESMFold (Lin et al., 2022) without recycling, resulting
in 8 folds per generated structure.

• Compare the 8 ESMFold-predicted structures with the original sample using either TM-score (scTM)
or RMSD (scRMSD). The final score is taken to be the best score amongst the 8 reconstructed
structures.

2https://alphafold.ebi.ac.uk/
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Figure 10: RMSD (left) and TM-Score (right) distribution on the held out test set for the codebook size of
432 and downsampling ratio of 1.

0 2 4 6 8 10 12
RMSD

0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y

40 60 80 100
TM-Scores

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

Figure 11: RMSD (left) and TM-Score (right) distribution on the held out test set for the codebook size of
1728 and downsampling ratio of 1.

In Table 2, we report the proportion of generated structures that are said to be designable, i.e samples for
which scTM>0.5 (or scRMSD< 2 Å when using the RMSD).

Novelty For the reference dataset, we use the s40 CATH dataset (Orengo et al., 1997), publicly available
here. In order to reduce the computation time, we first retrieve the top k = 1000 hits using Foldseek (van
Kempen et al., 2024). We then perform TM-align (Y. and J., 2005) for each match against the targeted
sample and report the TM-score corresponding to the best hit. A structure is then considered as novel if the
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Figure 12: RMSD (left) and TM-Score (right) distribution on the held out test set for the codebook size of
4096 and downsampling ratio of 1.
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Figure 13: RMSD (left) and TM-Score (right) distribution on the held out test set for the codebook size of
64,000 and downsampling ratio of 1.

maximum TM-score against CATH (cathTM) is lower than 0.5 and report the proportion of novel structures
in Table 2

Diversity Finally, we measure the diversity of the samples similarly to Watson et al. (2023). More
specifically, the generated samples are clustered using an all-to-all pairwise TM-score as the clustering
criterion and we observe the resulting number of structural clusters normalized by the number of generated
samples. For a diverse set of generated samples, each cluster should be composed of only a few samples - or
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Figure 14: RMSD (left) and TM-Score (right) distribution on the held out test set for the codebook size of
4096 and downsampling ratio of 2.
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Figure 15: RMSD (left) and TM-Score (right) distribution on the held out test set for the codebook size of
64,000 and downsampling ratio of 2.

equivalently, the number of different clusters should be high. We use MaxCluster Herbert and Sternberg
(2008) with a TM-score threshold of 0.6 as in Watson et al. (2023).

A.4.3 Sampling

Baselines For each baseline methods, we follow a standardized process similar to that of Yim et al. (2023)
to generate the testing dataset: we sample 8 backbones for every length between 100 and 500 with length step
of 5: [100, 105, . . . , 500]. We re-use the publicly available codes and use the parameters reported in Watson
et al. (2023) and Yim et al. (2023) respectively.
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Figure 16: RMSD (left) and TM-Score (right) distribution on the held out test set for the codebook size of
4096 and downsampling ratio of 4.
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Figure 17: RMSD (left) and TM-Score (right) distribution on the held out test set for the codebook size of
64,000 and downsampling ratio of 4.

Generating Structures with a Decoder-Only Transformer Sampling for our method is a 2 steps
process: first, sample a sequence of structural tokens from the trained prior described in Appendix A.4.1, then
reconstruct the structures using the trained decoder. There are many ways to sample from a decoder-only
transformer model (Vaswani et al., 2017; Radford and Narasimhan, 2018; Radford et al., 2019; Holtzman
et al., 2020). We chose temperature sampling (Vaswani et al., 2017) with other alternative sampling strategies
such as top-k (Radford et al., 2019) and top-p (or nucleus) sampling (Holtzman et al., 2020) resulting in little
improvement at the cost of increased complexity. As showed in Vaswani et al. (2017), the temperature controls
the trade-off between the confidence and the diversity of the samples. In order to tune the temperature, we
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sampled 2000 samples for each temperature between 0.2 and 0.8 in step of 0.2 and compute the designability
score for these samples. As expected, the higher the temperature, the more varied the samples. Indeed, the
distribution of the proteins length, depicted in Figure 18, shows a greater diversity of higher temperatures.
On the other hand, with lower temperatures, the length distribution is more concentrated around few lengths.
Similarly we can see than for lower temperatures, the samples closer to the modes of the length distribution
(samples with length between 100 and approximately 300) achieve higher scTM-score (see Figure 18). The
results reported in Table 2 are obtained with a temperature of 0.6, as it achieves a satisfying trade-off between
designability and diversity.

Figure 18: Ablation of the temperature sampling. Left: Histogram of the generated structure length. Right:
Designability score vs temperature sampling.

Contrary to the baselines, our model learns the join distribution the length and the structures p(s) =
∫
l
p(s, l)dl

where the random variables s and l represent the structures and the length respectively. Indeed, only the
conditional distribution p(s|l) is modeled by the diffusion-based baselines. In Figure 18, we show the length
distribution learned by the model.Since we can only sample from the joint distribution and not the conditional,
we adopt the following approach: First, we sample 40,000 structures from the model (using a temperature of
0.6 as previously established). We then bin the generated structures by length, with a bin width of 5 and
bin centers uniformly distributed between 100 and 500, specifically: [100, 105, . . . , 500]. Finally, we limit the
maximum number of structures per bin to 10, randomly selecting 10 structures if a bin contains more than
this number.
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A.4.4 Additional Results

Figure 19: Designability score vs samples length. Left: scRMSD score for different structure lengths. Right:
scTM score for different structure lengths.

Figure 20: Left: Novelty score for different structure lengths. Right: Novelty score versus designability score.
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Figure 21: Distribution of the designability scores for novel domains (cathTM<0.5).

Figure 22: Evolution with the length of the generated sequence of the per-residue negative Log-Likelihood of
the selected amino acids as provided by ProteinMPNN
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