
Schedule Agnostic Semantics for Reactive Probabilistic Programming

GUILLAUME BAUDART, Université Paris Cité, Inria, CNRS, IRIF, France

LOUIS MANDEL, IBM Research, USA

CHRISTINE TASSON, ISAE-Supaero, Université de Toulouse, France

Synchronous languages are now a standard industry tool for critical embedded systems. Designers write high-level specifications by

composing streams of values using block diagrams. These languages have been recently extended with Bayesian reasoning to program

state-space models which compute a stream of distributions given a stream of observations. Yet, the semantics of probabilistic models

is only defined for scheduled equations – a significant limitation compared to dataflow synchronous languages and block diagrams.

In this paper we propose a new operational semantics and a new denotational semantics for a probabilistic synchronous language

that are both schedule agnostic. The key idea is to externalize the source of randomness and interpret a probabilistic expression as a

stream of functions mapping random elements to a value and positive score. The operational semantics interprets expressions as state

machines where mutually recursive equations are evaluated using a fixpoint operator. The denotational semantics directly manipulates

streams and is thus a better fit to reason about program equivalence. We use the denotational semantics to prove the correctness of a

program transformation required to run an optimized inference algorithm for state-space models with constant parameters.

CCS Concepts: • Software and its engineering→ Semantics; Data flow languages; • Mathematics of computing→ Sequential

Monte Carlo methods; • Theory of computation→ Probabilistic computation.

Additional Key Words and Phrases: Probabilistic programming languages, Dataflow synchronous languages, Probabilistic stream

semantics, Assumed Parameter Filter

ACM Reference Format:
Guillaume Baudart, Louis Mandel, and Christine Tasson. 2025. Schedule Agnostic Semantics for Reactive Probabilistic Programming.

1, 1 (May 2025), 44 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Synchronous programming languages [7] were introduced for the design of critical embedded systems. In dataflow

languages such as Lustre [39], system designers write high-level specifications by composing infinite streams of values,

called flows. Flows progress synchronously, paced on a global logical clock. Specialized compilers generate efficient and

correct-by-construction embedded code with strong guarantees on execution time and memory consumption. This

approach was inspired by block diagrams, a popular notation to describe control systems [40]. Built on these ideas,

Scade is now a standard tool in automotive and avionic industries to program safety critical embedded software [20].

The synchronous model of computation is also central for the discrete-time subset of Matlab/Simulink [43].

Authors’ Contact Information: Guillaume Baudart, Université Paris Cité, Inria, CNRS, IRIF, France; Louis Mandel, IBM Research, USA; Christine Tasson,

ISAE-Supaero, Université de Toulouse, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

Page 1 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Guillaume Baudart, Louis Mandel, and Christine Tasson

Probabilistic languages extend general purpose programming languages with probabilistic constructs for Bayesian

reasoning [8, 25, 36, 37]. Following a Bayesian approach, a program describes a probability distribution, the posterior

distribution, using initial beliefs on random variables, the prior distributions, that are conditioned on observations.

At the intersection of these two lines of research, ProbZelus [5] is a probabilistic extension of the synchronous dataflow

language Zelus [16]. ProbZelus combines, in a single source program, deterministic controllers and probabilistic models

that can interact with each other to perform inference-in-the-loop. A classic example is the Simultaneous Localization and

Mapping problem (SLAM) [49] where an autonomous agent tries to infer both its position and a map of its environment

to adapt its trajectory.

The probabilistic model of the SLAM involves two kinds of parameters. The position is a state parameter represented

by a stream of random variables. At each instant, a new position must be estimated from the previous position and the

observations. The map is a constant parameter represented by a random variable whose value is progressively refined

from the prior distribution with each new observation. This type of problem mixing constant parameters and state

parameters are instances of State-Space Models (SSM) [19]. Any ProbZelus program can be expressed as a SSM.

Probabilistic semantics and scheduling. In the original ProbZelus semantics expressions are interpreted as state

machines [5]. Following [52], a probabilistic expression computes a stream of measures. The semantics of an expression

with a set of local declarations integrates the semantics of the main expression over all possible values of the local

variables. Unfortunately, this semantics yields nested integrals that are only well defined if the declarations are scheduled,

i.e., ordered according to data dependencies.

This is a significant limitation compared to synchronous dataflow languages where sets of mutually recursive

equations are not ordered: a key requirement for commercial synchronous data-flow languages where programs are

written using a block diagram graphical interface. Scheduling should not depend on the placement of the blocks, this

motivates their definition as mutually recursive equations. Besides, the compiler implements a series of source-to-source

transformations which often introduces new variables in arbitrary order. Scheduling local declarations is one of the

very last compilation passes [16]. The semantics of ProbZelus is thus far from what is exposed to the programmer and

prevents reasoning about most program transformations and compilation passes.

In this paper, we show how to extend the schedule agnostic semantics of dataflow synchronous languages [11, 18] for

probabilistic programming. We first define a new operational semantics where sets of equations in arbitrary order can

be interpreted with a fixpoint operator. The key idea of our approach is to interpret probabilistic expressions as a stream

of functions mapping random elements in [0, 1] to a value and positive score. Like its deterministic counterpart [18], this

operational semantics is executable and has the same structure as the compiled code. A drawback of this semantics is

that, at each step, probabilistic state machines compute measures. Proofs of program equivalence must relate measures

of states through successive integrations by exhibiting a bisimulation [50]. We introduce a denotational semantics

which abstracts away the state machines and directly manipulates streams which simplifies reasoning about program

equivalence. This semantics extends the semantics used in the Vélus project to prove an end-to-end compiler for the

synchronous language Lustre [11–13].

Filtering and constant parameters. As a case study we prove the correctness of a program transformation that

is required to run an optimized inference algorithm. To estimate state parameters, Sequential Monte Carlo (SMC)

techniques rely on random simulations and filtering to approximate the posterior distribution, i.e., voluntarily dropping

information to re-center the inference on themost significant estimations. Unfortunately, this information loss negatively

impacts constant parameters estimations.

Manuscript submitted to ACM

Page 2 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 3

1 proba motion(f) = x where

2 rec init x = xo and init v = vo

3 and v = sample(gaussian(last v +. f *. h, sv))

4 and x = sample(gaussian(last x +. last v *. h, sx))

6 proba tracker(y_obs) = x where

7 rec x = motion(f)

8 and f = current_force(x)

9 and () = observe(gaussian(g(x), sy), y_obs)

11 node main(y_obs) = u where

12 rec x_dist = infer (tracker (y_obs))

13 and u = controller(x_dist)

1

αt
αt+1

δt

xt

xt+1
ft

Fig. 1. Tracking a drifting boat with a marine radar in ProbZelus. 𝑥𝑡 is the position of the boat in Cartesian coordinates at time

𝑡 . The speed of the boat 𝑣𝑡 is computed from the current force 𝑓𝑡 which depends on the position of the boat. The observation

𝑔 (𝑥𝑡) = (𝛼𝑡 , 𝛿𝑡) comprises the radar angle 𝛼𝑡 = atan(𝑥𝑡 [1]/𝑥𝑡 [0]) , and the echo delay 𝛿𝑡 = 2∥𝑥𝑡 ∥/𝑐 where 𝑐 is the speed of light.

Inspired by the Assumed Parameter Filter algorithm [35], we can split the inference into two steps: 1) estimate

state parameters, and 2) update constant parameters. This technique requires a program transformation to explicitly

separate constant from state parameters. A specialized static analysis identifies the constant parameters and their prior

distributions. A compilation pass then transforms these parameters into additional inputs of the model. We use our

denotational semantics to prove the correctness of this transformation, i.e., the transformation preserves the ideal

semantics of the program.

Contributions. In this paper, we present the following main contributions:

• We introduce in Section 4 a new operational semantics and show that sets of mutually recursive probabilistic

equations can be interpreted using a fixpoint operator.

• We introduce in Section 5 a new denotational semantics that abstracts away the state machines and directly

manipulates streams which simplifies reasoning about program equivalence.

• We prove in Section 6 that these two semantics coincide, i.e., they both define the same streams, and that the

operational semantics is equivalent to the original ProbZelus semantics for the subset of scheduled programs.

• We define in Section 7 a program transformation required to run an optimized inference algorithm for state-

space models with constant parameters. We use our denotational semantics to prove the correctness of the

transformation.

2 EXAMPLE

To motivate our approach, consider the ProbZelus program of Figure 1 adapted from [19][Section 2.4.1]. ProbZelus is a

synchronous dataflow language à la Lustre [39] where programs execute in lock-step on a global logical clock. In this

example, a discrete-time probabilistic model is used to track a drifting boat given noisy observations from a marine

radar. At each instant, a rotating antenna sweeps a beam of microwaves and detects the boat when the beam is reflected

back to the antenna. The radar then estimates the position of the boat from noisy measurements of its angle and of the

echo delay. We assume that the strength of the current only depends on the position of the boat.

Manuscript submitted to ACM

Page 3 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

4 Guillaume Baudart, Louis Mandel, and Christine Tasson

Probabilistic model. The keyword proba indicates the definition of a probabilistic stream function. The motion

model (Line 1) takes as input the stream f of the current force and returns the stream of estimated positions using two

noisy integrators to compute the speed v and position x of the boat. Line 3 uses sample to specify that v is Gaussian

distributed around the (discrete) integral of the current force f where h is the integration step, and last v refers to

the previous speed of the boat initialized Line 2 with the init keyword. Similarly, Line 4 specifies that x is Gaussian

distributed around the integral of v.

The trackermodel uses the motion model to estimate the position of the boat (Line 7) and computes the current force

from the position using a deterministic function current_force (Line 8). The observe operator (Line 9) conditions the

model assuming that the observations y_obs are Gaussian distributed around g(x), where g estimates the observable

quantities (e.g., angle and echo delay) from the estimated position. The integration step h, the initial values xo and vo,

and the noise parameters sx, sv and sy are global constants.

Inference-in-the-loop. The tracker model can be used to program a deterministic controller. The keyword node

indicates the definition of a deterministic stream function that takes as input the stream of radar measurements and

returns a stream of commands. Line 12, the explicit infer operator computes the stream of distributions x_dist defined

by the probabilistic model tracker conditioned on the observations y_obs. Line 13 is an example of inference-in-the-loop

where the distribution x_dist of estimated positions is used to compute the command u (e.g., using the mean or the

variance of the distribution) that propels the boat which then influences the next observation.
1

Mutually recursive equations. The original ProbZelus semantics focuses on a kernel language where local declarations

are all scheduled, i.e., ordered according to data dependencies: an equation 𝑥𝑖 = 𝑒𝑖 must appear after 𝑥 𝑗 = 𝑒 𝑗 if 𝑒 𝑗

uses 𝑥𝑖 without a last operator [5, Section 3.1]. But imposing a valid schedule is a significant limitation compared to

synchronous dataflow languages which manipulate mutually recursive equations in arbitrary order. In particular, some

programs can only be scheduled after several compilation passes which introduce additional equations to relax the

scheduling constraints. For instance, in the tracker model, x depends on f (Line 7), but f also depends on x (Line 8).

To break this dependency cycle, the compiler must inline the definition of motion to compute x, then f, then v. Such

programs cannot be interpreted with the original semantics. In this paper, we propose a new operational semantics,

and a new denotational semantics that are both defined on programs before compilation and overcome this limitation.

2.1 Operational semantics

We first propose in Section 4 a new operational semantics for ProbZelus inspired by existing probabilistic semantics [10,

38, 45, 48] where the source of randomness is externalized. Following the original ProbZelus co-iterative semantics [5]

expressions are interpreted as state machines characterized by an initial state and a transition function. The interpretation

of expressions depends on the context: probabilistic (e.g., inside the models motion or tracker) or deterministic (e.g.,

inside the controller main). Given the current state, the transition function of deterministic expressions returns the

next state and a value. The transition function of probabilistic expressions takes one additional argument — a random

element for every random variable — and returns one additional output — a positive score, or weight, which measures

the quality of the output w.r.t. the model.

On the motion model of Figure 1, the state of the transition function memorizes (𝑝𝑣, 𝑝𝑥) the previous values of v
and x (required to interpret the last operator).2 The additional argument [𝑟𝑣, 𝑟𝑥] contains one random element for

1
A more complex motion model could also use the value of the command.

2
After simplifications, omitting empty states for stateless expressions, see Section 4.

Manuscript submitted to ACM

Page 4 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 5

each sample operator, i.e., an element 𝑟 of the interval [0, 1] that can be mapped to a sample
3
of a distribution 𝑑 using

inverse transform sampling [32]. The model computes the samples 𝑣 and 𝑥 associated to the random elements, then

returns the new state (𝑣, 𝑥) (i.e., the next previous values for v and x), the result 𝑥 , and a weight 1 (there is no observe).

⦅motion⦆
step

𝛾 (𝑓 , (𝑝𝑣, 𝑝𝑥), [𝑟𝑣, 𝑟𝑥]) = let 𝜇𝑣 = N(𝑝𝑣 + 𝑓 × ℎ, 𝑠𝑣) in let 𝑣 = icdf 𝜇𝑣
(𝑟𝑣) in

let 𝜇𝑥 = N(𝑝𝑥 + 𝑝𝑣 × ℎ, 𝑠𝑥) in let 𝑥 = icdf 𝜇𝑥
(𝑟𝑥) in

(𝑣, 𝑥), 𝑥, 1

(1)

Mutually recursive equations. Following the original co-iterative semantics for dataflow synchronous languages [18]

we interpret mutually recursive equations with a fixpoint operator in a flat complete partial order (CPO) where variables

are either undefined or set to a value.

For instance, the semantics of the local declarations in tracker is the fixpoint of the following function 𝐹 starting

from the least element [x← ⊥, f← ⊥]. For simplicity, we assume that the semantics of current_force is a known

stateless deterministic function 𝑐 and the semantics of the observation function g is a stateless deterministic function 𝑔.

𝐹 (𝜌) = let (𝑣, 𝑥), 𝑥, 1 = ⦅motion⦆
step

𝛾 (𝜌 (f), (𝑝𝑣, 𝑝𝑥), [𝑟𝑣, 𝑟𝑥]) in
let 𝑓 = 𝑐 (𝜌 (x)) in
let 𝑤𝑦 = pdf N(𝑔 (𝜌 (x)),𝑠𝑦) (𝑦obs) in
[x← 𝑥, f← 𝑓]

𝜌0 = [x← ⊥, f← ⊥]
𝜌1 = [x← icdf 𝜇𝑥

(𝑟𝑥), f← ⊥]
𝜌2 = [x← icdf 𝜇𝑥

(𝑟𝑥), f← 𝑐 (icdf 𝜇𝑥 (𝑟𝑥))]
𝜌3 = [x← icdf 𝜇𝑥

(𝑟𝑥), f← 𝑐 (icdf 𝜇𝑥 (𝑟𝑥))]

The fixpoint converges after 3 iterations. Since x only depends on the state (𝑝𝑣, 𝑝𝑥) in Equation (1), the first iteration

returns a value for x even if f is ⊥. The second iteration can then use this value to compute f. Using the resulting

environment, the semantics of tracker computes the next state, the result value, and the weight capturing the likelihood

of the observation w.r.t. the estimation (the density of the distribution N(𝑔(𝑥), 𝑠𝑦) at 𝑦obs).

⦅tracker(y_obs)⦆
step

𝛾 ((𝑝𝑣, 𝑝𝑥), [𝑟𝑣, 𝑟𝑥]) = let 𝜌 = [x← icdf 𝜇𝑥
(𝑟𝑥), f← 𝑐 (icdf 𝜇𝑥 (𝑟𝑥))] in

let (𝑣, 𝑥), 𝑥, 1 = ⦅motion⦆
step

𝛾 (𝜌 (f), (𝑝𝑣, 𝑝𝑥), [𝑟𝑣, 𝑟𝑥]) in
let 𝑓 = 𝑐 (𝜌 (x)) in
let 𝑤𝑦 = pdf N(𝑔 (𝜌 (x)),𝑠𝑦) (𝑦obs) in
(𝑣, 𝑥), 𝑥,𝑤𝑦

= let 𝑥 = icdf N(𝑝𝑥+𝑝𝑣×ℎ,𝑠𝑥) (𝑟𝑥) in
let 𝑣 = icdf N(𝑝𝑣+𝑐 (𝑥)×ℎ,𝑠𝑣) (𝑟𝑣) in
(𝑣, 𝑥), 𝑥, pdf N(𝑔 (𝑥),𝑠𝑦) (𝑦obs)

(2)

The semantics of a sets of equations is defined via a fixpoint operator even when the solution is obvious like in the

motion model. If equations are scheduled, the fixpoint yields the same environment as a sequence of local declarations.

Unnormalized measure. We obtain an unnormalized measure over pairs (next state, value) by integrating over all

possible random elements, i.e., for a model 𝑒 , if ⦅𝑒⦆
step

𝛾 (𝑚, 𝑟) =𝑚′, 𝑣,𝑤 we define𝜓 (𝑚) =
∫
[0,1]𝑝 𝑤 × 𝛿 (𝑚′,𝑣) 𝑑𝑟 where

𝑝 is the number of random variables in 𝑒 and 𝛿 (𝑚′,𝑣) is the Dirac distribution on the pair of state and value (𝑚′, 𝑣). On

3
icdf 𝑑 is the generalized inverse cumulative distribution function of 𝑑

Manuscript submitted to ACM

Page 5 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

6 Guillaume Baudart, Louis Mandel, and Christine Tasson

the example of Figure 1, we get:

𝜓 (𝑝𝑣, 𝑝𝑥) =

∫
[0,1]

∫
[0,1]

let (𝑣, 𝑥), 𝑥,𝑤 = ⦅tracker(y_obs)⦆
step

𝛾 ((𝑝𝑣, 𝑝𝑥), [𝑟𝑣, 𝑟𝑥]) in 𝑤 × 𝛿 (𝑣,𝑥),𝑥 𝑑𝑟𝑥 𝑑𝑟𝑣

=

∫
[0,1]

let 𝑥 = icdf N(𝑝𝑥+𝑝𝑣×ℎ,𝑠𝑥) (𝑟𝑥) in∫
[0,1]

let 𝑣 = icdf N(𝑝𝑣+𝑐 (𝑥)×ℎ,𝑠𝑣) (𝑟𝑣) in

pdf N(𝑔 (𝑥),𝑠𝑦) (𝑦obs) × 𝛿 (𝑣,𝑥),𝑥 𝑑𝑟𝑥 𝑑𝑟𝑣

=

∫
N(𝑝𝑥 + 𝑝𝑣 × ℎ, 𝑠𝑥) (𝑑𝑥)

∫
N(𝑝𝑣 + 𝑐 (𝑥) × ℎ, 𝑠𝑣) (𝑑𝑣) pdf N(𝑔 (𝑥),𝑠𝑦) (𝑦obs) × 𝛿 (𝑣,𝑥),𝑥

Inference. For a probabilistic model e, infer(e) is a deterministic expression whose state is a measure over possible

states for e. The transition function 1) integrates the unnormalized measure defined by the model over all possible

states, 2) normalizes the measure, and 3) splits the result into a distribution of next states and a distribution of values.

The runtime iterates this process from a distribution of initial states to compute a stream of distributions. We prove in

Section 5.3 that this semantics coincide with the original ProbZelus semantics for the subset of scheduled programs, i.e.,

they both define the same streams.

Program equivalence. Since deterministic expressions are interpreted as state machines, to prove program equivalence

we exhibit a bisimulation [50], i.e., a relation between the states of the two state machines. Two deterministic expressions

are equivalent if there exists a relation such that 1) the initial states are in relation, and 2) given two states in relation

the transition function produces new states in relation and the same output.

Two probabilistic expressions are equivalent if they describe the same stream of measures of output values obtained

by integrating, at each step, the transition functions with respect to the measure over all possible states computed at the

previous step. We show in Section 4.4 that we can prove the equivalence of probabilistic expressions with a bisimulation

between states, and a coupling between the random elements.

2.2 Denotational semantics

The denotational semantics directly manipulates streams of values. This approach has been successfully used in the

Vélus project
4
to prove an end-to-end compiler for the dataflow synchronous language Lustre [11–13, 15]. The semantics

of a node is defined as a function between input streams and output streams. In Vélus, most of the compilation passes

are proven correct using this denotational semantics. The translation to state machines is one of the very last passes

and focuses on a normalized, scheduled subset of the language.

We extend this semantics to probabilistic models in Section 5. Given a context 𝐻 mapping variable names to streams

of values, and an array 𝑅 of stream of random elements, the semantics of an expression returns a stream of pairs (value,

weight): 𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑣0,𝑤0) · (𝑣1,𝑤1) · (𝑣2,𝑤2) · ... (the operator · represents the concatenation of stream elements).

4
https://velus.inria.fr

Manuscript submitted to ACM

Page 6 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

https://velus.inria.fr

Schedule Agnostic Semantics for Reactive Probabilistic Programming 7

We can interpret tracker of Figure 1 in a context 𝐻 = [y_obs← 𝑦
obs
] that contains the stream of observations 𝑦

obs

and in the random context given by the array 𝑅 = [𝑅𝑣, 𝑅𝑥] of two streams of independent random elements in [0, 1].

[y_obs← 𝑦
obs
], [𝑅𝑣, 𝑅𝑥] ⊢ tracker(y_obs) ⇓ (𝑥0,𝑤0) · (𝑥1,𝑤1) · (𝑥2,𝑤2) · ...

where 𝜇𝑥 = N(𝑥init + 𝑣init × ℎ, 𝑠𝑥) · N(𝑥0 + 𝑣0 × ℎ, 𝑠𝑥) · N(𝑥1 + 𝑣1 × ℎ, 𝑠𝑥) · ...
𝑥 = icdf 𝜇𝑥 0

(𝑅𝑥 0
) · icdf 𝜇𝑥 1

(𝑅𝑥 1
) · icdf 𝜇𝑥 2

(𝑅𝑥 2
) · ...

𝜇𝑣 = N(𝑣init + 𝑐 (𝑥0) × ℎ, 𝑠𝑥) · N(𝑣0 + 𝑐 (𝑥1) × ℎ, 𝑠𝑥) · N(𝑣1 + 𝑐 (𝑥2) × ℎ, 𝑠𝑥) · ...
𝑣 = icdf 𝜇𝑣0

(𝑅𝑣0) · icdf 𝜇𝑣1
(𝑅𝑣1) · icdf 𝜇𝑣2

(𝑅𝑣2) · ...
𝜇𝑦 = N(𝑔 (𝑥0), 𝑠𝑥) · N(𝑔 (𝑥1), 𝑠𝑥) · N(𝑔 (𝑥2), 𝑠𝑥) · ...
𝑤𝑦 = pdf 𝜇𝑦

0

(𝑦
obs0
) · pdf 𝜇𝑦

1

(𝑦
obs1
) · pdf 𝜇𝑦

2

(𝑦
obs2
) · ...

The semantics now directly manipulates streams. At each step, the result, a pair (value, weight), is similar to the

expression in Equation (2), but states are abstracted away.

Mutually recursive equations. Given the random streams 𝑅, the semantics of a set of probabilistic mutually recursive

equations 𝐻, 𝑅 ⊢ 𝐸 :𝑊 checks that a context 𝐻 mapping variable names to stream of values is compatible with all

the equations in 𝐸, and that the combined weight of all sub-expressions is the stream𝑊 . Since variables in a context

are not ordered, there is nothing special to do to interpret mutually recursive equations. By construction the order of

equations does not matter which greatly simplifies reasoning about compilation passes that introduce new equations in

arbitrary order. However, compared to the state machines of the operational semantics, the denotational semantics is

not executable since equations are only checked a posteriori for a given context.

Inference. The semantics of infer now operates on a stream of pairs (value, weight): (𝑣0,𝑤0) · (𝑣1,𝑤1) · (𝑣2,𝑤2) ·
The infer operator 1) associates to each value 𝑣𝑘 the total weight of its prefix using a cumulative product𝑤𝑘 = Π𝑘

𝑖=0
𝑤𝑖 ,

2) computes the un-normalized measure by integrating over all possible values of the stream of random elements, and

3) normalizes this measure to obtain a distribution of values. The key difference with the operational semantics is that

the integral is now over the infinite domain of streams. We prove in Section 5.2 that this semantics is equivalent to the

operational semantics, i.e., the infer operator yields the same stream of distributions.

Program equivalence. In the denotational semantics, states are abstracted away. Two deterministic expressions are

equivalent if they define the same streams of output values. A probabilistic expression computes a stream of pairs

(value, weight) where each element only depends on the random streams. Two probabilistic expressions are equivalent

if they describe the same stream of measures over output values, obtained by integrating at each step the values and the

weights over all possible random streams. We show in Section 5.4 that we can prove the equivalence of two probabilistic

expressions with a coupling over the random streams.

2.3 Comparison

The following table summarizes the comparison between the original semantics and the two new semantics. The

original ProbZelus semantics is similar to the new operational semantics but probabilistic state machines directly

computes a stream of unnormalized measures. Compared to the original semantics, the new semantics are not limited

to sets of scheduled equations. In the example of Figure 1 switching the order of equations x and f in tracker does not

change the fixpoint. The new semantics are also modular and can interpret function call without inlining the body of

Manuscript submitted to ACM

Page 7 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

8 Guillaume Baudart, Louis Mandel, and Christine Tasson

𝑑 ::= let 𝑥 = 𝑒 | node 𝑓 𝑥 = 𝑒 | proba 𝑓 𝑥 = 𝑒 | 𝑑 𝑑

𝑒 ::= 𝑐 | 𝑥 | (𝑒,𝑒) | op(𝑒) | last 𝑥 | 𝑓 (𝑒) | 𝑒 where rec 𝐸
| present 𝑒 → 𝑒 else 𝑒 | reset 𝑒 every 𝑒
| sample(𝑒) | factor(𝑒) | infer(𝑒)

𝐸 ::= 𝑥 = 𝑒 | init 𝑥 = 𝑒 | 𝐸 and 𝐸

Fig. 2. ProbZelus Syntax.

the callee as illustrated by the example of Figure 1. These semantics can even interpret programs that are not statically

schedulable, e.g., programs where variable dependencies can change dynamically [22].

original operational denotational

Executable ✓ ✓ ✗

Schedule agnostic ✗ ✓ ✓

Modularity ✗ ✓ ✓

Mutual recursion ✗ ✓ ✓

Randomness internal external external

State explicit explicit implicit

3 LANGUAGE

In this section we recall the syntax and typing rules of ProbZelus [5]. Advanced constructs, e.g., hierarchical automata,

can be reduced to this language. The type system statically identifies deterministic and probabilistic expressions which

have different interpretations in the operational semantics of Section 4 and the denotational semantics of Section 5.

Recursion, loops, and nested inference are not allowed in the language [1].

3.1 Syntax

The syntax of ProbZelus is presented in Figure 2. A program is a series of declarations 𝑑 . A declaration can be a global

variable let, a deterministic stream function node, or a probabilistic model proba. Each declaration has a unique name.

An expression can be a constant 𝑐 , a variable 𝑥 , a pair, an operator application op(𝑒), the previous value of a variable

last 𝑥 , a function call 𝑓 (𝑒), a local declaration 𝑒 where rec 𝐸 where 𝐸 is a set of mutually recursive equations, a lazy

conditional present 𝑒 → 𝑒1 else 𝑒2, or a reset construct reset 𝑒1 every 𝑒2. An equation is either a simple definition

𝑥 = 𝑒 , an initialization init 𝑥 = 𝑒 (the delay operator last 𝑥 can only be used on initialized variables), or a set of

equations 𝐸1 and 𝐸2. In a set of equations, every initialized variable must be defined by another equation.

Example. The following node implements a fix-step integrator. The table presents the first few steps of a possible

timeline with h = 0.1.

node integr(x) = i where

rec init i = 0. and i = (last i) +. x *. h

x 0 1 2 3 4 5 . . .

i 0.0 0.1 0.3 0.6 1.0 1.5 . . .

Manuscript submitted to ACM

Page 8 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 9

We add the classic probabilistic constructs to the set of expressions: sample(𝑑) creates a random variable with

distribution 𝑑 , factor(𝑠) increments the log-density of the model, and infer(𝑚) computes the posterior distribu-

tion of a model 𝑚. If 𝑑 is a distribution with a density function, we use the syntactic shortcut observe(𝑑,𝑥) for

factor(pdf 𝑑 (𝑥)) which conditions the model on the assumption that 𝑥 was sampled from the distribution 𝑑 [52].

Example. The following model estimates the bias of a coin from a stream of coin tosses. Initially the model makes no

assumption, i.e., the bias p is uniformly distributed over [0, 1] (0.5 corresponds to a perfect coin, 1 is a coin that always

returns head). At each time step, we condition the model assuming that the observation o is sampled from a Bernoulli

distribution with the same bias p. The deterministic node main then computes the mean of the posterior distributions

of the bias at each time step.

proba coin (o) = p where

rec init p = sample(uniform(0., 1.))

and p = last p and () = observe(bernoulli(p), o)

node main(o) = m where

rec p_dist = infer(coin(o)) and m = mean(p_dist)

o 1 0 0 0 0 . . .

m 0.68 0.51 0.34 0.29 0.25 . . .

3.2 Typing

Figure 3 – adapted from [5, Figure 12] – presents the ProbZelus type system where each expression is associated to one

of two kinds: D for deterministic, or P for probabilistic. This type system guaranties that probabilistic constructs sample

and factor are only used inside infer.

The typing judgment 𝐺 ⊢𝑘 𝑒 : 𝑇 asserts that, in a typing environment 𝐺 mapping variables names to their types, the

expression 𝑒 has type 𝑇 and kind 𝑘 . Function type are annotated with the kind 𝑘 of their body. The sub-typing rule can

be used to lift a deterministic expression to a probabilistic expression. Deterministic expressions, e.g., x + 1, can thus

be used inside a probabilistic model (except infer(e) to prevent nested inference).

The type 𝑇 dist represents distributions over values of type 𝑇 that can be sampled (sample operator). To simplify

the presentation of the semantics, we assume that the arguments of the probabilistic operator sample and factor

are deterministic. This is not a limitation since the compiler can always introduce intermediate variables to capture

a probabilistic argument, e.g., () = factor(sample(d)) can be written x = sample(d) and () = factor(x). The

infer operator returns a deterministic value (a distribution) that can be used in a classic deterministic program (e.g.,

via standard functions like mean or var).

To type local declaration, equations are associated to the kind of their defining expression. The typing judgement

𝐺 ⊢𝑘 𝐸 : 𝐺 ′ asserts that given an initial environment 𝐺 , the set of equations 𝐸 produces a new environment 𝐺 ′ with

kind 𝑘 . We require that all equations have the same kind, which may necessitate the use of the sub-typing rule for

certain expressions.

4 OPERATIONAL SEMANTICS

In this section, we first recall the original deterministic semantics. We then define a new operational semantics for

probabilistic expressions. In this semantics we interpret sets of mutually recursive equations with a fixpoint operator.

Finally, we define the equivalence of probabilistic programs using probabilistic bisimulation and coupling.

Manuscript submitted to ACM

Page 9 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

10 Guillaume Baudart, Louis Mandel, and Christine Tasson

typeOf (𝑐) = 𝑡

𝐺 ⊢D 𝑐 : 𝑡
𝐺 (𝑥) = 𝑡

𝐺 ⊢D 𝑥 : 𝑡

𝐺 (𝑓) = 𝑡1 →𝑘 𝑡2 𝐺 ⊢D 𝑒 : 𝑡1
𝐺 ⊢𝑘 𝑓 (𝑒) : 𝑡2

𝐺 ⊢D 𝑒 : 𝑇 𝑒 ≠ infer(𝑒′)

𝐺 ⊢P 𝑒 : 𝑇
𝐺 ⊢D 𝑒 : 𝑇 dist

𝐺 ⊢P sample(𝑒) : 𝑇

𝐺 ⊢D 𝑒 : float
𝐺 ⊢P factor(𝑒) : unit

𝐺 ⊢P 𝑒 : 𝑇
𝐺 ⊢D infer(𝑒) : 𝑇 dist

𝐺 ⊢𝑘 𝑒 : 𝑡

𝐺 ⊢𝑘 𝑥 = 𝑒 : [𝑥 ← 𝑡]
𝐺 +𝐺1 +𝐺2 ⊢𝑘 𝐸1 : 𝐺1 𝐺 +𝐺1 +𝐺2 ⊢𝑘 𝐸2 : 𝐺2

𝐺 ⊢𝑘 𝐸1 and 𝐸2 : 𝐺1 +𝐺2

𝐺 ⊢𝑘 𝐸 : 𝐺 ′ 𝐺 +𝐺 ′ ⊢𝑘 𝑒 : 𝑡

𝐺 ⊢𝑘 𝑒 where rec 𝐸 : 𝑡

Fig. 3. Typing rules (adapted from [5, Figure 12])

4.1 Background: deterministic operational semantics

Following the co-iterative semantics of dataflow synchronous languages [18, 22], the deterministic semantics interprets

expressions as state machines. The main advantage of the co-iterative semantics is that this interpretation is executable.

Recent works demonstrated an interpreter from this semantics that can be used to test and validate a compiler against a

reference semantics [22].

State machine. A deterministic expression 𝑒 of type 𝑉 is interpreted as a state machine characterized by an initial

state ⟦𝑒⟧init : 𝑆 and a transition function ⟦𝑒⟧step : Γ → 𝑆 → 𝑆 ×𝑉 which given the environment mapping variable

names to values and the current state returns the next state and a value of type 𝑉 . A stream of values is obtained by

iteratively applying the transition function from the initial state.

(⟦𝑒⟧init =𝑚0)
⟦𝑒⟧step𝛾

0−−−−−−→ 𝑚1

𝑣1

⟦𝑒⟧step𝛾
1−−−−−−→ 𝑚2

𝑣2

⟦𝑒⟧step𝛾
2−−−−−−→ 𝑚3

𝑣3

→ ...

Figure 4 shows a few semantics rules for deterministic expressions adapted from [22]. The state of an expression

is defined inductively. The structure of the state matches the syntax of the expression and remains the same at each

timestep. The semantics thus captures an aspect of the language that is essential for embedded systems: the memory

required at runtime can be statically allocated before the initial step. The state of a variable is empty, and the transition

function retrieves the value of the variable in the environment 𝛾 at each step. The state of a pair comprises the state of

each sub-expression, and at each step the transition function executes the transition function of each sub-expression

to compute the pair of next states and the pair of value. The initialization of a function call 𝑓 (𝑒) combines the initial

state of the argument 𝑒 with the initial state of 𝑒𝑓 the body of 𝑓 . The transition function evaluates the argument 𝑒 into

a value 𝑣𝑒 , uses this value to evaluate the transition function of 𝑒𝑓 in a fresh environment where the parameter 𝑥 is

bound to 𝑣𝑒 which returns a result 𝑣 , and returns the combined next states and the result.

Figure 5 shows the semantics rules for deterministic equations adapted from [22]. The state of an equation is

also defined inductively. The equation 𝑥 = 𝑒 defines a single variable. The transition function evaluates the defining

expression 𝑒 into a pair (next state, value), and returns the next state and an environment where 𝑥 is bound to the value.

The init 𝑥 = 𝑒 equation manages the special variable last 𝑥 which refers to the value of 𝑥 at the previous time step.

Compared to the original ProbZelus semantics, we do not require initial values to be constants. The state contains the

previous value of 𝑥 initialized with an undefined value of the correct type nil, and the initial state𝑚0 of the expression 𝑒 .

There are two cases for the transition function. At the first time step (or after a reset), the state contains nil and the

Manuscript submitted to ACM

Page 10 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 11

⟦𝑒 : 𝑉⟧init : 𝑆

⟦𝑒 : 𝑉⟧step : Γ → 𝑆 ×𝑉

⟦𝑐⟧init = ()
⟦𝑐⟧step𝛾 (()) = (), 𝑐

⟦𝑥⟧init = ()
⟦𝑥⟧step𝛾 (()) = (), 𝛾 (𝑥)

⟦last 𝑥⟧init = ()
⟦last 𝑥⟧step𝛾 (()) = (), 𝛾 (𝑥 .last)

⟦(𝑒1,𝑒1)⟧init = ⟦𝑒1⟧init , ⟦𝑒2⟧init

⟦(𝑒1,𝑒1)⟧step𝛾 (𝑚1,𝑚2) = let 𝑚′
1
, 𝑣1 = ⟦𝑒1⟧step𝛾 (𝑚1) in

let 𝑚′
2
, 𝑣2 = ⟦𝑒2⟧step𝛾 (𝑚2) in

(𝑚′
1
,𝑚′

2
), (𝑣1, 𝑣2)

⟦𝑓 (𝑒)⟧init = ⟦𝑒⟧init ,
�
𝑒𝑓
�
init

where node 𝑓 𝑥 = 𝑒𝑓

⟦𝑓 (𝑒)⟧step𝛾 (𝑚𝑒 ,𝑚𝑓) = let 𝑚′𝑒 , 𝑣𝑒 = ⟦𝑒⟧step𝛾 (𝑚𝑒) in
let 𝑚′

𝑓
, 𝑣 =

�
𝑒𝑓
�
step

[𝑥←𝑣𝑒] (𝑚𝑓) in
(𝑚′𝑒 ,𝑚′𝑓), 𝑣

⟦𝑒 where rec 𝐸⟧init = ⟦𝑒⟧init , ⟦𝐸⟧init

⟦𝑒 where rec 𝐸⟧step𝛾 (𝑚,𝑀) = let 𝐹 (𝜌) =
(
let 𝑀′, 𝜌′ = ⟦𝐸⟧step𝛾+𝜌 (𝑀) in 𝜌′

)
in

let 𝜌 = fix (𝐹) in
let 𝑀′, 𝜌 = ⟦𝐸⟧step𝛾+𝜌 (𝑀) in
let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾+𝜌 (𝑚) in
(𝑚′, 𝑀′), 𝑣

Fig. 4. Operational semantics of deterministic expressions (adapted from [22]).

transition function evaluates 𝑒 using𝑚0 to compute the initial value 𝑖 and returns a new state containing the current

value of 𝑥 and an environment where 𝑥 .last is bound to 𝑖 . In any other case, the previous value 𝑣 of 𝑥 stored in the

state is defined. The transition function returns a new state containing the current value of 𝑥 and an environment

where 𝑥 .last is bound to 𝑣 . The initial state of the composition of two sets of equations 𝐸1 and 𝐸2 is the union of the

states of 𝐸1 and 𝐸2. The transition function evaluates 𝐸1 and 𝐸2 on their respective parts of the state but on the same

environment 𝛾 . This function returns the updated state and the environment containing the variables defined in both

sets of equations.

Mutual recursions. The original co-iterative semantics [18] and recent works [22] interpret mutually recursive

equations using a fixpoint operator. Values 𝑣 ∈ 𝑉 are interpreted in a flat domain 𝑉⊥ = 𝑉 + {⊥} with ⊥ as the

minimal element and the flat order ≤: ∀𝑣 ∈ 𝑉 . ⊥ ≤ 𝑣 . (𝑉⊥,⊥, ≤) is a complete partial order (CPO). This flat CPO

Manuscript submitted to ACM

Page 11 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

12 Guillaume Baudart, Louis Mandel, and Christine Tasson

⟦𝐸⟧init : 𝑆

⟦𝐸⟧step : Γ → 𝑆 × Γ

⟦𝑥 = 𝑒⟧init = ⟦𝑒⟧init

⟦𝑥 = 𝑒⟧step𝛾 (𝑚) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, [𝑥 ← 𝑣]

⟦init 𝑥 = 𝑒⟧init = nil, ⟦𝑒⟧init

⟦init 𝑥 = 𝑒⟧step𝛾 (nil,𝑚0) = let 𝑚′, 𝑖 = ⟦𝑒⟧step𝛾 (𝑚0) in (𝛾 (𝑥),𝑚0), [𝑥 .last← 𝑖]
⟦init 𝑥 = 𝑒⟧step𝛾 (𝑣,𝑚0) = (𝛾 (𝑥),𝑚0), [𝑥 .last← 𝑣]

⟦𝐸1 and 𝐸2⟧init = ⟦𝐸1⟧init , ⟦𝐸2⟧init

⟦𝐸1 and 𝐸2⟧step𝛾 (𝑀1, 𝑀2) = let 𝑀′
1
, 𝛾1 = ⟦𝐸1⟧step𝛾 (𝑀1) in

let 𝑀′
2
, 𝛾2 = ⟦𝐸2⟧step𝛾 (𝑀2) in

(𝑀′
1
, 𝑀′

2
), 𝛾1 + 𝛾2

Fig. 5. Operational semantics of deterministic equations (adapted from [22]).

is lifted to environments defining the same set of variables: ∀𝜌1, 𝜌2 such that dom(𝜌1) = dom(𝜌2) = 𝑋 , 𝜌1 ≤ 𝜌2 iff

∀𝑥 ∈ 𝑋, 𝜌1 (𝑥) ≤ 𝜌2 (𝑥) and the least element is ⊥ = [𝑥 ← ⊥]𝑥∈𝑋 .
To interpret an expression with a set of local declarations 𝑒 where rec 𝐸, the transition function first computes the

environment defined by 𝐸 with a fixpoint operator. Given a state𝑀 , the function 𝐹 (𝜌) = let 𝑀′, 𝜌′ = ⟦𝐸⟧step𝛾+𝜌 (𝑀) in 𝜌′

is continuous and has a minimal fixpoint 𝜌 = fix (𝐹) = lim𝑛→∞ (𝐹𝑛 (⊥)). After convergence, the transition function

evaluates ⟦𝐸⟧step𝛾+𝜌 (𝑀) once more to compute the next state𝑀′ (leaving 𝜌 unchanged by definition of the fixpoint) and

finally evaluates the main expression 𝑒 in the environment 𝛾 + 𝜌 .

Causality. For some programs, the fixpoint operator never converges. For instance, x where rec x = x returns ⊥
at every timestep. In the compiler, a static analysis ensures that dependency cycles between variables are always broken

by a delay (last operator) [24]. This condition ensures that a valid schedule exists (after several compilation passes,

e.g., inlining). If such a valid schedule exists, by monotonicity, each fixpoint iteration computes the value of at least one

variable, the fixpoint is thus reached after a finite number of iterations [22].

Definition 4.1. A program is causal if all dependency cycles between variables are broken by a delay (last operator).

Compared to the original ProbZelus semantics, Definition 4.1 does not require that a valid schedule exists for all

sets of mutually recursive equations. For instance, the program of Figure 1 is causal because the cycle x < f < v < f is

broken by the delay last v in the definition of x (Section 2).

Example. Consider the integr node defined in Section 3.1. For an input expression 𝑒 with initial state𝑚𝑒 , the initial

state of the expression integr(𝑒) is:

init p = sample(U(0,1)) () = observe(B(p),o)

i = last i + e * hinit i = 0

e

3

i 0

last i
h

p

p = last p

0 1
last p

p

x

integr.init

<latexit sha1_base64="qX5GS5LZ8J2YXD8ozjAjEF/R42M=">AAAClXicbVFdixMxFM2MX+uoa9WHFXy5WAodlTIjsvpSWFHEN1ewuwttKZnMbRuaSYbkjlqGvvgv/Qf+CB/MTIvYXW9IODnn3uTmJCuVdJQkP4Pw2vUbN28d3I7u3L13eL/z4OGZM5UVOBJGGXuRcYdKahyRJIUXpUVeZArPs9W7Rj//itZJo7/QusRpwRdazqXg5KlZ50cPQJscQWrChe3jC8gphiFI+LZEi2BReE2SJ4aQANd5ixR3DfUcEJ75iqjXjsIrxcyf0e/HzTIpOC0l1Vqqjd/H8V8lbrc+omjW6SaDpA24CtId6LJdnM46vye5EVWBmoTvw43TpKRpzS1JoXATTSqHJRcrvsCxh5oX6KZ169UGep7JYW6sn5qgZf+tqHnh3LrIfGbTvLusNeT/tHFF8zfTWuqyItRie9G8UkAGGuMhl95KUmsPuLDS9wpiyS0X5L9n75bMmBXxzO29pP6+fUBjV3rZnKvg7OUgPR4cf37VPXm7M+6APWFPWZ+l7DU7YR/ZKRsxwX4Fh8FR8Dg8Cofh+/DDNjUMdjWP2F6En/4AnTK9OA==</latexit>

m = me, ((), ((nil , ()), ((), ((), ()))))

<latexit sha1_base64="VHzns9Uf8qgCfZ9/Dh4xZbb4lfY=">AAACS3icbVBNS8NAEN1U60f9qnr0sliEFqQkIrUXoeLFo4K1QhvCZrutS/cj7E7EEvpX/DVe9e7v8CYeTNIKrfpgh7dvZpiZF0aCW3Ddd6ewtFxcWV1bL21sbm3vlHf37qyODWVtqoU29yGxTHDF2sBBsPvIMCJDwTrh6DLLdx6ZsVyrWxhHzJdkqPiAUwKpFJSbEp9jGbBjXK3WstCTBB44JIqLyY9Yq+Vx7lsrBeWKW3dz4L/Em5EKmuE6KH/1+prGkimggljb9dwI/IQY4FSwSakXWxYROiJD1k2pIpJZP8kvnOCjVOnjgTbpU4Bzdb4jIdLasQzTymx/+zuXif/lujEMmn7CVRQDU3Q6aBALDBpnduE+N4yCGKeEUMPTXTF9IIZQSE1dmBJqPQIS2oVLkqfpAZld3m9z/pK7k7rXqDduTiuti5lxa+gAHaIq8tAZaqErdI3aiKJn9IJe0Zvz6nw4n87XtLTgzHr20QIKxW8mdKyO</latexit>

m = me, ((), ((nil , ((), ())), (), ((), ())))
o

coin.init

e

Manuscript submitted to ACM

Page 12 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 13

| 𝑒 : 𝑉 | : N

| 𝑒 | = 0 if 𝑒 is deterministic

| sample(𝑒) | = 1

| factor(𝑒) | = 0

| 𝑒 where rec 𝐸 | = | 𝑒 | + | 𝐸 |

| 𝐸 | : N

𝑥 = 𝑒	=	𝑒		
init 𝑥 = 𝑒	=	𝑒		
𝐸1 and 𝐸2	=	𝐸1	+	𝐸2

Fig. 6. Dimension of probabilistic expressions and equations (full version in Figure 16 of the appendix).

During execution, the state at timestep 𝑡 comprises the state of the input expression𝑚𝑒 and the previous value of i.

The following table shows the first steps of the timeline.

𝑚𝑒 𝑚𝑒 0 𝑚𝑒 1 𝑚𝑒 2 . . .

𝑒 0.0 1.0 2.0 . . .

𝑚integr 𝑚𝑒 0, ((), (0.0, ()), ((), ((), ()))) 𝑚𝑒 1, ((), ((0.1, ()), ((), ((), ())))) 𝑚𝑒 2, ((), ((0.3, ()), ((), ((), ())))) . . .

𝑖 0.0 0.1 0.3 . . .

4.2 Probabilistic operational semantics

The key idea of the probabilistic operational semantics is to externalize all sources of randomness. Compared to the

deterministic case, the transition function of a probabilistic expression takes one additional argument: an array of

random elements with one random element for each random variable introduced by sample. To capture the effect of the

factor operator, the transition function also returns a weight which measures the quality of the result w.r.t. the model.

Model dimension. The dimension of a probabilistic model is defined as the number of random variables in the model,

i.e., the number of calls to the sample operator. Since loops and recursive calls are not allowed in the language of

Figure 2, the dimension of a model 𝑒 can be statically computed with the function | 𝑒 | defined in Figure 6.

Probabilistic state machine. The initialization function of a probabilistic expression 𝑒 of type 𝑉 , ⦅𝑒⦆init : 𝑆 returns the

initial state. Given an environment, the current state, and a value for all random elements (an array of | 𝑒 | values in
[0, 1]) the transition function ⦅𝑒⦆step : Γ → 𝑆 × [0, 1] array→ 𝑆 ×𝑉 × [0,∞) returns a triple (next state, value, weight).

An excerpt of the probabilistic operational semantics is presented in Figure 7. If 𝑒 is deterministic, there is no random

variable and no conditioning. The transition function takes an empty array of random elements, evaluates the expression,

and returns the next state, the value, and a weight of 1. The transition function of sample(𝑒) takes an array containing

one random element, evaluates the argument 𝑒 into a distribution 𝜇, converts the random element into a sample of the

distribution using inverse transform sampling icdf 𝜇 (𝑟), and returns the next state, the sample, and a weight of 1. The

transition function of factor(𝑒) evaluates its arguments 𝑒 into a real value 𝑣 , and returns the next state, an empty

value (), and the weight 𝑣 . To simplify the semantics, the type system of Section 3.2 ensures that the arguments of

the probabilistic operators are always deterministic expressions. These arguments can thus be interpreted with the

deterministic semantics of Section 4.1. The transition function of a function call 𝑓 (𝑒) is similar to the deterministic

case with an extra inputs for the random elements
5
and an extra output for the weight.

5
We note [𝑟1 : 𝑟2] the concatenation of two arrays.

Manuscript submitted to ACM

Page 13 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

14 Guillaume Baudart, Louis Mandel, and Christine Tasson

⦅𝑒 : 𝑉 ⦆

init
: 𝑆

⦅𝑒 : 𝑉 ⦆

step
: Γ → 𝑆 × [0, 1] array→ 𝑆 ×𝑉 × [0,∞)

⦅𝑒⦆init = ⟦𝑒⟧init if 𝑒 is deterministic

⦅𝑒⦆
step

𝛾 (𝑚, []) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, 𝑣, 1

⦅sample(𝑒)⦆init = ⟦𝑒⟧init

⦅sample(𝑒)⦆
step

𝛾 (𝑚, [𝑟]) = let 𝑚′, 𝜇 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, icdf 𝜇 (𝑟), 1

⦅factor(𝑒)⦆init = ⟦𝑒⟧init

⦅factor(𝑒)⦆
step

𝛾 (𝑚, []) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, (), 𝑣

⦅𝑓 (𝑒)⦆init = ⦅𝑒⦆init ,
⦅

𝑒𝑓
⦆

init

where proba 𝑓 𝑥 = 𝑒𝑓

⦅𝑓 (𝑒)⦆step𝛾 ((𝑚𝑒 ,𝑚𝑓), [𝑟𝑒 : 𝑟 𝑓]) = let 𝑚′𝑒 , 𝑣𝑒 ,𝑤𝑒 = ⦅𝑒⦆
step

𝛾 (𝑚𝑒 , 𝑟𝑒) in
let 𝑚′

𝑓
, 𝑣,𝑤 𝑓 =

⦅

𝑒𝑓
⦆

[𝑥←𝑣𝑒] (𝑚𝑓 , 𝑟 𝑓) in
(𝑚′

𝑓
,𝑚′𝑒), 𝑣,𝑤𝑒 ×𝑤 𝑓

⦅𝑒 where rec 𝐸⦆init = ⦅𝑒⦆init , ⦅𝐸⦆init

⦅𝑒 where rec 𝐸⦆
step

𝛾 ((𝑚,𝑀), [𝑟𝑒 : 𝑟𝐸]) = let 𝐹 (𝜌) =
(
let 𝑀′, 𝜌,𝑤 = ⦅𝐸⦆𝛾+𝜌 (𝑀, 𝑟𝐸) in 𝜌

)
in

let 𝜌 = fix (𝐹) in
let 𝑀′, 𝜌,𝑊 = ⦅𝐸⦆

step

𝛾+𝜌 (𝑀, 𝑟𝐸) in
let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆

step

𝛾+𝜌 (𝑚, 𝑟𝑒) in
(𝑚′, 𝑀′), 𝑣,𝑤 ×𝑊

Fig. 7. Probabilistic operational semantics of expressions (full version in Figure 17 of the appendix).

The semantics of probabilistic equations is presented in Figure 8. Given an environment, a state, and an array of

random elements, the transition function ⦅𝐸⦆step : Γ → 𝑆 × [0, 1] array→ 𝑆 × Γ × [0,∞) returns a tuple (next state,
environment, weight). The only difference with the deterministic case is that the transition functions now take the

random elements for the sub-expressions as arguments and accumulates the weights.

Example. Consider the coin node defined in Section 3.1. The number of random variables is 1 because there is only

one parameter: p. For an input expression 𝑒 with initial state𝑚𝑒 , the initial state of the expression coin(𝑒) is:

init p = sample(U(0,1)) () = observe(B(p),o)

i = last i + e * hinit i = 0

e

3

i 0

last i
h

p

p = last p

0 1
last p

p

x

integr.init

<latexit sha1_base64="qX5GS5LZ8J2YXD8ozjAjEF/R42M=">AAAClXicbVFdixMxFM2MX+uoa9WHFXy5WAodlTIjsvpSWFHEN1ewuwttKZnMbRuaSYbkjlqGvvgv/Qf+CB/MTIvYXW9IODnn3uTmJCuVdJQkP4Pw2vUbN28d3I7u3L13eL/z4OGZM5UVOBJGGXuRcYdKahyRJIUXpUVeZArPs9W7Rj//itZJo7/QusRpwRdazqXg5KlZ50cPQJscQWrChe3jC8gphiFI+LZEi2BReE2SJ4aQANd5ixR3DfUcEJ75iqjXjsIrxcyf0e/HzTIpOC0l1Vqqjd/H8V8lbrc+omjW6SaDpA24CtId6LJdnM46vye5EVWBmoTvw43TpKRpzS1JoXATTSqHJRcrvsCxh5oX6KZ169UGep7JYW6sn5qgZf+tqHnh3LrIfGbTvLusNeT/tHFF8zfTWuqyItRie9G8UkAGGuMhl95KUmsPuLDS9wpiyS0X5L9n75bMmBXxzO29pP6+fUBjV3rZnKvg7OUgPR4cf37VPXm7M+6APWFPWZ+l7DU7YR/ZKRsxwX4Fh8FR8Dg8Cofh+/DDNjUMdjWP2F6En/4AnTK9OA==</latexit>

m = me, ((), ((nil , ()), ((), ((), ()))))

<latexit sha1_base64="VHzns9Uf8qgCfZ9/Dh4xZbb4lfY=">AAACS3icbVBNS8NAEN1U60f9qnr0sliEFqQkIrUXoeLFo4K1QhvCZrutS/cj7E7EEvpX/DVe9e7v8CYeTNIKrfpgh7dvZpiZF0aCW3Ddd6ewtFxcWV1bL21sbm3vlHf37qyODWVtqoU29yGxTHDF2sBBsPvIMCJDwTrh6DLLdx6ZsVyrWxhHzJdkqPiAUwKpFJSbEp9jGbBjXK3WstCTBB44JIqLyY9Yq+Vx7lsrBeWKW3dz4L/Em5EKmuE6KH/1+prGkimggljb9dwI/IQY4FSwSakXWxYROiJD1k2pIpJZP8kvnOCjVOnjgTbpU4Bzdb4jIdLasQzTymx/+zuXif/lujEMmn7CVRQDU3Q6aBALDBpnduE+N4yCGKeEUMPTXTF9IIZQSE1dmBJqPQIS2oVLkqfpAZld3m9z/pK7k7rXqDduTiuti5lxa+gAHaIq8tAZaqErdI3aiKJn9IJe0Zvz6nw4n87XtLTgzHr20QIKxW8mdKyO</latexit>

m = me, ((), ((nil , ((), ())), (), ((), ())))
o

coin.init

e

4.3 Inference

Notations. In the following, Meas(𝑈) is the set of measures on a measurable space𝑈 , 𝛿𝑥 is the Dirac delta measure

(𝛿𝑥 (𝑈) = 1 if 𝑥 ∈ 𝑈 , 0 otherwise), we note

∫
𝑈
𝜇 (𝑑𝑥) 𝑔(𝑥) the integral of a measurable function 𝑔 w.r.t. the measure 𝜇.

Manuscript submitted to ACM

Page 14 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 15

⦅𝐸⦆init : 𝑆

⦅𝐸⦆step : Γ → 𝑆 × [0, 1] array→ 𝑆 × Γ × [0,∞)

⦅𝑥 = 𝑒⦆init = ⦅𝑒⦆init

⦅𝑥 = 𝑒⦆
step

𝛾 (𝑚, 𝑟) = let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚, 𝑟) in𝑚′, [𝑥 ← 𝑣],𝑤

⦅init 𝑥 = 𝑒⦆init = nil, ⦅𝑒⦆init

⦅init 𝑥 = 𝑒⦆
step

𝛾 ((nil,𝑚0), 𝑟) = let 𝑚′, 𝑖,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚0, 𝑟) in (𝛾 (𝑥),𝑚0), [𝑥 .last← 𝑖],𝑤
⦅init 𝑥 = 𝑒⦆

step

𝛾 ((𝑣,𝑚0), 𝑟) = (𝛾 (𝑥),𝑚0), [𝑥 .last← 𝑣], 1

⦅𝐸1 and 𝐸2⦆
init = ⦅𝐸1⦆

init , ⦅𝐸2⦆
init

⦅𝐸1 and 𝐸2⦆
step

𝛾 ((𝑀1, 𝑀2), [𝑟1 : 𝑟2]) = let 𝑀′
1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

step

𝛾 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌2,𝑤2 = ⦅𝐸2⦆

step

𝛾 (𝑀2, 𝑟2) in
(𝑀′

1
, 𝑀′

2
), 𝜌1 + 𝜌2,𝑤1 ×𝑤2

Fig. 8. Probabilistic operational semantics of equations.

The Lebesgues measure over [0, 1]𝑝 is denoted 𝜆𝑝 and by abuse of notation, we note

∫
[0,1]𝑝 𝑔(𝑥)𝑑𝑥 the integral of 𝑔

w.r.t to the measure 𝜆𝑝 . If 𝑓 : 𝑈 → 𝑉 is a measurable function and 𝜇 ∈ Meas(𝑉), then the pushforward of 𝜇 along 𝑓

is the measure 𝑓∗𝜇 ∈ Meas(𝑈) defined as 𝑓∗𝜇 = 𝜇 ◦ 𝑓 −1. With these notations, the change of variable formula is:∫
𝑔(𝑦) 𝑓∗𝜇 (𝑑𝑦) =

∫
𝑔(𝑓 (𝑥))𝜇 (𝑑𝑥), for any measurable function 𝑔 : 𝑉 →𝑊 .

Given a probabilistic model 𝑒 of type 𝑉 with a state of type 𝑆 , the deterministic expression infer(𝑒) computes

a stream of distributions. At each time step, given a measure over possible states, the transition function returns a

measure over possible next states 𝜎 , and a measure over return values 𝜇.

⟦infer(𝑒)⟧init : Meas(𝑆)
⟦infer(𝑒)⟧step : Γ → Meas(𝑆) → Meas(𝑆) ×Meas(𝑉)

The initial state of infer(𝑒) is a Dirac delta measure over the initial state of the model 𝑒 . The transition function

first computes a function𝜓 mapping a state to the un-normalized measure which associates each pair (next state, value)

to its weight. The infer operator then 1) integrates this function along all possible values of the state, 2) normalizes it

(⊤ denotes the entire space), and 3) splits the result into a distribution of next states 𝜎 and a distribution of values 𝜇.

⟦infer(𝑒)⟧init = 𝛿
⦅𝑒⦆init

⟦infer(𝑒)⟧step𝛾 (𝜎) = let 𝜓 (𝑚) =
∫
[0,1] | 𝑒 |

let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚, 𝑟) in 𝑤 × 𝛿 (𝑚′,𝑣) 𝑑𝑟 in

let 𝜈 =

∫
𝜎 (𝑑𝑚) 𝜓 (𝑚) in

let 𝜈 = 𝜈/𝜈 (⊤) in
𝜋1∗ (𝜈), 𝜋2∗ (𝜈)

(3)

If the model is ill-defined, the normalization constant can be 0 or ∞, which triggers an exception and stops the

execution. It is the programmer’s responsibility to avoid such error cases when defining the model.

Manuscript submitted to ACM

Page 15 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

16 Guillaume Baudart, Louis Mandel, and Christine Tasson

The stream of distributions corresponding to infer(𝑒) is obtained by iteratively integrating the transition function

along the distribution of states.

(⦅𝑒⦆init = 𝛿𝑚0
)

∫
𝜎0 (𝑑𝑚)𝜓0 (𝑚)
−−−−−−−−−−−−−−→ 𝜎1

𝜇1

∫
𝜎1 (𝑑𝑚)𝜓1 (𝑚)
−−−−−−−−−−−−−−→ 𝜎2

𝜇2

∫
𝜎2 (𝑑𝑚)𝜓2 (𝑚)
−−−−−−−−−−−−−−→ 𝜎3

𝜇3

→ ...

4.4 Program equivalence

Two expressions are equivalent if they compute the same stream of output values. The semantics is defined with an

initial state and a transition function. To prove equivalence of two state machines one can exhibit a bisimulation [50]

that relates the states and ensure the equality of output values.

Definition 4.2. Deterministic expressions are equivalent if there is a bisimulation, i.e., a relation on states P ⊆ 𝑆 × 𝑆
such that:

• (⟦𝑒1⟧init , ⟦𝑒2⟧init) ∈ P
• ∀𝛾, if (𝑚1,𝑚2) ∈ P, then (𝑚′

1
,𝑚′

2
) ∈ P and 𝑣1 = 𝑣2 where𝑚

′
1
, 𝑣1 = ⟦𝑒1⟧step𝛾 (𝑚1) and𝑚′

2
, 𝑣2 = ⟦𝑒2⟧step𝛾 (𝑚2).

A bisimulation on states can be lifted to a bisimulation on measures of states to characterize equivalence between

probabilistic processes [9, 47].

Definition 4.3. Let P ⊆ 𝑆 × 𝑆 be a relation on states. The lifted relation P+ is the relation on measures of states

defined as (𝜎1, 𝜎2) ∈ P+, when for any measurable subset P′ ⊆ P, 𝜎1 (𝜋1P′) = 𝜎2 (𝜋2P′).

Two probabilistic expressions are equivalent if starting from bisimilar states, integrating at each steps the pairs

(value, weight) computed by the probabilistic operational semantics, the output measures are equal and the measures

on states are bisimilar.

Definition 4.4. Two probabilistic expressions 𝑒1 and 𝑒2 are equivalent if there is a bisimulation P ⊆ 𝑆 × 𝑆 such that:

• (⦅𝑒1⦆init , ⦅𝑒2⦆init) ∈ P
• ∀𝛾 , if (𝑚1,𝑚2) ∈ P, then (𝜎′

1
, 𝜎′

2
) ∈ P+ and 𝜇1 = 𝜇2, where

𝜎′
1
, 𝜇1 = let 𝜓1 (𝑚1) =

∫
[0,1] | 𝑒1 |

let 𝑚′
1
, 𝑣1,𝑤1 = ⦅𝑒1⦆

step

𝛾 (𝑚1, 𝑟1) in 𝑤1 × 𝛿 (𝑚′
1
,𝑣1) 𝑑𝑟1 in

𝜋1∗ (𝜓1), 𝜋2∗ (𝜓1)

𝜎′
2
, 𝜇2 = let 𝜓2 (𝑚2) =

∫
[0,1] | 𝑒2 |

let 𝑚′
2
, 𝑣2,𝑤2 = ⦅𝑒2⦆

step

𝛾 (𝑚2, 𝑟2) in 𝑤2 × 𝛿 (𝑚′
2
,𝑣2) 𝑑𝑟2 in

𝜋1∗ (𝜓2), 𝜋2∗ (𝜓2)

Using this definition, we can show that two probabilistic expressions are equivalent if they describe the same stream

of measures, i.e., if at each step, integrating the transition function along the distributions of state in both expressions

yields the same measures.

Manuscript submitted to ACM

Page 16 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 17

Proposition 4.5. Let 𝑒1 and 𝑒2 be two equivalent expressions with probabilistic bisimulation P. If (𝜎1, 𝜎2) ∈ P+, then
with the notations of Definition 4.4, (𝜎′′

1
, 𝜎′′

2
) ∈ P+ and 𝜇′

1
= 𝜇′

2
where

𝜎′′
1
, 𝜇′

1
=

∫
𝜎1 (𝑑𝑚1) 𝜎′1 (𝑚1),

∫
𝜎1 (𝑑𝑚1) 𝜇1 (𝑚1)

𝜎′′
2
, 𝜇′

2
=

∫
𝜎2 (𝑑𝑚2) 𝜎′2 (𝑚2),

∫
𝜎2 (𝑑𝑚2) 𝜇2 (𝑚2)

Proof. Let 𝜎 and 𝜎′ be the measures on P such that for any measurable P′ ⊆ P, 𝜎 (P′) = 𝜎1 (𝜋1P′) = 𝜎2 (𝜋2P′) and
𝜎′ (𝑚) (P′) = 𝜎′

1
(𝑚1) (𝜋1P′) = 𝜎′

2
(𝑚2) (𝜋2P′), where𝑚 = (𝑚1,𝑚2). By the change of variable formula, for 𝑖 ∈ {1, 2},

𝜎′′𝑖 (𝜋𝑖P
′) =

∫
𝜋𝑖∗ (𝜎) (𝑑𝑚𝑖) 𝜎′𝑖 (𝑚𝑖) (𝜋𝑖P′) =

∫
𝜎 (𝑑𝑚) 𝜎′𝑖 (𝜋𝑖 (𝑚)) (𝜋𝑖P

′) =
∫

𝜎 (𝑑𝑚) 𝜎′ (𝑚) (P′)

Similarly, let 𝜇 (𝑚) = 𝜇1 (𝑚1) = 𝜇2 (𝑚2). Then, for 𝑖 ∈ {1, 2},

𝜇′𝑖 =
∫

𝜋𝑖∗ (𝜎) (𝑑𝑚𝑖) 𝜇𝑖 (𝑚𝑖) =
∫

𝜎 (𝑑𝑚) 𝜇𝑖 (𝜋𝑖 (𝑚)) =
∫

𝜎 (𝑑𝑚) 𝜇 (𝑚)
□

For a given context, each triplet (state, value, weight) is a function of the previous state and of the random elements.

If we can relate the states of 𝑒1 with the states of 𝑒2 and the random elements of 𝑒1 with the random elements of 𝑒2, then

program equivalence can be reduced to the comparison of the stream of pairs (value, weight). To relate two distributions,

we use a coupling: a joint measure over the product space such that each marginal corresponds to one of the measure.

We adapt the presentation of coupling for discrete probabilistic systems of [3] and follow the co-algebraic formulation

of [29] to get a characterization of probabilistic equivalence by coupling for our operational semantics.

Proposition 4.6 (Operational coupling eqivalence). Probabilistic expressions 𝑒1 and 𝑒2 are equivalent if there is

a pair of measurable relations P ⊆ 𝑆 × 𝑆 and R ⊆ [0, 1] | 𝑒1 | × [0, 1] | 𝑒2 | such that:

• 𝜋1R = [0, 1] | 𝑒1 | and 𝜋2R = [0, 1] | 𝑒2 |

• There is a coupling Λ of the Lebesgue measures over [0, 1] | 𝑒1 | , and [0, 1] | 𝑒2 | :
Λ(R) = 1, 𝜋1∗Λ = 𝜆 | 𝑒1 | , and 𝜋2∗Λ = 𝜆 | 𝑒2 |

• (⦅𝑒1⦆init , ⦅𝑒2⦆init) ∈ P
• ∀𝛾 , if (𝑚1,𝑚2) ∈ P and (𝑟1, 𝑟2) ∈ R, then (𝑚′

1
,𝑚′

2
) ∈ P, 𝑣1 = 𝑣2 and𝑤1 = 𝑤2, where

𝑚′
1
, 𝑣1,𝑤1 = ⦅𝑒1⦆

step

𝛾 (𝑚1, 𝑟1)

𝑚′
2
, 𝑣2,𝑤2 = ⦅𝑒2⦆

step

𝛾 (𝑚2, 𝑟2)

Proof. The proof is adapted from [29, Lemma 5.5]. Assume (𝑚1,𝑚2) ∈ P. Let us define a measure on (𝑆×𝑉)× (𝑆×𝑉)
as C =

∫
R
𝑤 × 𝛿 (𝑚′

1
,𝑣),(𝑚′

2
,𝑣) Λ(𝑑𝑟1, 𝑑𝑟2), where 𝑤 = 𝑤1 = 𝑤2 and 𝑣 = 𝑣1 = 𝑣2. It is a coupling of 𝜓1 (𝑚1) and 𝜓2 (𝑚2).

Indeed, for any 𝑖 ∈ {1, 2},

𝜋𝑖∗C =

∫
R
𝑤 × 𝛿 (𝑚′

𝑖
,𝑣) Λ(𝑑𝑟1, 𝑑𝑟2) =

∫
[0,1] | 𝑒𝑖 |

𝑤𝑖 × 𝛿 (𝑚′
𝑖
,𝑣𝑖) 𝜆

| 𝑒𝑖 | (𝑑𝑟𝑖) = 𝜓𝑖 (𝑚𝑖)

We prove that 𝜇1 = 𝜇2 by applying the change of variable formula along 𝜋𝑖 : [0, 1] | 𝑒1 | × [0, 1] | 𝑒2 | → [0, 1] | 𝑒𝑖 | ,

𝜇𝑖 =

∫
[0,1] | 𝑒𝑖 |

𝑤𝑖 × 𝛿𝑣𝑖 𝜆 | 𝑒𝑖 | (𝑑𝑟𝑖) =
∫
𝜋𝑖R

𝑤 × 𝛿𝑣 𝜋𝑖∗Λ(𝑑𝑟𝑖) =
∫
R
𝑤 × 𝛿𝑣 Λ(𝑑𝑟1, 𝑑𝑟2) .

Manuscript submitted to ACM

Page 17 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

18 Guillaume Baudart, Louis Mandel, and Christine Tasson

Let us prove that (𝜎′
1
, 𝜎′

2
) ∈ P+. For any P′ ⊆ P, let us set Q = {(𝑚′

1
, 𝑣), (𝑚′

2
, 𝑣) | (𝑚′

1
,𝑚′

2
) ∈ P′}, we prove that

𝜎′
1
(𝜋1P′) = 𝜎′

2
(𝜋2P′) by applying the definition of the pushforward measure along 𝜋𝑖𝜋1, noticing that 𝜋𝑖P′ = 𝜋1𝜋𝑖Q,

𝜎′𝑖 (𝜋𝑖P
′) = 𝜋1∗𝜓𝑖 (𝑚𝑖) (𝜋𝑖P′) = 𝜋1∗𝜋𝑖∗C(𝜋1𝜋𝑖Q) = 𝜋𝑖∗C(𝜋𝑖Q) = C(Q) .

□

Finding a relation and a coupling is in general difficult. A useful simple case is when the two programs involve

the same random variables in different orders, e.g., a program and its compiled version after a source-to-source

transformation. Then, the measurable relation on random elements is a permutation, and two expressions are equivalent

if they compute the same stream of pairs (value, weight).

Example. If 𝑥 and 𝑦 are not free variables in 𝑒1 and 𝑒2, and each expression has one random variable (| 𝑒1 | = | 𝑒2 | = 1):

sample(𝑒1) + sample(𝑒2) ∼ 𝑥 + 𝑦 where rec 𝑥 = sample(𝑒2) and 𝑦 = sample(𝑒1)

We define the following:

𝑚′
1
, 𝑣1, 1 = ⦅𝑒1⦆

step

𝛾 (𝑚1, 𝑟1) 𝑣𝑦 = icdf 𝑣1
(𝑟1)

𝑚′
2
, 𝑣2, 1 = ⦅𝑒2⦆

step

𝛾 (𝑚2, 𝑟2) 𝑣𝑥 = icdf 𝑣2
(𝑟2)

The left hand side term 𝑒ℓ = sample(𝑒1) + sample(𝑒2) is interpreted by the state machine:

⦅𝑒ℓ⦆
init = (⦅𝑒1⦆init , ⦅𝑒2⦆init)

⦅𝑒ℓ⦆
step

𝛾 ((𝑚1,𝑚2), [𝑟1 : 𝑟2]) = (𝑚′1,𝑚
′
2
), 𝑣𝑦 + 𝑣𝑥 , 1

The right hand side term 𝑒𝑟 = 𝑥 +𝑦 where rec 𝑥 = sample(𝑒2) and 𝑦 = sample(𝑒1) is interpreted by the state machine:

⦅𝑒𝑟 ⦆
init = (((), ((), ())), (⦅𝑒2⦆init , ⦅𝑒1⦆init))

⦅𝑒𝑟 ⦆
step

𝛾 ((((), ((), ())), (𝑚2,𝑚1)), [𝑟2 : 𝑟1]) = (((), ((), ())), (𝑚′2,𝑚
′
1
)), 𝑣𝑥 + 𝑣𝑦, 1

With P = {((𝑚1,𝑚2), (((), ((), ())), (𝑚2,𝑚1))) | (𝑚1,𝑚2) ∈ 𝑆 × 𝑆}
and R = {([𝑟1 : 𝑟2], [𝑟2 : 𝑟1]) | 𝑟1 ∈ [0, 1], 𝑟2 ∈ [0, 1]} we have:

• 𝜋1R = [0, 1]2 and 𝜋2R = [0, 1]2

• the Lebesgues measure on [0, 1]4, Λ = 𝜆4 satisfies 𝜋1∗Λ = 𝜆2 and 𝜋2∗Λ = 𝜆2

• P relates initial states (⦅𝑒1⦆init , ⦅𝑒2⦆init) and (((), ((), ())), (⦅𝑒2⦆init , ⦅𝑒1⦆init))
• if P relates the current states (𝑚1,𝑚2) and (((), ((), ())), (𝑚2,𝑚1)) and the random elements are permuted, then

P relates the next states (𝑚′
1
,𝑚′

2
) and (((), ((), ())), (𝑚′

2
,𝑚′

1
)), and the two state machines yield the same pairs

of values 𝑣𝑦 + 𝑣𝑥 = 𝑣𝑥 + 𝑣𝑦 and weights 1 = 1.

We can thus apply Proposition 4.6 to conclude that the two probabilistic expressions are equivalent.

5 DENOTATIONAL SEMANTICS

An alternative to the operational semantics where expressions are interpreted as statemachines is to define a denotational

semantics where expressions directly return streams of values [21]. This formalism has been successfully used in the

Vélus project to prove an end-to-end dataflow synchronous compiler within the Rocq proof assistant [11–13, 15].

In this section, we first present a denotational semantics for the deterministic expressions of our language. We then

define a probabilistic denotational semantics for probabilistic expressions and prove that this semantics is equivalent to

the probabilistic operational semantics of Section 4.2, i.e., the infer operator yields the same stream of distributions.

Manuscript submitted to ACM

Page 18 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 19

𝐻 ⊢ 𝑐 ↓ 𝑐 𝐻 ⊢ 𝑥 ↓ 𝐻 (𝑥)
𝐻 ⊢ 𝑒1 ↓ 𝑠1 𝐻 ⊢ 𝑒2 ↓ 𝑠2

𝐻 ⊢ (𝑒1,𝑒2) ↓ (𝑠1, 𝑠2)
𝐻 ⊢ 𝑒 ↓ 𝑠

𝐻 ⊢ op(𝑒) ↓ op(𝑠)
𝐻 (𝑥 .last) = 𝑠

𝐻 ⊢ last 𝑥 ↓ 𝑠

𝐻 ⊢ 𝑒 ↓ 𝑠𝑒 node 𝑓 𝑥 = 𝑒𝑓 [𝑥 ← 𝑠𝑒] ⊢ 𝑒𝑓 ↓ 𝑠
𝐻 ⊢ 𝑓 (𝑒) ↓ 𝑠

𝐻 + 𝐻𝐸 ⊢ 𝐸 𝐻 + 𝐻𝐸 ⊢ 𝑒 ↓ 𝑠
𝐻 ⊢ 𝑒 where rec 𝐸 ↓ 𝑠

𝐻 ⊢ 𝑒 ↓ 𝐻 (𝑥)
𝐻 ⊢ 𝑥 = 𝑒

𝐻 ⊢ 𝑒 ↓ 𝑖 · 𝑠 𝐻 (𝑥 .last) = 𝑖 · 𝐻 (𝑥)
𝐻 ⊢ init 𝑥 = 𝑒

𝐻 ⊢ 𝐸1 𝐻 ⊢ 𝐸2
𝐻 ⊢ 𝐸1 and 𝐸2

Fig. 9. Denotational semantics for deterministic expressions and equations (full version in Figure 20 of the appendix).

5.1 Deterministic denotational semantics

Notations. In the following, 𝑉𝜔
is the type of infinite streams of values of type 𝑉 . The infix operator (·) : 𝑉 →

𝑉𝜔 → 𝑉𝜔
is the stream constructor (e.g., 1 · 2 · 3 · ...). Constants are lifted to constant streams (e.g., 1 = 1 · 1 · 1 · ...) and

when the context is clear we write 𝑓 (𝑠) = 𝑓 (𝑠0) · 𝑓 (𝑠1) · ... for map 𝑓 𝑠 , and (𝑠, 𝑡) = (𝑠1, 𝑡1) · (𝑠2, 𝑡2) · ... to cast a pair of

streams into a stream of pairs.

In the denotational semantics, deterministic expressions compute streams of values. In a context 𝐻 which maps

variable names to stream of values, the semantics of a deterministic expression 𝑒 returns a stream 𝑠: 𝐻 ⊢ 𝑒 ↓ 𝑠 . The
semantics of a set of equations 𝐸 checks that the context 𝐻 is compatible with all the equations: 𝐻 ⊢ 𝐸. The semantics

of a set of equations thus defines a relation between the streams stored in the context. Compared to the operational

semantics, the denotational semantics is not executable since the context must be guessed a priori and validated against

the equations of the program.

Figure 9 presents the denotational semantics for deterministic expressions and equations. A constant is interpreted

as a constant stream, and a variable returns the corresponding stream in the context. The semantics of a pair evaluates

each component independently and packs the results into a stream of pairs. The application of an operator evaluates its

argument into a stream of values and maps the operator on the result. last 𝑥 fetches a special variable 𝑥 .last in the

context. A function call first evaluates its argument, and then evaluates the body of the function in a context where the

parameter is bound to the argument value.

To interpret the expression 𝑒 where rec 𝐸, equations 𝐸 are evaluated in a new context𝐻𝐸 that is also used to evaluate

the main expression 𝑒 . The semantics of a simple equation checks that a variable is associated to the stream computed

by its defining expression. The initialization operator init 𝑥 = 𝑒 prepends an initial value 𝑖 to the stream associated

to 𝑥 and checks that the special variable 𝑥 .last is bound to this delayed version of 𝑥 . In the denotational semantics,

contexts are un-ordered maps and scheduling equations does not change the semantics.

Causality. For some programs, the denotational semantics is not uniquely defined. For instance, the semantics of

the expression x where rec x = x can be any stream of value (the equation is verified for any context containing x).

Such programs are rejected by the causality analysis of the compiler (Definition 4.1).

5.2 Probabilistic denotational semantics

The key idea of the probabilistic denotational semantics is the same as in Section 4.2: instead of manipulating streams of

measures, probabilistic expressions compute streams of pairs (value, score) using external streams of random elements,

and integration is deferred to the infer operator.

Manuscript submitted to ACM

Page 19 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

20 Guillaume Baudart, Louis Mandel, and Christine Tasson

𝐻 ⊢ 𝑒 ↓ 𝑠
𝐻, [] ⊢ 𝑒 ⇓ (𝑠, 1)

𝐻 ⊢ 𝑒 ↓ 𝑠𝜇
𝐻, [𝑅] ⊢ sample(𝑒) ⇓ (icdf 𝑠𝜇 (𝑅), 1)

𝐻 ⊢ 𝑒 ↓ 𝑤
𝐻, [] ⊢ factor(𝑒) ⇓ ((),𝑤)

𝐻, 𝑅𝑒 ⊢ 𝑒 ↓ (𝑠𝑒 ,𝑤𝑒) proba 𝑓 𝑥 = 𝑒𝑓 [𝑥 ← 𝑠𝑒], 𝑅𝑓 ⊢ 𝑒𝑓 ⇓ (𝑠,𝑤)
𝐻, [𝑅𝑒 : 𝑅𝑓] ⊢ 𝑓 (𝑒) ⇓ (𝑠,𝑤 ×𝑤𝑒)

𝐻 + 𝐻𝐸 , 𝑅𝐸 ⊢ 𝐸 : 𝑤𝐸 𝐻 + 𝐻𝐸 , 𝑅𝑒 ⊢ 𝑒 ⇓ (𝑠,𝑤)
𝐻, [𝑅𝑒 : 𝑅𝐸] ⊢ 𝑒 where rec 𝐸 ⇓ (𝑠,𝑤 ×𝑤𝐸)

𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝐻 (𝑥),𝑤)
𝐻, 𝑅 ⊢ 𝑥 = 𝑒 : 𝑤

𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑖 · 𝑠,𝑤𝑖 ·𝑤) 𝐻 (𝑥 .last) = 𝑖 · 𝐻 (𝑥)
𝐻, 𝑅 ⊢ init 𝑥 = 𝑒 : 𝑤𝑖 · 1

𝐻, 𝑅1 ⊢ 𝐸1 : 𝑤1 𝐻, 𝑅2 ⊢ 𝐸2 : 𝑤2

𝐻, [𝑅1 : 𝑅2] ⊢ 𝐸1 and 𝐸2 : 𝑤1 ×𝑤2

[𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑠,𝑤) 𝑤 = Π 𝑤]𝑅∈ ([0,1]𝜔) | 𝑒 |
𝐻 ⊢ infer(𝑒) ↓ integ | 𝑒 | 𝑤 𝑠

Fig. 10. Denotational semantics for probabilistic expressions and equations (full version in Figure 21 of the appendix).

Figure 10 presents the semantics of probabilistic expressions and equations. In a context 𝐻 which maps variable

names to stream of values, the semantics of a probabilistic expression 𝑒 takes an array of random streams 𝑅 and returns

a stream of pairs (value, weight): 𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑠,𝑤). The semantics of a set of equations 𝐸 takes an array containing the

random streams of all sub-expressions, checks that the context 𝐻 is compatible with all the equations, and returns the

total weight𝑤𝐸 of all sub-expressions: 𝐻, 𝑅 ⊢ 𝐸 : 𝑤𝐸 .

The semantics of deterministic expressions (e.g., constant or variable) returns the expected stream of values associated

to a constant weight of 1. The semantics of sample takes an array containing one random stream 𝑅, evaluates its

argument into a stream of distributions 𝑠𝜇 , and uses 𝑅 to compute a stream of samples associated to the weight 1:

(icdf 𝑠𝜇
0

(𝑅0), 1) · (icdf 𝑠𝜇
1

(𝑅1), 1) · ... The semantics of factor evaluates its argument into a stream of values𝑤 which is

used as the weight associated to a stream of empty values: ((),𝑤0) · ((),𝑤1) · ... The semantics of a function call is similar

to the deterministic case, but the random streams are split between the argument and the function body, and the total

weight captures the weight of the argument and the weight of the function body. Similarly, for a set of local definitions

the random streams are split between sub-expressions and the weight is the total weight of all sub-expressions.

5.3 Inference

As in the operational semantics, the infer operator is defined by integrating at each step the semantics of the model

over all possible values of the streams of random elements. The semantics of a probabilistic model returns a pair of

stream functions (value, weight) which both depend on the random streams. Given the random streams, at each time

step, the semantics of infer first computes the total weight of the prefix to capture all the conditioning since the

beginning of the execution:𝑤 = Π 𝑤 = 𝑤0 · (𝑤0 ×𝑤1) · (𝑤0 ×𝑤1 ×𝑤2) · ... Then the function integ 1) turns the current

value 𝑣𝑛 and the total weight𝑤𝑛 into an un-normalized measure by integrating over all possible values of the random

streams, and 2) normalizes the result to obtain a stream of distributions of values. If 𝜆
| 𝑒 |
𝜔 is the uniform measure over

the cube of random streams ([0, 1]𝜔) | 𝑒 | , then:

integ | 𝑒 | (𝑤𝑛 ·𝑤𝑠) (𝑣 · 𝑣𝑠) =

(
let 𝜇 =

∫
𝑤𝑛 × 𝛿𝑣 𝜆 | 𝑒 |𝜔 (𝑑𝑅) in 𝜇/𝜇 (⊤)

)
· (integ 𝑤𝑠 𝑣𝑠) (4)

Manuscript submitted to ACM

Page 20 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 21

Cube of random streams. The uniform measure over the cube of random streams is defined as follows. Let [0, 1]𝜔 be

the countable product of the measurable spaces on the interval [0, 1] endowed with the Lebesgue 𝜎-algebra, i.e., the

coarsest 𝜎-algebra such that projections are measurable. We define 𝜆𝜔 as the uniform distribution on the continuous

cube defined by a Kolmogorov extension such that for any 𝑘 ∈ N, the pushforward measure of 𝜆𝜔 along the projection

𝜋≤𝑘 : [0, 1]𝜔 → [0, 1]𝑘 on the first 𝑘 coordinates is the Lebesgue measure on [0, 1]𝑘 : 𝜆≤𝑘 = 𝜋≤𝑘 ∗ (𝜆𝜔). For any
measurable function 𝑔 : [0, 1]𝑘 → 𝑉 we have the following change of variable formula:∫

𝑔(𝜋≤𝑘 (𝑅)) 𝜆𝜔 (𝑑𝑅) =
∫

𝑔(𝑅≤𝑘) 𝜆≤𝑘 (𝑑𝑅≤𝑘)

Integrating a function which only depends on the 𝑘 first coordinates of 𝑅 can thus be reduced to integrating over

these coordinates. We can then define the uniform measure on the cube of random streams 𝜆
| 𝑒 |
𝜔 as the | 𝑒 |-ary product

measure of 𝜆𝜔 , and lift the change of variable formula.

5.4 Program equivalence

Compared to the operational semantics where proving the equivalence between two state machines requires a bisimula-

tion, in the denotational semantics, to prove the equivalence between two programs one need only to check that they

define the same streams.

Definition 5.1. Deterministic expressions 𝑒1 and 𝑒2 are equivalent if for any context 𝐻 , 𝐻 ⊢ 𝑒1 ↓ 𝑠 and 𝐻 ⊢ 𝑒2 ↓ 𝑠 .

Equivalence between probabilistic expressions is more complex. Two probabilistic expressions are equivalent if they

describe the same stream of measures obtained by integrating at each step the streams of pairs (value, weight) computed

by the denotational semantics.

Definition 5.2. Probabilistic expressions 𝑒1 and 𝑒2 are equivalent if for all contexts 𝐻 , and ∀𝑘 > 0,∫
𝑤1𝑘 × 𝛿𝑠1𝑘 𝜆

| 𝑒1 |
𝜔 (𝑑𝑅1) =

∫
𝑤2𝑘 × 𝛿𝑠2𝑘 𝜆

| 𝑒2 |
𝜔 (𝑑𝑅2)

where 𝐻, 𝑅1 ⊢ 𝑒1 ⇓ (𝑠1,𝑤1) and 𝐻, 𝑅2 ⊢ 𝑒2 ⇓ (𝑠2,𝑤2).

In the denotational semantics, for a given context, each pair (value, weight) is a function of the random streams.

Since, random streams are uniformly distributed, if we can relate the random streams of 𝑒1 with the random streams

of 𝑒2 with a coupling on uniform distributions, program equivalence can be reduced to the comparison of the streams

of pairs (value, weight) computed by each expression.

Proposition 5.3 (Denotational coupling eqivalence). Probabilistic expressions 𝑒1 and 𝑒2 are equivalent if there

is R ⊆ ([0, 1]𝜔) | 𝑒1 | × ([0, 1]𝜔) | 𝑒2 | measurable such that,

• 𝜋1R = [0, 1] | 𝑒1 | and 𝜋2R = [0, 1] | 𝑒2 |

• there is a coupling Λ𝜔 on ([0, 1]𝜔) | 𝑒1 | × ([0, 1]𝜔) | 𝑒2 | , such that Λ𝜔 (R) = 1, 𝜋1∗Λ𝜔 = 𝜆
| 𝑒1 |
𝜔 and 𝜋2∗Λ𝜔 = 𝜆

| 𝑒2 |
𝜔

• for all contexts 𝐻 and arrays of random streams (𝑅1, 𝑅2) ∈ R, 𝑠1 = 𝑠2 and 𝑤1 = 𝑤2, where 𝐻, 𝑅1 ⊢ 𝑒1 ⇓ (𝑠1,𝑤1)
and 𝐻, 𝑅2 ⊢ 𝑒2 ⇓ (𝑠2,𝑤2).

Proof. With𝑤𝑘 = 𝑤
1𝑘 = 𝑤

2𝑘 and 𝑠𝑘 = 𝑠
1𝑘 = 𝑠

2𝑘 , for all 𝑘 > 0,∫
𝑤1𝑘 × 𝛿𝑠1𝑘 𝜆

| 𝑒1 |
𝜔 (𝑑𝑅1) =

∫
𝑤𝑘 × 𝛿𝑠𝑘 Λ𝜔 (𝑑𝑅) =

∫
𝑤2𝑘 × 𝛿𝑠2𝑘 𝜆

| 𝑒2 |
𝜔 (𝑑𝑅2)

□
Manuscript submitted to ACM

Page 21 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

22 Guillaume Baudart, Louis Mandel, and Christine Tasson

Finding such a coupling is in general difficult. As in Section 4.4, a useful simple case is when the two programs

involve the same random variables in different orders. Then, the coupling permutes the random streams.

The denotational semantics of an expression is described by a derivation tree where each relation is a consequence

of smaller relations on all the sub-expressions, up to atomic expressions. Two expressions compute the same streams if

from the derivation tree of the first, one can build a derivation tree for the second and vice-versa.

Example. If 𝑥 and 𝑦 are not free variables in 𝑒1 and 𝑒2:

sample(𝑒1) + sample(𝑒2) ∼ 𝑥 + 𝑦 where rec 𝑥 = sample(𝑒2) and 𝑦 = sample(𝑒1)

Let 𝑅𝑖 be the array of random streams associated to the expressions sample(𝑒𝑖). For all contexts 𝐻 , if 𝐻 ⊢ 𝑒𝑖 ↓ 𝜇𝑖 , then
we define 𝑠𝑖 = icdf 𝜇𝑖

(𝑅𝑖). Then, the derivation tree for the lhs expression is:

𝐻, 𝑅1 ⊢ sample(𝑒1) ⇓ (𝑠1, 1) 𝐻, 𝑅2 ⊢ sample(𝑒2) ⇓ (𝑠2, 1)
𝐻, [𝑅1 : 𝑅2] ⊢ sample(𝑒1) + sample(𝑒2) ⇓ (𝑠1 + 𝑠2, 1)

With 𝐻𝐸 = [𝑥 ← 𝑠2, 𝑦 ← 𝑠1], the derivation tree for the rhs expression is:

𝐻 + 𝐻𝐸 , [] ⊢ 𝑥 + 𝑦 ⇓ (𝑠2 + 𝑠1, 1)

𝐻 + 𝐻𝐸 , 𝑅2 ⊢ sample(𝑒2) ⇓ (𝑠2, 1)
𝐻 + 𝐻𝐸 , 𝑅2 ⊢ 𝑥 = sample(𝑒2) : 1

𝐻 + 𝐻𝐸 , 𝑅1 ⊢ sample(𝑒1) ⇓ (𝑠1, 1)
𝐻 + 𝐻𝐸 , 𝑅1 ⊢ 𝑦 = sample(𝑒1) : 1

𝐻 + 𝐻𝐸 , [𝑅2 : 𝑅1] ⊢ 𝑥 = sample(𝑒2) and 𝑦 = sample(𝑒1) : 1

𝐻, [𝑅2 : 𝑅1] ⊢ 𝑥 + 𝑦 where rec 𝑥 = sample(𝑒2) and 𝑦 = sample(𝑒1) ⇓ (𝑠2 + 𝑠1, 1)

Since both programs compute the same stream of pairs (value, weight) and the relation permuting random streams

R = {([𝑅1 : 𝑅2], [𝑅2 : 𝑅1]) | 𝑅1 ∈ [0, 1]𝜔 , 𝑅2 ∈ [0, 1]𝜔 } is the support of the coupling Λ𝜔 = 𝜆4𝜔 of 𝜆2𝜔 and 𝜆2𝜔 , the two

programs are equivalent.

6 SEMANTICS COMPARISON

In this section we show that the operational and the denotational semantics coincide for causal programs, i.e., they

both define the same streams. We then prove that these new semantics coincide with the original kernel semantics for

the restricted set of schedulable programs that can be interpreted by the original semantics.

6.1 Adequacy between the operational and denotational semantics

For a probabilistic expression 𝑒 , we first relate the operational semantics of Section 4.2 and the denotational semantics

of Section 5.2. If 𝐻 is a context mapping variables names to streams of values, 𝐻𝑘 is the context where streams are

projected on their 𝑘-th coordinate and 𝐻≤𝑘 is the context where streams are truncated at 𝑘 . We define similarly 𝑅≤𝑘 ,

and 𝑅𝑘 for an array of random streams 𝑅. The following proposition states that if a program is causal (Definition 4.1),

the probabilistic operational semantics and the probabilistic denotational semantics coincide.

Proposition 6.1. For a correct model 𝑒 (well-typed, causal, and without runtime error), the probabilistic denotational

semantics is well defined and matches the trace of the probabilistic operational semantics, i.e., for all contexts 𝐻, 𝑅,

𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑠,𝑤) is well defined and ∀𝑘 ≥ 0, (𝑚𝑘+1, 𝑠𝑘+1,𝑤𝑘+1) = ⦅𝑒⦆
step

𝐻𝑘+1
(𝑚𝑘 , 𝑅𝑘+1) with𝑚0 = ⦅𝑒⦆init. By construction,

for all 𝑘 > 0 the value 𝑠𝑘 and the weight𝑤𝑘 only depend on 𝐻≤𝑘 and 𝑅≤𝑘 .
Manuscript submitted to ACM

Page 22 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 23

Proof Sketch. Probabilistic constructs aside, the kernel language of Figure 2 is a subset of the Vélus language

defined in [11]. We compile the model to this language. Probabilistic nodes become deterministic nodes with additional

inputs (the random streams) and one additional output (the score). The sample operator is also compiled to a function

call with one additional input for the random stream, and the factor operator simply updates the score. Following the

semantics of Figure 10, the distribution of random streams in sub-expressions is performed by the compilation function.

We can then apply the correctness theorem of [14, Theorem 5] : if a program is correct and without runtime error, the

denotational semantics is well defined (there is a valid environment for all equations sets) and matches the trace of the

compiled state machine.

The execution of the compiled state machine is deterministic and corresponds to the operational semantics of

the normalized scheduled program which does not require any fixpoint computation. Since, the normalization and

scheduling passes preserve the operational semantics [22], the execution of the state machine also corresponds to the

operational semantics of the original unscheduled program. □

We can now state the adequacy theorem, i.e., the infer operator yields the same stream of distributions in the

operational semantics and in the denotational semantics.

Theorem 6.2 (Adeqacy). For a correct model 𝑒 (well-typed, causal, and without runtime errors), for all context 𝐻 such

that𝐻 ⊢ infer(𝑒) ↓ 𝜇, the operational execution trace yields the same stream of distributions, that is, 𝜎0 = ⟦infer(𝑒)⟧init

and ∀𝑘 ≥ 0, 𝜎𝑘+1, 𝜇𝑘+1 = ⟦infer(𝑒)⟧
step

𝐻𝑘+1
(𝜎𝑘).

Proof. We show ∀𝑘 > 0:

𝜎𝑘 ∝
∫
([0,1]𝑘) | 𝑒 |

𝑤𝑘 × 𝛿𝑚𝑘
𝜆
| 𝑒 |
≤𝑘 (𝑑𝑅≤𝑘)

𝜇𝑘 ∝
∫
([0,1]𝑘) | 𝑒 |

𝑤𝑘 × 𝛿𝑠𝑘 𝜆
| 𝑒 |
≤𝑘 (𝑑𝑅≤𝑘)

By Proposition 6.1, for all 𝑘 > 0, the values 𝑠𝑘 , and the weights𝑤𝑘 computed by the operational semantics corresponds

to the stream (𝑠,𝑤) of the denotational semantics. From the definition of𝜓 in Equation (3) in Section 4.3 and Fubini’s

theorem we have:
6

𝜈𝑘+1 =
∫

𝜎𝑘 (𝑑𝑚) 𝜓 (𝑚)

∝
∫
([0,1]𝑘) | 𝑒 |

𝑤𝑘 ×𝜓 (𝑚𝑘) 𝜆
| 𝑒 |
≤𝑘 (𝑑𝑅≤𝑘)

∝
∫
([0,1]𝑘) | 𝑒 |

∫
[0,1] | 𝑒 |

𝑤𝑘 ×𝑤𝑘+1 × 𝛿𝑚𝑘+1,𝑣𝑘+1 𝜆
| 𝑒 | (𝑑𝑅𝑘+1) 𝜆

| 𝑒 |
≤𝑘 (𝑑𝑅≤𝑘)

∝
∫
([0,1]𝑘+1) | 𝑒 |

𝑤𝑘+1 × 𝛿𝑚𝑘+1,𝑣𝑘+1 𝜆
| 𝑒 |
≤𝑘+1 (𝑑𝑅≤𝑘+1)

The normalization and marginalization by 𝜋1∗ and 𝜋2∗ concludes the inductive case. Then using the change of variable

formula on the cube of random streams we get:

𝜇𝑘 ∝
∫

𝑤𝑘 × 𝛿𝑠𝑘 𝜆
| 𝑒 |
𝜔 (𝑑𝑅)

which corresponds to Equation (4) in Section 5.3 and concludes the proof. □

6
The symbol ∝ means proportional to.

Manuscript submitted to ACM

Page 23 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

24 Guillaume Baudart, Louis Mandel, and Christine Tasson

⦃𝑒 : 𝑉⦄

init
: 𝑆

⦃𝑒 : 𝑉⦄

step
: Γ → 𝑆 → Meas(𝑆 ×𝑉)

⦃𝑒⦄init = ⟦𝑒⟧init

⦃𝑒⦄
step

𝛾 (𝑚) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in 𝛿𝑚′,𝑣 if 𝑒 is deterministic

⦃sample(𝑒)⦄init = ⟦𝑒⟧init

⦃sample(𝑒)⦄
step

𝛾 (𝑚) = let 𝑚′, 𝜇 = ⟦𝑒⟧step𝛾 (𝑚) in
∫

𝜇 (𝑑𝑣) 𝛿𝑚′,𝑣

⦃factor(𝑒)⦄init = ⟦𝑒⟧init

⦃factor(𝑒)⦄
step

𝛾 (𝑚) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in 𝑣 × 𝛿𝑚′,()

⦃

𝑒 where rec init 𝑥 = 𝑐
and 𝑥 = 𝑒𝑥
and 𝑦 = 𝑒𝑦

⦄init

= 𝑐,

(
⦃𝑒⦄init ,⦃𝑒𝑥⦄

init ,
⦃

𝑒𝑦
⦄

init

)
⦃

𝑒 where rec init 𝑥 = 𝑐
and 𝑥 = 𝑒𝑥
and 𝑦 = 𝑒𝑦

⦄step

𝛾

(𝑝𝑥 , (𝑚,𝑚𝑥 ,𝑚𝑦)) =

∫
⦃𝑒𝑥⦄

step

𝛾+[𝑥.last←𝑝𝑥] (𝑚𝑥) (𝑑𝑚′𝑥 , 𝑑𝑣𝑥)∫
⦃

𝑒𝑦
⦄

step

𝛾+[𝑥.last←𝑝𝑥 ,𝑥←𝑣𝑥] (𝑚𝑦) (𝑑𝑚′𝑦, 𝑑𝑣𝑦)∫
⦃𝑒⦄

step

𝛾+[𝑥.last←𝑝𝑥 ,𝑥←𝑣𝑥 ,𝑦←𝑣𝑦] (𝑚) (𝑑𝑚
′, 𝑑𝑣)

𝛿 (𝑣𝑥 ,(𝑚′,𝑚′𝑥 ,𝑚′𝑦)),𝑣

Fig. 11. A simplified excerpt of the original ProbZelus probabilistic kernel operational semantics [5].

6.2 Correspondance between the original and the operational semantics

In this section we show that for scheduled programs where local declarations are all ordered according to data

dependencies, the original kernel semantics coincide with the operational semantics, and thus with the denotational

semantics.

Kernel semantics. The original ProbZelus semantics [5, Section 3.1] is a co-iterative semantics similar to the operational

semantics presented in Section 4 where expressions are interpreted as state machines. The key difference is that

probabilistic state machines directly computes a stream of unnormalized measures. Given a current state, the transition

function ⦃𝑒⦄step of type Γ → 𝑆 → Meas(𝑆 ×𝑉) returns a measure over pairs (next state, value).

Figure 11 shows a simplified excerpt of the semantics of probabilistic expressions from [5]. In a probabilistic context, a

deterministic expression is interpreted as the Dirac delta measure on the pair (state, value) returned by the deterministic

semantics. sample evaluates its argument into a new state𝑚′ and a distribution of values 𝜇, and returns a measure over

pairs (new state, value). factor evaluates its argument into a new state𝑚′ and a real value 𝑣 , and returns a Dirac delta

measure on the pair (𝑚′, ()) weighted by 𝑣 . To illustrate local declarations, Figure 11 shows the semantics of a simple

expression with two local variables x and y. The state captures the previous value of the initialized variable 𝑥 , and the

state of all sub-expressions. The transition function starts in a context where the previous value of 𝑥 is bound to a special

variable 𝑥 .last, and integrates over all possible executions of the sub-expressions to compute the main expression.

Manuscript submitted to ACM

Page 24 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 25

Since the original ProbZelus semantics focuses on a kernel language where local declarations are all scheduled the

nested integrals are well-defined.

The infer operator is similar to its counterpart in Section 4.2. Given a probabilistic model 𝑒 with a state of type 𝑆

and a return value of type 𝑉 , the state of infer is a measure over possible states of the model, and at each step, the

transition function returns a measure over possible next states, and a measure over return values.

⟦infer(𝑒)⟧k init : Meas(𝑆)
⟦infer(𝑒)⟧k step : Γ → Meas(𝑆) → Meas(𝑆) ×Meas(𝑉)

Given the unnormalized measure defined by a model 𝑒 , infer(𝑒) performs the same operations as in the operational

semantics (Equation (3) in Section 4.2): 1) integrate over all possible states, 2) normalize the measure, 3) split the result

into a distribution of next states and a distribution of values. We then obtain a stream of distributions by iteratively

integrating the transition function along the distribution of states.

⟦infer(𝑒)⟧k init = 𝛿⟦𝑒⟧init

⟦infer(𝑒)⟧k step𝛾 (𝜎) = let 𝜈 =

∫
𝜎 (𝑑𝑚) ⦃𝑒⦄step𝛾 (𝑚) in

let 𝜈 = 𝜈/𝜈 (⊤) in
(𝜋1∗ (𝜈), 𝜋2∗ (𝜈))

Correspondance. The definition of infer is very similar to its operational semantics counterpart where the function

𝜓 (𝑚) in Equation (3) plays the role of the semantics of the model. We now show that these two notions coincide.

Proposition 6.3. For all probabilistic expression 𝑒 where all equations are scheduled, the kernel semantics corresponds

to the operational semantics by integrating over random elements, i.e., for all environment 𝛾 and state𝑚:

⦃𝑒⦄
step

𝛾 (𝑚) =

(∫
[0,1] | 𝑒 |

let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚, 𝑟) in 𝑤 × 𝛿 (𝑚′,𝑣) 𝑑𝑟
)

Proof. The kernel semantics is only defined for a scheduled language. We first prove by induction on the structure

of 𝑒 that the kernel semantics coincides with the operational semantics where local declarations are ordered and can be

computed incrementally without a fixpoint operator. For a set of scheduled equations, the ordered sequence of local

declarations yields the same environment as the fixpoint operator (see Proposition A.1). Since all sets of equations are

scheduled, the operational semantics (with a fixpoint operator) also coincides with the kernel semantics.

The case sample(𝜇) is a simple variable substitution 𝑥 = icdf 𝜇 (𝑟). Indeed, any real continuous distribution 𝜇 is the

pushforward by icdf 𝜇 of the uniform distribution over [0, 1] denoted 𝜆:∫
[0,1]

𝛿
icdf 𝜇 (𝑟) 𝑑𝑟 =

∫
𝛿
icdf 𝜇 (𝑟) 𝜆(𝑑𝑟) =

∫
𝛿𝑥 icdf 𝜇∗ (𝜆) (𝑑𝑥) =

∫
𝛿𝑥 𝜇 (𝑑𝑥) = 𝜇

This property generalizes to discrete distributions, multivariate distributions, and any distributions over Polish spaces.

By analogy, we use the notation icdf 𝜇 in all cases.

Manuscript submitted to ACM

Page 25 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

26 Guillaume Baudart, Louis Mandel, and Christine Tasson

The case 𝐸1 and 𝐸2 is a consequence of Fubini’s theorem.∫
⦃𝐸1⦄

step

𝛾 (𝑀1) (𝑑𝑀 ′
1
, 𝑑𝜌1)

∫
⦃𝐸2⦄

step

𝛾+𝜌1 (𝑀2) (𝑑𝑀 ′
2
, 𝑑𝜌2) 𝛿 (𝑀 ′

1
,𝑀 ′

2
),𝜌1+𝜌2

=
∫ (∫

[0,1] | 𝑒1 | let 𝑀
′
1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

step

𝛾 (𝑀1, 𝑟1) in 𝑤1 × 𝛿𝑀1,𝜌1 𝑑𝑟1

)
(𝑑𝑀′

1
, 𝑑𝜌1)∫ (∫

[0,1] | 𝑒2 | let 𝑀
′
1
, 𝜌2,𝑤1 = ⦅𝐸2⦆

step

𝛾+𝜌1 (𝑀2, 𝑟2) in 𝑤2 × 𝛿𝑀2,𝜌2 𝑑𝑟2

)
(𝑑𝑀′

2
, 𝑑𝜌2)

𝛿 (𝑀 ′
1
,𝑀 ′

2
),𝜌1+𝜌2

=
∫
[0,1] | 𝑒1 |

∫
[0,1] | 𝑒2 |

∫ (
let 𝑀′

1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

step

𝛾 (𝑀1, 𝑟1) in 𝑤1 × 𝛿𝑀1,𝜌1

)
(𝑑𝑀′

1
, 𝑑𝜌1)∫ (

let 𝑀′
1
, 𝜌2,𝑤1 = ⦅𝐸2⦆

step

𝛾+𝜌1 (𝑀2, 𝑟2) in 𝑤2 × 𝛿𝑀2,𝜌2

)
(𝑑𝑀 ′

2
, 𝑑𝜌2) 𝑑𝑟1𝑑𝑟2

𝛿 (𝑀 ′
1
,𝑀 ′

2
),𝜌1+𝜌2

=
∫
[0,1] | 𝑒1 |+| 𝑒2 | let 𝑀′

1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

step

𝛾 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌2,𝑤2 = ⦅𝐸2⦆

step

𝛾+𝜌1 (𝑀2, 𝑟2) in
𝑤1 ×𝑤2 × 𝛿 (𝑀 ′

1
,𝑀 ′

2
),𝜌1+𝜌2 𝑑𝑟1𝑑𝑟2

Other cases are similar. □

We can now state the main correctness theorem, i.e., the infer operator yields the same stream of distributions in

the operational semantics and in the kernel based semantics.

Theorem 6.4 (Operational semantics correctness). For every probabilistic model 𝑒 where all equations sets are

scheduled, for all distribution of states 𝜎 , and for all environment 𝛾 :

⟦infer(𝑒)⟧init = ⟦infer(𝑒)⟧k init

⟦infer(𝑒)⟧step𝛾 (𝜎) = ⟦infer(𝑒)⟧k step𝛾 (𝜎)

Proof. By construction, in the operational semantics, the first element of the initial state of infer is a Dirac delta

measure on the initial state of the model which corresponds to the initial state of infer in the kernel semantics.

By Proposition 6.3 the un-normalized measure defined by the operational semantics matches the measure computed

by the kernel semantics. Given this measure, the rest of the transition function of infer is the same in both cases. □

7 APPLICATION: ASSUMED PARAMETER FILTER

In ProbZelus, state-space models can involve two kinds of random variables. State parameters are represented by a

stream of random variables which evolve over time depending on the previous values and the observations. Constant

parameters are represented by a random variable whose value is progressively refined from the prior distribution with

each new observation.

Example. Consider the radar example of Section 2 where the current force is an unknown constant 𝜃 . We want

to estimate the moving position (state parameter), and the current force (constant parameter). To estimate 𝜃 , the

current_force is now a probabilistic model defined as follows (where the noise parameter st is a global constant):

proba current_force(x) = theta where

rec init theta = sample(gaussian(zeros, st))

and theta = last theta

Manuscript submitted to ACM

Page 26 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 27
p
f

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.2

0.0

0.2

0.4

0.6

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

a
p
f

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(a) 𝑡 = 0

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.2

0.0

0.2

0.4

0.6

(b) 𝑡 = 30

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c) 𝑡 = 50

Fig. 12. Estimates of the theta parameter of the radar example over time with a particle filter (PF at the top) and assumed parameter

filter (APF at the bottom) . The true drift speed is indicated by a green cross. The color gradient represents the dot density. The scale

shrinks over time. Results may differ in between runs.

Filtering. To estimate state parameters, Sequential Monte Carlo (SMC) inference algorithms rely on filtering tech-

niques [19, 30]. Filtering is an approximate method which consists of deliberately losing information on the current

approximation to refocus future estimations on the most significant information. These methods are particularly well

suited to the reactive context where a system in interaction with its environment never stops and must execute with

bounded resources. All ProbZelus inference methods are SMC algorithms [2, 5, 6]. Unfortunately, this loss of information

is harmful for the estimation of constant parameters which do not change over time.

The most basic SMC algorithm, the particle filter, approximates the posterior distribution by launching a set of

independent executions, called particles. At each step, each particle returns a value associated to a score which measures

the quality of the value w.r.t. the model. To recenter the inference on the most significant particles, the inference runtime

periodically resamples the set of particles according to their weights. The most significant particles are then duplicated

while the least interesting ones are dropped.

Unfortunately, constant parameters are only sampled at the beginning of the execution of each particle. After each

resampling step, the duplicated particles share the same value for theta. The quantity of information used to estimate

constant parameters thus strictly decreases over time until eventually, there is only one possible value left. The upper

part of the Figure 12 graphically illustrates this phenomenon.

Assumed Parameter Filter. To mitigate this issue, the Assumed Parameter Filter (APF) maintains a symbolic distribution

for the constant parameters and splits the inference into two steps: 1) estimate the state parameters distributions, and

2) update the constant parameters distributions [35]. The lower part of Figure 12 illustrates the results of APF on the

estimation of the drift speed for our radar example.

The APF algorithm assumes that constant parameters are an input of the model, and their prior distributions an

input of a new inference operator APF.infer (the APF algorithm is described in Appendix B.1). In this section, we

present a program transformation which generates models that are exploitable by the APF algorithm. First, a static

Manuscript submitted to ACM

Page 27 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

28 Guillaume Baudart, Louis Mandel, and Christine Tasson

cexp-c

𝐶 ⊢𝑐 𝑐

cexp-var

𝑥 ∈ 𝐶
𝐶 ⊢𝑐 𝑥

cexp-pair

𝐶 ⊢𝑐 𝑒1 𝐶 ⊢𝑐 𝑒2
𝐶 ⊢𝑐 (𝑒1,𝑒2)

cexp-op

𝐶 ⊢𝑐 𝑒
𝐶 ⊢𝑐 op(𝑒)

cexp-where

𝐶 + dom(𝐸) ⊢𝑐 𝑒 𝐶 ⊢𝑐 𝐸 : dom(𝐸)
𝐶 ⊢𝑐 𝑒 where rec 𝐸

ceq-init

𝐶 ⊢𝑐 init 𝑥 = 𝑒 : ∅

ceq-last

𝐶 ⊢𝑐 𝑥 = last 𝑥 : {𝑥}

ceq-cexp

𝐶 ⊢𝑐 𝑒
𝐶 ⊢𝑐 𝑥 = 𝑒 : {𝑥}

ceq-exp

𝐶 ⊬𝑐 𝑒

𝐶 ⊢𝑐 𝑥 = 𝑒 : ∅

ceq-and

𝐶 +𝐶2 ⊢𝑐 𝐸1 : 𝐶1 𝐶 +𝐶1 ⊢𝑐 𝐸2 : 𝐶2

𝐶 ⊢𝑐 𝐸1 and 𝐸2 : 𝐶1 +𝐶2

Fig. 13. Constant expressions and equations.

analysis identifies the constant parameters and their prior distributions. Then a compilation pass transforms these

parameters into additional inputs of the model. We use the denotational semantics of Section 5 to prove the correctness

of this transformation, i.e., the transformation preserves the ideal semantics of the program.

Example. The radar model (see Figure 1) is compiled into the following model for APF. The constant parameter f is

an argument of the model and the corresponding prior distribution is defined outside the model.

let current_force.prior = gaussian(zeros, st)

proba current_force.model(theta, x) = theta

let tracker_prior = current_force.prior

proba tracker.model(theta, y_obs) = x where

rec x = motion(f)

and f = current_force.model(theta, x)

and () = observe(gaussian(g(x), sy), y_obs)

node main(y_obs) = msg where

rec x_dist = APF.infer(tracker.model, tracker.prior, y_obs)

and msg = controller(x_dist)

7.1 Static Analysis

The goal of the static analysis is to identify the constant parameters of each probabilistic node, i.e., initialized random

variables (init 𝑥 = sample(𝑒)) that are also constant (𝑥 = last 𝑥). For a program prog the judgement [], ∅ ⊢ prog : Φ,𝐶

incrementally analyzes all the declarations to build the environment Φ which associates to each probabilistic node

a type 𝜙 mapping constant parameters to their prior distributions. The environment 𝐶 contains the global constant

variables that can be used to define the prior distributions. An excerpt of the type system is given in Figures 13 and 14.

Constants (ceq-* and cexp-* rules, Figure 13): The auxiliary judgement 𝐶 ⊢𝑐 𝐸 : 𝐶′ (ceq-* rules) identifies constant

streams 𝐶′ in the set of equations 𝐸 given the constant variables 𝐶 . A stream 𝑥 is constant if it is always equal to its

previous value (𝑥 = last 𝑥) or if it is defined by a constant expression. The auxiliary judgement 𝐶 ⊢𝑐 𝑒 (cexp-* rules)
Manuscript submitted to ACM

Page 28 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 29

decl-cst

𝐶 ⊢𝑐 𝑒
Φ,𝐶 ⊢ let 𝑥 = 𝑒 : Φ,𝐶 + {𝑥}

decl-proba

𝐶 ⊢ 𝑒 : 𝜙
Φ,𝐶 ⊢ proba 𝑓 𝑥 = 𝑒 : Φ + [𝑓 ← 𝜙],𝐶

exp-reset

𝐶 ⊢ 𝑒2 : 𝜙
𝐶 ⊢ reset 𝑒1 every 𝑒2 : 𝜙

exp-app

𝐶 ⊢ 𝑓𝜃(𝑒) : [𝜃 ← 𝑓 .prior]

exp-where

𝐶 ⊢ 𝑒 : 𝜙𝑒 𝐶 ⊢𝑐 𝐸 : 𝐷 𝐶, 𝐷 ⊢ 𝐸 : 𝜙𝐸

𝐶 ⊢ 𝑒 where rec 𝐸 : 𝜙𝑒 + 𝜙𝐸

exp-sample

𝑥 ∈ 𝐷 𝐶 ⊢𝑐 𝑒
𝐶, 𝐷 ⊢ init 𝑥 = sample(𝑒) : [𝑥 ← 𝑒]

eq-one

𝐶 ⊢ 𝑒 : 𝜙
𝐶, 𝐷 ⊢ 𝑥 = 𝑒 : 𝜙

eq-and

𝐶, 𝐷 ⊢ 𝐸1 : 𝜙1 𝐶, 𝐷 ⊢ 𝐸2 : 𝜙2
𝐶, 𝐷 ⊢ 𝐸1 and 𝐸2 : 𝜙1 + 𝜙2

Fig. 14. Extract constant parameters and associated prior distributions (full type system in Appendix B.2).

checks that an expression defines a constant stream. An expression with a set of local declarations is constant if all the

equations define constant streams.

Declarations (decl-* rules, Figure 14): A global declaration let 𝑥 = 𝑒 typed in the environment Φ,𝐶 adds the name 𝑥

to the global constant set𝐶 if the expression 𝑒 is constant. A probabilistic node proba 𝑓 𝑥 = 𝑒 is associated to the map 𝜙

computed by the judgement 𝐶 ⊢ 𝑒 : 𝜙 .
Expressions (exp-* rules, Figure 14): The auxiliary judgement 𝐶 ⊢ 𝑒 : 𝜙 collects the constant parameters of the

sub-expressions. To simplify the analysis, we associate a unique instance name 𝜃 to each function call and we assume

that all variables and instances names are unique, e.g., 𝑓 (1) + 𝑓 (2) becomes 𝑓𝜃1 (1) + 𝑓𝜃2 (2). The rule for 𝑓𝜃(𝑒) associates
to 𝜃 the prior distribution of the constant parameters of the body of 𝑓 : 𝑓 .prior which is defined as a global variable by

the compilation pass. The rule for reset 𝑒1 every 𝑒2 focuses only on the condition 𝑒2 because 𝑒1 can be re-initialized

and thus is not constant.

Equations (eq-* rules, Figure 14): The typing of 𝑒 where rec 𝐸 identifies the set 𝐷 of constant variables in 𝐸, then

types the equations with the judgement 𝐶, 𝐷 ⊢ 𝐸 : 𝜙 where 𝐶 is the set of constant free variables in 𝐸. If a variable 𝑥 is

introduced by the equation init 𝑥 = sample(𝑒) and is constant (𝑥 ∈ 𝐷), then 𝑥 is a constant parameter and the result

type maps 𝑥 to the distribution 𝑒 .

Example. On our example, the variable theta is identified as a constant parameter of the node current_force and is

propagated through the node tracker that calls current_force. The final environment is:

Φ = [current_force← [theta← gaussian(...)], tracker← [𝜃 ← current_force.prior]]

7.2 Compilation

To run the APF algorithm, constant parameters must become additional inputs of the model. The inference runtime can

thus execute the model multiple times with different values of the constant parameters to update their distributions.

The compilation function is defined in Figure 15 by induction on the syntax and relies on the result of the static

analysis. The compilation function C is thus parameterized by the typing environment Φ for declarations and the type 𝜙

for expressions.

Manuscript submitted to ACM

Page 29 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

30 Guillaume Baudart, Louis Mandel, and Christine Tasson

CΦ (proba 𝑓 𝑥 = 𝑒) =


proba 𝑓 𝑥 = C[] (𝑒) if Φ(𝑓) = []
let 𝑓 .prior = im(𝜙)
proba 𝑓 .model (dom(𝜙),𝑥) = C𝜙 (𝑒)

with 𝜙 = Φ(𝑓)

C𝜙 (𝑒 where rec 𝐸) = C𝜙 (𝑒) where rec C𝜙 (𝐸)

C𝜙 (init 𝑥 = 𝑒) =

{
∅ if 𝑥 ∈ dom(𝜙)
init 𝑥 = C𝜙 (𝑒) otherwise

C𝜙 (𝑥 = 𝑒) =

{
∅ if 𝑥 ∈ dom(𝜙)
𝑥 = C𝜙 (𝑒) otherwise

C𝜙 (𝑓𝜃(𝑒)) =



𝑓 (C𝜙 (𝑒)) if 𝑓 is deterministic or 𝜙 = []
𝑓 .model(𝜃, C𝜙 (𝑒)) if 𝜃 ∈ dom(𝜙)
𝑓 .model(𝜃, C𝜙 (𝑒)) where otherwise

rec init 𝜃 = sample(𝑓 .prior)
and 𝜃 = last 𝜃

C𝜙 (infer(𝑓 (𝑒))) = APF.infer(𝑓 .model, 𝑓 .prior, C𝜙 (𝑒))

Fig. 15. APF compilation (full definition in Appendix B.3).

A model proba 𝑓 𝑥 = 𝑒 such that Φ(𝑓) = 𝜙 (i.e., 𝐶 ⊢ 𝑒 : 𝜙) is compiled into two statements: 1) the prior distribution

of the constant parameters in 𝑒 , let 𝑓 .prior = im(𝜙), and 2) a new model that takes the constant parameters dom(𝜙)
as additional arguments, proba 𝑓 .model (dom(𝜙), 𝑥) = C𝜙 (𝑒).

The compilation function of an expression C𝜙 removes the definitions of the constant parameters 𝑥 ∈ dom(𝜙). The
where/rec case effectively removes the constant parameters by keeping only the equations defining variables𝑥 ∉ dom(𝜙).
The main difficulty is to handle constant parameters introduced by a function call.

• If the node is deterministic, there is no constant parameter.

• If the constant parameters of the callee are also constant parameters of the caller, we have 𝜃 ∈ dom(𝜙) and we

just replace the call to 𝑓𝜃 with a call to 𝑓 .model using the instance name for the constant parameters.

• Otherwise, the constant parameters of the callee are not constant for the caller because the instance 𝑓𝜃 is used

inside a reset/every or a present/else. In this case, we redefine these parameters locally by sampling their

prior distribution 𝑓 .prior.

Finally, the call to infer(𝑓 (𝑒)) is replaced by a call to APF.infer(𝑓 .model, 𝑓 .prior, 𝑒).

7.3 Correctness

We use the denotational semantics defined in Section 5.2 to prove the correctness of the APF compilation pass.

First, we prove that any probabilistic expression is equivalent to its compiled version computed in an environment

which already contains the definition of the constant parameters. The main theorem which relates infer(𝑓 (𝑒)) and

APF.infer(𝑓 .model, 𝑓 .prior, 𝑒) then corresponds to the case 𝑓𝜃 (𝑒) in Figure 15.

Definition 7.1. For a model 𝑓 that is compiled into 𝑓 .prior and 𝑓 .model, the ideal semantics of APF.infer externalizes

the definition of the constant parameters: APF.infer(𝑓 .model, 𝑓 .prior, 𝑒) denotes the expression:

infer(𝑓 .model(𝜃, 𝑒) where rec init 𝜃 = sample(𝑓 .prior))

Manuscript submitted to ACM

Page 30 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 31

We first prove the two following correctness lemmas for expressions and equations in parallel.

Lemma 7.2. For all probabilistic functions 𝑓 such that Φ(𝑓) = 𝜙 , for all expressions 𝑒 in the body of 𝑓 such that𝐶 ⊢ 𝑒 : 𝜙𝑒 ,

for all contexts 𝐻, 𝑅, there is a permutation relating 𝑅 and [𝑅′ : 𝑅𝑝] such that

𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑠,𝑤) ⇐⇒ 𝐻 + 𝐻𝑓 , 𝑅
′ ⊢ C𝜙 (𝑒) ⇓ (𝑠,𝑤) .

where ®𝑝 = dom(𝜙𝑒) is the list of constant parameters in 𝑒 , ®𝜇 = im(𝜙𝑒) are the corresponding prior distributions and 𝐻𝑓 is

the context that already contains the definitions of all the constant parameters in 𝑓 including ®𝑝 , i.e., 𝐻𝑓 (®𝑝) = icdf ®𝜇 (𝑅
𝑝

0
).

Lemma 7.3. For all equations 𝐸 in the body of 𝑓 such that 𝐶, 𝐷 ⊢ 𝐸 : 𝜙𝐸 , for all contexts 𝐻, 𝑅, there is a permutation

relating 𝑅 and [𝑅′ : 𝑅𝑝] such that

𝐻, 𝑅 ⊢ 𝐸 :𝑊 ⇐⇒ 𝐻 + 𝐻𝑓 , 𝑅
′ ⊢ C𝜙 (𝐸) :𝑊 .

Proof. The proof is by induction on the expression and the size of the context, i.e., the number of declarations before

the expression. For each induction case, we apply Proposition 5.3 by giving a permutation relating 𝑅 and 𝑅′+𝑅𝑝 inducing

the coupling, and show that a semantics derivation for 𝑒 in a context 𝐻, 𝑅 is equivalent to a semantics derivation for

C𝜙 (𝑒) in the context 𝐻 + 𝐻𝑓 , 𝑅
′
. We focus on the most interesting cases, i.e., expressions altered by the compilation

function.

Case init 𝑥 = sample(𝑑) and 𝑥 = last 𝑥 where 𝑥 ∈ dom(𝜙). We use the permutation relating [𝑅𝑥] [] : [𝑅𝑥] and
with 𝑣𝑥 = icdf 𝜇 (𝑅𝑥 0)

𝐻 ⊢ 𝑑 ↓ 𝜇 · 𝑠𝜇
𝐻 + [𝑥 ← 𝑣𝑥], [𝑅𝑥] ⊢ init 𝑥 = sample(𝑑) : 1 𝐻 + [𝑥 ← 𝑣𝑥], [] ⊢ 𝑥 = last 𝑥 : 1

𝐻 + [𝑥 ← 𝑣𝑥], [𝑅𝑥] ⊢ init 𝑥 = sample(𝑑) and 𝑥 = last 𝑥 : 1

On the other hand, because 𝑥 is a constant parameter, C𝜙 (𝑑) = ∅ and 𝐻𝑓 (𝑥) = 𝑣𝑥 .

𝐻𝑓 (𝑥) = 𝑣𝑥 𝐻 + 𝐻𝑓 , [] ⊢ ∅ : 1
𝐻 + 𝐻𝑓 , [] ⊢ C𝜙 (init 𝑥 = sample(𝑑) and 𝑥 = last 𝑥) : 1

This results can then be generalized to arbitrary sets of equations where the two equations are not necessarily grouped

together at the cost of an additional permutation.

Case 𝑔𝜃(𝑒). By induction we have two permutations relating 𝑅𝑒 with [𝑅′𝑒 : 𝑅
𝑝
𝑒] and relating 𝑅𝑔 with [𝑅′𝑔, 𝑅

𝑝
𝑔]. With

proba 𝑔 𝑥 = 𝑒𝑔 and 𝐶 ⊢ 𝑒𝑔 : 𝜙𝑔 , we can apply the induction hypothesis on 𝑒𝑔 because there is no possible recursive

call. The callee context for 𝑒𝑔 is thus strictly smaller than the caller context. We also have 𝐻𝑔 = [®𝑝𝑔 ← ®𝑣𝑝] with
®𝑝𝑔 = dom(𝜙𝑔), ®𝜇𝑔 = im(𝜙𝑔), and ®𝑣𝑝 = icdf ®𝜇𝑔 (𝑅

𝑝
𝑔
0
).

𝐻 + 𝐻𝑓 , 𝑅
′
𝑒 ⊢ C𝜙 (𝑒) ⇓ (𝑠𝑒 ,𝑤𝑒)

𝐻, 𝑅𝑒 ⊢ 𝑒 ⇓ (𝑠𝑒 ,𝑤𝑒)

[𝑥 ← 𝑠𝑒] + [®𝑝𝑔 ← ®𝑣𝑝], 𝑅′𝑔 ⊢ C𝜙𝑔 (𝑒𝑔) ⇓ (𝑠,𝑤)

[𝑥 ← 𝑠𝑒], 𝑅𝑔 ⊢ 𝑒𝑔 ⇓ (𝑠,𝑤)
𝐻, [𝑅𝑒 : 𝑅𝑔] ⊢ 𝑔𝜃(𝑒) ⇓ (𝑠,𝑤𝑒 ×𝑤)

Manuscript submitted to ACM

Page 31 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

32 Guillaume Baudart, Louis Mandel, and Christine Tasson

On the other end, by construction we have proba 𝑔.model (®𝑝𝑔,𝑥) = C𝜙𝑔 (𝑒𝑔) and there are two cases. If 𝜃 ∈ dom(𝜙),
then the constant parameters are already in the context and 𝐻𝑓 (𝜃) = ®𝑣𝑝 . Using the permutation relating [𝑅𝑒 : 𝑅𝑔] with
[𝑅′𝑒 : 𝑅′𝑔] : [𝑅

𝑝
𝑒 : 𝑅

𝑝
𝑔] we have:

𝐻 + 𝐻𝑓 , [] ⊢ 𝜃 ⇓ (®𝑣𝑝 , 1) 𝐻 + 𝐻𝑓 , 𝑅
′
𝑒 ⊢ C𝜙 (𝑒) ⇓ (𝑠𝑒 ,𝑤𝑒)

𝐻 + 𝐻𝑓 , 𝑅
′
𝑒 ⊢ (𝜃,C𝜙 (𝑒)) ⇓ ((®𝑣𝑝 , 𝑠𝑒),𝑤𝑒) [𝑥 ← 𝑠𝑒 , ®𝑝𝑔 ← ®𝑣𝑝], 𝑅′𝑔 ⊢ C𝜙𝑔 (𝑒𝑔) ⇓ (𝑠,𝑤)

𝐻 + 𝐻𝑓 , [𝑅′𝑒 , 𝑅′𝑔] ⊢ 𝑔.model(𝜃, C𝜙 (𝑒)) ⇓ (𝑠,𝑤𝑒 ×𝑤)

𝐻 + 𝐻𝑓 , [𝑅′𝑒 , 𝑅′𝑔] ⊢ C𝜙 (𝑔𝜃 (𝑒)) ⇓ (𝑠,𝑤𝑒 ×𝑤)

Finally if 𝜃 ∉ dom(𝜙), the constant parameters are not in the context and the compilation adds a defining equation for

𝜃 . Using the permutation relating [𝑅𝑒 : 𝑅𝑔] with [𝑅′𝑒 : 𝑅′𝑔 : 𝑅
𝑝
𝑔] : [𝑅

𝑝
𝑒], and we have:

...

𝐻 +𝐻𝑓 + [𝜃 ← ®𝑣𝑝], [𝑅′𝑒 , 𝑅′𝑔] ⊢ 𝑔.model(𝜃, C𝜙 (𝑒)) ⇓ (𝑠, 𝑤)

𝑔.prior = ®𝜇𝑔

𝐻 +𝐻𝑓 , 𝑅
𝑝
𝑔 ⊢ sample(𝑔.prior) ⇓ (®𝑣𝑝 , 1)

𝐻 +𝐻𝑓 + [𝜃 ← ®𝑣𝑝], 𝑅𝑝
𝑔 ⊢ init 𝜃 = sample(𝑔.prior) : 1

𝐻 +𝐻𝑓 , [𝑅′𝑒 , 𝑅′𝑔, 𝑅
𝑝
𝑔] ⊢ 𝑔.model(𝜃, C𝜙 (𝑒)) where rec init 𝜃 = sample(𝑔.prior) ⇓ (𝑠, 𝑤)

𝐻 +𝐻𝑓 , [𝑅′𝑒 , 𝑅′𝑔, 𝑅
𝑝
𝑔] ⊢ C𝜙 (𝑔𝜃 (𝑒)) ⇓ (𝑠, 𝑤)

□

We can now state and prove the correctness of the APF compilation pass.

Theorem 7.4 (APF compilation). For all probabilistic nodes 𝑓 , for all contexts 𝐻 ,

𝐻 ⊢ infer(𝑓 (𝑒)) ↓ 𝑑 ⇐⇒ 𝐻 ⊢ APF.infer(𝑓 .model, 𝑓 .prior, 𝑒) ↓ 𝑑

Proof. From Definition 7.1, we need to show that for all random streams 𝑅:

𝐻, 𝑅 ⊢ 𝑓𝜃(𝑒) ⇓ (𝑠,𝑤) ⇐⇒ 𝐻 + [𝜃 ← ®𝑣𝑝], 𝑅′ ⊢ 𝑓 .model(𝜃, 𝑒) ⇓ (𝑠,𝑤)

with 𝑓 .prior = ®𝜇 and ®𝑣𝑝 = icdf ®𝜇 (𝑅
𝑝

0
). This corresponds to the case 𝑓𝜃(𝑒) with 𝜃 ∈ dom(𝜙). □

8 RELATEDWORK

Probabilistic Semantics. In the seminal work [45], two semantics are introduced for a probabilistic imperative

language. The first one is already sampling semantics that first picks an infinite stack of random numbers and then

executes the program deterministically. In the second semantics, programs are interpreted as distribution transformer:

input distributions are transformed to an output sub-probability distribution. This second semantics is defined using

measurable functions and kernels.

Probabilistic Coherent Spaces is a generalization of this idea to higher-order types but for discrete probability [27].

This setting has been extended to continuous distributions with models based on positive cones [26, 34], a variation

on Banach spaces with positive scalars [51]. To interpret the sampling operation, cones have to be equipped with a

measurability structure such that measures and integration can be defined for any types [33].

Quasi-Borel spaces (QBS) define an alternative semantics of higher-order probabilistic programswith conditioning [41,

53] based on measurable spaces and kernels. A probabilistic expression is interpreted as a quasi-Borel measure, i.e.,

an equivalence class of pairs [𝛼, 𝜇] where 𝜇 is a measure over R, and 𝛼 is a measurable function from R to values.

Intuitively, the corresponding distribution is obtained as the pushforward of 𝜇 along 𝛼 . Recent work extends this

Manuscript submitted to ACM

Page 32 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 33

formalism to capture lazy data structures and streams in a functional probabilistic language [28]. Our new semantics

rely on a similar representation: probabilistic expressions are interpreted by pushingforward a uniform measure over

[0, 1] | 𝑒 | along a measurable function.

Our semantics are also closely related to the sampling semantics of [10] for a higher-order lambda calculus where a

sequence of random draws is a parameter of the evaluation rules. The main difference is that we focus on a stream

based reactive language. On the one hand, we show how to lift the sampling semantics to the reactive setting. On the

other hand, we show how to adapt the reactive semantics (operational and denotational) to the probabilistic setting.

In addition, there is no recursion and no loop in our language. We thus don’t need to define the semantics using

step-indexing.

Other works [23, 55, 56] define a similar semantics using [0, 1]𝜔 as the entropy which describes an idealized random

numbers generator. The stream head returns a random element, and a stream can be split (e.g., filtering odd/even

indices) to generate two new entropies. This technique is used to interpret programs where random variables can

be dynamically created (e.g., in recursive calls). An originality of our language is that we can statically compute the

number of streams of random variables in a program, i.e., the calls to sample. The random streams exactly correspond

to these sample sites and there is no need for a splittable entropy source. This is reminiscent of the Stan language [17]

where all random variables must be declared in the parameters block, except that in our case, parameters are streams

of random variables.

Mutually recursive equations. In the original ProbZelus semantics, the interpretation of local declarations yields

nested integrals that are only well defined if equations are ordered according to data dependencies (Figure 11 in

Section 6.2). Our new semantics relaxes this assumptions using a fixpoint operator.

Existing works define a fixpoint operator to interpret loops and recursions in probabilistic lambda-calculi [34, 44, 54].

The least element is the null measure, i.e., for all measurable set 𝑈 , ⊥(𝑈) = 0, and the partial order is 𝜇1 ≤ 𝜇2 iff

∀𝑈 .𝜇1 (𝑈) ≤ 𝜇2 (𝑈). Unfortunately, using this CPO the semantics of a set of equations is always the null measure. An

alternative is to lift the deterministic operational semantics of Section 4 to measures, i.e., on measure over𝑉⊥ = 𝑉 + {⊥}
with the least element ⊥ = 𝛿 [𝑥←⊥]𝑥 ∈𝑋 . However, using this CPO the semantics of sample(𝑒) is re-computed at each

fixpoint iteration which breaks the correlation between mutually recursive equations. Therefore, we cannot directly

define a schedule agnostic kernel semantics.

Example. Consider the following example: x = y and y = sample(𝜇). In the kernel semantics, local declarations are

interpreted as integration. The semantics is thus the fixpoint of the following function 𝐹 where the argument 𝜌 is a

measure over environments.

𝐹 (𝜌) =

∫
𝜌 (𝑑𝑟)

∫
𝛿𝑟 (y) (𝑑𝑥)

∫
𝜇 (𝑑𝑦) 𝛿 [x←𝑥, y←𝑦]

If the least element 𝜌0 is the null measure, then 𝜌1 = 𝐹 (𝜌0) is also the null measure. If 𝜌0 = 𝛿 [x←⊥, y←⊥] we get :

𝜌0 = 𝛿 [x←⊥,y←⊥]
𝜌1 =

∫
𝜇 (𝑑𝑦1) 𝛿 [x←⊥,y←𝑦1]

𝜌2 =
∫
𝜇 (𝑑𝑦1)

∫
𝜇 (𝑑𝑦2) 𝛿 [x←𝑦1,y←𝑦2]

𝜌3 =
∫
𝜇 (𝑑𝑦2)

∫
𝜇 (𝑑𝑦3) 𝛿 [x←𝑦2,y←𝑦3]

Manuscript submitted to ACM

Page 33 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

34 Guillaume Baudart, Louis Mandel, and Christine Tasson

The fixpoint is reached after 3 iterations, but the correlation between x and y is lost. The semantics differs from the

scheduled version y = sample(𝜇) and x = y which yields the expected measure:

∫
𝜇 (𝑑𝑦) 𝛿 [x←𝑦,y←𝑦] .

Positive cones and 𝜔QBS are endowed with a structure of CPO resulting in adequate denotational semantics for

probabilistic programming with sampling from continuous distributions, recursive types and term recursion [34, 54].

Although our language does not support term recursion, fixpoint operators in positive cones or 𝜔QBS might be adapted

to give a probabilistic semantics of mutually recursive equations related to our operational semantics. We leave for

future investigations these connections.

Program Equivalence. Probabilistic bisimulation has been introduced for testing equivalence of (discrete) probabilistic

systems [47] and generalized to study Labelled Markov Process (continuous systems) [31]. Probabilistic coupling is a

classic proof technique for probabilistic bisimulation, as shown in [29] using a categorical framework and a co-algebraic

presentation of probabilistic systems. Our presentation of probabilistic bisimulation and coupling for state machines

follows this line of research.

Probabilistic coupling has been extensively used for discrete systems. In [3], an algorithm, based on couplings, has

been introduced to effectively construct probabilistic bisimulation for discrete systems. Coupling has been applied

to the formal verification of distribution equivalence, convergence, and stochastic domination [4, 42]. Probabilistic

coupling has also been used to define a probabilistic bisimulation for a (higher-order) lambda-calculus with continuous

probabilistic choice [46].

A logical relation is proposed in [23, 55, 56] to reason about contextual equivalence for probabilistic programs. In

particular [55] uses this framework to prove that reordering declarations preserves the semantics with a permutation of

the entropy stream. This reasoning is reminiscent of the proof of Lemma 7.2 (APF Correctness). We thus show that

we can apply similar techniques with our denotational semantics which manipulates infinite streams and mutually

recursive equations. Extending these works to define an equational theory to reason about reactive program equivalence

beyond permutations of the random variables streams is a promising future work.

9 CONCLUSION

In this paper we proposed two semantics for a reactive probabilistic programming languages: an operational semantics

and a denotational semantics. Both semantics are schedule agnostic, i.e., sets of mutually recursive equations can

be interpreted in arbitrary order, a key property of synchronous dataflow languages. We defined for both semantics

equivalence of programs. The operational semantics manipulates state machines and equivalence reasoning requires

the description of bisimulations on states. The denotational semantics directly manipulates streams, which can lighten

program equivalence reasoning for probabilistic expressions. We then defined a program transformation required to run

an optimized inference algorithm for state-space models with constant parameters and used the denotational semantics

to prove the correctness of the transformation.

Acknowledgements. The authors are grateful to the following people for many discussions and helpful feedback:

Timothy Bourke, Grégoire Bussone, Raphaëlle Crubillé, Thomas Ehrhard, Guillaume Geoffroy, Adrien Guatto, Patrick

Hoscheit, Paul Jeanmaire, Dexter Kozen, Basile Pesin, Gordon Plotkin, and Marc Pouzet. This work was supported by

the project ReaLiSe, Émergence Ville de Paris 2021-2025.

Manuscript submitted to ACM

Page 34 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 35

REFERENCES
[1] Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin. 2021. Statically bounded-memory delayed sampling for

probabilistic streams. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–28.

[2] Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin. 2022. Semi-symbolic inference for efficient streaming

probabilistic programming. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1668–1696.

[3] Christel Baier, Bettina Engelen, and Mila E. Majster-Cederbaum. 2000. Deciding Bisimilarity and Similarity for Probabilistic Processes. J. Comput.

Syst. Sci. 60, 1 (2000), 187–231.

[4] Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Coupling proofs are probabilistic product programs. In POPL.

[5] Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and Michael Carbin. 2020. Reactive Probabilistic Programming.

In PLDI.

[6] Guillaume Baudart, Louis Mandel, and Reyyan Tekin. 2022. JAX Based Parallel Inference for Reactive Probabilistic Programming. In LCTES.

[7] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert de Simone. 2003. The synchronous languages

12 years later. Proc. IEEE 91, 1 (2003), 64–83.

[8] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul

Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. J. Mach. Learn. Res. 20 (2019), 28:1–28:6.

[9] Richard Blute, Josée Desharnais, Abbas Edalat, and Prakash Panangaden. 1997. Bisimulation for Labelled Markov Processes. In LICS.

[10] Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation for universal probabilistic

programming. In ICFP.

[11] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel Rieg. 2017. A formally verified compiler for Lustre. In

PLDI.

[12] Timothy Bourke, Lélio Brun, and Marc Pouzet. 2020. Mechanized semantics and verified compilation for a dataflow synchronous language with

reset. Proc. ACM Program. Lang. 4, POPL (2020), 44:1–44:29.

[13] Timothy Bourke, Paul Jeanmaire, Basile Pesin, and Marc Pouzet. 2021. Verified Lustre Normalization with Node Subsampling. ACM Trans. Embed.

Comput. Syst. 20, 5s (2021), 98:1–98:25.

[14] Timothy Bourke, Paul Jeanmaire, and Marc Pouzet. 2025. Functional Stream Semantics for a Synchronous Block-Diagram Compiler. In LICS.

[15] Timothy Bourke, Basile Pesin, and Marc Pouzet. 2023. Verified Compilation of Synchronous Dataflow with State Machines. ACM Trans. Embed.

Comput. Syst. 22, 5s (2023), 137:1–137:26.

[16] Timothy Bourke and Marc Pouzet. 2013. Zélus: a synchronous language with ODEs. In HSCC.

[17] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and

Allen Riddell. 2017. Stan: A probabilistic programming language. J. Statistical Software 76, 1 (2017), 1–37.

[18] Paul Caspi and Marc Pouzet. 1998. A Co-iterative Characterization of Synchronous Stream Functions. In CMCS.

[19] Nicolas Chopin and Omiros Papaspiliopoulos. 2020. An introduction to sequential Monte Carlo. Springer.

[20] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2017. SCADE 6: A formal language for embedded critical software development. In TASE.

[21] Jean-Louis Colaço and Marc Pouzet. 2003. Clocks as First Class Abstract Types. In EMSOFT.

[22] Jean-Louis Colaco, Michael Mendler, Baptiste Pauget, andMarc Pouzet. 2023. A Constructive State-based Semantics and Interpreter for a Synchronous

Data-flow Language with State machines. In EMSOFT.

[23] Ryan Culpepper and Andrew Cobb. 2017. Contextual Equivalence for Probabilistic Programs with Continuous Random Variables and Scoring. In

ESOP.

[24] Pascal Cuoq and Marc Pouzet. 2001. Modular Causality in a Synchronous Stream Language. In ESOP.

[25] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: a general-purpose probabilistic programming

system with programmable inference. In PLDI.

[26] Fredrik Dahlqvist and Dexter Kozen. 2020. Semantics of higher-order probabilistic programs with conditioning. Proc. ACM Program. Lang. 4, POPL

(2020), 57:1–57:29.

[27] Vincent Danos and Thomas Ehrhard. 2011. Probabilistic coherence spaces as a model of higher-order probabilistic computation. Inf. Comput. 209, 6

(2011), 966–991.

[28] Swaraj Dash, Younesse Kaddar, Hugo Paquet, and Sam Staton. 2023. Affine Monads and Lazy Structures for Bayesian Programming. Proc. ACM

Program. Lang. 7, POPL (2023), 1338–1368.

[29] Erik P. de Vink and Jan J. M. M. Rutten. 1997. Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach. In ICALP.

[30] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential Monte Carlo samplers. J. Royal Statistical Society: Series B (Statistical Methodology)

68, 3 (2006), 411–436.

[31] Josée Desharnais, Abbas Edalat, and Prakash Panangaden. 2002. Bisimulation for Labelled Markov Processes. Inf. Comput. 179, 2 (2002), 163–193.

[32] Luc Devroye. 2006. Nonuniform random variate generation. Handbooks in operations research and management science 13 (2006), 83–121.

[33] Thomas Ehrhard and Guillaume Geoffroy. 2023. Integration in cones. Technical Report. IRIF.

[34] Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2018. Measurable cones and stable, measurable functions: a model for probabilistic

higher-order programming. Proc. ACM Program. Lang. 2, POPL (2018), 59:1–59:28.

Manuscript submitted to ACM

Page 35 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

36 Guillaume Baudart, Louis Mandel, and Christine Tasson

[35] Yusuf Bugra Erol, Yi Wu, Lei Li, and Stuart Russell. 2017. A Nearly-Black-Box Online Algorithm for Joint Parameter and State Estimation in

Temporal Models. In AAAI.

[36] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: A Language for Flexible Probabilistic Inference. In Proceedings of Machine Learning

Research.

[37] Noah D. Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming Languages. http://dippl.org

[38] Maria I. Gorinova, Andrew D. Gordon, and Charles Sutton. 2019. Probabilistic programming with densities in SlicStan: efficient, flexible, and

deterministic. Proc. ACM Program. Lang. 3, POPL (2019), 35:1–35:30.

[39] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The Synchronous Dataflow Programming Language Lustre. Proc. of the

IEEE 79, 9 (September 1991), 1305–1320.

[40] David Harel. 1987. Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Program. 8, 3 (1987), 231–274.

[41] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order probability theory. In LICS.

[42] Justin Hsu. 2017. Probabilistic Couplings for Probabilistic Reasoning. Ph. D. Dissertation. University of Pennsylvania.

[43] The MathWorks Inc. 2022. Simulation and Model-Based Design (R2024a). Natick, Massachusetts, United States. https://www.mathworks.com/

products/simulink.html

[44] Claire Jones and Gordon D. Plotkin. 1989. A Probabilistic Powerdomain of Evaluations. In LICS.

[45] Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328–350.

[46] Ugo Dal Lago and Francesco Gavazzo. 2019. On Bisimilarity in Lambda Calculi with Continuous Probabilistic Choice. In MFPS.

[47] Kim Guldstrand Larsen and Arne Skou. 1989. Bisimulation Through Probabilistic Testing. In POPL.

[48] Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2020. Towards verified stochastic variational inference for probabilistic programs.

Proc. ACM Program. Lang. 4, POPL (2020), 16:1–16:33.

[49] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. 2002. FastSLAM: A Factored Solution to the Simultaneous Localization

and Mapping Problem. In AAAI.

[50] David Michael Ritchie Park. 1981. Concurrency and Automata on Infinite Sequences. In Theoretical Computer Science.

[51] Peter Selinger. 2004. Towards a semantics for higher-order quantum computation.. In QPL.

[52] Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In ESOP.

[53] Sam Staton, Hongseok Yang, Frank D. Wood, Chris Heunen, and Ohad Kammar. 2016. Semantics for probabilistic programming: higher-order

functions, continuous distributions, and soft constraints. In LICS.

[54] Matthijs Vákár, Ohad Kammar, and Sam Staton. 2019. A domain theory for statistical probabilistic programming. Proc. ACM Program. Lang. 3, POPL

(2019), 36:1–36:29.

[55] Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual equivalence for a probabilistic language with

continuous random variables and recursion. Proc. ACM Program. Lang. 2, ICFP (2018), 87:1–87:30.

[56] Yizhou Zhang and Nada Amin. 2022. Reasoning about "reasoning about reasoning": semantics and contextual equivalence for probabilistic programs

with nested queries and recursion. Proc. ACM Program. Lang. 6, POPL (2022), 1–28.

Manuscript submitted to ACM

Page 36 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

http://dippl.org
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

Schedule Agnostic Semantics for Reactive Probabilistic Programming 37

| 𝑒 | = 0 if 𝑒 is deterministic

| sample(𝑒) | = 1

| factor(𝑒) | = 0

| 𝑓 (𝑒) | = | 𝑒 | + | 𝑒𝑓 | where proba 𝑓 𝑥 = 𝑒𝑓
present 𝑒 → 𝑒1 else 𝑒2	=	𝑒1	+	𝑒2
reset 𝑒1 every 𝑒2	=	𝑒1		
𝑒 where rec 𝐸	=	𝑒	+	𝐸

𝑥 = 𝑒	=	𝑒		
init 𝑥 = 𝑒	=	𝑒		
𝐸1 and 𝐸2	=	𝐸1	+	𝐸2

Fig. 16. Dimension of probabilistic expressions and equations.

A SEMANTICS

A.1 Operational semantics

Model dimension. The dimension of a probabilistic model is defined as the number of random variables in the model,

i.e., the number of calls to the sample operator. Since loops and recursive calls are not allowed in the language of

Figure 2, the dimension of a model can be statically computed with the function | 𝑒 : 𝑉 | : N defined in Figure 16.

The operational semantics is presented in Section 4. Figures 17 and 18 presents the full semantics for expressions

and equations. The additional rules are for present and reset.

The initialization of present 𝑒 → 𝑒1 else 𝑒2 allocates memory for 𝑒 , 𝑒1 and 𝑒2 and counts the number of random

variables in 𝑒1 and 𝑒2 (𝑒 is deterministic and does not have any random variable). The step function first executes 𝑒

and depending on its value executes 𝑒1 or 𝑒2. The initialization of reset 𝑒1 every 𝑒2 duplicates the memory needed

to execute 𝑒1. That way, in the step function, only the second copy is updated by the transition and if 𝑒1 is reset, the

execution restarts from the initial memory state.

Scheduling. To compare the new denotational semantics with the kernel semantics, it is useful to define an alternative

semantics for a scheduled language without a fixpoint operator. This alternative semantics ⦅𝑒⦆s step exactly matches the

denotational semantics except for the two following rules:

⦅𝐸1 and 𝐸2⦆
s step

𝛾 ((𝑀1, 𝑀2), [𝑟1 : 𝑟2]) = let 𝑀′
1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

s step

𝛾 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌2,𝑤2 = ⦅𝐸2⦆

s step

𝛾+𝜌1 (𝑀2, 𝑟2) in
(𝑀′

1
, 𝑀′

2
), 𝜌1 + 𝜌2,𝑤1 ×𝑤2

⦅𝑒 where rec 𝐸⦆
s step

𝛾 ((𝑚,𝑀), [𝑟𝑒 : 𝑟𝐸]) = let 𝑀′, 𝜌,𝑊 = ⦅𝐸⦆
s step

𝛾 (𝑀, 𝑟𝐸) in
let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆

s step

𝛾+𝜌 (𝑚, 𝑟𝑒) in
(𝑚′, 𝑀′), 𝑣,𝑤 ×𝑊

Since all equations are scheduled, the environment produced by a set of equations can be computed incrementally and

there is no need for a fixpoint operator to interpret local declarations.

Manuscript submitted to ACM

Page 37 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

38 Guillaume Baudart, Louis Mandel, and Christine Tasson

⦅𝑒⦆init = ⟦𝑒⟧init if 𝑒 is deterministic

⦅𝑒⦆
step

𝛾 (𝑚, []) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, 𝑣, 1

⦅sample(𝑒)⦆init = ⟦𝑒⟧init

⦅sample(𝑒)⦆
step

𝛾 (𝑚, [𝑟]) = let 𝑚′, 𝜇 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, icdf 𝜇 (𝑟), 1

⦅factor(𝑒)⦆init = ⟦𝑒⟧init

⦅factor(𝑒)⦆
step

𝛾 (𝑚, []) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, (), 𝑣

⦅𝑓 (𝑒)⦆init = ⦅𝑒⦆init ,
⦅

𝑒𝑓
⦆

init

where proba 𝑓 𝑥 = 𝑒𝑓

⦅𝑓 (𝑒)⦆step𝛾 ((𝑚𝑒 ,𝑚𝑓), [𝑟𝑒 : 𝑟 𝑓]) = let 𝑚′𝑒 , 𝑣𝑒 ,𝑤𝑒 = ⦅𝑒⦆
step

𝛾 (𝑚𝑒 , 𝑟𝑒) in
let 𝑚′

𝑓
, 𝑣,𝑤 𝑓 =

⦅

𝑒𝑓
⦆

[𝑥←𝑣𝑒] (𝑚𝑓 , 𝑟 𝑓) in
(𝑚′

𝑓
,𝑚′𝑒), 𝑣,𝑤𝑒 ×𝑤 𝑓

⦅present 𝑒 → 𝑒1 else 𝑒2⦆
init = ⟦𝑒⟧init , ⦅𝑒1⦆init , ⦅𝑒2⦆init

⦅present 𝑒 → 𝑒1 else 𝑒2⦆
step

𝛾 ((𝑚,𝑚1,𝑚2), [𝑟1 : 𝑟2]) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in
if 𝑣 then let (𝑚′

1
, 𝑣1,𝑤) = ⦅𝑒1⦆

step

𝛾 (𝑚1, 𝑟1)
in (𝑚′,𝑚′

1
,𝑚2), 𝑣1,𝑤

else let (𝑚′
2
, 𝑣2,𝑤) = ⦅𝑒2⦆

step

𝛾 (𝑚2, 𝑟2)
in (𝑚′,𝑚1,𝑚

′
2
), 𝑣2,𝑤

⦅reset 𝑒1 every 𝑒2⦆
init = ⦅𝑒1⦆

init , ⦅𝑒1⦆
init , ⟦𝑒2⟧init

⦅reset 𝑒1 every 𝑒2⦆
step

𝛾 ((𝑚0,𝑚1,𝑚2),𝑤, 𝑟) = let 𝑚′
2
, 𝑣2 = ⟦𝑒2⟧step𝛾 (𝑚2) in

let 𝑚′
1
, 𝑣1,𝑤 = ⦅𝑒1⦆

step

𝛾 (if 𝑣2 then𝑚0 else𝑚1, 𝑟) in
(𝑚0,𝑚

′
1
,𝑚′

2
), 𝑣1,𝑤

⦅𝑒 where rec 𝐸⦆init = ⦅𝑒⦆init , ⦅𝐸⦆init

⦅𝑒 where rec 𝐸⦆
step

𝛾 ((𝑚,𝑀), [𝑟𝑒 : 𝑟𝐸]) = let 𝐹 (𝜌) =
(
let 𝑀′, 𝜌,𝑤 = ⦅𝐸⦆𝛾+𝜌 (𝑀, 𝑟𝐸) in 𝜌

)
in

let 𝜌 = fix (𝐹) in
let 𝑀′, 𝜌,𝑊 = ⦅𝐸⦆

step

𝛾+𝜌 (𝑀, 𝑟𝐸) in
let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆

step

𝛾+𝜌 (𝑚, 𝑟𝑒) in
(𝑚′, 𝑀′), 𝑣,𝑤 ×𝑊

Fig. 17. Operational semantics for probabilistic expressions.

Proposition A.1. For an expression where all equations are scheduled, the scheduled semantics is equal to the operational

semantics with a fixpoint.

Proof. This result is a consequence of the following lemma:

Lemma A.2. For all scheduled equations set 𝐸, the scheduled semantics yields the same environment as the fixpoint

operator, i.e., for an environment 𝛾 , a state𝑀 and an array of random elements 𝑟 :

fix (𝜆𝜌. let 𝑀′, 𝜌′,𝑤 = ⦅𝐸⦆
step

𝛾+𝜌 (𝑀, 𝑟) in 𝜌′) = let 𝑀′, 𝜌,𝑤 = ⦅𝐸⦆
s step

𝛾 (𝑀, 𝑟) in 𝜌

Manuscript submitted to ACM

Page 38 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 39

⦅𝑥 = 𝑒⦆init = ⦅𝑒⦆init

⦅𝑥 = 𝑒⦆
step

𝛾 (𝑚, 𝑟) = let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚, 𝑟) in𝑚′, [𝑥 ← 𝑣],𝑤

⦅init 𝑥 = 𝑒⦆init = nil, ⦅𝑒⦆init

⦅init 𝑥 = 𝑒⦆
step

𝛾 ((nil,𝑚0), 𝑟) = let 𝑚′, 𝑖,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚0, 𝑟) in (𝛾 (𝑥),𝑚0), [𝑥 .last← 𝑖],𝑤
⦅init 𝑥 = 𝑒⦆

step

𝛾 ((𝑣,𝑚0), 𝑟) = (𝛾 (𝑥),𝑚0), [𝑥 .last← 𝑣], 1

⦅𝐸1 and 𝐸2⦆
init = ⦅𝐸1⦆

init , ⦅𝐸2⦆
init

⦅𝐸1 and 𝐸2⦆
step

𝛾 ((𝑀1, 𝑀2), [𝑟1 : 𝑟2]) = let 𝑀′
1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

step

𝛾 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌2,𝑤2 = ⦅𝐸2⦆

step

𝛾 (𝑀2, 𝑟2) in
(𝑀′

1
, 𝑀′

2
), 𝜌1 + 𝜌2,𝑤1 ×𝑤2

Fig. 18. Operational semantics for equations.

The proof is by induction on 𝐸. It is sufficient to focus on the case 𝐸1 and 𝐸2. Since equations are scheduled, 𝐸1 does

not depend on variables defined in 𝐸2 and we have for an environment 𝛾 , a state (𝑀1, 𝑀2) and an array of random

elements [𝑟1 : 𝑟2]:

fix (𝜆(𝜌1 + 𝜌2). let 𝑀′
1
, 𝜌′

1
,𝑤1 = ⦅𝐸1⦆

step

𝛾+𝜌1+𝜌2 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌′

2
,𝑤2 = ⦅𝐸2⦆

step

𝛾+𝜌1+𝜌2 (𝑀2, 𝑟2) in 𝜌′
1
+ 𝜌′

2
)

= fix (𝜆(𝜌1 + 𝜌2). let 𝑀′
1
, 𝜌′

1
,𝑤1 = ⦅𝐸1⦆

step

𝛾+𝜌1 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌′

2
,𝑤2 = ⦅𝐸2⦆

step

𝛾+𝜌1+𝜌2 (𝑀2, 𝑟2) in 𝜌′
1
+ 𝜌′

2
)

= let 𝜌′′
1
= fix (𝜆𝜌1 . let 𝑀′

1
, 𝜌′

1
,𝑤1 = ⦅𝐸1⦆

step

𝛾+𝜌1 (𝑀1, 𝑟1) in 𝜌′
1
) in

let 𝜌′′
2
= fix (𝜆𝜌2 . let 𝑀′

2
, 𝜌′

2
,𝑤2 = ⦅𝐸2⦆

step

𝛾+𝜌 ′′
1
+𝜌2 (𝑀2, 𝑟2) in 𝜌′

2
) in 𝜌′′

1
+ 𝜌′′

2

= let 𝑀′
1
, 𝜌′

1
,𝑤1 = ⦅𝐸1⦆

s step

𝛾 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌′

2
,𝑤2 = ⦅𝐸2⦆

s step

𝛾+𝜌 ′
1

(𝑀2, 𝑟2) in 𝜌′
1
+ 𝜌′

2

□

A.2 Denotational semantics

Stream functions. The denotational semantics is presented in Section 5. The definition of this semantics relies on

a few stream functions presented in Figure 19. The function tl drops the first element of a stream (tl
𝑛
drops the 𝑛

first elements). The function map 𝑓 𝑠 applies 𝑓 to each element of the stream 𝑠 . merge 𝑐𝑠 𝑎𝑠 𝑏𝑠 merges the streams 𝑎𝑠

and 𝑏𝑠 according to the condition 𝑐𝑠 . 𝑎𝑠 when 𝑐𝑠 keeps the values of 𝑎𝑠 only when the condition 𝑐𝑠 is true. The function

slicer 𝑠𝑠 𝑐𝑠 is used to define the semantics of reset 𝑒1 every 𝑒2. The first argument 𝑠𝑠 is a stream of streams where each

stream represents 𝑒1 restarted at each time step, and 𝑐𝑠 the the reset condition. When the condition is false, the first

value of the first stream of 𝑠𝑠 is returned and the second stream of 𝑠𝑠 is discarded. We progress by one step in 𝑒1 and the

stream representing 𝑒1 restarted at the current iteration is not useful since the expression was not reset. When the

condition is true, the first stream of 𝑠𝑠 which represents the current state of 𝑒1 is discarded and the execution restarts

with the first value of the second stream of 𝑠𝑠 which represents 𝑒1 restarted at the current step.

Manuscript submitted to ACM

Page 39 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

40 Guillaume Baudart, Louis Mandel, and Christine Tasson

tl : 𝐴𝜔 → 𝐴𝜔

tl (𝑎 · 𝑎𝑠) = 𝑎𝑠

map : (𝐴→ 𝐵) → (𝐴𝜔 → 𝐵𝜔)
map 𝑓 (𝑎 · 𝑎𝑠) = 𝑓 (𝑎) · (map 𝑓 𝑎𝑠)

merge : B𝜔 → 𝐴𝜔 → 𝐴𝜔 → 𝐴𝜔

merge (𝑇 · 𝑐𝑠) (𝑎 · 𝑎𝑠) 𝑏𝑠 = 𝑎 · (merge 𝑐𝑠 𝑎𝑠 𝑏𝑠)
merge (𝐹 · 𝑐𝑠) 𝑎𝑠 (𝑏 · 𝑏𝑠) = 𝑏 · (merge 𝑐𝑠 𝑎𝑠 𝑏𝑠)

when : A𝜔 → B𝜔 → 𝐴𝜔

(𝑎 · 𝑎𝑠) when (𝑇 · 𝑐𝑠) = 𝑎 · (𝑎𝑠 when 𝑐𝑠)
(𝑎 · 𝑎𝑠) when (𝐹 · 𝑐𝑠) = 𝑎𝑠 when 𝑐𝑠

slicer : (𝐴𝜔)𝜔 → B𝜔 → 𝐴𝜔

slicer ((𝑎 · 𝑎𝑠) · 𝑏𝑠 · 𝑠𝑠) (𝐹 · 𝑐𝑠) = 𝑎 · (slicer (𝑎𝑠 · 𝑠𝑠) 𝑐𝑠)
slicer (𝑎𝑠 · (𝑏 · 𝑏𝑠) · 𝑠𝑠) (𝑇 · 𝑐𝑠) = 𝑏 · (slicer (𝑏𝑠 · 𝑠𝑠) 𝑐𝑠)

Fig. 19. Stream functions for the denotational semantics.

𝐻 ⊢ 𝑐 ↓ 𝑐 𝐻 ⊢ 𝑥 ↓ 𝐻 (𝑥)
𝐻 ⊢ 𝑒1 ↓ 𝑠1 𝐻 ⊢ 𝑒2 ↓ 𝑠2

𝐻 ⊢ (𝑒1,𝑒2) ↓ (𝑠1, 𝑠2)
𝐻 ⊢ 𝑒 ↓ 𝑠

𝐻 ⊢ op(𝑒) ↓ op(𝑠)
𝐻 (𝑥 .last) = 𝑠

𝐻 ⊢ last 𝑥 ↓ 𝑠

𝐻 ⊢ 𝑒 ↓ 𝑠𝑒 node 𝑓 𝑥 = 𝑒𝑓 [𝑥 ← 𝑠𝑒] ⊢ 𝑒𝑓 ↓ 𝑠
𝐻 ⊢ 𝑓 (𝑒) ↓ 𝑠

𝐻 + 𝐻𝐸 ⊢ 𝐸 𝐻 + 𝐻𝐸 ⊢ 𝑒 ↓ 𝑠
𝐻 ⊢ 𝑒 where rec 𝐸 ↓ 𝑠

𝐻 ⊢ 𝑒 ↓ 𝑠𝑐 (𝐻 when 𝑠𝑐) ⊢ 𝑒1 ↓ 𝑠1 (𝐻 when not 𝑠𝑐) ⊢ 𝑒2 ↓ 𝑠2
𝐻 ⊢ present 𝑒 → 𝑒1 else 𝑒2 ↓ merge 𝑠𝑐 𝑠1 𝑠2[

(tl 𝑛 𝐻) ⊢ 𝑒1 ↓ 𝑠𝑛
]
𝑛∈N 𝐻 ⊢ 𝑒2 ↓ 𝑠𝑐

𝐻 ⊢ reset 𝑒1 every 𝑒2 ↓ slicer (𝑠0 · 𝑠0 · 𝑠1 · 𝑠2 · ...) 𝑠𝑐
𝐻 ⊢ 𝑒 ↓ 𝐻 (𝑥)
𝐻 ⊢ 𝑥 = 𝑒

𝐻 ⊢ 𝑒 ↓ 𝑣𝑖 · 𝑠𝑖 𝐻 (𝑥 .last) = 𝑣𝑖 · 𝐻 (𝑥)
𝐻 ⊢ init 𝑥 = 𝑒

𝐻 ⊢ 𝐸1 𝐻 ⊢ 𝐸2
𝐻 ⊢ 𝐸1 and 𝐸2

Fig. 20. Deterministic denotational semantics.

Environment. An environment 𝐻 is a map from variable names to streams of values, for any bound variable 𝑥 ∈
dom(𝐻),𝐻 (𝑥) : 𝐴𝜔

. When the context is clear, we write 𝑓 𝐻 formap 𝑓 𝐻 , e.g., for all 𝑥 ∈ dom(𝐻), (tl 𝐻) (𝑥) = tl (𝐻 (𝑥)).

Denotational semantics. The full deterministic and probabilistic denotational semantics including the rules for

present and reset are given in Figures 20 and 21. The semantics of the control structure present 𝑒 → 𝑒1 else 𝑒2

uses the when function on the environment 𝐻 such that the execution of 𝑒1 and 𝑒2 respectively progress only when the

condition is true or false. Then the value of these two streams are merged using the merge function. The semantics of

reset 𝑒1 every 𝑒2 is based on the slicer function. [(tl 𝑛 𝐻) ⊢ 𝑒1 ↓ 𝑠𝑛]𝑛∈N represents the stream of streams where 𝑠𝑛

Manuscript submitted to ACM

Page 40 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 41

𝐻, [] ⊢ 𝑐 ⇓ (𝑐, 1) 𝐻, [] ⊢ 𝑥 ⇓ (𝐻 (𝑥), 1)
𝐻, 𝑅𝑒 ⊢ 𝑒 ↓ (𝑠𝑒 ,𝑤𝑒) proba 𝑓 𝑥 = 𝑒𝑓 [𝑥 ← 𝑠𝑒], 𝑅𝑓 ⊢ 𝑒𝑓 ⇓ (𝑠,𝑤)

𝐻, [𝑅𝑒 : 𝑅𝑓] ⊢ 𝑓 (𝑒) ⇓ (𝑠,𝑤 ×𝑤𝑒)

𝐻 + 𝐻𝐸 , 𝑅𝐸 ⊢ 𝐸 : 𝑤𝐸 𝐻 + 𝐻𝐸 , 𝑅𝑒 ⊢ 𝑒 ⇓ (𝑠,𝑤)
𝐻, [𝑅𝑒 : 𝑅𝐸] ⊢ 𝑒 where rec 𝐸 ⇓ (𝑠,𝑤 ×𝑤𝐸)

𝐻, 𝑅𝑒 ⊢ 𝑒 ↓ 𝑠𝑐 (𝐻, 𝑅1 when 𝑠𝑐) ⊢ 𝑒1 ⇓ 𝑠𝑤1 (𝐻, 𝑅2 when not 𝑠𝑐) ⊢ 𝑒2 ⇓ 𝑠𝑤2

𝐻, [𝑅1 : 𝑅2] ⊢ present 𝑒 → 𝑒1 else 𝑒2 ⇓ merge 𝑠𝑐 𝑠𝑤1 𝑠𝑤2[
(tl 𝑛 𝐻, 𝑅1) ⊢ 𝑒1 ⇓ 𝑠𝑤𝑛

]
𝑛∈N 𝐻, 𝑅2 ⊢ 𝑒2 ↓ 𝑠𝑐 (𝑠,𝑤) = slicer (𝑠𝑤0 · 𝑠𝑤0 · 𝑠𝑤1 · 𝑠𝑤2 · ...) 𝑠𝑐

𝐻, [𝑅1 : 𝑅2] ⊢ reset 𝑒1 every 𝑒2 ⇓ (𝑠,𝑤)

𝐻 ⊢ 𝑒 ↓ 𝑠𝜇
𝐻, [𝑅] ⊢ sample(𝑒) ⇓ (icdf 𝑠𝜇 (𝑅), 1)

𝐻 ⊢ 𝑒 ↓ 𝑤
𝐻, [] ⊢ factor(𝑒) ⇓ ((),𝑤)

𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝐻 (𝑥),𝑤)
𝐻, 𝑅 ⊢ 𝑥 = 𝑒 : 𝑤

𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑖 · 𝑠,𝑤𝑖 ·𝑤) 𝐻 (𝑥 .last) = 𝑖 · 𝐻 (𝑥)
𝐻, 𝑅 ⊢ init 𝑥 = 𝑒 : 𝑤𝑖 · 1

𝐻, 𝑅1 ⊢ 𝐸1 : 𝑤1 𝐻, 𝑅2 ⊢ 𝐸2 : 𝑤2

𝐻, [𝑅1 : 𝑅2] ⊢ 𝐸1 and 𝐸2 : 𝑤1 ×𝑤2

[𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑠,𝑤) 𝑤 = Π 𝑤]𝑅∈ ([0,1]𝜔) | 𝑒 |
𝐻 ⊢ infer(𝑒) ↓ integ | 𝑒 | 𝑤 𝑠

Fig. 21. Probabilistic denotational semantics.

is the stream of values computed by 𝑒1 restarted at time step 𝑛. In the slicer, the stream 𝑠0 is duplicated because

reset 𝑒1 every 𝑒2 returns the same value whether or not 𝑒2 is true at the initial step.

B APPLICATION: ASSUMED PARAMETERS FILTERING

B.1 Algorithm

The inference methods proposed by ProbZelus [2, 5, 6] belong to the family of SMC algorithms. These methods rely on

a set of independent simulations, called particles. Each particle returns an output value associated with a score. The

score represents the quality of the simulation. A large number of particles makes it possible to approximate the desired

distribution.

More concretely, the sample(d) construct randomly draws a value from the d distribution, and the factor(x)

construct multiplies the current score of the particle by x. At each instant, the infer operator accumulates the values

calculated by each particle weighted by their scores to approximate the posterior distribution.

If the model calls on the operator sample at each instant, for example to estimate the position of the boat in the

radar example (Section 2), the previous method implements a simple random walk for each particle. As time progresses,

it becomes increasingly unlikely that one of the random walks will coincide with the stream of observations. The score

associated with each particle quickly goes down towards 0.

To solve this issue, sequential Monte Carlo methods (SMC) add a filtering step. Algorithm 1 describes the execution

of one instant for a particle filter, the most basic SMC algorithm. At each instant 𝑡 , a particle 1 ≤ 𝑖 ≤ 𝑁 corresponds to

a possible value of the parameters (i.e., random variables) 𝑝𝑖𝑡 of the model. We begin by sampling a new set of particles

Manuscript submitted to ACM

Page 41 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

42 Guillaume Baudart, Louis Mandel, and Christine Tasson

Data: probablisitic model model, observation 𝑦𝑡 , and previous result 𝜇𝑡−1.
Result: 𝜇𝑡 an approximation of the distribution of 𝑝𝑡 .

for each particle 𝑖 = 1 to 𝑁 do
𝑝𝑖
𝑡−1 = sample()

𝑝𝑖𝑡 ,𝑤
𝑖
𝑡 = model(𝑦𝑡 | 𝑝𝑖𝑡−1)

𝜇𝑡 =M({𝑤𝑖
𝑡 , 𝑝

𝑖
𝑡 }1≤𝑖≤𝑁)

return 𝜇𝑡

Algorithm 1: Particle Filter.

Data: probabilistic model model, observation 𝑦𝑡 , and previous result 𝜇𝑡−1.
Result: 𝜇𝑡 an approximation of the distributions of state parameter 𝑥𝑡 and constant parameter 𝜃 .

for each particle 𝑖 = 1 to 𝑁 do
𝑥𝑖
𝑡−1,Θ

𝑖
𝑡−1 = sample()

𝜃𝑖 = sample()
𝑥𝑖𝑡 ,𝑤

𝑖
𝑡 = model(𝑦𝑡 | 𝜃𝑖 , 𝑥𝑖𝑡−1)

Θ𝑖
𝑡 = Udpate(Θ𝑖

𝑡−1, 𝜆𝜃 . model(𝑦𝑡 | 𝜃, 𝑥
𝑖
𝑡−1, 𝑥

𝑖
𝑡))

𝜇𝑡 =M({𝑤𝑖
𝑡 , (𝑥𝑖𝑡 ,Θ𝑖

𝑡)}1≤𝑖≤𝑁)
return 𝜇𝑡

Algorithm 2: Assumed Parameter Filter [35].

in the distribution obtained at the previous step. The most probable particles are thus duplicated and the less probable

ones are eliminated. This refocuses the inference around the most significant information while maintaining the same

number of particles throughout the execution. Knowing the previous state 𝑝𝑖
𝑡−1, each particle then executes a step of

the model to obtain a sample of the parameters 𝑝𝑖𝑡 associated with a score𝑤𝑖
𝑡 . At the end of the instant, we construct a

distribution 𝜇𝑡 where each particle is associated with its score.M({𝑤𝑖
𝑡 , 𝑝

𝑖
𝑡 }1≤𝑖≤𝑁) is a multinomial distribution, where

the value 𝑝𝑖𝑡 is associated with the probability𝑤𝑖
𝑡/
∑𝑁
𝑖=1𝑤

𝑖
𝑡 .

Unfortunately, this approach generates a loss of information for the estimation of constant parameters. On our radar

example, at the first instant, each particle draws a random value for the parameter theta. At each instant, the duplicated

particles share the same value for theta. The quantity of information useful for estimating theta therefore decreases

with each new filtering and, after a certain time, only one possible value remains.

Rather than sampling at the start of execution a set of values for the constant parameters that will impoverish with

each filtering, in the APF algorithm, each particle computes a symbolic distribution of constant parameters. At runtime,

the inference then alternates between a sampling pass to estimate the state parameters, and the update of the constant

parameters. This avoids impoverishment for the estimation of the constant parameters.

More formally, Algorithm 2 describes the execution of one step of APF. At each instant 𝑡 , a particle 1 ≤ 𝑖 ≤ 𝑁

corresponds to a possible value of the state parameters 𝑥𝑖𝑡 and a distribution of constant parameters Θ𝑖
𝑡 . As for the

particle filter, we begin by sampling a set of particles in the distribution obtained at the previous instant. We then

sample a value 𝜃𝑖 in Θ𝑖
𝑡−1. Knowing the value of the constant parameters 𝜃𝑖 and the previous state 𝑥𝑖

𝑡−1, we can execute

a step of the model to obtain a sample of the state parameters 𝑥𝑖𝑡 associated with a score𝑤𝑖
𝑡 . We can then update Θ𝑖

𝑡 by

exploring the other possible values for 𝜃 knowing that the particle has chosen the transition 𝑥𝑖
𝑡−1 → 𝑥𝑖𝑡 . At the end of

the instant, we construct a distribution 𝜇𝑡 where each particle is associated with its score.M({𝑤𝑖
𝑡 , (𝑥𝑖𝑡 ,Θ𝑖

𝑡)}1≤𝑖≤𝑁) is a
multinomial distribution where the pair of values (𝑥𝑖𝑡 ,Θ𝑖

𝑡) is associated to the probability𝑤𝑖
𝑡/
∑𝑁
𝑖=1𝑤

𝑖
𝑡 .

Manuscript submitted to ACM

Page 42 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

Schedule Agnostic Semantics for Reactive Probabilistic Programming 43

𝐶 ⊢𝑐 𝑒
Φ,𝐶 ⊢ let 𝑥 = 𝑒 : Φ,𝐶 + {𝑥} Φ,𝐶 ⊢ node 𝑓 𝑥 = 𝑒 : Φ + [𝑓 ← ∅],𝐶

𝐶 ⊢ 𝑒 : 𝜙
Φ,𝐶 ⊢ proba 𝑓 𝑥 = 𝑒 : Φ + [𝑓 ← 𝜙],𝐶

Φ,𝐶 ⊢ 𝑑1 : Φ1,𝐶1 Φ1,𝐶1 ⊢ 𝑑2 : Φ′,𝐶′

Φ,𝐶 ⊢ 𝑑1 𝑑2 : Φ′,𝐶′

𝐶 ⊢ 𝑐 : ∅ 𝐶 ⊢ 𝑥 : ∅
𝐶 ⊢ 𝑒1 : 𝜙1 𝐶 ⊢ 𝑒2 : 𝜙2
𝐶 ⊢ (𝑒1,𝑒2) : 𝜙1 + 𝜙2

𝐶 ⊢ 𝑒 : 𝜙
𝐶 ⊢ op(𝑒) : 𝜙

𝐶 ⊢ 𝑒 : 𝜙
𝐶 ⊢ sample(𝑒) : 𝜙

𝐶 ⊢ 𝑒 : 𝜙
𝐶 ⊢ factor(𝑒) : 𝜙 𝐶 ⊢ last 𝑥 : ∅

𝐶 ⊢ 𝑒1 : 𝜙
𝐶 ⊢ present 𝑒1 → 𝑒2 else 𝑒3 : 𝜙

𝐶 ⊢ 𝑒2 : 𝜙
𝐶 ⊢ reset 𝑒1 every 𝑒2 : 𝜙

𝐶 ⊢ 𝑓𝜃(𝑒) : [𝜃 ← 𝑓 .prior]
𝐶 ⊢ 𝑒 : 𝜙𝑒 𝐶 ⊢𝑐 𝐸 : 𝐷 𝐶, 𝐷 ⊢ 𝐸 : 𝜙𝐸

𝐶 ⊢ 𝑒 where rec 𝐸 : 𝜙𝑒 + 𝜙𝐸

𝑥 ∈ 𝐷 𝐶 ⊢𝑐 𝑒
𝐶, 𝐷 ⊢ init 𝑥 = sample(𝑒) : [𝑥 ← 𝑒]

𝐶 ⊢ 𝑒 : 𝜙
𝐶, 𝐷 ⊢ init 𝑥 = 𝑒 : 𝜙

𝐶 ⊢ 𝑒 : 𝜙
𝐶, 𝐷 ⊢ 𝑥 = 𝑒 : 𝜙

𝐶, 𝐷 ⊢ 𝐸1 : 𝜙1 𝐶, 𝐷 ⊢ 𝐸2 : 𝜙2
𝐶, 𝐷 ⊢ 𝐸1 and 𝐸2 : 𝜙1 + 𝜙2

Fig. 22. Extract constant parameters and associated prior distributions.

𝐶 ⊢𝑐 𝑐
𝑥 ∈ 𝐶
𝐶 ⊢𝑐 𝑥

𝐶 ⊢𝑐 𝑒1 𝐶 ⊢𝑐 𝑒2
𝐶 ⊢𝑐 (𝑒1,𝑒2)

𝐶 ⊢𝑐 𝑒
𝐶 ⊢𝑐 op(𝑒)

𝐶 + dom(𝐸) ⊢𝑐 𝑒 𝐶 ⊢𝑐 𝐸 : dom(𝐸)
𝐶 ⊢𝑐 𝑒 where rec 𝐸

𝐶 ⊢𝑐 init 𝑥 = 𝑒 : ∅ 𝐶 ⊢𝑐 𝑥 = last 𝑥 : {𝑥}
𝐶 ⊢𝑐 𝑒

𝐶 ⊢𝑐 𝑥 = 𝑒 : {𝑥}
𝐶 ⊬𝑐 𝑒

𝐶 ⊢𝑐 𝑥 = 𝑒 : ∅

𝐶 +𝐶2 ⊢𝑐 𝐸1 : 𝐶1 𝐶 +𝐶1 ⊢𝑐 𝐸2 : 𝐶2

𝐶 ⊢𝑐 𝐸1 and 𝐸2 : 𝐶1 +𝐶2

Fig. 23. Constant expressions and equations.

B.2 Static Analysis

The full type system is given in Figures 22 and 23. The interesting cases are presented in Section 7.1.

B.3 Compilation

The complete compilation function to transform a ProbZelus model into a model compatible with APF.infer is given in

Figure 24. Most cases simply call the compilation functions on all sub-expressions. The interesting cases are presented

in Section 7.2.

Manuscript submitted to ACM

Page 43 of 44 ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

44 Guillaume Baudart, Louis Mandel, and Christine Tasson

C𝜙 (𝑐) = 𝑐

C𝜙 (𝑥) = 𝑥

C𝜙 ((𝑒1,𝑒2)) = (C𝜙 (𝑒1),C𝜙 (𝑒2))
C𝜙 (op(𝑒)) = op(C𝜙 (𝑒))
C𝜙 (last 𝑥) = last 𝑥

C𝜙 (present 𝑒1 → 𝑒2 else 𝑒3) = present C𝜙 (𝑒1) → C𝜙 (𝑒2) else C𝜙 (𝑒3)
C𝜙 (reset 𝑒1 every 𝑒2) = reset C𝜙 (𝑒1) every C𝜙 (𝑒2)
C𝜙 (sample(𝑒)) = sample(C𝜙 (𝑒))
C𝜙 (factor(𝑒)) = factor(C𝜙 (𝑒))
C𝜙 (𝑒 where rec 𝐸) = C𝜙 (𝑒) where rec C𝜙 (𝐸)

C𝜙 (init 𝑥 = 𝑒) =

{
∅ if 𝑥 ∈ dom(𝜙)
init 𝑥 = C𝜙 (𝑒) otherwise

C𝜙 (𝑥 = 𝑒) =

{
∅ if 𝑥 ∈ dom(𝜙)
𝑥 = C𝜙 (𝑒) otherwise

C𝜙 (𝑓𝜃(𝑒)) =


𝑓 (C𝜙 (𝑒)) if 𝑓 is deterministic or 𝜙 = []
𝑓 .model(𝜃, C𝜙 (𝑒)) if 𝜃 ∈ dom(𝜙)
𝑓 .model(𝜃, C𝜙 (𝑒)) where otherwise

rec init 𝜃 = sample(𝑓 .prior)
and 𝜃 = last 𝜃

C𝜙 (infer(𝑓 (𝑒))) = APF.infer(𝑓 .model, 𝑓 .prior, C𝜙 (𝑒))

C𝜙 (𝐸1 and 𝐸2) = C𝜙 (𝐸1) and C𝜙 (𝐸2)

CΦ (let 𝑥 = 𝑒) = let 𝑥 = 𝑒

CΦ (node 𝑓 𝑥 = 𝑒) = node 𝑓 𝑥 = C[] (𝑒)

CΦ (proba 𝑓 𝑥 = 𝑒) =


proba 𝑓 𝑥 = C[] (𝑒) if Φ(𝑓) = []
let 𝑓 .prior = im(𝜙)
proba 𝑓 .model (dom(𝜙),𝑥) = C𝜙 (𝑒)

with 𝜙 = Φ(𝑓)

Fig. 24. APF Compilation.

Manuscript submitted to ACM

Page 44 of 44ACM Transactions on Probabilistic Machine Learning

https://mc.manuscriptcentral.com/topml

