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Abstract

Although sequence-to-sequence models often
achieve good performance in semantic pars-
ing for i.i.d. data, their performance is still
inferior in compositional generalization. Sev-
eral data augmentation methods have been pro-
posed to alleviate this problem. However, prior
work only leveraged superficial grammar or
rules for data augmentation, which resulted in
limited improvement. We propose to use sub-
tree substitution for compositional data aug-
mentation, where we consider subtrees with
similar semantic functions as exchangeable.
Our experiments showed that such augmented
data led to significantly better performance
on SCAN and GEOQUERY, and reached new
SOTA on compositional split of GEOQUERY.
We have publicly released our code at https:
//github.com/GT-SALT/SUBS .

1 Introduction

Semantic parsing transforms natural language ut-
terances to formal language. Because meaning rep-
resentations or programs are essentially composi-
tional, semantic parsing is an ideal testbed for com-
positional generalization. Although neural seq2seq
models could achieve state-of-the-art performance
in semantic parsing for i.i.d. data, they failed at
compositional generalization due to lack of reason-
ing ability. That is, they do not generalize well to
formal language structures that were not seen at
training time. For example, a model that observes
at training time the questions “What is the popula-
tion of the largest state?” and “What is the largest
city in USA?” may fail to generalize to questions
such as “What is the population of the largest city
in USA?”. This leads to large performance drops
on data splits designed to measure compositional
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substitution data augmentation for compositional semantic
parsing, implemented augmentation and LSTM/BART parsers,
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generalization (compositional splits), in contrast to
the generalization abilities of humans.

To improve compositional generalization in se-
mantic parsing (compositional semantic parsing),
prior work focused on incorporating inductive bi-
ases directly to models or data augmentation. From
the model perspective, some work used neural-
symbolic models (Chen et al., 2020), generated
intermediate discrete structures (Herzig and Be-
rant, 2020; Zheng and Lapata, 2020), or conducted
meta-learning (Lake, 2019). From the data perspec-
tive, Jia and Liang (2016) proposed to recombine
data with simple synchronous context-free gram-
mar (SCFG), despite not for compositional gener-
alization. Andreas (2019) used some simple rules
for data augmentation, where tokens with the same
context were considered as exchangeable. Such
techniques are still limited since they only lever-
aged superficial grammars or rules, and failed when
there are linguistically rich phrases or clauses.

To fill this gap, we propose to augment the train-
ing data of semantic parsing with diverse compo-
sitional examples based on induced or annotated
(semantic and syntactic) trees. Specifically, we
propose to exchange subtrees where roots have
similar meaning functions. Since we consider all
hierarchies in all trees, deep structures and complex
phrases or clauses are considered for data augmen-
tation, which is key for compositional generaliza-
tion. For instance, in Figure 1, if we exchange sub-
trees with “largest” as meaning function of its root,
composition of “population of the” and “largest
city in the smallest state in the USA” results in a
new augmented structure “population of the largest
city in the smallest state in the USA”. Although
certain substructure substitution methods were ex-
plored in other NLP tasks (Shi et al., 2021), subtree
substitution with fine-grained meaning functions
has been under-explored. Our experiments showed
that such augmented data led to significantly better
performance on SCAN (Lake and Baroni, 2018)

https://github.com/GT-SALT/SUBS
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Figure 1: Subtree substitution results in an augmented example. Natural Language: What is the population of the
largest city in the smallest state in the USA ? Formal Language: answer ( population_1 ( largest (
city ( loc_2 ( smallest ( state ( loc_2 ( countryid ( usa ) ) ) ) ) ) ) ) ).

and GEOQUERY, and reached new SOTA on com-
positional split of GEOQUERY.

2 Methods

Span trees Suppose training set is {(xi, zi)}Ni=1,
where xi is a natural language utterance and zi is
the corresponding program. An utterance x can be
mapped to a span tree T , such that program(T )= z,
where the deterministic function program(·) maps
span trees to programs (Herzig and Berant, 2020).

As shown in Figure 1, a span tree T is a tree
where each node covers a span (i, j) with tokens
xi:j = (xi, xi+1, · · · , xj). A span subtree can be
viewed as a mapping from every span (i, j) to a
single category c ∈ C, where C is a set of domain-
specific categories representing domain constants,
which include entities (e.g. countryid#usa in Figure
1) and predicates (e.g. loc_2 in Figure 1). The final
program can be computed from the span tree deter-
ministically by the function program(·). Concretely,
program(T ) iterates over the nodes in T bottom-up,
and generates a program zi:j for each node cover-
ing the span (i, j). For a terminal node, zi:j = c.
For an internal node, zi:j is determined by com-
posing the programs of its children, zi:s and zs:j
where s is the split point. As in Combinatory Cate-
gorical Grammar, composition is simply function
application, where a domain-specific type system
is used to determine which child is the function and
which is the argument. Span trees can be induced
by a hard-EM algorithm or semi-automatically an-
notated. We refer the reader to Herzig and Berant

(2020) to see how to obtain span-trees.

2.1 Subtree Substitution (SUBS)
As shown in Figure 1, we consider span subtrees
with similar semantic functions as exchangeable.
Formally, func(·) maps a subprogram to a semantic
category, and subtrees with the same semantic cat-
egories have similar semantic functions. For two
data points (x1, z1) and (x2, z2), if func(z1i1:j1) =
func(z2i2:j2), we obtain a new augmented (x′, z′):

x′ = x1:i1 + x2i2:j2 + x1j1:, z
′ = z1\z1i1:j1/z

2
i2:j2

Definition of func(·) may vary in different dataset.
One straightforward way is to extract the outside
predicate in zi:j as its semantic category, which is
used on GEOQUERY, such as func(largest (
state ( all ) ) )) = largest.

2.2 Semantic Parsing
After getting augmented data by subtree substi-
tution, we then combine augmented data and the
original training data to train a seq2seq semantic
parser, where we choose LSTM models with atten-
tion (Luong et al., 2015) and copying mechanism
(Gu et al., 2016), or pretrained BARTLarge (Lewis
et al., 2020) as the seq2seq model architecture.

3 Experiments and Results

Dataset We first use SCAN (Lake and Baroni, 2018)
as a diagnostic dataset to test the performance
of subtree substitution in compositional semantic



RIGHT AROUNDRIGHT

LSTM 0.00 1.00 (2800 updates)
LSTM + SUBS 1.00 1.00 (800 updates)

Table 1: Accuracy of diagnostic experiments on SCAN.

Question Query

Herzig and Berant (2020) 0.78 0.75

LSTM 0.75 0.58
+ SCFG (Jia et al., 2016) 0.80 0.68
+ GECA (Andreas, 2019) 0.77 0.60
+ SUBS (ours, induced tree) 0.79 0.72
+ SUBS (ours, gold tree) 0.81 0.79

BART 0.91 0.85
+ SUBS (ours, induced tree) 0.91 0.85
+ SUBS (ours, gold tree) 0.93 0.88

Table 2: Exact-match accuracy on i.i.d. (Question) and
compositional (Query) splits of GEOQUERY dataset.

parsing. SCAN is a synthetic dataset, which con-
sists of simple English commands paired with se-
quences of discrete actions. We use the program
version of Herzig and Berant (2020). For instance,
“run right after jump” corresponds to the pro-
gram “i_after ( i_run ( i_right ) ,
i_jump )”. Also, semi-automatically annotated
span trees from Herzig and Berant (2020) are used
for subtree substitution. To test compositional se-
mantic parsing, we use the Primitive right (RIGHT)
and Primitive around right (AROUNDRIGHT) com-
positional splits from Loula et al. (2018), where
templates of the form Primitive right and Primi-
tive around right (respectively) appear only in the
test set. In these templates, Primitive stands for
jump, walk, run, or look. For simplicity, func(·)
is defined only on i_right and i_left, where
func(i_right) = func(i_left) = direction.
That is, all “i_right” and “i_left” appear as
leaf nodes in span trees and they are exchangeable.

We use GEOQUERY dataset to test the perfor-
mance of subtree substitution in both i.i.d. and
compositional generalization for semantic parsing.
GEOQUERY contains 880 questions about US geog-
raphy (Zelle and Mooney, 1996). Following Herzig
and Berant (2020), we use the variable-free FunQL
formalism from Kate et al. (2005). The i.i.d. split
(Question), which is randomly sampled from the
whole dataset, contains 513/57/256 instances for
train/dev/test set. The compositional split (Query)

contains 519/54/253 examples for train/dev/test set,
where templates created by anonymizing entities
are used to split the dataset, to make sure that all
examples sharing a template are assigned to the
same set (Finegan-Dollak et al., 2018). As for
span trees, we use semi-automatically annotated
span trees (gold tree) released by Herzig and Be-
rant (2020). Alternatively, we use the span trees
induced by Herzig and Berant (2020)’s span-based
semantic parsing, without any human labour.

3.1 Diagnostic Results
Results of diagnostic experiments on SCAN dataset
are shown in Table 1, where we use LSTM parser
without data augmentation as the baseline. We can
see that on the RIGHT split, LSTM seq2seq seman-
tic parser could only achieve zero exact-match ac-
curacy without any data augmentation techniques,
which means that the model’s compositional gen-
eralizibility on the RIGHT split is very poor. After
adding our augmented data with subtree substitu-
tion, we achieve an exact-match accuracy of 100%.
Actually, we got 6660 augmented examples besides
the original 12180 training examples. Among all
augmented examples, 3351 examples are in the
test set, which means 74.87% of 4476 test exam-
ples are recovered by subtree substitution. On the
AROUNDRIGHT split, using LSTM seq2seq seman-
tic parser could already achieve 100% exact-match
accuracy, which means that the model learned from
Primitive right and Primitive opposite right gen-
eralize to Primitive around right well in our pro-
gram format “i_primitive ( i_around (
i_right ) )”. After adding our augmented ex-
amples, the parser converged to 100% exact-match
accuracy faster, where our method requires around
800 updates to converge while baseline model re-
quires 2800 updates with the same batch size 64.

3.2 Main Results
Table 2 shows the results of experiments on GEO-
QUERY dataset, where we examined both seq2seq
LSTM and BARTLarge parsers. LSTM and BART
parsers without any data augmentation are simplest
baselines. We also compare with other two data
augmentation methods as additional baselines, re-
combining data with simple SCFG (Jia and Liang,
2016) or using simple rules for Good Enough Data
Augmentation (GECA) (Andreas, 2019), which
were proven useful for compositional semantic
parsing. We can see that on the Question split,
adding augmented data from (gold) subtree sub-



training instances augmented instances avg att l max att l avg prg l max prg l

GECA 519 804 8.85 18 15.96 29
SUBS 519 29039 10.43 26 19.33 43

avg seg l max seg l avg att seg l max att seg l avg prg seg l max prg seg l

GECA 1.93 4 - - - -
SUBS 5.99 25 3.98 13 8.01 25

Table 3: Complexity of augmented examples on the Query split of GEOQUERY dataset, which is measured by
maximal (max) and average (avg) lengths (l) of exchanged segments (seg) and resulted utterances(att)/programs(prg).

50 100 200 519

BART 0.64 0.72 0.79 0.85
BART + SUBS 0.67 0.79 0.85 0.88

Table 4: Effect of numbers of training examples on composi-
tional split of GEOQUERY.

stitution leads to improvements for both LSTM
and BART seq2seq models, suggesting that subtree
substitution as data augmentation helps i.i.d gener-
alization for semantic parsing. On the Query split,
(gold) subtree substitution achieves more substan-
tial improvements over seq2seq baseline models
(absolute 21% and 3% improvements of the exact-
match accuracy for LSTM and BART respectively),
achieving state-of-the-art results. Moreover, our
methods are also better than the two data augmen-
tation baselines. Therefore, subtree substitution
is a simple yet effective compositional data aug-
mentation method for compositional semantic pars-
ing. With (induced) subtree substitution, SUBS still
achieves improvements for LSTM models.
Analysis of Augmented Data We further examine
why subtree substitution could achieve much better
performance by analyzing its augmented data. As
shown in Table 3, GECA only identifies and ex-
changes very simple structures, where the average
and maximal length of exchanged segments are
1.93 and 4. A closer look at these augmented data
shows that nearly all of these segments are simple
entities (e.g. STATE: “Illinois”, “Arizona” etc.)
or other Nouns (e.g. “area”, “population” etc.).
In contrast, subtree substitution can identify and
exchange much more complex structures, where
the average and maximal length of exchanged seg-
ments are 5.99 and 25. For example, largest city
in the smallest state in the USA and largest state
are identified as exchangeable. As a result, sub-
tree substitution could produce more complex ut-
terance and program pairs, where the average and
maximal length of these resulted utterances are
10.43 and 26, compared with the average (8.53)

and maximal (18) length of utterances returned by
GECA. Moreover, subtree substitution could gen-
erate much more augmented instances, because it
can identify more complex structures besides those
simple ones identified by GECA. Compared with
SCFG, SUBS could also identify complex struc-
tures automatically with subtrees, while SCFG only
handle simple phrases defined by rules.
Effect of Training Data Size Table 4 shows
that with more training examples, models’ perfor-
mances improve. In all settings, using (gold) sub-
tree substitution boosts the performance of BART.
When there are 100 and 200 training examples, the
improvement is more significant, demonstrating
the effectiveness of SUBS in the few-shot setting.

4 Related Work
Several data augmentation methods have been in-
troduced for (compositional) semantic parsing. Jia
and Liang (2016) recombined data by SCFG, and
Andreas (2019) used some simple rules to exchange
tokens with the same context. However, they lever-
aged only superficial grammars or rules, which
has limited capacity to identify complex structures.
Akyürek et al. (2020) learned to recombine and
resample data with a prototype-based generative
model, instead of using rules. Certain substructure
substitution methods have been explored for data
augmentation in other NLP tasks (Shi et al., 2021).
Dependency tree cropping and rotation within sen-
tence was used in low-resource language POS tag-
ging (Şahin and Steedman, 2019) and dependency
parsing (Vania et al., 2019). Dependency tree swap-
ping was explored in low-resource language depen-
dency parsing (Dehouck and Gómez-Rodríguez,
2020), and Universal Dependency features was
used for zero-shot cross-lingual semantic parsing
(Yang et al., 2021). However, subtree substitu-
tion with fine-grained meaning functions has not
been examined. Some rule-based data augmenta-
tion methods were also explored in table semantic
parsing (Eisenschlos et al., 2020; Yang et al., 2022).



To the best of our knowledge, we are the first to
explore tree manipulation for semantic parsing.

5 Conclusion
This work proposed to use subtree substitution to
compositionally augment the data of semantic pars-
ing to help the compositional generalization. Our
method achieved significant improvements over
seq2seq models, other data augmentation methods
and span-based semantic parsing.
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A Training Details

We adapted OpenNMT (Klein et al., 2017) for
LSTM model with attention and copying mech-
anism, while used fairseq (Ott et al., 2019) to im-
plement BART model.

We manually tune the hyper-parameters. For
LSTM models, we use one-layer bidirectional
LSTM in the encoder side and one-layer unidirec-
tional LSTM in the decoder side. We use dropout
with 0.5 as dropout rate and Adam optimizer with
a learning rate of 0.001. We use MLP attention
and reuse attention scores as copying scores. On
GEOQUERY, the batch size is set to 1 sentence
without augmented data and set to 64 sentences
with augmented data. On SCAN, all batch sizes are
64 sentences. For BART models, we use BART
large models. We use Adam as optimizer with a
learning rate 1e-5. We use dropout and attention
dropout with 0.1 as dropout rate. Also, we use label
smoothing with a rate 0.1. Batch sizes are 1024
tokens. Besides, we employ a weight-decay rate
0.01. All the parameters are manually tuned based
on the dev performance.

We train all models on NVIDIA A100 SXM4 40
GB GPU. We set the max training epoch to be 100
and select the best performed epoch according to
dev performance. Training process on each clause
or whole sequence could be finished within 3 hours.

For baselines with other data augmentation meth-
ods, we reran GECA and SCFG on this FunQL for-
malism of GEOQUERY and these splits with anno-
tated span trees. That’s why our results are a little
different from the reported results in the original
paper. We got similar results with their source code
and our code on our data, in order to make sure that
there is no problem with our results and code.

We got the same denotation accuracy as reported
by Herzig and Berant (2020), but we reported exact-
match accuracy on Table 2 for fair comparison.


