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Abstract—Generating counterfactual explanations is one of the
most effective approaches for uncovering the inner workings of
black-box neural network models and building user trust. While
remarkable strides have been made in generative modeling using
diffusion models in domains like vision, their utility in generating
counterfactual explanations in structured modalities remains
unexplored. In this paper, we introduce Structured Counterfactual
Diffuser or SCD, the first plug-and-play framework leveraging
diffusion for generating counterfactual explanations in structured
data. SCD learns the underlying data distribution via a diffusion
model which is then guided at test time to generate counter-
factuals for any arbitrary black-box model, input, and desired
prediction. Our experiments show that our counterfactuals not
only exhibit high plausibility compared to the existing state-of-
the-art but also show significantly better proximity and diversity.

I. INTRODUCTION

As AI models become more capable and widespread, the
issue of trust becomes critical [1]. While traditional software
is transparent—allowing tracing its control flow and easily
resolving trust concerns—modern AI is built upon neural net-
works that are not transparent. Their underlying control flow is
not understood, making it difficult to trust in high-risk settings
such as loan or hiring decisions. Although the remarkable
power and flexibility of neural networks have allowed building
systems that achieve capabilities not possible with traditional
software alone [2], [3], this lack of transparency and trust
becomes a significant hurdle in realizing the full potential of
neural networks [4]–[6].

To address concerns about trust, one needs to answer why
a model behaves in a certain way. One of the most promising
directions to answer this is via what-if scenarios or counterfac-
tuals [6]. For instance, consider a model which declines a loan
for [Female, Earns $100K]. To answer why, it is of
interest to discover counterfactuals for which the same model
approves loans. For instance, if the model approves the loan
for a counterfactual instance [Male, Earns $100K], this
suggests that the model may be making decisions based on po-
tentially problematic criteria, prompting model developers to
investigate and fix the problem. Additionally, counterfactuals
can also provide actionable insights to the end-users on how
to achieve a different outcome [7]. In our previous example,
if the model approves the loan for a counterfactual instance
[Female, Earns $110K], it explains what the applicant
might need to do to obtain approval.

While [6] originally introduced the idea of counterfactual
explanations, the idea has gained significant attention in recent
years [7]–[11]. Ideally, counterfactuals should possess the fol-
lowing characteristics: 1) they should maintain proximity to the

original input, 2) they should attain the desired counterfactual
label to ensure its validity, 3) they should be diverse and
capture a wide range of distinct scenarios and 4) they should
be plausible. While proximity, validity, and diversity criteria
have been studied extensively, there has been little focus on the
plausibility of the generated counterfactuals, i.e., ensuring that
the generated counterfactuals are realistic and conform to the
underlying data distribution. Previous works have approached
plausibility in a minimal sense, e.g., enforcing values to lie in
legal ranges or applying user-designed constraints [7], [8].

Recently, in the visual domain, diffusion models [12] have
been successfully used to acquire the underlying data dis-
tribution for generating plausible counterfactual explanations
[13]–[16]. However, in the domain of tabular or structured
data, counterfactual explanation methods have largely ignored
these recent advances in diffusion modeling raising another
important question: “Can diffusion models, which are known
for their remarkable generation capabilities in vision, help
generate high-quality plausible counterfactuals in the struc-
tured domain?”

To answer this question, in this work, we propose a novel
counterfactual explainer called Structured Counterfactual Dif-
fuser or SCD. SCD is the first plug-and-play framework
leveraging diffusion modeling for generating counterfactual
explanations for structured data. SCD works by learning the
underlying data distribution via a diffusion model [12], [17].
At test time, the diffusion model is used to perform guided
iterative denoising to generate counterfactuals for any given
input and black-box model in a plug-and-play manner. In
experiments, we show that our counterfactual explainer not
only exhibits high plausibility compared to the state-of-the-
art approaches but also shows significantly better proximity
and diversity scores of the generated counterfactuals. In our
analysis, we also find that our method, due to its unique
stochastic denoising process, does not require explicit incen-
tives to generate diverse counterfactuals, unlike the previous
counterfactual explainers for structured data.

II. PRELIMINARIES

Structured Data. A table or structured data consists of
rows or instances. Each instance is a tuple with a value for
each column or attribute. The entire space of such instances
can be described as X = X1 × . . . × XC . Here, C denotes
the number of columns or attributes in the table, and each
Xc denotes the space of possible values for column c.
For example, a possible instance from a 4-column table is
[female, 40, doctoral, married]. Here, X1 can



Fig. 1. Overview of Our Counterfactual Generation Process. The process starts by encoding the given human-readable instance or row into an embedding
by performing a look-up on a dictionary of learned embeddings. Next, we iteratively apply denoising steps while incorporating the gradient information from
the given black-box model to minimize the disparity between the model’s prediction and the desired label. At the end of the denoising process, we obtain an
embedding which is then decoded via a reverse look-up on the dictionary to obtain the counterfactual instance.

represent gender categories, X2 can represent the possible
age values, and so forth. We will use x to denote an instance
and xc to denote c-th column or attribute within the instance.

Black-Box Model. A black-box model is a model f : X → Y
that maps an input instance x ∈ X to a label y ∈ Y . However,
the model is black-box in the sense that its inner workings are
not understood and explainability tools are required to shed
light on it. In the rest of the paper, we will use the term model
and black-box model interchangeably.

A. Structured Counterfactual Explanations

As highlighted by [6], counterfactuals help identify
alternative scenarios where a slight change in the original
input x to a counterfactual input x′ would have changed the
outcome from y to y′ by a black-box model f . By analyzing
the change in prediction on counterfactual inputs, one can
uncover if the model is making decisions based on potentially
problematic or undesired criteria.

Counterfactual Explainer. Formally, a counterfactual ex-
plainer can be described as a system or framework that, given
an input x, a model f , and a counterfactual label y′ (where
y′ is different from the original label y), produces a set of B
counterfactuals X′.

X′ = {x′
1, . . . ,x

′
B} = CounterfactualExplainer(f,x, y′).

Here, each counterfactual x′
b ∈ X′ should achieve the

counterfactual label y′ on the given black-box model f with
minimal change to the original input x.

Desired Characteristics of Counterfactuals. There are 4
fundamental characteristics that counterfactuals in X′ should
possess:

1) Validity: Should achieve the label y′.
2) Proximity: Should be close to the original input x.
3) Diversity: Should be diverse and not collapse to a single

instance.

4) Plausibility: Should be plausible, i.e., should capture
realistic instances from the input space.

While [6] originally introduced the validity and proximity
desiderata, [7] introduced the desiderata of diversity. Plausi-
bility, on the other hand, has not been given much attention in
the community. Some existing works primarily focus on only
keeping generated values within legal ranges, disregarding the
complex relationships that values of various columns have [8]
or require costly user-defined plausibility constraints [7]. In
this work, we take a significant step forward in alleviating
this concern.

III. SCD: STRUCTURED COUNTERFACTUAL DIFFUSER

In this section, we present our proposed model Structured
Counterfactual Diffuser or SCD. SCD learns a diffusion
model through training on a structured dataset or table
D. Via training on D, SCD learns about the underlying
data distribution which enables it to generate plausible
counterfactuals. Once the diffusion model is trained, SCD can
be used in a plug-and-play manner to obtain counterfactual
explanations for any given black-box model. We now describe
SCD in detail.

Row Embedding. To train the diffusion model, we first map
the raw human-readable instances or rows x of the table D into
embeddings. The diffusion model shall be trained to model the
distribution in this embedding space. We maintain a learned
dictionary of embeddings Embeddingc : Xc → Rd for each
column c. To encode a row, we lookup the embedding for
each of the C columns and concatenate these embeddings to
obtain a row embedding z as follows:

z = [Embedding1(x
1), . . . ,EmbeddingC(x

C)] ∈ RC×d

where d is the size of the embedding per column.

A. Diffusion Modeling

Via diffusion modeling, we seek to learn a distribution
pθ(z) over the row embeddings. In diffusion modeling, the



distribution pθ(z) consists of T denoising steps:

pθ(z0) =

∫
p(zT )

∏
t=T,...,1

pθ(zt−1|zt, t)dz1:T

Here, p(zT ) represents standard Gaussian, the sequence
zT , . . . , z1 consists of iteratively cleaner samples, finally pro-
ducing the desired sample z0; and pθ(zt−1|zt, t) is a one-step
denoising distribution. The pθ(zt−1|zt, t) is parametrized in
the following manner:

N (γ1,tẑ0 + γ2,tzt, βtI)

where ẑ0 = gθ(zt, t), and the coefficients γ1,t and γ2,t are
given by:

γ1,t =
βt
√
ᾱt−1

1− ᾱt
, γ2,t =

(1− ᾱt−1)
√
αt

1− ᾱt

Employing standard notations, we utilize a variance schedule
β1, . . . , βT , where αt = 1− βt, and ᾱt =

∏t
i=1(1− βi). We

use a cosine schedule in our implementation.

Unconditional Sampling. To obtain unconditional samples
from the learned diffusion model, we start with random
Gaussian noise, zT ∼ p(zT ). Next, using the trained one-step
denoising distribution pθ(zt−1|zt, t), we iteratively denoise
the samples until z0, the desired sample, is obtained.

Learning: The training procedure involves first introducing
noise to the input z0, creating its noisy version zt.

zt =
√
ᾱtz0 +

√
1− ᾱtϵt, where ϵt ∼ N (0, I).

Subsequently, a neural network predictor is trained that takes
zt as input and aims to predict the original input z0 by
generating a prediction ẑ0 = gθ(zt, t). The learning objective
is Ldiffusion(θ) = E(ẑ0, z0) where E is an error function.

B. Generating Counterfactuals via Guided Diffusion

Given the trained denoising distribution pθ(zt−1|zt, t), we
are now ready to generate counterfactuals for a black-box
model f given an input instance x and a desired label y′.
The process works by performing guided diffusion starting
from the embedding of the given input instance. For this, we
first encode x to its row embedding z ∈ RC×d. Since we seek
to sample B counterfactuals, we copy the row embedding B
times and stack the copies together to construct an embedding
Z ∈ RB×C×d. Next, we add Gaussian noise to Z to facilitate
diversity among the B generated samples.

Z′
τ ←

√
ᾱτZ+

√
1− ᾱtϵt, where ϵt ∼ N (0, I).

Next, we perform τ guided diffusion steps. We iteratively and
alternatingly apply the following two steps:

1) Denoising Step: This step involves sampling Z′
t−1 ∼

pθ(Z
′
t−1|Z′

t, t).
2) Guiding Step: This step involves performing a gradient

step on Z′
t−1 with respect to a guiding loss L as:

Z′
t−1 ← Z′

t−1 − η∇Z′
t−1
L

where η is the step size for the update. One of the things
that L measures is how well the black-box model f
produces the counterfactual label y′ on the samples Z′

t−1

of the current step. We describe the exact formulation
of L in detail in a later section.

From this iterative process, we obtain a series of progressively
cleaned embeddings Z′

τ , . . . ,Z
′
0. Next, we take the generated

Z′
0, perform reverse look-up using the learned embeddings

and obtain the human-readable counterfactual instances X′ =
{x′

1, . . . ,x
′
B}. In Fig. 1, we illustrate this process.

Guiding Loss: We now describe the terms in our guiding
loss L. Following [7], we include 3 terms in our loss capturing
validity, proximity, and diversity of the samples. Formally this
loss can be described as:

L(Z′,x, f, y′) = λvalidityLvalidity(Z
′, f, y′)

+ λproximityLproximity(Z,Z
′)

+ λdiversityLdiversity(Z
′)

1) Validity Loss. We use the cross-entropy loss of the black-
box model f with respect to the desired prediction y′ as
our validity loss.

Lvalidity(Z
′, f, y′) = CrossEntropy(f(Z′),target = y′).

2) Proximity Loss. We use a simple L2 loss between Z the
embedding of the original input and Z′ the generated
embedding at the current step of the guided diffusion.

Lproximity(Z,Z
′) = ||Z− Z′||2.

3) Diversity Loss. We use the negative of L2 loss between
all pairs of counterfactual instances

Ldiversity(Z
′) =

−2
B(B − 1)

B−1∑
i=1

B∑
j=i+1

||z′i − z′j ||2.

C. Discussion

Our method has multiple benefits. First, our method oper-
ates in a plug-and-play manner once the diffusion model is
trained. That is, no training is required during sampling of
counterfactual explanations:

X′ = CounterfactualExplainerθ(f,x, y
′).

Second, our experiments shall show that our method can
produce diverse samples without requiring an explicit diversity
term in the guiding loss, distinguishing it from previous
methods like DiCE [7] which require an explicit diversity term
in the loss. Third, our experiments shall show that our method
can inherently preserve the contents of the original input
without requiring an explicit proximity term in the guiding
loss—another attractive aspect of our method. Fourth, not
requiring proximity and diversity terms removes the burden
of tuning the coefficients λproximity and λdiversity which can be
quite brittle in the previous methods.



TABLE I
COMPARISON OF PLAUSIBILITY, PROXIMITY, DIVERSITY, AND VALIDITY SCORES OF WACHTER, SCD AND DICE ON VARIOUS DATASETS. FOR VALIDITY,

PROXIMITY, AND DIVERSITY SCORES, HIGHER IS BETTER. FOR THE PLAUSIBILITY SCORE, LOWER IS BETTER SINCE IT CAPTURES THE NEGATIVE
LOG-LIKELIHOOD OF THE GENERATED SAMPLES.

Dataset Plausibility (↓) Proximity (↑)

Wachter et al. DiCE SCD Wachter et al. DiCE SCD

Adult Income 108.7 121.0 21.21 0.685 0.5764 0.6173
UCI Bank 168.3 166.7 42.37 0.226 0.2141 0.3000
Housing Price 102.8 109.5 42.91 0.375 0.3055 0.3417

Dataset Diversity (↑) Validity (↑)

Wachter et al. DiCE SCD Wachter et al. DiCE SCD

Adult Income 0.002 0.3837 0.4008 0.9400 0.9776 0.7511
UCI Bank 0.041 0.4165 0.5498 0.9900 0.9686 0.8600
Housing Price 0.03 0.4289 0.5986 0.9999 0.9908 0.8526

TABLE II
COUNTERFACTUAL SAMPLES IN ADULT INCOME DATASET. GIVEN THE INPUT ROW WITH THE ORIGINAL LABEL “≤ 50K”, WE ASK OUR METHOD
SCD AND THE BASELINE DICE TO GENERATE COUNTERFACTUAL INSTANCES THAT FLIP THE LABEL TO “> 50K” WITH RESPECT TO A BLACK-BOX

INCOME PREDICTOR. WE NOTE THAT SCD GENERATES PLAUSIBLE SAMPLES WHILE DICE STRUGGLES. SPECIFICALLY, WE NOTE THAT DICE CREATES
COUNTERFACTUALS CONTAINING Divorced AND Husband WITHIN THE SAME ROW WHICH IS CONTRADICTORY AND IMPOSSIBLE (HIGHLIGHTED IN RED).

IN COMPARISON, SCD CREATES PLAUSIBLE COUNTERFACTUALS WHERE THE MARITAL STATUS, RELATIONSHIP AND GENDER COLUMNS CORRECTLY
CONFORM WITH EACH OTHER (HIGHLIGHTED IN GREEN).

Method Age Workclass Education Ed. No. Marital Status Occupation Relationship Race Gender Hr/W Country

Input 39 State-gov Bachelors 13 Never-married Adm-clerical Not-in-family White Male 40 US

Ours 31 Self-emp-inc Bachelors 13 Married-civ-spouse Adm-clerical Wife White Female 40 US
34 Self-emp-inc Bachelors 13 Married-civ-spouse Exec-managerial Husband White Male 55 US
39 Federal-gov Bachelors 13 Married-civ-spouse Prof-specialty Husband White Male 40 US

DiCE 39 State-gov Bachelors 16 Divorced Transport-moving Husband White Male 40 US
39 State-gov Bachelors 16 Divorced Transport-moving Husband AME Male 40 US
39 Without-pay Some-college 16 Divorced Transport-moving Husband White Male 40 US

IV. RELATED WORK

Explainable AI. Explainable AI (XAI) has received
significant attention over the past few years [18]. Several
methods seek saliency maps as a way of explanation [19], [20].
The notion of generating explanations has been well studied
in image domain [21], [22], and [23]. Several methods focus
on perturbing the input instance, however, these perturbations
are not optimized to achieve a counterfactual prediction
under the given black-box model [24]–[26]. Another line of
work on generating adversarial instances of an input instance
has been well studied [27]–[30]. However, unlike ours,
these methods are not concerned with the plausibility of the
samples. Other classes of methods include approximation-
based ones which learn local or global decision boundaries
to generate explanations [4], [5], [31]. However, these
are not counterfactual explainers. Another way to achieve
interpretability has been to introduce disentanglement within
the neural network layers [32]. However, this approach does
not seek to explain existing black-box models.

Counterfactual Explanations. For the tabular domain, vari-
ous studies have pursued counterfactual explanations [6], [7],
[9], [33], [34]. However, none of them directly and properly
tackle the problem of generating plausible counterfactuals.
[35] propose a technique to select counterfactual samples

from the training set and show the applicability on synthetic
datasets. However, their focus is not on generating completely
new counterfactuals that don’t occur within the training set.
In the image domain, several works attempt to generate
counterfactuals using diffusion models [13]–[16]. This is
another line of works focusing on contrastive explanations
[36], [37], however, these do not leverage diffusion modeling,
like ours. However, while these are based within the image
domain, the utility of diffusions models for counterfactual
explanation in the tabular domain has remained unexplored.
In the language domain, there has been a significant number
of works for counterfactual generation [10], [11], [38]–[41].
However, these have primarily relied on auto-regressive LLMs
and not diffusion models. Although [17] pursues diffusion-
based language modeling, it does not pursue the task of
counterfactual explanation and also does not deal with the
tabular domain. Additionally, there has also been interest in the
domain of search and retrieval for generating counterfactual
explanations [42].

V. EXPERIMENTS

Datasets. In experiments, we evaluate the quality of gener-
ated counterfactuals on three datasets:

1) Adult Income Dataset [43]. This dataset contains ed-
ucational, demographic, and occupancy information of



individuals. We use the following features: hours per
week, education level, occupation, work class, race, age,
marital status, and sex. These are selected following the
pre-processing approach of [44].

2) UCI Bank Dataset [45]. This dataset contains the
marketing campaigns of a banking institution.

3) Housing Price Dataset [46]. This dataset contains
information regarding the demography (income,
population, house occupancy) in the districts of
California, the location of the districts (latitude,
longitude), and general information regarding the house
in the districts (number of rooms, number of bedrooms,
age of the house).

Black-Box Model. For each dataset, we train a classifier to
act as the black-box model that a counterfactual explainer
would seek to explain. The architecture is a simple 2-layer
MLP that takes the concatenated embeddings of columns of
a row as input and tries to predict a class label. For each
dataset, the classification task that the black-box model is
trained to perform is as follows: 1) Adult Income Dataset:
Given a row as input, the black-box model predicts whether
the income exceeds 50K per year or not. 2) UCI Bank
Dataset: Given a row describing attributes of a client, the
black-box model predicts if the client will subscribe to a term
deposit or not. 3) Housing Price Dataset: Given a row as
input, the black-box model predicts whether the house price
is greater than $200K or not.

Baselines. We compare our model with two baseline coun-
terfactual explainers for structured datasets: 1) DiCE, the
current state-of-the-art, and 2) Wachter et al. [6]. These
work by encoding the given row to a vector of per-column
one-hot embeddings. To generate counterfactuals, they apply
Stochastic Gradient Descent (SGD) to minimize a loss having
terms focusing on validity, proximity, and diversity (in DiCE).
These baselines provide the most comprehensive evaluation of
the proposed model since, like ours, it also leverages gradient-
based dynamics to generate counterfactuals. Although it might
appear that the number of compared baselines is small, we
highlight that this line of research, although important, is still
in its infancy and the two baselines we compare with are the
most relevant with respect to our contribution.

A. Metrics
We consider the following metrics for evaluating the gen-

erated counterfactuals.
1) Validity Score. We compute the validity score of the

generated counterfactuals in X′ by checking if they
result in the desired label with respect to the black-box
model.

Validity Score =
1

B

B∑
b=1

I(y′ == f(x′
b))

where I(·) is an indicator function that takes a value 1
if its input is true else 0.

2) Proximity Score. We compute proximity score as the
mean of distances between the generated counterfactuals
in X′ and the original input x. This is computed as:

Proximity Score =
1

B

B∑
b=1

distance(x′
b,x)

where distance(·, ·) is a distance function between two
instances that measures the fraction of N columns or
values that do not match.

3) Diversity Score. We compute the diversity score of
the generated counterfactuals in X′ as the mean of the
distances between each pair of samples.

Diversity Score =
2

B(B − 1)

B−1∑
i=1

B∑
j=i+1

distance(x′
i,x

′
j)

where distance(·, ·) is a distance function between two
instances that measures the fraction of N columns or
values that do not match.

4) Plausibility. The goal is to evaluate how likely is the
generated counterfactual under the true data distribution.
We learn a model of the desired distribution by learning
an auto-regressive model pϕ over the tokens or values in
the instances. This auto-regressive model is described in
further detail in the supplementary material. To compute
the plausibility score, we compute the negative log-
likelihood of each generated counterfactual x′

b ∈ X′

using pϕ.

Plausibility = − 1

B

B∑
b=1

log pϕ(x
′
b)

= − 1

B

B∑
b=1

N∑
n=1

log pϕ(x
′
b,n|x′

b,1, . . . ,x
′
b,n−1)

where a lower negative log-likelihood is desired for a
more plausible counterfactual.

B. Benefits of SCD in Counterfactual Generation

In Table I, we compare our model SCD and our baseline,
DiCE. It is remarkable that our model produces counterfactuals
that are significantly more plausible than those generated by
DiCE. In fact, the negative log-likelihood of our samples are
21.21, 42.37, and 42.91 while DiCE yields significantly worse
results attaining 121.0, 166.7, and 109.5 on the 3 datasets,
respectively. Our higher plausibility is also evidenced by our
generated counterfactual samples in Table II. We can see that
our model coherent values for the columns Marital Status and
Relationship while the baseline DiCE produces contradictory
values e.g., Divorced and Husband within the same row.
This highlights the advantage of using a diffusion model
that learns complex relationships to constrain the generated
counterfactuals to be plausible. We show additional qualitative
counterfactual samples generated by SCD in Table III.

Furthermore, our results show significant improvements in
the diversity and proximity scores over the baseline, achieving
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Fig. 2. Ablation of Losses. We perform a comparison of models on ablations of the guiding loss: 1) all losses are active, 2) no validity loss, 3) no proximity
loss, and 4) no diversity loss. This comparison is done on Adult Income Dataset (top), UCI Bank Dataset (middle) and Housing Price Dataset (bottom). We
note that when diversity loss is dropped, the performance of the baseline DiCE suffers while our model SCD maintains good diversity, proximity, and validity.
In general, our model SCD maintains a very high plausibility in all scenarios relative to DiCE.

approximately 0.10-0.17 higher diversity and 0.04-0.10 higher
proximity scores relative to DiCE. Our validity score, i.e., the
fraction of generated counterfactuals that attain the desired
label, is about 0.1 lower than the baseline. While this is a slight
decline, it is not a significant concern since it is straightforward
to remove the counterfactuals that do not attain the desired
label via post-processing. Furthermore, some worsening of
the validity score may be expected since SCD constrains the
samples to be plausible while DiCE does not.

C. Analysis of Model Characteristics

Question 1. How does dropping various loss terms affect
performance?

In our guiding loss, we used 3 terms: validity, proximity, and
diversity. While our default version retains all three terms, we
would like to assess what would happen if each of the three
terms were individually dropped. In Fig. 2, we report these
results.

1) Dropping the Validity Term. When we drop the validity
term, we note that the validity score drops close to
0. That is, no generated samples are actually able to
achieve the counterfactual label. This observation is
shared for both our model as well as the baseline.
This can be expected since the validity term in the
loss is the only way to inform the generation process
about the disparity between desired and the predicted
label. Furthermore, all generated samples collapse to the
original input, as suggested by a high proximity score
and a very low diversity score.

2) Dropping the Proximity Term. When we drop the prox-
imity term, we note that the scores are not significantly
affected. We think this is because, in both SCD and
the baseline, the process of generating the counterfactual
starts with the original input, and the update steps are
not able to deviate significantly from the original input.

3) Dropping the Diversity Term. When we drop the di-
versity term, we note, remarkably, that the diversity
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Fig. 3. Changing Diffusion Steps. We report our metrics with respect to 1) changing diffusion steps, and 2) starting the guided diffusion with (shown in
blue) and without (shown in red) adding an initial noise input. We note that SCD remains robust to varying diffusion steps. Furthermore, we note a remarkable
drop in diversity when the initial noise is not added at the start of the guided diffusion process.
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Fig. 4. Left: Effect of sampling strategies. We vary the sampling strategies in our guided diffusion process and show the effect on our metrics. We observe
a slightly higher validity score for Max. For other metrics, the scores remain robust. Right: Effect of Choice of B. We report our metric with respect to B,
the number of counterfactuals generated.

of samples of DiCE drops to 0. In comparison, our
counterfactuals maintain high diversity even after re-
moving the diversity loss term. This shows a unique
characteristic of our model that by leveraging stochastic
denoising, the samples of our model become naturally
diverse. On the other hand, the existing models lack such
stochasticity, requiring an explicit diversity loss term and
careful tuning of its coefficient.

Question 2. How does varying the number of guided
diffusion steps affect performance?

We perform this analysis and report results in Fig. 3. We
note that our model is remarkably robust to the number of
guided diffusion steps in terms of validity, proximity, and
plausibility. In the diversity score, however, we see a slight
upward trend with the increasing number of diffusion steps.
We think this is because the diffusion steps are stochastic.
Thus, accumulating randomness from a greater number of
diffusion steps appears to promote higher sample diversity.

Question 3. How does adding noise at the start of guided
diffusion affect performance?

In Fig. 3, we also compare our model with and without
adding noise at the start of the guided diffusion. We note
that adding the noise is clearly beneficial since not adding

the noise worsens the diversity score. This observation is
consistent across different numbers of diffusion steps during
counterfactual generation.

Question 4. How does varying sampling strategy for
guided diffusion affect performance?

We test various sampling strategies during guided diffusion
and whether it affects the performance or not. We test 4
sampling strategies for the denoising diffusion step. The
first strategy is to choose the highest probability embedding
per column (denoted as Max). The second strategy is
to use a probability-weighted average of embeddings
(denoted as Average). The third strategy is to sample
an embedding under the predicted distribution (denote as
Full Sampling). Lastly, our fourth strategy is to take the
top-3 highest probability embeddings and randomly sample
among these. Across all 4 strategies, in Fig. 4, we find the
performances to be similar, indicating that our model is robust
to this choice.

Question 5. How does the number of generated
counterfactuals affect performance?

We vary the number of generated counterfactuals in parallel
(denoted as B) and report performance in Figure 4. Note that



TABLE III
COUNTERFACTUAL SAMPLES IN ADULT INCOME DATASET. GIVEN THE INPUT ROW WITH THE ORIGINAL LABEL “≤ 50K”, WE ASK OUR METHOD

SCD TO GENERATE COUNTERFACTUAL INSTANCES THAT FLIP THE LABEL TO “> 50K” WITH RESPECT TO A BLACK-BOX INCOME PREDICTOR. WE NOTE
THAT SCD GENERATES PLAUSIBLE SAMPLES.

Method Age Workclass Education Ed.
No.

Marital Status Occupation Relationship Race Gender Hr/W Country

Input 38 Private HS-grad 9 Divorced Handlers-
cleaners

Not-in-family White Male 40 United-
States

Ours 38 Private 9th 5 Never-married Handlers-
cleaners

Other-relative White Male 40 United-
States

38 Private HS-grad 9 Divorced Other-service Not-in-family Black Female 40 United-
States

44 Private HS-grad 9 Divorced Handlers-
cleaners

Unmarried White Female 40 United-
States

Input 49 Private 9th 5 Married-spouse-
absent

Other-service Not-in-family Black Female 16 Jamaica

Ours 31 Private 5th-6th 3 Married-spouse-
absent

Other-service Not-in-family Other Female 35 Jamaica

61 Private 9th 5 Never-married Machine-op-
inspct

Other-relative Black Female 16 Trinadad&Tobago

49 Private 9th 5 Separated Other-service Not-in-family Black Female 48 Jamaica

Input 23 Private Bachelors 13 Never-married Adm-clerical Own-child White Female 30 United-
States

Ours 23 Private Bachelors 13 Never-married Adm-clerical Own-child Black Female 30 United-
States

25 Private Bachelors 13 Never-married Adm-clerical Own-child White Female 30 United-
States

23 Private Bachelors 13 Never-married Adm-clerical Own-child White Female 30 South

Input 39 State-gov Bachelors 13 Never-married Adm-clerical Not-in-family White Male 40 US

Ours 31 Self-emp-
inc

Bachelors 13 Married-civ-
spouse

Adm-clerical Wife White Female 40 US

34 Self-emp-
inc

Bachelors 13 Married-civ-
spouse

Exec-managerial Husband White Male 55 US

39 Federal-gov Bachelors 13 Married-civ-
spouse

Prof-specialty Husband White Male 40 US

Input 49 Private HS-grad 9 Married-spouse-
absent

Craft-repair Husband White Male 40 United-
States

Ours 49 Private HS-grad 9 Married-spouse-
absent

Craft-repair Own-child White Male 40 Canada

27 Private HS-grad 9 Married-civ-
spouse

Other-service Other-relative Amer-
Indian-
Eskimo

Female 48 United-
States

49 Private HS-grad 9 Separated Craft-repair Not-in-family White Male 55 United-
States

Input 19 Private HS-grad 9 Married-AF-
spouse

Adm-clerical Wife White Female 25 United-
States

Ours 19 Private 9th 5 Never-married Adm-clerical Own-child White Female 25 United-
States

18 Private HS-grad 9 Never-married Adm-clerical Own-child Black Female 20 United-
States

18 Private HS-grad 9 Never-married Adm-clerical Own-child White Female 25 Canada

we did not re-tune or change any hyperparameters other than
B. We note that our performance remains robust with this
change across all metrics.

VI. CONCLUSION

In this paper, we introduced a novel counterfactual explainer
called Structured Counterfactual Diffuser (SCD) for structured
data aimed at producing highly plausible counterfactuals.
Our technique leverages a diffusion model to learn complex
relationships among various attributes of structured data. Via
guided diffusion, our model not only exhibits high plausibility
compared to the existing state-of-the-art but also shows sig-
nificant improvement in proximity and diversity, while also

maintaining high validity. In our analysis, we thoroughly
analyze various important aspects of our proposed model,
revealing useful insights. We find that our method removes
the need for an explicit diversity loss by utilizing stochastic
denoising that naturally produces diverse samples.
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APPENDIX

In this section, we provide additional implementation de-
tails. We also provide the exact hyperparameters we used in
our experiments in Table IV.

A. Diffusion Model Pre-Training

Building Row Embeddings. We transform a table row into a
vector. For numeric columns or values, we first discretize them
via binning into equal sized bins. Then, for the discretized
numerical columns as well as the categorical columns, their
discrete value is represented as an integer. For each column,
we maintain a learned embedding dictionary. Corresponding
to the integer value of each column, we retrieve the corre-
sponding embedding from the learned embedding dictionary.
The embeddings of all the columns are concatenated to create
a vector representation of the entire row. The embeddings in
the dictionary are learned during the training of the diffusion
model and frozen afterwards.

B. Details of Guided Diffusion for Counterfactual Generation

Loss Coefficients. For the guiding objective function, λvalidity
is set to 1.0, λproximity is set to 0.01 and λdiversity is set to 0.0001.
Note that our method works with the same coefficients for all
datasets, providing evidence of our method’s robustness.
Classifier. The classifier is implemented as a simple 2-layer
MLP with hidden dimension 768. It takes the row embeddings
as input and predicts the class label depending on the task asso-
ciated with each dataset. For each dataset, their corresponding
MLP classifier are trained using a cross-entropy loss.

C. Plausibility Metric

In this section, we describe how we compute the plausibility
metric. To measure plausibility, we compute the negative log-
likelihood of the generated counterfactuals. The log-likelihood
is computed with respect to the estimated data distribution
modeled via an autoregressive RNN and another autoregres-
sive Transformer model. Note that these architectures share no
inductive biases or parameters with the models we evaluate,
and thus, can be considered as objective measures.
RNN Model. The RNN model is trained on the tabular data
by asking to recurrently predict the values within each row
sequentially from left to right. The RNN is trained via teacher-
forcing and cross-entropy loss for each value. The hidden
dimension of the RNN model is 768.
Transformer Model. The transformer model is trained on the
tabular data by asking it to predict (under causal masking)
the values within each row. This essentially makes it an
autoregressive model of the row. The transformer is trained to
predict each row value via a cross-entropy loss conditioned
on the values on the left. The hidden dimensions of the
transformer model is 768. It is a transformer with 4 layers
and 4 heads.

D. Additional Results

Here, we provide some additional experiment results and
analyses.

Evaluation of Valid-Only Counterfactuals. In this sec-
tion, we computed our metrics i.e., proximity, diversity and
plausibility with only valid counterfactuals. We show these
results in Table V. We find that the performance trend is
similar to the trend noted without filtering away the non-
valid counterfactuals, with our model SCD outperforming the
baselines.

Incorporating Plausibility without Diffusion. In this sec-
tion, we ask whether other traditional distribution modeling
approaches e.g., VAEs, can also provide benefits in improving
plausibility of the current state of the art or not? If yes, how
does it compare with the use of diffusion modeling.

To test this, we created a model that we call DiCE-
VAE. In DiCE-VAE, we train a VAE model to capture the
data distribution in the row-embedding space. In the gradient
search objective (similar to that of DICE), we simply add
another term: negative ELBO or the Evidence Lower-Bound
as estimated by the trained VAE model. We hypothesize that
this additional loss term will prevent the search from exiting
the plausible regions of the search space. The new guiding
loss L can be formally described as:

L(Z′,x, f, y′) = λvalidityLvalidity(Z
′, f, y′)

+ λproximityLproximity(Z,Z
′)

+ λdiversityLdiversity(Z
′)

+ λplausibilityLplausibility(Z
′)

In experiments, we find that this indeed improves the plau-
sibility in comparison to the baseline DICE, almost halving
the negative log-likelihood of the generated counterfactuals
from DiCE-VAE. We show the results in Table VI. We note
that plausibility improves to 54.34 in DiCE-VAE as compared
to Wachter and DiCE where it is 108.7 and 121.0 in Adult
Income dataset. A similar trend is seen across three datasets
as shown in Table VI. However, comparing with SCD using
diffusion model performs even better than DiCE-VAE, thus
justifying the use of diffusion model over the traditional
distribution modeling approaches e.g., VAEs.

E. Ethics Statement

Building language models with steering ability can help in
reducing bias, toxicity, etc. Our proposed system SCD does not
support or amplify any biases and can not be exploited to gen-
erate such content. Infact, it helps in generating counterfactuals
that indeed aid in making the models more explainable and
bias-free. Hence, this work poses no threat of discrimination,
or bias.



Model Hyperparameters Dataset

Adult Income UCI Bank House Price

Diffusion LM Pre-training

Batch Size
# Epochs
Max Text Length
# Diffusion Steps
Learning Rate
# Learning Rate Warmup Steps
# Learning Rate Half Life
Gradient Clipping

120
500
11
2000
1e-4
30000
25000
0.05

120
500
16
2000
1e-4
30000
25000
0.05

120
500
9
2000
1e-4
30000
25000
0.05

Guided Diffusion

# Classes
Weight Coefficient of Proximity Loss
Weight Coefficient of Validity Loss
Weight Coefficient of Diversity Loss
Guider Learning Rate
Vocabulary Size

2
0.01
1.0
0.001
1.5
2000

2
0.01
1.0
0.001
1.5
5000

2
0.01
1.0
0.001
1.5
5000

Plausibility Metric (GRU Model)
Batch Size
# Epochs
Vocabulary Size

120
500
2000

120
500
5000

120
500
5000

DiCE

# Classes
Weight Coefficient of Proximity Loss
Weight Coefficient of Validity Loss
Weight Coefficient of Diversity Loss
Guider Learning Rate
Vocabulary Size

2
0.1
1.0
0.0325
2.5
2000

2
0.1
1.0
0.0325
2.5
5000

2
0.1
1.0
0.0325
2.5
5000

Wachter

# Classes
Weight Coefficient of Proximity Loss
Weight Coefficient of Validity Loss
Guider Learning Rate
Vocabulary Size

2
0.1
1.0
2.5
2000

2
0.1
1.0
2.5
5000

2
0.1
1.0
2.5
5000

TABLE IV
HYPERPARAMETERS OF OUR MODEL USED IN OUR EXPERIMENTS.

TABLE V
COMPARISON OF PLAUSIBILITY, PROXIMITY, DIVERSITY SCORES OF SCD, DICE AND WACHTER ON VARIOUS DATASETS WITH ONLY VALID

COUNTERFACTUALS. FOR PROXIMITY AND DIVERSITY SCORES, HIGHER IS BETTER. FOR THE PLAUSIBILITY SCORE, LOWER IS BETTER SINCE IT
CAPTURES THE NEGATIVE LOG-LIKELIHOOD OF THE GENERATED SAMPLES.

Dataset Plausibility (↓) Proximity (↑)

Wachter et al. DiCE SCD Wachter et al. DiCE SCD

Adult Income 110.57 120.10 21.99 0.677 0.581 0.583
UCI Bank 168.57 168.99 74.64 0.223 0.210 0.323
Housing Price 104.88 109.63 74.57 0.365 0.300 0.314

Dataset Diversity (↑)

Wachter et al. DiCE SCD

Adult Income 0.00 0.396 0.414
UCI Bank 0.187 0.538 0.549
Housing Price 0.0 0.639 0.534



TABLE VI
COMPARISON OF PLAUSIBILITY, PROXIMITY, DIVERSITY, AND VALIDITY SCORES OF SCD, DICE-VAE, DICE AND WACHTER ON VARIOUS DATASETS.
FOR VALIDITY, PROXIMITY, AND DIVERSITY SCORES, HIGHER IS BETTER. FOR THE PLAUSIBILITY SCORE, LOWER IS BETTER SINCE IT CAPTURES THE

NEGATIVE LOG-LIKELIHOOD OF THE GENERATED SAMPLES.

Dataset Plausibility (↓) Proximity (↑)

Wachter et al. DiCE DiCE-VAE SCD Wachter et al. DiCE DiCE-VAE SCD

Adult Income 108.7 121.0 54.34 21.21 0.685 0.5764 0.623 0.6173
Housing Price 102.8 109.5 73.71 42.91 0.375 0.3055 0.337 0.3417

Dataset Diversity (↑) Validity (↑)

Wachter et al. DiCE DiCE-VAE SCD Wachter et al. DiCE DiCE-VAE SCD

Adult Income 0.002 0.3837 0.305 0.4008 0.9400 0.9776 0.847 0.7511
Housing Price 0.03 0.4289 0.607 0.5986 0.9999 0.9908 0.855 0.8526

TABLE VII
COMPARISON OF PLAUSIBILITY SCORES OF SCD, DICE-VAE, DICE AND WACHTER ON VARIOUS DATASETS WITH GRU MODEL AND A TRANSFORMER

MODEL. FOR THE PLAUSIBILITY SCORE, LOWER IS BETTER SINCE IT CAPTURES THE NEGATIVE LOG-LIKELIHOOD OF THE GENERATED SAMPLES.

Dataset Plausibility with GRU Model (↓) Plausibility with Transformer Model (↓)

Wachter et al. DiCE SCD Wachter et al. DiCE SCD

Adult Income 108.7 121.0 21.21 85.18 94.70 28.07
UCI Bank 168.3 166.7 42.37 191.06 190.81 107.69
Housing Price 102.8 109.5 42.91 91.83 92.23 49.88


