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Abstract
Predicting drug-target interaction (DTI) is crit-
ical in the drug discovery process. Despite re-
markable advances in recent DTI models through
the integration of representations from diverse
drug and target encoders, such models often strug-
gle to capture the fine-grained interactions be-
tween drugs and protein, i.e. the binding of spe-
cific drug atoms (or substructures) and key amino
acids of proteins, which is crucial for understand-
ing the binding mechanisms and optimising drug
design. To address this issue, this paper intro-
duces a novel model, called FusionDTI, which
uses a token-level Fusion module to effectively
learn fine-grained information for Drug-Target
Interaction. In particular, our FusionDTI model
uses the SELFIES representation of drugs to mit-
igate sequence fragment invalidation and incor-
porates the structure-aware (SA) vocabulary of
target proteins to address the limitation of amino
acid sequences in structural information, addition-
ally leveraging pre-trained language models exten-
sively trained on large-scale biomedical datasets
as encoders to capture the complex information of
drugs and targets. Experiments on three well-
known benchmark datasets show that our pro-
posed FusionDTI model achieves the best per-
formance in DTI prediction compared with seven
existing state-of-the-art baselines. Furthermore,
our case study indicates that FusionDTI could
highlight the potential binding sites, enhancing
the explainability of the DTI prediction.

1. Introduction
The task of predicting drug-target interactions (DTI) plays
a pivotal role in the drug discovery progress, as it helps
identify potential therapeutic effects of drugs on biologi-
cal targets facilitating the development of effective treat-
ments (Askr et al., 2023). DTI fundamentally relies on the
binding of specific drug atoms (or substructures) and key
amino acids of proteins (Schenone et al., 2013). In partic-
ular, each binding site is an interaction between a single

amino acid and a single drug atom, which we refer to as a
fine-grained interaction. For instance, Figure 1 B demon-
strates the interaction between HIV-1 protease and the drug
lopinavir. A critical component of this interaction is the
formation of a hydrogen bond between a ketone group in
lopinavir (represented in the SELFIES (Krenn et al., 2022)
notation as [C][=O]) and the side chain of an aspartate
residue Asp25 (i.e. Dd) within the protease (Brik and Wong,
2003; Chandwani and Shuter, 2008). Therefore, capturing
such fine-grained interaction information during the fusion
of drug and target representations is crucial for building
effective DTI prediction models (Yazdani-Jahromi et al.,
2022; Wu et al., 2022; Peng et al., 2024; Zeng et al., 2024).

To obtain representations of drugs and targets for the DTI
task, some previous studies (Lee et al., 2019; Nguyen et al.,
2021) have used graph neural networks (GNNs) or convo-
lutional neural networks (CNNs) using a fixed-size win-
dow, potentially leading to a loss of contextual informa-
tion, especially when drugs and targets are in a long-term
sequence. These models directly concatenate the representa-
tions together to make predictions without considering fine-
grained interactions. More recently, some computational
models (Huang et al., 2021; Bai et al., 2023) employed the
fusion module (e.g. Deep Interactive Inference Network
(DIIN) (Gong et al., 2018) and Bilinear Attention Network
(BAN) (Kim et al., 2018)) to obtain fine-grained interac-
tion information and the 3-mer approach that binds three
amino acids together as a target binding site to address the
lack of structural information in the amino acid sequence.
While useful for highlighting possible regions of interaction,
these models do not offer the sufficient granularity needed
to gauge the specifics of binding sites, as each binding site
only contains one residue (Schenone et al., 2013). Therefore,
obtaining contextual representations of drugs and targets
and capturing fine-grained interaction information for DTI
remains challenging.

To address these challenges, we propose a novel model
(called FusionDTI) with a Token-level Fusion (TF) mod-
ule for an effective learning of fine-grained interactions
between drugs and targets. In particular, our FusionDTI
model utilises two pre-trained language models (PLMs),
namely Saport (Su et al., 2023) as the protein encoder that
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Figure 1. A. An illustration of the FusionDTI model contains frozen encoders, the fusion module, and the classifier. The TF focuses on
fine-grained interactions between tokens within and across sequences. B. This is a token-level interaction instance of HIV-1 protease and
lopinavir. Lopinavir forms a hydrogen bond with residue Dd (Asp25) in the active site of the protease via its ketone molecule ([C][=O]).
C. The attention map of TF visualises the weight between tokens, indicating the contribution of each token to the final prediction result.

is able to integrate both residue tokens with structure token;
and SELFormer (Yüksel et al., 2023) as the drug encoder to
ensure that each drug is valid and contains structural infor-
mation. To effectively learn fine-grained information from
these contextual representations of drugs and targets, we
explore two strategies for the TF module, i.e. Bilinear Atten-
tion Network (BAN) (Kim et al., 2018) and Cross Attention
Network (CAN) (Li et al., 2021; Vaswani et al., 2017), to
find the best approach for integrating the rich contextual em-
beddings derived from Saport and SELFormer. We conduct
a comprehensive performance comparison against seven ex-
isting state-of-the-art DTI prediction models. The results
show that our proposed model achieves about 6% accuracy
improvement over the best baseline on the BinddingDB
dataset. The main contributions of our study are as follows:

• We propose FusionDTI, a novel model that leverages
PLMs to encode drug SELFIES and protein residue
and structure for rich semantic representations and uses
the token-level fusion to obtain fine-grained interaction
information between drugs and targets effectively.

• We compare two TF modules: CAN and BAN and anal-
yse the influence of fusion scales based on FusionDTI,
demonstrating that CAN is superior for DTI prediction
both in terms of effectiveness and efficiency.

• We conduct a case study of three drug-target pairs
to evaluate whether potential binding sites would be
highlighted for the DTI prediction explainability.

2. Related Work
2.1. Drug-target Interaction Prediction

DTI prediction serves as an important step in the process of
drug discovery (Dara et al., 2022). Traditional biomedical
measurements from wet experiments are reliable but have
a notably high cost and time-consuming development cy-
cle, preventing their application on large-scale data (Zitnik
et al., 2019). In contrast, identifying high-confidence DTI
pairs by computational models markedly narrow down the
search scope of drug candidate libraries, and aims to identify
drugs most likely to bind to a target. Support vector ma-
chine (SVM) (Cortes and Vapnik, 1995) and random forest
(RF) (Ho, 1995) are two traditional computational models
for DTI by concatenating fingerprint ECFP4 (Rogers and
Hahn, 2010) and PSC features (Cao et al., 2013). Later
works focused on representation learning approaches, such
as CNNs and GNNs (Lee et al., 2019; Nguyen et al., 2021).
For example, DeepConv-DTI (Lee et al., 2019) employed
CNNs and a global max-pooling layer to extract local pro-
tein sequence patterns. GraphDTA (Nguyen et al., 2021)
used GNNs for drug graph encoding and CNNs for protein
sequence encoding. More recently, MolTrans (Huang et al.,
2021) introduced an adaptation of the transformer for encod-
ing, further enhanced by a DIIN module (Gong et al., 2018)
to learn fine-grained interactions. DrugBAN (Bai et al.,
2023) incorporated a deep BAN (Kim et al., 2018) frame-
work with domain adaptation to facilitate explicit pairwise
fine-grained interaction learning between drugs and targets.
In addition, BioT5 (Pei et al., 2023) has been proposed
as a comprehensive pre-training framework that integrates
cross-modelling in biology in the DTI task. Despite these
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advances, these models have not proposed an effective way
to capture fine-grained interaction information in the DTI.

2.2. Drug and Protein Representation

For drug molecules, most existing methods represent the
input by the Simplified Molecular Input Line Entry Sys-
tem (SMILES) (Weininger, 1988; Weininger et al., 1989).
However, SMILES suffers from numerous problems in
terms of validity and robustness, and some valuable infor-
mation about the drug structure may be lost which may
prevent the model from efficiently mining the knowledge
hidden in the data reducing the predictive performance of
the model (Krenn et al., 2022). In particular, SMILES frag-
ments are often invalid and inconsistent with the substruc-
tural information of the drug. To address the limitations
of SMILES, we apply SELFIES (Krenn et al., 2022), a
string-based representation that circumvents the issue of
robustness and that always generates valid molecular graphs
for each character.

Regarding proteins, the conventional approach uses amino
acid sequences as model inputs (Huang et al., 2021; Bai
et al., 2023), overlooking the crucial structural information
of the protein. Inspired by the SA vocabulary of Saprot (Su
et al., 2023), the Saprot enhances inputs by amalgamating
each residue from the amino acid sequence with a 3D ge-
ometric feature that is obtained by encoding the structure
information of the protein using Foldseek (Van Kempen
et al., 2024). This innovative combination offers richer pro-
tein representations through the SA vocabulary, contributing
to the discovery of fine-grained interactions. Our proposed
model employs SELFIES for drug encoding and uses Saprot
encoding for proteins to generate the semantic representa-
tions for both drugs and targets.

2.3. Molecular and Protein Language Models

Molecular language models that train on the large-scale
molecular corpus to capture the subtleties of chemical struc-
tures and their biological activities have set new standards
in encoding chemical compounds achieving meaningful rep-
resentations (Ying et al., 2021; Rong et al., 2020). For ex-
ample, ChemBERTa-2 (Ahmad et al., 2022) used RoBERTa-
based architectures to capture intricate molecular patterns,
significantly enhancing the precision of property predic-
tion. Subsequently, MoLFormer (Ross et al., 2022) focused
on leveraging the self-attention mechanism to interpret the
complex, non-linear interactions within molecules, while
SELFormer (Yüksel et al., 2023) employed SELFIES, en-
suring valid and interpretable chemical structures.

Protein language models have revolutionized the way we
understand and represent protein sequences, offering richer
semantic representations (Elnaggar et al., 2021; Lin et al.,
2023; Su et al., 2023). These models leverage the vast cor-

pus of biological sequence data, learning intricate patterns
and features that define the protein functionality and inter-
actions. ProtBERT (Elnaggar et al., 2021) and ESM (Lin
et al., 2023) applied a transformer architecture to protein
sequences, capturing the complex relationships between
amino acids. Saport (Su et al., 2023) further enhanced this
approach by integrating SA vocabularies, providing a more
fine-grained understanding of protein structure. Importantly,
our proposed model is flexible enough to use each of them
as a protein encoder to generate representations.

3. Methodology
3.1. Model Architecture

Given a sequence-based input drug-target pair, the DTI pre-
diction task aims to predict an interaction probability score
p ∈ [0, 1] between the given drug-target pair, which is typ-
ically achieved through learning a joint representation F
space from the given sequence-based inputs. To address the
DTI task and effectively capture fine-grained interaction,
we proposed a novel model, called FusionDTI, which is a
bi-encoder model (Liu et al., 2021) with a fusion module
that fuses the representations of drugs and targets. The over-
all framework of FusionDTI is illustrated in Figure 1 A. In
general, FusionDTI takes sequence-based inputs of drugs
and targets, which are encoded into token-level representa-
tion vectors by two frozen encoders. Then, a fusion module
fuses the representations to capture fine-grained binding
information for a final prediction through a prediction head.

Input: The initial inputs of drugs and targets are string-
based representations. For protein P , the SA vocabulary (Su
et al., 2023) is employed, where each residue is replaced
by one of 441 SA vocabularies that bind an amino acid
to a 3D geometric feature to address the lack of structural
information in the amino acid sequences. For drug D, as
mentioned in the previous section, we use the SELFIES,
which is a formal syntax that always generates valid molec-
ular graphs (Krenn et al., 2022). We provide the steps for
obtaining SA and SELFIES sequences in Appendix 6.3.

Encoder: The proposed model contains two frozen en-
coders: Saport (Su et al., 2023) and SELFormer (Yüksel
et al., 2023), which generate a drug representation D and
a protein representation P separately. It is of note that Fu-
sionDTI is flexible enough to easily replace encoders with
other advanced PLMs. Furthermore, D and P are stored in
memory for later-stage online training.

Fusion module: In developing FusionDTI, we have investi-
gated two options for the fusion module: BAN and CAN to
fuse representations, as indicated in Figure 2. The CAN is
utilised to fuse each pair as D∗ and P∗, and then concate-
nate them into one F for fine-grained binding information.
For BAN, we need to obtain the bilinear attention map and
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Figure 2. BAN: In step 1, the bilinear attention map matrix is obtained by a bilinear interaction modelling via transformation matrices. In
step 2, the joint representation F is generated using the attention map by bilinear pooling via the shared transformation matrices U and V.
CAN: It fuses protein and drug representations through multi-head, self-attention and cross-attention. Then fused representations P∗ and
D∗ are concatenated into F after mean pooling.

then generate F through the bilinear pooling layer.

Prediction head: Finally, we obtain the p of the DTI pre-
diction by a multilayer perceptron (MLP) classifier trained
with the binary cross-entropy loss, i.e. p = MLP(F).

Since the encoders and the fusion module constitute the key
components of our FusionDTI model, we will describe them
in detail in the following subsections.

3.2. Drug and Protein Encoders

Employing sequences with detailed biological functions and
structures is a critical step in exploring the fine-grained bind-
ing of drugs and targets. For drugs, SMILES is the most
commonly used input sequence but suffers from invalid
sequence segments and potential loss of structural informa-
tion (Krenn et al., 2022). To address the limitations, we
transform SMILES into SELFIES, a formal grammar that
generates a valid molecular graph for each element (Krenn
et al., 2022). Besides, to address the lack of structural in-
formation in the amino acid sequences, we utilise the SA
sequence of targets to combine each amino acid with an SA
vocabulary by Foldseek (Van Kempen et al., 2024).

PLMs have shown promising achievements in the biomedi-
cal domain leveraging transformers since they pay attention
to contextual information and are pre-trained on large-scale
biomedical databases. Therefore, we utilise Saport (Su et al.,
2023) as a protein encoder to encode protein input P of
both the SA sequence and amino acid sequence. Meanwhile,
SELFormer (Yüksel et al., 2023) is used as our drug encoder
to encode the drug SELFIES input D. Then these encoded
protein representation P and drug representation D are fur-
ther used as inputs for the later fusion module (Subsection
3.1). These representations ensure that we can explore the
fine-grained binding information effectively. To further jus-

tify this, we also compare our encoders with other existing
protein language models (such as ESM-2b (Lin et al., 2023))
and molecular language models (such as MoLFormer (Ross
et al., 2022) and ChemBERTa-2 (Ahmad et al., 2022)), and
the results can be found in Section 4.7.

3.3. Fusion Module

In order to capture the fine-grained binding information
between a drug and a target, our FusionDTI model applies
a fusion module to learn token-level interactions between
the token representations of drugs and targets encoded by
their respective encoders. As shown in Figure 2, two fusion
modules inspired by the recent literature (Bai et al., 2023;
Xu et al., 2023) are investigated to fuse representations: the
Bilinear Attention Network (Kim et al., 2018) and the Cross
Attention Network (Li et al., 2021; Vaswani et al., 2017).

3.3.1. BILINEAR ATTENTION NETWORK (BAN)

Motivated by DrugBAN (Bai et al., 2023), our model consid-
ers BAN (Kim et al., 2018) as an option of the fusion mod-
ule to learn pairwise fine-grained interactions between drug
D ∈ RM×ϕ and target P ∈ RN×ρ, denoted as FusionDTI-
BAN. For BAN as indicated in Figure 2, bilinear attention
maps are obtained by a bilinear interaction modelling to cap-
ture pairwise weights in step 1, and then the bilinear pooling
layer to extract a joint representation F. The equation for
BAN is shown below:

F = BAN(P,D;Att)

= SumPool(σ(P⊤U) ·Att · σ(D⊤V), s),
(1)

where U ∈ RN×K and V ∈ RM×K are transformation
matrices for representations. SumPool is an operation that
performs a one-dimensional and non-overlapped sum pool-
ing operation with stride s and σ(·) denotes a non-linear
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activation function with ReLU(·). Att ∈ Rρ×ϕ represents
the bilinear attention maps using the Hadamard product and
matrix-matrix multiplication and is defined as:

Att = ((1 · q⊤) ◦ σ(P⊤U)) · σ(V⊤D), (2)

Here, 1 ∈ Rρ is a fixed all-ones vector, q ∈ RK is a
learnable weight vector and ◦ denotes the Hadamard product.
In this way, pairwise interactions contribute sub-structural
pairs to the prediction.

BAN captures the token-level interactions between the pro-
tein and drug representations without considering the rela-
tionships within each sequence itself, which may limit its
ability to understand deeper contextual dependencies.

3.3.2. CROSS ATTENTION NETWORK (CAN)

Inspired by ProST (Xu et al., 2023), we also consider CAN
as our fusion module to learn fine-grained interaction in-
formation of drugs and targets. We denote our FusionDTI
model that uses a CAN fusion module as FusionDTI-CAN.
By processing D ∈ Rm×h and P ∈ Rn×h separately, the
fused drug D∗ ∈ Rm×h and target P∗ ∈ Rn×h represen-
tations are obtained. To synthesise the fine-grained joint
representation F, we employ a pooling aggregation strat-
egy for both D∗ and P∗independently and then concatenate
them as shown in Figure 2. The process is delineated by the
following equation:

F = Concat(Pool(D∗),Pool(P∗)), (3)

where Pool calculates the element-wise mean of all tokens
across the sequence dimension, and Concat denotes the con-
catenation of the resulting mean vectors. In this context, the
multi-head, self-attention and cross-attention mechanisms
are used to refine the representations of each residue and
atom as below:

D∗ =
1

2
[MHA(Qd,Kd,Vd) + MHA(Qp,Kd,Vd)] , (4)

P∗ =
1

2
[MHA(Qp,Kp,Vp) + MHA(Qd,Kp,Vp)] , (5)

where Qd,Kd,Vd ∈ Rm×h and Qp,Kp,Vp ∈ Rn×h are
the queries, keys and values for drug and target protein,
respectively. And MHA denotes the Multi-head Attention
mechanism. To guide this process, two distinct sets of pro-
jection matrices guide the attention mechanism as follows:

Qd = DWd
q , Kd = DWd

k, Vd = DWd
v, (6)

Qp = PWp
q , Kp = PWp

k, Vp = PWp
v, (7)

Here, the projection matrices Wd
q ,W

d
k,W

d
v ∈ Rh×h and

Wp
q ,W

p
k,W

p
v ∈ Rh×h are used to derive the queries, keys

and values, respectively.

In summary, our CAN module combines multi-head, self-
attention and cross-attention mechanisms to capture depen-
dencies within individual sequences and between different
sequences for a more nuanced understanding of interactions.
In the results of Sections 4.3 and 4.5, we analyse and com-
pare these two fusion strategies and different fusion scales.

4. Experimental Setup and Results
4.1. Datasets and Baselines

Three public DTI datasets, namely BindingDB (Gilson et al.,
2016), BioSNAP (Zitnik et al., 2018) and Human (Liu
et al., 2015; Chen et al., 2020), are used for evaluation,
where each dataset is randomly split into train, valid and
test sets with a 7:1:2 ratio. Since DTI is a binary clas-
sification task, we use AUROC (area under the receiver
operating characteristic curve) (Bai et al., 2023; Huang
et al., 2021) and AUPRC (area under the precision-call
curve) (Lee et al., 2019; Nguyen et al., 2021) as the major
metrics to evaluate a model’s performance. We compare Fu-
sionDTI with seven baseline models in the DTI prediction
task. These models include two traditional machine learn-
ing methods such as SVM (Cortes and Vapnik, 1995) and
Random Forest (RF) (Ho, 1995), as well as four deep learn-
ing methods including DeepConv-DTI (Lee et al., 2019),
GraphDTA (Nguyen et al., 2021), MolTrans (Huang et al.,
2021) and DrugBAN (Bai et al., 2023). The latter four mod-
els employ the same two-stage process whereby the drug
and target features are initially extracted by specialised en-
coders before being integrated for prediction. In addition,
we also include the BioT5 (Pei et al., 2023) model, which is
a biomedical pre-trained language model that could directly
predict the DTI. Further details of the datasets, baseline
models, and the methodology for generating drug SELFIES
and protein SA sequences are provided in Appendix 6.3.

4.2. Effectiveness Evaluation for DTI Prediction

We start by comparing our FusionDTI model (FusionDTI-
CAN and FusionDTI-BAN) with seven existing state-of-
the-art baselines for DTI prediction on three widely used
datasets. Table 1 reports the comparative results. In gen-
eral, our FusionDTI-CAN model performs the best on all
metrics and all three datasets. A key highlight from these
results is the exceptional performance of FusionDTI-CAN
on the BindingDB dataset, where FusionDTI-CAN demon-
strates superior metrics across the board: an AUROC of
0.989, an AUPRC of 0.990, and an accuracy of 0.961.
Note that the main difference between the FusionDTI-CAN
model with others is the fusion strategy. Furthermore, al-
though FusionDTI-BAN and DrugBAN have the same BAN
module, FusionDTI-BAN performs better across all three
datasets. These results highlight not only the marked en-
hancements of FusionDTI over other models on the Bind-
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Table 1. Performance comparison of FusionDTI and the baselines on the BindingDB, Human and BioSNAP datasets. (Best, Second Best).
BindingDB Human BioSNAP

Method AUROC AUPRC Accuracy AUROC AUPRC AUROC AUPRC Accuracy
SVM .939±.001 .928±.002 .825±.004 .940±.006 .920±.009 .862±.007 .864±.004 .777±.011
RF .942±.011 .921±.016 .880±.012 .952±.011 .953±.010 .860±.005 .886±.005 .804±.005

DeepConv-DTI .945±.002 .925±.005 .882±.007 .980±.002 .981±.002 .886±.006 .890±.006 .805±.009
GraphDTA .951±.002 .934±.002 .888±.005 .981±.001 .982±.002 .887±.008 .890±.007 .800±.007
MolTrans .952±.002 .936±.001 .887±.006 .980±.002 .978±.003 .895±.004 .897±.005 .825±.010
DrugBAN .960±.001 .948±.002 .904±.004 .982±.002 .980±.003 .903±.005 .902±.004 .834±.008

BioT5 .963±.001 .952±.001 .907±.003 .989±.001 .985±.002 .937±.001 .937±.004 .874±.001
FusionDTI-BAN .975±.002 .976±.002 .933±.003 .984±.002 .984±.003 .923±.002 .921±.002 .856±.001
FusionDTI-CAN .989±.002 .990±.002 .961±.002 .991±.002 .989±.002 .951±.002 .951±.002 .889±.002

ingDB dataset but also its effectiveness in capturing fine-
grained information on DTI. We consider the fine-grained
interactions for each drug-target pair in the DTI predic-
tion task, which is why FusionDTI uses the token-level
fusion module. Our FusionDTI method is highly aligned
with biomedical pathways the binding process relates to the
specific atom or substructure interacting with the residue.
Therefore, fine-grained interaction information effectively
improves the performance of models in predicting DTI.

4.3. Comparison of the BAN and CAN Fusion Modules

0 200 400 600 800
Feature Dimensions

0.75

0.80

0.85

0.90
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Figure 3. Performance comparison of two fusion strategies: BAN
and CAN on BindingDB.

There are two fusion strategies available: BAN and CAN,
thus determining which one works better is a key step for
establishing FusionDTI’s prediction effectiveness. We per-
form a fair comparison involving the same encoders, classi-
fier and dataset. As shown in Figure 3, we compare BAN
and CAN by employing two linear layers to adjust the
feature dimensions of the drug and target representations.
With the feature dimension increasing, the performance of
FusionDTI-CAN continues to rise, while that of FusionDTI-
BAN reaches a plateau. When the feature dimension is 512,
both of the variants attain their peak positions with an AUC
of 0.989 and 0.967, respectively. These results indicate
that the CAN module seems to be better suited to the DTI

prediction tasks and in capturing fine-grained interaction
information. In contrast, BAN may not be able to fully
capture fine-grained binding information between proteins
and drugs, such as the specific interactions between the drug
atoms and residues. Therefore, these findings suggest that
the CAN strategy is more effective and adaptable to the com-
plexities involved in DTI prediction, providing a superior
performance, especially as the feature dimension scales.

4.4. Efficiency Analysis
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Datasets

1

10

100

1000

10000

Ti
m

e 
(in

 m
in

ut
es

)

FusionDTI-BAN (without pre-encoded)
FusionDTI-CAN (without pre-encoded)
FusionDTI-BAN (pre-encoded)
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DrugBAN

Figure 4. Time comparison on the BindingDB, Human and BioS-
NAP datasets.

Efficiency in computational models is crucial, particularly
when handling large-scale and extensive datasets in drug
discovery. Our proposed model stores drug representa-
tions and target representations in memory for later online
training. As evidenced by Figure 4, FusionDTI-CAN and
FusionDTI-BAN with pre-encoded representations process
the BindingDB dataset much faster than the non-pre-coded
models, approximately 45 minutes and 220 minutes, respec-
tively. This stark difference highlights the advantage of
pre-encoded, which eliminates the need for real-time data
processing and accelerates the overall throughput. While
FusionDTI-BAN and DrugBAN have the same fusion mod-
ule, the pre-encoded FusionDTI-BAN runs faster and pre-
dicts more accurately, as shown in Table 1. In addition,
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Table 2. Ablation study of FusionDTI on the BindingDB dataset.
CAN AUC AUPRC Accuracy

× 0.954 0.963 0.894
✓ 0.989 0.990 0.961

Table 3. Comparison of aggregation strategies for CAN.
Aggregation AUC AUPRC Accuracy

CLS 0.982 0.983 0.956
Pooling 0.989 0.990 0.961

FusionDTI-BAN runs faster than FusionDTI-CAN, indi-
cating that the BAN fusion module is more efficient. Ulti-
mately, FusionDTI-BAN with pre-encoded data stands out
as a highly efficient approach, offering substantial bene-
fits in scenarios where exists large-scale data. We further
analyse the time complexity in Appendix 6.6.

4.5. Ablation Study

The fine-grained interaction of drug and target representa-
tions is critical in DTI as it directly impacts the model’s
ability to infer potential binding sites. For FusionDTI,
this interaction is facilitated by the CAN module, which
markedly enhances the predictive accuracy by capturing the
fine-grained interaction information between the drugs and
targets. Table 2 demonstrates the impact of the CAN module
on the prediction performance using the BindingDB dataset.
When the fusion module is omitted, the model achieves an
AUC of 0.954 and an accuracy of 0.894. Conversely, us-
ing the CAN module, there is a significant improvement,
with the AUC increasing to 0.989 and the accuracy reach-
ing 0.961. This highlights the effectiveness of the CAN
module in improving the inference ability of FusionDTI.
Additionally, in Table 3, we compare the performance of
two aggregation strategies within the CAN module. The
pooling strategy outperforms the CLS-based aggregation,
achieving an AUC and AUPRC of 0.989 and 0.990, respec-
tively. This comparison highlights the superior effectiveness
of the pooling in aggregating contextual information. Thus,
the integration of a CAN module, particularly employing
a pooling aggregation strategy, is shown to be essential for
making confident and accurate predictions.

4.6. Analysis of Fusion Scales

In assessing fusion representations, it is critical to determine
whether a more fine-grained modelling enhances the pre-
dictive performance. Thus, we define a grouping function
with the parameter g (Group size) for averaging per group
tokens before the CAN fusion module. The g, representing
the number of tokens per group, controls the granularity of
the attention mechanism. Specifically, when g is set to 1,
the fusion operates at the token level, where each token is
considered independently. On the other hand, when g is set
to 512, the fusion will run at the global level. We have the
flexibility to control the fusion scale for the drug and pro-
tein representations, but this needs to meet the requirement
that the token length is divisible by group size. As shown

in Figure 5, as the number of tokens per group increases
from 1 to 512 (Maximum Token Length), the FusionDTI
model performance decreases accordingly. This also aligns
with the biomedical rules governing drug-protein interac-
tions, where the principal factor influencing the binding is
the interplay between the key atoms or substructures in the
drug and primary residues in the protein. In addition, the
CAN module outperforms BAN consistently at various scale
settings, indicating that CAN better access the information
between the drug and target. Consequently, this supports
that the more detailed the interaction information obtained
between the drugs and targets by the fusion module, the
more beneficial it is for the enhancement of the model’s
prediction performance.

1 64 128 256 512
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Figure 5. Performance evaluation of fusion scales.
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Figure 6. Performance comparison of protein encoders.
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Figure 7. Performance comparison of drug encoders.

4.7. Evaluation of PLMs Encoding

The protein encoder and drug encoder are fundamental for
the token-level fusion of representations, as these encoders
are responsible for generating fine-grained representations
to better explore interaction information. Our proposed
model employs two PLMs encoding two biomedical enti-
ties: the drug and protein, respectively. In terms of the
protein encoders, Figure 6 compares the the performance of
the two protein encoders (Saprot (Su et al., 2023) and ESM-
2b (Lin et al., 2023)) in combination with three different
drug encoders: ChemBERTa-2 (Ahmad et al., 2022), SELF-
ormer (Yüksel et al., 2023) and MoLFormer (Ross et al.,
2022). From the figure, we find that Saprot consistently
outperforms ESM-2b when combined with all three drug en-
coders. As can be seen in Figure 7, SELFormer achieves the
best performance in encoding the drug sequences among the
three advanced drug encoders. Notably, the top-performing
combination is Saprot and SELFormer, hence our proposed
FusionDTI uses them as drug and protein encoders.

4.8. Case Study

A further strength of FusionDTI to enable explainability,
which is critical for drug design efforts, is the visualisation
of each token’s contribution to the final prediction through
cross-attention maps. To compare with the DrugBAN model,
we examine three identical pairs of DTI from the Protein
Data Bank (PDB) (Berman et al., 2007): (EZL - 6QL2 (Ka-
zokaitė et al., 2019), 9YA - 5W8L (Rai et al., 2017) and
EJ4 - 4N6H (Fenalti et al., 2014)). As shown in Table 4, our
proposed model predicts additional binding sites (in bold)
evidenced by PDB (Berman et al., 2007) in comparison to
the DrugBAN model. Our CAN module is effective in cap-
turing fine-grained binding information at the token level. In
particular, we address the lack of structural information on
protein sequences by employing the SA vocabulary, which
matches each residue to a corresponding 3D feature via
Foldseek (Van Kempen et al., 2024). This study highlights

Table 4. FusionDTI predictions: Bold represents new predictions
versus DrugBAN.

Drug-Target Interactions

EZL - 6QL2:
1. sulfonamide oxygen - Leu198, Thr199 and Trp209;
2. amino group - His94, His96, His119 and Thr199;
3. benzothiazole ring - Leu198, Thr200, Tyr131, and
Pro201; 4. ethoxy group - Gln135;

9YA - 5W8L:
1. amino group of sulfonamide - Asp140, Glu191;
2. sulfonamide oxygen - Asp140, Ile141 and Val139;
3. carboxylic acid oxygens - Arg168, His192, Asp194
and Thr247;
4. biphenyl rings - Arg105, Asn137 and Pro138;
5. hydrophobic contact - Ala237, Try238 and Leu322;

EJ4 - 4N6H:
1. basic nitrogen of ligand - Asp128; 2. hydrophobic
pocket - Tyr308, Ile304 and Tyr129; 3. water molecules
- Tyr129, Met132, Trp274, Try308 and Lys214;

the effectiveness of FusionDTI in enhancing performance on
the DTI task, thereby supporting more targeted and efficient
drug development efforts. In Section 6.5 of the Appendix,
we present three pairs of prediction visualisations.

5. Conclusions
With the rapid increase of new diseases and the urgent need
for innovative drugs, it is critical to capture and gauge fine-
grained interactions, since the binding of specific drug atoms
to the main amino acids is key to the DTI task. Despite some
achievements, fine-grained interaction information is not ef-
fectively captured. To address this challenge, we introduce
FusionDTI uses token-level fusion to effectively obtain fine-
grained interaction information between drugs and targets.
Limitations: Even if our proposed model identifies poten-
tially useful DTI, these predictions need to be validated by
wet experiments, a time-consuming and expensive process.
Potential impacts: We have shown that FusionDTI is effec-
tive and efficient in screening for possible DTI in large-scale
data as well as in locating potential binding sites in the pro-
cess of drug design. However, it is not directly applicable to
human medical therapy and other biomedical interactions
because it lacks clinical validation and regulatory approval
for medical use.
For future studies, we aim to investigate TF in more de-
tail and to apply it to other biomedical scenarios, such as
drug-drug interactions and protein-protein interactions.
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6. Appendix
6.1. Hyperparameter of FusionDTI

FusionDTI is implemented in Python 3.8 and the PyTorch frame-
work (1.12.1)1. The computing device we use is the NVIDIA
GeForce RTX 3090. In the "Experimental Setup and Results" sec-
tion, we only present experiment results based on the BindingDB
dataset, as the performance trends are identical to the BioSNAP
dataset and the Human dataset. Table 7 shows the parameters of
the FusionDTI model and Table 8 lists the notations used in this
paper with descriptions.

6.2. Dataset Sources

All the data used in this paper are from public sources. The statis-
tics of the experimental datasets are presented in Table 5.

1. The BindingDB (Gilson et al., 2016) dataset is a web-
accessible database of experimentally validated binding
affinities, focusing primarily on the interactions of small
drug-like molecules and proteins. The BindingDB source
is found at https://www.bindingdb.org/bind/
index.jsp.

2. The BioSNAP (Zitnik et al., 2018) dataset is created from
the DrugBank database (Wishart et al., 2008). It is a bal-
anced dataset with validated positive interactions and an
equal number of negative samples randomly obtained from
unseen pairs. The BioSNAP source is found at https:
//github.com/kexinhuang12345/MolTrans.

3. The Human (Liu et al., 2015; Chen et al., 2020) dataset
includes highly credible negative samples. The balanced
version of the Human dataset contains the same number
of positive and negative samples. The Human source is
found at https://github.com/lifanchen-simm/
transformerCPI.

Table 5. Dataset Statistics

Dataset # Drugs # Proteins # Interactions

BindingDB 14,643 2,623 49,199
BioSNAP 4,510 2,181 27,464

Human 2,726 2,001 6,728

6.3. How to Obtain the Structure-aware (SA) Sequence
of a Protein and the SELFIES of a Drug?

To obtain the SA sequence of a protein, the first step is to obtain
Uniprot IDs from the UniProt website using information such as
the amino acid sequences or protein names, and then save these
IDs in a comma-delimited text file. Subsequently, we use the
UniProt IDs to fetch the relevant 3D structure file (.cif) from
AlphafoldDB (Varadi et al., 2022) using Foldseek. The SA vocab-
ulary of the protein can then be generated from this 3D structure
file.

1https://pytorch.org/

For drugs, the SELFIES could be derived from SMILES strings.
This conversion requires specific Python packages, and upon instal-
lation, the SELFIES strings can be generated through appropriate
scripts. For more detailed procedures, including the necessary
code, please refer to our submission file.

Notably, our submission of supplementary material contains step-
by-step descriptions and code for generating the SA sequences and
SELFIES.

6.4. Baselines

We compare the performance of FusionDTI with the following
seven models on the DTI task.

1. Support Vector Machine (Cortes and Vapnik, 1995) on the
concatenated fingerprint ECFP4 (Rogers and Hahn, 2010)
(extended connectivity fingerprint, up to four bonds) and
PSC (Cao et al., 2013) (pseudo-amino acid composition)
features.

2. Random Forest (Ho, 1995) on the concatenated fingerprint
ECFP4 and PSC features.

3. DeepConv-DTI (Lee et al., 2019) uses a fully connected neu-
ral network to encode the ECFP4 drug fingerprint and a CNN
along with a global max-pooling layer to extract features
from the protein sequences. Then the drug and protein fea-
tures are concatenated and fed into a fully connected neural
network for the final prediction.

4. GraphDTA (Nguyen et al., 2021) uses GNN for the encoding
of drug molecular graphs, and a CNN is used for the en-
coding of the protein sequences. The derived vectors of the
drug and protein representations are directly concatenated
for interaction prediction.

5. MolTrans (Huang et al., 2021) uses a transformer architecture
to encode the drugs and proteins. Then a CNN-based fusion
module is adapted to capture DTI interactions.

6. DrugBAN (Bai et al., 2023) use a Graph Convolution Net-
work and 1D CNN to encode the drug and protein sequences.
Then a bilinear attention network (Kim et al., 2018) is
adopted to learn pairwise interactions between the drug and
protein. The resulting joint representation is decoded by a
fully connected neural network.

7. BioT5 (Pei et al., 2023) is a cross-modeling model in biology
with chemical knowledge and natural language associations.

6.5. Case Study

The top three predictions (PDB ID: 6QL2 (Kazokaitė et al., 2019),
5W8L (Rai et al., 2017) and 4N6H (Fenalti et al., 2014)) of
the co-crystalized ligands are derived from Protein Data Bank
(PDB) (Berman et al., 2007). Following the setup of the Drug-
BAN case study, we only choose X-ray structures with a resolution
greater than 2.5 Å corresponding to human proteins. In addition,
the co-crystalized ligands are required to have pIC50 ≤ 100 nM
and are not part of the training dataset. As shown in Figure 8, we
summarise all drug-target interactions predicted by the DrugBAN
and FusionDTI for the three sample pairs in the case study.
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Figure 8. FusionDTI predictions: EZL - 6QL2, 9YA - 5W8L and EJ4 - 4N6H

Table 6. Time complexity and parameters comparison of BAN and
CAN.

Fusion module Complexity (O) Parameters

BAN O(ρ · ϕ ·K) 790k
CAN O(m · n · h) 1572k

6.6. Time Complexity Analysis

The feature dimensions of the representations generated by differ-
ent PLM encoders are fixed, but the size of the feature dimensions
may not be the same. Therefore, in order to fuse protein and drug
representations, we use two linear layers to keep the representa-
tions’ feature dimension equal to the token length (512).

The time complexity of BAN depends on the computation of bilin-
ear interaction maps. The bilinear attention involves a Hadamard
product and further matrix operations as given in Equation (2).
The computation of UTP and V TD requires O(N · ρ ·K) and
O(M · ϕ · K) operations, respectively. Here, K denotes the
dimensionality of the transformation, which is the rank of the fea-
ture space to which the protein and drug features are projected.
When the token length is equal to the feature dimension and the
dimensions of transformation are two times either, the overall time
complexity is O(ρ · ϕ ·K).

For the token-level interaction in the DTI task, the time complexity
is also markedly influenced by the attention mechanisms. It also
satisfies the condition that the token length is equal to the feature
dimension of the drug and protein. With multi-head attention
heads (H = 8), the complexity for computing the queries, keys,
and values in the Equation (6) and (7), as well as the softmax
attention weights, is given by O(H · n · m · h), where mandn
represents the token lengths for the drug and protein, respectively,
and h is the hidden dimension. Since each head contributes its own

set of computations and the attention mechanism operates over all
tokens, the m·n term (stemming from the softmax operation across
the token length) becomes significant. This leads to a total time
complexity of O(m · n · h) per batch for the attention mechanism.

From the above analysis of the time complexity of the two fusion
strategies, the time complexity of CAN is lower than BAN in the
case of the same input protein and drug features. BAN is markedly
affected by the transformation dimension K. When the K is larger
than the token and feature dimension, the time complexity of BAN
is higher than CAN. However, we observe that the number of
parameters in BAN is smaller than that of CAN via the Pytroch
package, as shown in Table 6.
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Table 7. Configuration Parameters

Module Hyperparameter Value

Mini-batch Batch size 64 (options: 64, 128)
Drug Encoder PLM HUBioDataLab/SELFormer
Protein Encoder PLM westlake-repl/SaProt_650M_AF2
BAN Heads of bilinear attention 3

Bilinear embedding size 512 (options: 32, 64, 128, 256, 512, 768)
Sum pooling window size 2

CAN Attention heads 8
Hidden dimension 512 (options: 32, 64, 128, 256, 512, 768)
Integration strategies Mean pooling (options: Mean pooling, CLS)
Group size 1 (options: from 1 to 512)

MLP Hidden layer sizes (1024, 512, 256)
Activation Relu (options: Tanh, Relu)
Solver AdamW

(options: AdamW, Adam, RMSprop, Adadelta, LBFGS)
Learning rate scheduler CosineAnnealingLR

(options: CosineAnnealingLR, StepLR, ExponentialLR)
Initial learning rate 1e-4 (options: from 1e-3 to 1e-6)
Maximum epoch 200

Table 8. Notations and Descriptions

Notations Description

D Drug feature
P Target feature
q ∈ RK weight vector for bilinear transformation
Att ∈ Rρ×ϕ Bilinear attention maps in BAN
U ∈ RN×K Transformation matrix for drug features
V ∈ RM×K Transformation matrix for target features
g The number of tokens per group
D∗ ∈ Rm×h Fused drug representations in token-level interaction
P∗ ∈ Rn×h Fused target representations in token-level interaction
Qd,Kd,Vd ∈ Rm×h Queries, keys, and values for the drug in token-level interaction
Qp,Kp,Vp ∈ Rn×h Queries, keys, and values for target in token-level interaction
Wd

q ,W
d
k,W

d
v ∈ RH×h Projection matrices for drug queries, keys, and values

Wp
q ,W

p
k,W

p
v ∈ Rh×h Projection matrices for target queries, keys, and values

F drug-target joint representation
p ∈ [0, 1] output interaction probability
H Number of attention heads in token-level interaction
m,n Sequence lengths for drug and protein respectively
h Hidden dimension in token-level interaction
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