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A B S T R A C T

Background and Motivations: Continuous blood pressure (BP) monitoring is of critical importance to health
state tracking and disease prevention. However, current mainstream BP measurement approaches are cuff-
based, which is inconvenient and limit its usage scenarios. Predicting arterial blood pressure (ABP) could
provide richer information than isolated BP values. The individual differences among data may hinder training.
Methods: A novel continuous, non-invasive and cuff-less approach is presented for generating ABP waveform
using only raw photoplethysmogram (PPG) signal, from a signal conversion perspective, where a convolution-
based deep autoencoder (DAE) model is developed. To overcome individual differences, Multi-domain
adversarial training is merged with DAE (abbr. RDAE) to learn cross-domain features, and partial data is
further used to calibrate (optional) the general model.
Results: The mean absolute error (MAE) of uncalibrated RDAE reached 7.945, 4.114 and 3.834 mmHg in
systolic BP (SBP), diastolic BP (DBP) and mean BP (MBP) prediction. After using 80 s data for calibration, the
MAE of RDAE reduced to 5.424, 3.144 and 2.885 mmHg accordingly.
Conclusion: Owning to the high-quality converted ABP segments, the resulting estimated BP is accurate.
According to the BHS standard, RDAE achieved Grade C, Grade A and Grade A for SBP, DBP and MBP
prediction, and the calibrated RDAE achieved Grade B, Grade A, Grade A accordingly.
Significance: Both domain adversarial training and calibration improve the performance in varying degrees.
RDAE is competitive to other mainstream regression-based deep learning methods, while with fewer model
parameters, and to other representative machine learning methods, while no need of complicated feature
engineering.
1. Introduction

As an important vital signal, blood pressure (BP) is a critical pre-
dictor to determine the cardiovascular health of patients [1]. Further-
more, long-term blood pressure monitoring can dynamically reflect the
changes in the individual’s health status, which is of great significance
for the warning and prevention of potential diseases [2,3].

Continuous BP monitoring based on wearable sensors has increas-
ingly broad development prospects [4]. Especially, Photoplethysmog-
raphy (PPG) has achieved a wide range of applications [5,6] because
of its cheapness and convenience, e.g. in blood pressure measurement.
Concretely, with PPG sensor, PPG signal could be measured at wrist
or finger, which is much convenient than the collection of Electro-
cardiogram (ECG) signal where multiple electrodes are required to
attach at wrist and chest. In fact, electronic equipments with PPG
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sensor embedded, e.g. the smart bracelet, are becoming more and more
popular, leading a healthy lifestyle.

The PPG and arterial BP (ABP) signals are intrinsically related,
which is the potential hypothesis of related studies that predicting
BP with PPG signal. Actually, the PPG and ABP signals have certain
similarities in geometry [7]. From a physiological perspective, blood
pressure is highly-related to the flow rate of blood [8]. Concretely,
when blood vessels begin to contract, blood flows faster and impel
higher pressure. On the contrary, when blood vessels gradually relax,
blood flows slower and bring less pressure. Further, PPG signal could
be disassembled into AC part and DC part, and the AC part is associated
with the pulse rate of arterial blood [6].

Currently, there have extensive approaches to measure blood pres-
sure by using PPG signal, ECG signal or both [1,2,8–22]. These methods
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follow similar circuit: extract features implicitly (for deep learning-
based methods) or explicitly (for traditional machine learning methods)
from preprocessed signals and then solving prediction model by re-
gressing predicted value to target value, the predictive model could
be explicitly defined (e.g. PTT method [9] and its variants [2,10], as
well as data-driven machine learning methods [11–14]) or implicitly
defined (e.g. DL-based methods [1,8,15–22]). While, differently from
the current mainstream methods that directly predicting blood pressure
value based on physiological signals, such as PPG and ECG signal etc.,
based on the truth that there is a high similarity between the PPG
and ABP morphologies revealed by several studies [7,23], we try to
visualize blood pressure waveform with raw PPG signal only, which is
actually a sequence-to-sequence conversion question. The advantage is
that, first, in addition to the obtained blood pressure value, the blood
pressure change curve is also visualized. Second, no troublesome fea-
ture extraction and feature selection/transformation is needed. Besides,
if ABP waveform could be generated from the counterpart PPG signal,
then this approach has potential application value—as an alternative
to invasive ABP [7], it is more safe without the risk of infection.

To realize this target, we resort to generative model. Specifically,
Autoencoder (AE) [24] model, a classical approach in unsupervised
learning, is employed because of its simplicity and naturally sequence
to sequence architecture with high symmetry. As for AE architecture,
AE could be designed based on fully-connected module, convolution
operation [25] or recurrent neural network (RNN) module and its vari-
ants [26]. Although RNN module is a common choice for handling time
series data [18,27,28]. Whereas, RNN module propagate information
from one timestep to the next by keeping it in their hidden state,
which limits their capacity to perform complex computation on input
stream [29]. In this study, taking into account the periodicity and
pattern repetition properties of physiological signals (e.g. PPG and ABP
signal), we build the proposed approach based on 1D convolution.

Another noteworthy question in this area is individual differences
[17]. Specifically, different subjects exhibit PPG signals with different
shape [8,14,30], and have different health state, resulting in differently
blood pressure level and change pattern. Note that this phenomenon
is more severe in inpatients, especially in intensive care unit patients.
Individual differences propose new challenges to generalizability and
robustness of prediction model. On the one hand, a model should keep
enough tolerance to input signals with different shape and quality.
Whereas, much of studies in this area heavily depends on feature
engineering. Because extraction of features relies on positioning fea-
ture points, the data used in practice is elaborately processed and
screened [8,15]. Therefore, further verification of the performance of
these methods is needed in real scene. On the other hand, for a new out-
of-domain individual, the model should be capable of quickly adapted
using minor data of the new individuals. In the presented work, we
regard each individual’s record as a domain, and the thought of domain
adversarial training [31] is absorbed to overcome the above obstacle.
Specifically, in addition to the convolution-based deep autoencoder,
an auxiliary domain classifier (connected to the latent code vector
of AE) is maintained and is used to train the encoder part of AE
adversarial to make the learned latent code vector informative (for
the PPG-to-ABP signal conversion task) as well as general among
different individuals (i.e. the so-called domain-invariant). The domain
adversarial training essentially plays the role of ‘regularizer’ to impose
he latent code vector more general across different subjects. Therefore,
he proposed approach is called regularized deep autoencoder (RDAE).
ig. 1 presents a top-level description of RDAE for blood pressure
easurement.

The main contributions of this study are summarized as follows:

• Different from the currently mainstream regression-based ap-
proaches that directly predict BP values, we study ABP waveform
prediction from a signal conversion perspective, one advantage
of which is that not only BP value but also ABP waveform are
reported;
2

• A convolution-based deep autoencoder model is developed for
converting PPG signal to ABP waveform. The results show that
the proposed model is competitive compared with other state-of-
the art deep learning methods. More importantly, the number of
parameters of the model is far less than other methods. In addi-
tion, we presented RDAE with different configurations, providing
a flexible model selection for inference in practice, by trading off
between the accuracy and model size (complexity);

• Taking into account the huge individual differences, domain ad-
versarial training is embedded into DAE to train a more general
model. Then, minor data of test subject (only 80 s) is used to
fine-tune the model, which significantly improves the prediction
accuracy.

The rest of this study is organized as follows: related work is re-
viewed in Section 2. In Section 3, we describe the proposed approach—
RDAE. Section 4 is experimental protocol, which is followed by results
& analysis in Section 5. Further interpretation and limitation of the
method are given in Sections 6, 7, respectively. Last, we conclude this
study in Section 8.

2. Related work review

We mainly review related progress from the follow three categories,
and a comprehensive comparison of related studies is summarized into
a Table A.1 (served as supplementary material).

2.1. Traditional ML for BP prediction

As for traditional machine learning (ML) methods [32] for BP
prediction, apart from prediction algorithm, feature engineering is an
extremely important step [8,15]. Therefore, we review related work
from these two aspects.

Feature engineering : Moreno et al. [11] firstly extracts the features
comprehensively from PPG that required for build BP prediction model.
Kachuee et al. [14] systematically investigate two types of features—
physiological parameters and whole-based features that are required
for BP prediction. Xing et al. [33] use amplitude and phase information
of PPG signal based on FFT for beat-to-beat BP prediction. Thambiraj
et al. [2,34] propose a new feature—Womersley number based on PPG
signal. Fujita et al. [35] defines level-crossing features (LCFs) based on
derivatives of PPG for BP prediction. Bose S et al. [36] firstly model
the feature extraction process as dictionary learning and the sparse
representation of raw PPG signal is used for beat-to-beat BP prediction.

Prediction algorithm: Pulse transit time (PTT) method and relevant
improved methods [2,9,10] are very popular, these methods are effec-
tive when evaluated on healthy individuals and outpatients. Whereas
otherwise when evaluated on inpatients, especially intensive care unit
(ICU) patients. As patients suffer from various symptoms, such as
bleeding, and affected by drugs, and PTT method is an ideal model,
and the accuracy of which is influenced by several factors. Therefore,
frequent calibration is needed to ensure accuracy [37]. In contrast,
ML algorithms are suitable because of its powerful ability in learning
the complex mapping relation between input and output. Multiple-
layer perceptron (MLP) is widely used in related work [33,38,39].
In addition, classical regression approaches, such as support vector
regression (SVR) [13,34], random forest (RF) [11,14,30,34], decision
tree [40] etc., has been used.

To a large extent, these researches rely on the location of waveform
feature points to extract features, urging the necessity of high-quality
waveform [8,15]. Therefore, an elaborate signal preprocessing and
screening in need to ensure the quality of data, in addition to the
complicated feature extraction and feature selection/transformation
process [11]. Inherited the ability of deep learning to learn useful
features automatically [41], our study is differentiated from the above
work lies in that raw PPG signal is directly fed with minimal prepro-
cessing (Ref Section 4.1), and does not require complicated feature
engineering.
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Fig. 1. The top-level diagram of blood pressure prediction based on RDAE. RDAE denotes the proposed regularized deep autoencoder model. Branch (1) indicates the general
model after backpropagation-based training is directly evaluated on the test individuals; Branch (2) indicates the general model is firstly calibrated/refined using partial data of
the test individual and then is evaluated on the remaining data.
2.2. Deep learning-based BP prediction

Deep learning, as a branch of ML, has attracted much attention in
biomedical signal area because of its powerful ability in learning useful
features automatically.

CNN based: Baek et al. [16] proposed a fully convolutional network
by stacking the proposed Extraction–Concentration block for the time
domain and frequency domain input, respectively. Slapnicar et al. [8]
proposed a complex spectro-temporal deep network, where both PPG
derivatives and frequency domain information of PPG were utilized.
Eom et al. [19] proposed a model by stacking a VGG-style convolution
model and Bi-GRU layer, where self-attention mechanism is utilized to
quantify the importance of feature vectors along temporal direction.
Schlesinger et al. [20] proposed CNN-based Siamese network for BP
prediction.

RNN based: Tanveer et al. [21] proposed a model by stacking ANN
and LSTM layer, and both the raw PPG and ECG signals were directly
fed as input. Su et al. [18] proposed a model named DeepRNN by stack-
ing multiple LSTM layer, and handcrafted features were fed as input.
Fan et al. [22] proposed an multitask neural network, where PSO algo-
rithm is used to search the optimal BP task weights. Zhang et al. [17]
proposed a LSTM-based multitask regression network, and the thought
of domain adversarial training was used to extract more general fea-
tures between source and target domains, under domain adaption
perspective. While, in our work, the multi-domain adversarial training
is used to learn domain-invariant features among multi-domains that
help converting PPG signal to ABP waveform.

BPs prediction is naturally modeled as a multi-task regression ques-
tion in deep learning-based approaches. Therefore, differently from
the traditional ML-based approaches where an independent predictive
model is trained for each task (SBP, DBP or MBP prediction), only
one model is needed here. Whereas, this inevitably introduced another
question—the different loss scales among SBP, DBP and MBP will hin-
der the training of the model, which is seldom studied at present [22].
Although this study is based on deep learning, our goal is to predict the
ABP waveform (predict BP becomes appendage to this task), instead of
predict the BP values, thus avoiding the above problem. Besides, the
above research usually use multiple different signals [16,18,19,21] or
multi-channel signals [17] as input, while the proposed method use
only PPG signal as input.

2.3. ABP waveform prediction

Currently, as far as we know, there are few studies that directly
predict BP waveform. Ibtehaz et al. [15] firstly applies UNet [42], a
classic network in the field of medical imaging, in conjunction with
the concept of deep supervision, for generating ABP waveform from
PPG signal. After that, Athaya et al. [43] did almost the same work
as Ibtehaz et al. [15] based on UNet. Sadrawi et al. [44] applies
two networks—LNet and UNet for building ABP waveform predictive
3

model, respectively. However, none of the above mentioned studies
Fig. 2. A basic diagram of autoencoder comprised of encoder and decoder.

consider individual differences among data derived from different par-
ticipants, we alleviated this problem by incorporating domain adversar-
ial training. Besides, studies [15,43,44] directly use classical networks
in other domains for their own study and no model complexity is
analyzed. In contrast, by quantitatively analyzing the impact of several
key parameters of the model on performance and model complexity
(i.e #Param), several configuration schemes are given, which provide a
flexible choice for model configuration in resource-constrained environ-
ment. Last, we presented two versions of the proposed method—RDAE
and RDAE (with calibration).

3. Regularized deep autoencoder (RDAE)

In this section, we firstly give a formal description of signal
conversion-based BP (waveform) prediction. Then, we briefly reviewed
AutoEncoder, which is followed by the proposed RDAE. Last, we
remarked the currently used evaluation procedure in this area.

3.1. Problem definition

Segment PPG signal and the synchronized ABP signal every 𝑇
seconds, assume 𝑓𝑠 the sampling frequency. For 𝑖th sample (𝑥𝑖, 𝑦𝑖),
𝑥𝑖 ∈ 𝑅1x𝑑 , 𝑦𝑖 ∈ 𝑅1x𝑑 , 𝑑 = 𝑇 ⋅𝑓𝑠, 𝑥𝑖 denotes raw PPG segment, 𝑦𝑖 denotes
the counterpart raw ABP segment. Denotes 𝐷 = (𝑋, 𝑌 ) the dataset,
𝑋 ∈ 𝑅𝑁x𝑑 , 𝑌 ∈ 𝑅𝑁x𝑑 , where 𝑁 denotes the number of samples, 𝑑
the length of a sample. We model BP prediction as a signal conversion
question. Firstly, we need to find a mapping 𝑓 : 𝑥 → 𝑦, 𝑓 could be
formulated as 𝑓 ∗ = arg min𝑓 𝐸(𝑥,𝑦)∼𝑝𝑑𝑎𝑡𝑎 𝑙(𝑓 (𝑥), 𝑦), where 𝑝𝑑𝑎𝑡𝑎 denotes
the prior joint distribution of 𝑋 x 𝑌 , which is unknown. 𝑙(, ) denotes
the loss function. After 𝑓 ∗ is established, given test input 𝑥, predicted
SBP, DBP and MBP could be computed as follows,

�̂�SBP = max𝑓 ∗(𝑥),

�̂�DBP = min𝑓 ∗(𝑥),

�̂�MBP = 2∕3 ⋅ �̂�DBP + 1∕3 ⋅ �̂�SBP

(1)

Since BP prediction is modeled as a signal conversion question,
naturally, sequence to sequence model is selected. In the following,
we firstly review autoencoder (AE) before introducing the proposed
regularized convolution-based deep autoencoder (RDAE).

3.2. Autoencoder

The concept of ‘autoencoder’ (AE) was originally proposed by Hin-
ton et al. [24], and autoencoder refers to a multilayer neural network
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Fig. 3. Deep autoencoder with domain adversarial training (RDAE). (a) RDAE receives raw PPG signal as input, and generate the counterpart ABP waveform, RDAE is composed
f three modules: encoder, decoder and domain classifier; (b) Left: the hierarchical network structure of RDAE, where encoder is composed by stacking 4 blocks (block-1, block-2,
lock-3, block-4), decoder is composed by stacking 4 blocks (block-4’, block-3’, block-2’, block-1’). The domain classifier module is ignored; Right: Gradient flow in RDAE update,
ignal conversion loss—𝐿𝑟 is minimized w.r.t encoder and decoder during the backpropagation-based training. domain cls. module is updated by minimizing domain cls. loss—𝐿𝑑 ,
n the other hand, encoder is trained adversarially by maximizing domain cls. loss—𝐿𝑑 to learn domain-invariant features among multi-domains. 𝑥 indicates PPG segment, �̂�
ndicates predicted ABP segment.
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ith a low-dimensional central layer that was trained by reconstructing
ts input. As Fig. 2 shows, the network is comprised of two parts: En-
oder and Decoder, which is parameterized with 𝜙 and 𝜑, respectively.
he Encoder—𝐸𝜙 maps the input—𝑥 to a compact latent vector—𝑧(𝜙),
nd the Decoder—𝐷𝜑 tries to regenerate the input—�̂� based on the la-
ent vector—𝑧(𝜙). The network is trained by minimizing reconstruction
oss—𝐿𝑟(𝑥, �̂�), 𝐿𝑟 could be mean square error (MSE) or mean absolute
rror (MAE). As an unsupervised learning framework, AE has been
pplied to various task, such as image reconstruction, clustering and
achine translation etc.

.3. RDAE

From representation learning aspect, the idea of AE is to learn a low
imensional, compact latent representation that adequately reconstruct
he original input to a certain extent [45]. Here, we developed deep
utoencoder for signal conversion-based BP (waveform) prediction, a
upervised learning task. Concretely, ABP waveform is directly pre-
icted, with PPG signal as input. Therefore, the objective is to learn a
ow dimensional, compact representation that could convert PPG signal
o ABP waveform.

We developed convolution-based AE for the PPG-to-ABP conversion
ask. Furthermore, the pooling operation in the building block ‘con-
olution+pooling’ of classical CNN network [25,42,46] was replaced
ith stride convolution [47]. The architecture of RDAE is as Fig. 3
resents, Encoder and Decoder are comprised of three convolution
locks, respectively, and are connected by a ‘bottleneck’ multilayer
erceptron. In practice, domain classifier is comprised of three fully-
onnected layer. The configuration details of RDAE is summarized in
able 1.

To make the learned latent representation more robust to different
ubjects (domains), the thought of domain adversarial neural net-
ork [31] inspired us. Concretely, apart from AE, an auxiliary domain

lassifier was connected to the latent representation and is trained to
ifferentiate the belonging record of the latent representation of each
aw PPG signal. On the other hand, in addition to minimizing the signal
onversion error, the encoder part of AE is also updated adversarial to
4

eaken the distinguishing ability of the domain classifier. Therefore,
fter convergence, the Encoder could generate the latent representation
s informative as possible (for the PPG-to-ABP signal conversion task),
s well as domain-invariant. Thus, a smaller amount of data of test
ndividuals is needed to fine-tune the general model.

Formally, assume 𝐸𝜙 the encoder parameterized by 𝜙, 𝐷𝜑 the
ecoder parameterized by 𝜑, 𝐷𝜋 the domain classifier parameterized
y 𝜋, the optimization objective of the proposed RDAE is as follows:

(𝜙,𝜑,𝜋)=E(𝑥,𝑦)∼𝑝𝑑𝑎𝑡𝑎𝐿𝑟(𝐷𝜑(𝐸𝜙(𝑥)),𝑦)−𝜆 ⋅𝐿𝑑 (𝐷𝜋 (𝐸𝜙(𝑥)),𝑑𝑥) (2)

here the first term denotes the signal conversion loss, and 𝐿𝑟 is
omputed with MAE, 𝑝𝑑𝑎𝑡𝑎 denotes the unknown joint distribution of 𝑋
𝑌 . The second term denotes the classification loss w.r.t the domain

lassifier, and 𝐿𝑑 is computed with softmax loss, 𝑑𝑥 denotes the one-hot
ncoding of the ground-truth domain label of sample—𝑥. Hyperpa-
ameter 𝜆 trade off the weight of the two terms. Then, autoencoder
nd domain classifier are updated by optimizing the following two
uestions alternatively:

̂, �̂� = argmin
𝜙,𝜑

𝑙(𝜙,𝜑, �̂�), (3)

̂ = argmax
𝜋

𝑙(�̂�, �̂�, 𝜋), (4)

radient descent is used to solve (3) and (4), substitute Eq. (2) into (3)
nd (4), it is easily derived,

← 𝜋 − 𝛼𝜆 ⋅ ▽𝜋𝐿𝑑 , (5)
← 𝜑 − 𝛼 ⋅ ▽𝜑𝐿𝑟, (6)

← 𝜙 − 𝛼 ⋅ ▽𝜙(𝐿𝑟 − 𝜆 ⋅ 𝐿𝑑 ) (7)

t is clearly parameters 𝜋 and 𝜑 are updated regularly (i.e. along the
egative gradient direction w.r.t loss). While, for parameter 𝜙, it is
pdated along the gradient direction w.r.t the domain classifier loss 𝐿𝑑
nd along the negative gradient direction w.r.t the converted loss 𝐿𝑟,
hich implies the target: keep the latent representation (i.e. the output
f Encoder) informative as well as domain-invariant.
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Algorithm 1 RDAE

Input: 𝐷: data, {(𝑥𝑖, 𝑦𝑖)}; 𝐸𝜙: encoder; 𝐷𝜑: decoder; 𝐷𝜋 : domain
classifier; 𝐵: batchsize; 𝐾: number of inner iterations; 𝑚𝑎𝑥𝐸𝑝𝑜𝑐ℎ:
maximum number of epoches; 𝛼: learning rate; 𝜆: weight factor

Output: optimal model parameterized with 𝜑 and 𝜙
1: 𝑡 = 0;
2: initialize parameters 𝜙, 𝜑 and 𝜋;
3: repeat
4: 𝑡 ← 𝑡 + 1;
5: for each 𝑘 ∈ [1, 𝐾] do
6: sample {(𝑥𝑖, 𝑦𝑖)}𝐵𝑖=1 from dataset 𝐷;
7: compute latent code {𝑧𝑖}𝐵𝑖=1: 𝑧

𝑖 = 𝐸𝜙(𝑥𝑖);
8: compute output of domain classifier {𝑑𝑥𝑖}𝐵𝑖=1: 𝑑𝑥𝑖 = 𝐷𝜋 (𝑧𝑖);
9: compute gradient w.r.t 𝜋: 𝑔𝜋 ← ▽𝜋 1

𝐵
∑𝐵

𝑖=1 𝐿𝑑 (𝑑𝑥𝑖 , 𝑑𝑥𝑖 );
0: update domain classifier: 𝜋 ← 𝜋 − 𝛼 ⋅ 𝑔𝜋 ;

11: end for
12: sample {(𝑥𝑖, 𝑦𝑖)}𝐵𝑖=1 from dataset 𝐷;
13: compute latent code {𝑧𝑖}𝐵𝑖=1: 𝑧

𝑖 = 𝐸𝜙(𝑥𝑖);
14: compute output of domain classifier {𝑑𝑥𝑖}𝐵𝑖=1: 𝑑𝑥𝑖 = 𝐷𝜋 (𝑧𝑖);
5: compute output of decoder {�̂�𝑖}𝐵𝑖=1: �̂�

𝑖 = 𝐷𝜑(𝑧𝑖);
6: compute gradient w.r.t 𝜙: 𝑔𝜙 ←

▽𝜙 1
𝐵
∑𝐵

𝑖=1 𝐿𝑟(�̂�𝑖, 𝑦𝑖) − 𝜆 ⋅ 𝐿𝑑 (𝑑𝑥𝑖 , 𝑑𝑥𝑖 );
7: update encoder: 𝜙 ← 𝜙 − 𝛼 ⋅ 𝑔𝜙;

18: compute gradient w.r.t 𝜑: 𝑔𝜑 ← ▽𝜑 1
𝐵
∑𝐵

𝑖=1 𝐿𝑟(�̂�𝑖, 𝑦𝑖);
9: update decoder: 𝜑 ← 𝜑 − 𝛼 ⋅ 𝑔𝜑;
0: until converged or 𝑡 > 𝑚𝑎𝑥𝐸𝑝𝑜𝑐ℎ

3.4. Calibration

Calibration [14,16] is an additional & optional step of the proposed
RDAE. Although the established health-care standards does not allow
calibration of test device during evaluation process [14,30]. However,
in actual application, individual’s BP related data is measured and
recorded continuously, providing a possibility of calibrating the gen-
eral model using individual’s historical data, as Fig. 1 shows. Note
that in transfer learning, calibration (also known as fine-tuning) is a
technique to adapt the learning model in the source domain to the
target domain [48]. In this study, to validate the calibration step, for
each test record, the first quarter data (8 samples) of the record is used
to calibrate the general model. After calibration, the refined model is
tested using the remaining data of the record.

3.5. What is a good evaluation procedure?

Currently, there are three evaluation procedures: (1) Leave-one-
out [17]: Each record/subject is used to test the model trained on
the remaining records; (2) Splitting at record level [14,16,34]: Train,
validation and test set are split at record level based on a certain
proportion; (3) Splitting at sample level [15,18]: Train, validation and
test set are split at the final sample set. Generally, (1) could make the
most of data to train the model and is suitable when the number of
records is small or not very large; (2) is suitable when the number
of records is large, whereas, individual differences are significant,
especially in ICU patients, (2) could not adequately ensure the three
subsets are independent identity distribution (I.I.D., an acquiescent
assumption for evaluation in ML) [50]; (3) is at risk of data leakage,
based on the consideration that the physiological signal of an individual
is highly regular and will not change significantly in a short time,
random division will cause there is sample similar to training set in
test set. Thereby, the seemingly ‘good’ result does not objectively reflect
the generalization ability of model actually. Generally, both (2) and (3)
will cause biased results. An intuitive comparison of these procedures
is best viewed in Fig. 4(b).

A good evaluate procedure should ensure the split sets are I.I.D,
as well as avoid data leakage. Taking the significant differences of
5

Fig. 4. Data preparation and evaluation procedure. (a) Data preparation process; (b) A
demo visualizing the differences between evaluation procedures (2) and (3). Suppose
there are nine records (records 1 ∼ 3, 4 ∼ 6, 7 ∼ 9 belong to class C1, C2 and C3,
respectively). (2) will cause data of a record appears simultaneously in train., val. and
test set, resulting in overestimation of the generalizability of model. (3) avoided this
problem by splitting at record level, which may leads to another question—the BP
distribution difference among train., val., and test set is too large (e.g. the final train,
val. and test sets belong to C1, C2, C3, respectively). The proposed eval. procedure is
similar to (3) and tackle the problem of which by splitting on each class of records
instead of on the total records. (1) could be viewed as a special case of (3) that only
a record contained in the test set in each evaluation.

blood pressure level between different individuals, we proposed a new
division criterion for evaluation: Firstly, categorize records into three
classes (Normal, Prehypertension, Hypertension) based on BP value.
Secondly, divide records of each class into train, validation and test set
based on a certain proportion (6:2:2). Finally, the train, validation and
test set of each class are combined to form the final train, validation and
test set, respectively. Here, what we want to emphasize is that different
evaluation procedures lead to significant differences in the final results
even for the same dataset and algorithms [8,16,51].

4. Experiment

4.1. Data prepare

The Cuff-less blood pressure estimation dataset [https://archive.ics.
uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation], which is
originally derived from the MIMIC II database [52], is used. This ver-
sion of data has been widely used in related studies [3,13,16,20,34,39],
because of its ease of use. In UCI_BP, totally 12 000 subject records
were hierarchically stored in four .mat files, where each record contains
synchronized PPG, ECG and ABP signals with duration from 8 to 592 s.
Fig. 4(a) presents the data preparation process. In this study, the record
that with duration surpass 320 s were selected (3958 records reserved).
Then, each record is divided into signal fragments (PPG signal and
synchronized ABP signal) with length 10 s. Next, the final dataset is
established, after several steps—preprocess, exclude abnormal segments,
divide and normalization were executed, which is described as follows.
Preprocess
PPG fragment : Each PPG fragment is firstly preprocessed using 4-order
bandpass filter with cut-off frequencies [0.5 Hz, 8 Hz], and then to

https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
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Table 1
Network configurations of RDAE.

Module Block Layer Kernela Outputa Stride/Factor Pad. Activ. Drop rate.

Conv. AE

— Input — (𝐿,1) — — —

block-1 Conv1D (15, 𝑏) (𝐿, 𝑏) 1/ same ReLU —
Conv1D (15, 𝑏) (𝐿/5, 𝑏) 5/ same ReLU —

block-2
Conv1D (15, 2𝑏) (𝐿/5, 𝑏) 1/ same ReLU —
Conv1D (15, 2𝑏) (𝐿/25, 2𝑏) 5/ same ReLU —
Dropout — — — — — 0.1

block-3
Conv1D (15, 4𝑏) (𝐿/25, 4𝑏) 1/ same ReLU —
Conv1D (15, 4𝑏) (𝐿/50, 4𝑏) 2/ same ReLU —
Dropout — — — — — 0.1

block-4
Flatten — 𝐿 x 32/50 — — — —
Dropout — — — — — 0.1
Dense — 32 — — ReLU —

— Dense — 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 — — None —

block-4’

Dense — 32 — — ReLU —
Dense — 𝐿x32/50 — — ReLU —
Dropout — — — — — 0.1
Reshape — (𝐿/50, 4𝑏) — — — —

block-3’
Conv1D (15,4𝑏) (𝐿/50, 4𝑏) 1/ same ReLU —
UpSample — (𝐿/25, 4𝑏) /2 — — —
Dropout — — — — — 0.1

block-2’
Conv1D (15, 2𝑏) (𝐿/25, 2𝑏) 1/ same ReLU —
UpSample — (𝐿/5, 2𝑏) /5 — — —
Dropout — — — — — 0.1

block-1’
Conv1D (15, 𝑏) (𝐿/5, 𝑏) 1/ same ReLU —
UpSample — (𝐿, 𝑏) /5 — — —
Conv1D (15, 1) (𝐿,1) 1/ same None —

Domain cls. —b

Dense — 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 — — None —
BatchNorm — — — — ReLU —
Dense — 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 — — None —
BatchNorm — — — — ReLU —
Dense — #records — — None —

a(𝑎, 𝑏), 𝑎 denotes kernel size (in ‘Kernel’ column) or output dimension (in ‘Output’ column), and 𝑏 denotes the number of channels.
b ’—’ denotes the corresponding attribute is not applicable to the layer, ‘None’ denotes linear activation.
Table 2
Data exclusion criteria. ABP segments satisfying one of the following conditions were excluded.

ABP signal Featuresa

SQI [49] SBP DBP len(SBP) std(𝛥𝑝𝑥) std(𝛥SBP) 𝛥SBP

Abnormality condition < 0 ≥ 180∨ < 90 ≥ 120∨ < 60 ≤5 ≥20 ≥20 ∃, > 10

alen(SBP) denotes the number of cycles in a segment; std(𝛥px) denotes the standard deviation of all time intervals between
adjacent cycles in a segment; std(𝛥SBP) denotes the standard deviation of all peak values in a segment; 𝛥SBP denotes difference
between any adjacent peak values in a segment.
T
C
o

orrect the outliers, based on peak detection, the cycle-𝑠 with peak
alue out of the range [𝜇−2𝛿, 𝜇+2𝛿] is clipped proportionally to ensure
𝑎𝑥(𝑠) = 𝜇+2𝛿 (when 𝑠 contains crest), 𝑚𝑖𝑛(𝑠) = 𝜇−2𝛿 (when 𝑠 contains

rough), where 𝜇 and 𝛿 denote mean and standard deviation of peak
alues or trough values in the fragment. Fig. 5(a) presents two cases.
BP fragment : Each ABP fragment is firstly preprocessed with Savitzky–
olay filter [33], and then is split into multiple cycles based on peak
etection. Last, SBP and DBP are computed as average value of mini-
um values and maximum values of these cycles, MBP is computed as
BP=(2 ⋅ DBP+SBP)/3. Fig. 5(b) presents two cases.
xclude abnormal segments: Because MIMIC is a critical care medicine
ataset, there are severe noise contained in the signal. For each PPG
ragment and the synchronized ABP signal, if one condition in Table 2 is
atisfied, it was excluded, and Fig. 5(c) presents several excluded signal
ragments. It is worth mentioning that the exclusion criterion is mainly
or ABP signal, because we want to reserve as much variations among
PG segments as possible, in an attempt to improve the generalizability
f model.
ivide: After abnormal segments were excluded, there are 1227 records
6

eserved that within each contains up to 32 samples. We firstly divide
able 3
ategorization rules. Records are categorized into three classes [51] based on the range
f BP values.
Sym. Category Condition #Record

C1 Normal SBP < 90 or DBP < 60 or
(SBP ∈ [90,120) and DBP ∈ [60,80)) 317

C2 Prehypertension SBP ∈ [120,140) and DBP ∈ [80,90) 613
C3 Hypertension SBP ≥ 140 or DBP ≥ 90 297

these records into three categories according Table 3 [51]. Then, train,
validation and test records were divided from each category according
6:2:2. Last, after combine subsets from the three categories, the final
dataset is acquired, with #train, #validation and #test records 739,
244, 244, respectively. We declare that all samples of each record only
appear in train set or validation set or test set. Each record contains 32
samples, summing up totally 39 264 samples, and Fig. 6 presents the
distribution of BP values of these samples. The sampling frequency is
125 Hz, each sample contains a preprocessed raw PPG signal with 625
points, the corresponding raw ABP signal and BP values (include SBP,
DBP and MBP).
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Fig. 5. Preprocess results and excluded abnormal segments. (a) two cases of PPG segments; (b) two cases of ABP segments; (c) four cases of excluded abnormal ABP segments.
a
o

Normalization: To remove the differences of PPG signals among dif-
ferent individuals, the raw signal has to be normalized [17,22,33,43].
Z-Score normalizer is used here. Concretely, first, fitting a normalizer
on PPG segments of the training records, denote the fitted normalizer
as (𝜇PPG

𝑡𝑟𝑎𝑖𝑛, 𝛿
2,PPG
𝑡𝑟𝑎𝑖𝑛 ). Then, apply the normalizer to each PPG segments of

training, validation and test records, respectively, i.e.

𝑥𝑛𝑜𝑟𝑚 = (𝑥 − 𝜇PPG
𝑡𝑟𝑎𝑖𝑛)∕𝛿

PPG
𝑡𝑟𝑎𝑖𝑛 (8)

where 𝑥 denotes any PPG segment, and 𝑥𝑛𝑜𝑟𝑚 the corresponding normal-
ized segment. ABP signal is normalized in a similar way. Additionally,
in the inference/test stage, the output of the model—�̂� has to be
reprojected to the original space through reversed normalization as
follows,

�̂� = �̂� ⋅ 𝛿ABP𝑡𝑟𝑎𝑖𝑛 + 𝜇ABP
𝑡𝑟𝑎𝑖𝑛 (9)

where (𝜇ABP
𝑡𝑟𝑎𝑖𝑛, 𝛿

2,ABP
𝑡𝑟𝑎𝑖𝑛 ) denotes the normalizer fitted on ABP segments of

he training records.

.2. Implementation details

Weights of all model layers were initialized based on ‘glorot-
niform’ initializer, 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 is set to 5 by default. To improve
fficiency, 𝐾 (ref Algorithm 1) is set to 1. Batchsize 𝐵 equals 128, and
ach batch is comprised of samples of 4 records. Hyperparameter—
is set to 0.01 in default. Adam optimizer is used to solve model,

earning rate is initially set to 0.0005 and is decayed by 0.01 every
50 batches. The maximum training epochs is set to 100. Additionally,
or the calibration step, considering that there are only 8 samples,
tochastic gradient descent is used to optimize the general model, and
he training epochs is set to 20. All methods were implemented based
n Python, and DL methods were implemented based on tensorflow
ramework with version 2.1.0 and all experiments were executed on
VIDIA RTX2080Ti with 11 GiB memory. The code will be released on
ithub soon.

.3. Evaluation metrics

To evaluate the performance of the proposed method, three classical
etrics [10,14,16], i.e. mean absolute error (MAE), mean error (ME)

nd standard deviation (SD), were used, which is formulated as below,

𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑝𝑖 − �̂�𝑖|, (10)

𝑀𝐸 = 1
𝑁

𝑁
∑

𝑖=1
𝑝𝑖 − �̂�𝑖, (11)

𝑆𝐷 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑝𝑖 − �̂�𝑖)2 (12)

where 𝑁 denotes the number of test segments (samples), 𝑝𝑖 and �̂�𝑖
enote the ground-truth BP value and predicted BP value, respectively.
7

f

4.4. Evaluation procedure

The dataset is divided into training records, validation records, and
test records according to the method described in Section 4.1. The
model is trained iteratively on the training records until up to the
maximum #epochs, and the performance of the model is dynamically
monitored and evaluated on the validation set after each epoch. Then,
the model with the lowest MAE on validation set is selected as the final
prediction model. Last, the predictive model is evaluated on the test
records, and experiments were repeated ten times by generating ten
different random splitting of records to get reliable results.

5. Results

5.1. Predicted waveform analysis

Fig. 7 presents the conversion results of RDAE on five waveforms
with different characteristics before (Fig. 7(a)) and after (Fig. 7(b)) cal-
ibration. The first picture (pic.) represents the case with clear dicrotic
notch. The second pic. represents the case with-no clear dicrotic notch.
The third pic. represents the case with Hypotension. The fourth pic.
represents the case with obviously abnormal cycle exists. The fifth pic.
represents the case with severe fluctuation in blood pressure. It can be
seen that the converted ABP seg. (i.e. ABP𝑝𝑟𝑒𝑑.) fitted the ground-truth
ABP seg. (i.e. ABP𝑔𝑡) well with cycle consistency in each heartbeat,
especially at the position of beginning, main crest and dicrotic notch
peak in each cycle. Furthermore, the conversion result of RDAE shows
a certain degree of robustness on abnormal seg. as the last two columns
in Fig. 7 shows, which, we argue, is owned to the following two
points: (𝑖) in the data preparation stage, the exclusion criterion of
abnormal seg. is mainly for ABP seg. Therefore, the variations among
PPG segments were preserved as much as possible; (𝑖𝑖) in the training
process, in addition to minimizing the conversion error, RDAE attempts
to minimize the distinction among latent representations of different
domains. Last, after additional calibration step to RDAE, the quality
of converted ABP seg. has a certain degree of improvement. On the
other hand, there is a significant difference between the predicted and
ground-truth waveforms both in the case of hypotension and the case
with severe BP fluctuation, and the possible cause includes: (𝑖) it is
possible that some PPG segments of two different individuals are very
similar, but the corresponding ABP waveforms are very different [8].
Then, if one record is included in the training set and another record is
included in the test set, the predictive result will be very poor; (𝑖𝑖) there
re few wave pairs with certain characteristic (such as large fluctuation
f blood pressure in a short time) in the training set, which cannot be
ully used for training well.
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Fig. 6. Distribution of blood pressure. Left: SBP; Middle: DBP; Right: MBP.
Fig. 7. Comparison results between predicted ABP waveform (on the test set) and ground-truth ABP waveform based on the model—RDAE. (a) with calibration; (b) no calibration.
Each row contains 5 cases (from left to right): (𝑖) with clear dicrotic notch, (𝑖𝑖) with-no clear dicrotic notch, (𝑖𝑖𝑖) Hypotension, (𝑖𝑣) with obviously abnormal cycle, (𝑣) with greatly
fluctuated blood pressure.
5.2. Ablation study

To validate the effectiveness of each component of RDAE, we de-
signed the following five approaches:

• DAE (pool): denotes all the stride-convolution in DAE is replaced
with conventional pooling operation.

• DAE: denotes RDAE with-no domain adversarial training.
• RDAE: denotes the proposed methods withno calibration.
• DAE (with calibration): denotes DAE with additional calibration.
• RDAE (with calibration): denotes RDAE with additional calibra-

tion (i.e. partial data of target domain is used to retrain the
pretrained (general) model.

Fig. 8 presents the loss & performance (MAE) variation in the train-
ing process. In Fig. 8(a), it can be seen that the train loss, validation
loss and test loss of RDAE drops quickly in the first 20 epochs and then
gradually converge until it stabilizes after 100-th epochs. In addition,
the variation of test loss (i.e. MAE) w.r.t the three blood pressure
prediction tasks (i.e. SBP, DBP and MBP) in the training process were
visualized in Fig. 8(b). Since SBP and DBP correspond to the peak and
valley values of ABP waveform, respectively, the quality of converted
ABP seg. determines the accuracy of blood pressure prediction to a
certain extent. As Fig. 8(b) shows, although not directly regressing
blood pressure as training targets, owning to the gradually improved
quality of converted ABP seg., the metric—MAE w.r.t the three tasks
drops consistently, of which the trend was similar to that of loss in
Fig. 7(a) in the training process.

Table 4 presents the numerical comparison results of the mentioned
five approaches, which use exactly the same configuration (the addi-
tional parameter—𝜆 in RDAE is set to 0.01) and are trained and tested
using the identical train set and test set, respectively. It is clearly that
the prediction performance (i.e. MAE, the smaller, the better) improves
steadily from top to down. Especially, the comparison of train loss
8

and test loss among RDAE, DAE, DAE (pool) is presented in Fig. 8(c),
it can be seen that the conversion loss of DAE drops quickly than
that of DAE (pool), the conversion loss of RDAE drops slightly quick
than DAE, although not particularly obvious due to large loss range.
In particular, the conversion loss is only a term in the loss function
of RDAE. Therefore, we draw conclusions: 𝑖) utilization of the fully-
convolution block, instead of the regular ‘‘convolution+pooling’’ block,
in building DAE improved the performance (DAE vs. DAE (pool));
(𝑖𝑖) inclusion of domain adversarial training helps RDAE to get better
generalization ability than DAE (RDAE vs. DAE), and allows the general
model better adapt to new individuals when using the same number of
target samples for fine-tuning (RDAE (with calibration) vs. DAE (with
calibration)). Especially note that the inclusion of domain adversarial
training strategy makes the standard deviation of the three metrics
(i.e. MAE, ME, STD) get smaller, which proven the effect of domain
adversarial training in improving model’s robustness; (𝑖𝑖𝑖) additional
calibration (i.e. personalization [16]) step further improves the perfor-
mance of RDAE, especially in SBP prediction (RDAE (with calibration)
vs. RDAE).

5.3. Comparison with the AAMI standard

Table 5 presents the comparison results of RDAE with the AAMI
standard [53]. The test device satisfying the AAMI standard if its
precision must not differ from the mercury standard by a mean error
of ≤ 5 mmHg or a standard deviation of ≤ 8 mmHg. According to
the AAMI standard, almost all of the proposed RDAE with or without
calibration satisfy the AAMI standard except the SBP prediction of
RDAE, on which the metric—ME ≤ 5 mmHg, while the metric—STD
slightly bigger than 8 mmHg.
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Fig. 8. Loss/Performance curve variation in the training process, with the maximum #Epochs is set to 100, 𝑏 equals 32. (a) train/val./test loss of RDAE; (b) test performance
(i.e. MAE) of RDAE w.r.t the SBP, DBP and MBP prediction; (c) train/test loss comparisons among RDAE, DAE and DAE (pool).

Fig. 9. Correlation and Bland–Altman plots of the proposed method—RDAE (no calibration) on SBP, DBP and MBP predictions. (a) ∼ (c) Bland–Altman plots on SBP, DBP and
MBP prediction, respectively; (d) ∼ (f) Correlation plots on SBP, DBP and MBP prediction, respectively. The blue solid line and the red dotted line indicate the fitted line and the
reference line, respectively.

Fig. 10. Correlation and Bland–Altman plots of the proposed method—RDAE (with calibration) on SBP, DBP and MBP predictions. (a) ∼ (c) Bland–Altman plots on SBP, DBP and
MBP prediction, respectively; (d) ∼ (f) Correlation plots on SBP, DBP and MBP prediction, respectively. The blue solid line and the red dotted line indicate the fitted line and the
reference line, respectively.
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Table 4
Results of the proposed methods—RDAE and RDAE (with calibration). The result is
presented as the average value, with standard errors in parentheses.

Method Task Metrics (unit: mmHg)

MAE ME STD

DAE (pool)
SBP 9.568(0.801) 2.090(2.469) 12.278(0.871)
DBP 4.865(0.234) −0.581(0.807) 6.477(0.342)
MBP 4.699(0.170) 0.309(1.150) 6.204(0.218)

DAE
SBP 8.082(0.538) 1.024(1.398) 10.559(0.682)
DBP 4.179(0.485) −0.322(0.858) 5.569(0.574)
MBP 3.903(0.315) 0.126(0.795) 5.210(0.390)

RDAE
SBP 7.945(0.389) 1.447(0.877) 10.372(0.532)
DBP 4.114(0.237) −0.417(0.641) 5.504(0.396)
MBP 3.834(0.242) 0.204(0.436) 5.130(0.349)

DAE (with
calibration)

SBP 5.734(0.265) 1.686(0.431) 7.009(0.335)
DBP 3.175(0.255) −1.328(0.256) 3.787(0.272)
MBP 2.979(0.147) −0.323(0.257) 3.522(0.168)

RDAE (with
calibration)

SBP 5.424(0.164) 1.648(0.319) 6.640(0.190)
DBP 3.144(0.162) −1.280(0.208) 3.740(0.172)
MBP 2.885(0.147) −0.304(0.181) 3.412(0.173)

Table 5
Evaluation of RDAE and RDAE (with calibration) with the AAMI standard.

Method/
Standard

Task Metrics (unit: mmHg) #Subject
(test)

Pass

ME STD

RDAE
SBP 1.447(0.877) 10.372(0.532)

244
No

DBP −0.417(0.641) 5.504(0.396) Yes
MBP 0.204(0.436) 5.130(0.349) Yes

RDAE (with
calibration)

SBP 1.648(0.319) 6.640(0.190)
224

Yes
DBP −1.280(0.208) 3.740(0.172) Yes
MBP −0.304(0.181) 3.412(0.173) Yes

AAMI — ≤ 5 ≤ 8 ≥ 85 —

5.4. Comparison with the BHS standard

Table 6 presents the comparison results of RDAE with BHS stan-
dard [54]. The test device achieves Grade A, Grade B or Grade C if
the corresponding condition is satisfied. The criterion of a device full
filling the BHS standard is that it must achieve at least Grade B for SBP
and DBP prediction. According to the BHS grading criterion, the no
calibration version of RDAE achieves Grade C, Grade A and Grade A in
the SBP, DBP and MBP prediction task, respectively. After calibration,
the calibration version of RDAE achieves Grade B, Grade A and Grade
A in the SBP, DBP and MBP prediction task, respectively. In conclusion,
the proposed RDAE satisfies the BHS standard except the no calibration
version of RDAE in SBP prediction.

To visualize the fitness of predicted BP values to ground-truth BP
values, Fig. 9 presents the Bland–Altman plot and Correlation plot of
uncalibrated RDAE in SBP, DBP and MBP prediction. As Fig. 9(a)∼(c)
shows, the Bland–Altman plot shows that most of the estimated points
for SBP, DBP and MBP prediction were within 0.51 ± 22.74,
10

p

0.96 ± 12.06, −0.47 ± 11.92 limits. Therefore, BP estimated by the un-
calibrated RDAE has the ability of approximating ground-truth BP. Af-
ter calibration, the limits further narrowed to 1.61 ± 15.65,
−1.7 ± 10.06, −0.6 ± 8.44 for SBP, DBP and MBP prediction,
respectively, as Fig. 10(a)∼(c) shows. As for Correlation plot,
Fig. 9(d)∼(f) clearly indicates that there is a strong linear relationship
between the estimated BP and the ground-truth BP for the three
prediction tasks. While, the fitted line (blue solid line) has a certain
angle difference to the reference line 𝑦 = 𝑥 + 𝑏 (red dotted line).
Concretely, for all the three tasks, the BP of the samples with relatively
low blood pressure was overestimated, and the BP of the samples with
relatively high blood pressure was underestimated. After calibration,
this linear relationship is closer to the reference line. As Fig. 10(d)∼(f)
shows, for all the three tasks, the angle between the fitted line and the
reference line is significantly reduced, which means the estimated error
is further reduced.

5.5. Analysis of latent representation

To further analyze the effect of domain adversarial training on the
latent representation, we try to visualize the latent representation of
training set and test set based on RDAE and DAE, respectively. Fig. 11
presents the result. It can be seen that the latent representation of
train set and test set based on RDAE seems more diverse and disorder,
and with more irregular boundaries than that based on DAE. Because
of the large number of domains (records), it is hard for the eyes to
distinguish this subtle difference. Therefore, the optimization objective
of clustering [55] is employed to quantify this difference. Concretely,
the domain label of each latent representation is served as its belonging
cluster index, then the objective is computed as follows,

𝑑𝑖𝑠𝑡 = 1
𝑁

𝑁𝑑
∑

𝑖=1

∑

𝑥∈𝑑𝑖

‖𝑥 − 𝜇𝑑𝑖‖
2 (13)

here 𝑁=
∑𝑁𝑑

𝑖=1 |𝑑𝑖| , 𝜇𝑑𝑖=
1

|𝑑𝑖 |
∑

𝑥∈𝑑𝑖 𝑥,𝑁𝑑 , denotes the number of domains
records), 𝑑𝑖 denotes the set composed of the t-SNE [56] mapping of
he latent representations in 𝑖th domain. As expected, on the train set,
𝑖𝑠𝑡𝑅𝐷𝐴𝐸=1270.058> 𝑑𝑖𝑠𝑡𝐷𝐴𝐸=1161.077, on the test set,
𝑖𝑠𝑡𝑅𝐷𝐴𝐸=1331.232 > 𝑑𝑖𝑠𝑡𝐷𝐴𝐸=1020.656, which reflects that RDAE
as the ability of confusing the latent represents of different do-
ains to a certain extent, in other words, makes the learned latent

epresentations more general among different domains.

.6. Effect of hyperparameter

Hyperparameter 𝜆 controls the weight of domain classifier loss, to
nvestigate its effect on the performance (MAE) of RDAE, RDAE is
ested with different 𝜆 values—0.001, 0.01, 0.1, 1, 5, 10, respectively.
ll experiments are tested under the same configuration (except 𝜆
alue) and use the identical training, validation and test sets. As the
alue of 𝜆 keeps increasing, the performance is gradually improved.
hereas, there are increasing possibility of cases that the loss does not

onverge, in the training process, resulting in a higher mean MAE with
arge standard deviation, as Fig. 12 shows. By trading off stability and

erformance, 𝜆 is set to 0.01 in all experiment.
Table 6
Evaluation of RDAE and RDAE (with calibration) with the BHS standard.

Method/ Standard Task Proportion of the subjects with MAE satisfying: Grade

≤5 mmHg ≤10 mmHg ≤15 mmHg

RDAE
SBP 46.3%(1.9%) 72.1%(2.0%) 85.2%(1.4%) C
DBP 73.2%(1.8%) 91.9%(0.9%) 97.0%(0.8%) A
MBP 76.0%(1.8%) 92.3%(1.0%) 96.9%(0.7%) A

RDAE (with calibration)
SBP 58.5%(1.7%) 85.6%(0.8%) 95.0%(0.5%) B
DBP 81.5%(1.2%) 96.4%(0.7%) 99.0%(0.3%) A
MBP 83.6%(1.5%) 97.5%(0.8%) 99.6%(0.2%) A

BHS —
60% 85% 95% Grade A
50% 75% 90% Grade B
40% 65% 85% Grade C
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Fig. 11. Comparison of latent representations based on t-SNE [56]. (a) Latent representations of RDAE (left) vs. DAE (right) on training set; (b) Latent representations of RDAE
(left) vs. DAE (right) on test set.
Fig. 12. Effect of hyperparameters—𝜆 to performance (MAE).

Table 7
Results of RDAE with different configuration of 𝑏.

Method Config.(𝑏) MAE (unit: mmHg) #Param.

SBP DBP MBP

RDAE

8 10.877(1.068) 5.645(0.353) 5.324(0.391) 0.42M
16 8.844(0.439) 4.669(0.392) 4.347(0.316) 1.63M
32(default) 7.945(0.389) 4.114(0.237) 3.834(0.242) 6.49M
64 7.700(0.537) 3.930(0.376) 3.707(0.218) 25.91M

5.7. RDAE with different configurations

In the designed convolution-based RDAE, the number of convolu-
tion kernels and the dimensions of latent code representation (i.e. the
width of the ‘bottleneck’ layer of MLP) are two key parameters that
affect the performance. We experimentally verified the effect of these
parameters on model’s accuracy and complexity, which provide a
flexible choices for practical model configuration on resource-limited
hardware [57].

Table 7 presents the comparison results of RDAE with different base
(𝑏) of the number of convolution kernels. With the increase of 𝑏, the
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Table 8
Results of RDAE with different configuration of 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚.

Method Config.
(𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚)

MAE (unit: mmHg) #Param.

SBP DBP MBP

RDAE

3 10.050(0.619) 5.166(0.367) 4.683(0.283) 6.488M
5(default) 7.945(0.389) 4.114(0.237) 3.834(0.242) 6.490M
7 7.087(0.438) 3.881(0.336) 3.593(0.246) 6.492M
9 6.664(0.413) 3.662(0.338) 3.484(0.262) 6.494M
11 6.479(0.561) 3.512(0.226) 3.394(0.222) 6.496M
13 6.483(0.397) 3.509(0.287) 3.400(0.237) 6.498M

performance of RDAE to predict SBP, DBP and MBP improved gradu-
ally, while, the number of parameters required increases exponentially.
Especially, when 𝑏 surpasses 32, the improvement in performance
compared to the increased storage overhead is almost negligible. By
trading off the performance and model size (complexity), 𝑏 is set to 32
in all the experiments.

Table 8 presents the comparison results of RDAE with different
𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 values. It revealed that with the increase of 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚, the
performance is gradually improved with very little increase in the
number of parameters. 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 is set to 5 in all the experiments. In
conclusion, the effect of 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 to performance is more significant
than that of 𝑏 to performance, our suggestion is: parameter 𝑏 should not
be too large (32 seems the best trade-off) when resource is limited, pa-
rameters 𝑏 and 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 could be adjusted larger in resource sufficient
platform.

5.8. Comparison with other systems

Table 9 presents the comparison results of the proposed RDAE (in-
cluding calibrated version and uncalibrated version) with other meth-
ods. Since a single metric—ME cannot evaluate the performance prop-
erly, and metric—STD is similar to MAE to a certain extent except is
more sensitive to abnormal values. Therefore, metric—MAE is used
to evaluate the BP prediction performance of these approaches. In
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Table 9
Comparison of RDAE and RDAE (with calibration) with other systems.

Split
criterion

Cal. Method Dataset #Record used #Sample Signals Input MAE (mmHg) #Param.

SBP DBP MBP

split at
record level

No

RDAE (proposed) MIMIC II 1227 39264 PPG, ABP Raw signal 7.945 4.114 3.834 6.490M
Baek [16] MIMIC II 1912 1912 PPG,ECG,ABP Raw signal 9.30 5.12 – 17.596M
Kachuee [14] MIMIC II 3663 3663 PPG,ECG,ABP Features 11.17 5.35 5.92 –
Thambiraj [34] MIMIC II 3801 3801 PPG,ECG,ABP Features 9.00 5.48 3.2 –
Eom [19] Private 15 Unknown PPG,ECG,BCG Raw signal 9.70 5.79 – 10.648M
Slapnicar [8] MIMIC III 510 700h PPG,ECG,ABP Raw signal 15.41 12.38 – 3.523M

Yes

RDAE (proposed) MIMIC II 1227 39264 PPG, ABP Raw signal 5.424 3.144 2.885 6.490M
Baek [16] MIMIC II 1912 1912 PPG,ECG,ABP Raw signal 5.32 3.38 – 17.596M
Kachuee [14] MIMIC II 3663 3663 PPG,ECG,ABP Features 8.21 4.31 – –
Zhang [17]a Private 11 Unknown PPG,ABP Raw signal 6.79a 4.48a – 0.045M
Eom [19] Private 15 Unknown PPG, ECG, BCG Raw signal 4.06 3.33 – 10.648M
Slapnicar [8] MIMIC III 510 700h PPG,ECG,ABP Raw signal 9.43 6.88 – 3.523M

split at
sample
levelb

—

Mousavi [30] MIMIC II 1323 1323 PPG,ECG,ABP Whole based feature 3.97 2.43 2.61 –
Su [18] Private, healthy records 84 10 min /record PPG,ECG,ABP Features 3.73 2.43 – 2.790M
Ibtehaz [15] MIMIC II unknown 127260 PPG, ABP Raw signal 5.73 3.45 2.31 39.967M
Sharifi [3] MIMIC II 3663 Unknown PPG,ECG,ABP Raw signal 7.83c 4.86c 3.63c –

aDenotes Root mean square error (RMSE).
bNote that there is a risk of data leakage when splitting train/val./test sets at sample level, resulting in abnormally high prediction accuracy, because data of one record will
appears simultaneous in train set and test set.
cNote that the author uses a different method of training set and test set partition from all other studies, [3] was categorized into ’split at sample level’ because data of a record
always appeared simultaneously in training set and test set.
addition, the split criterion and whether or not has calibration are key
important factors that relates to the performance [8,16]. Specifically,
split at record level will result in exceptionally high accuracy, because
this splitting criterion causes highly similar samples to appear in both
the training set and test set, although there are few studies have clearly
pointed out this problem. For fairness, these approaches (with different
versions) are first categorized and then are compared.

From Table 9, the performance of the approaches with split at record
level seems inferior to the approaches with split at sample level, whereas,
this does not objectively reflect the generalization ability of a model,
because the latter is at the risk of data leakage in the evaluation
process. For the uncalibrated version, all approaches perform relatively
poorly in predicting SBP. Nevertheless, the proposed method—RDAE
can still reach 7.945 mmHg MAE in SBP prediction, which is obviously
better than other approaches. After calibration, the mean absolute
error of RDAE in SBP, DBP and MBP prediction improve 2.521 mmHg,
0.970 mmHg, 0.949 mmHg, respectively. Although the result of Baek
et al. [16] method is slightly better than our calibrated RDAE in SBP
prediction, however, they use half of test samples to calibrate the
model, while we use only a quarter of test samples (8 samples) to
calibrate the general model. Specifically, as for DL methods, the model
size of RDAE is slightly larger than Slapnicar et al. [8] method, and far
less than Baek et al. [16] method, Eom et al. [19] method and Ibtehaz
et al. [15] method. In addition, in general, for the studies [17–19] based
on self-collected data from healthy individuals or outpatients, of which
the result is better than that based on intensive care patients, a simple
prediction algorithm [37], or DL method with small size [17] is enough.
In conclusion, both the uncalibrated version and calibrated version of
RDAE is competitive to other methods in BP prediction accuracy and
model size, although the accurate BP prediction is only a by-product of
high-quality converted ABP signal.

5.9. Discussion on system performance

Although the proposed method has achieved competitive results
compared to other studies that using the same data source, the per-
formance of the method, as revealed in Sections 5.3 and 5.4 , is
still some distance (in SBP prediction) from the highest level of the
BHS & AAMI standards. Note that the dataset used is collected from
ICU patients, where the health status of the participants were more
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complex/diversified—suffer from adverse events (bleeding, in surgery,
etc.), resulted in more fluctuations in physiological state. Therefore,
the data itself is more challenging than that of healthy individu-
als and outpatients. Concretely, (1) PPG and ABP waveforms of an
individual corrupted by noise more severe and fluctuated more dur-
ing the data collection period; (2) the differences among different
individuals are more diverse and significant; Term (1) means the un-
known relation between PPG and ABP signals is more complex. Term
(2) means the general trained model has to be calibrated/fine-tuned
to adapt to the test individual. As revealed by experiments, firstly,
multi-domain adversarial training helps improving the predictive per-
formance through learning domain-invariant features among multiple
training domains/individuals. Secondly, after calibrating the general
model using 80 s data of a test individual, the performance is improved
significantly.

6. Interpretation of the method for PPG signal to ABP waveform
conversion

Since the PPG and ABP signals have the same incentive source—
heart [7], when blood flows from the brachial artery to the digital
artery, ABP and PPG is measured from the brachial artery and digital
artery, respectively [7,43]. Therefore, there exist a strong interconnec-
tion between the obtained PPG and ABP signal. Martínez et al. [7]
analyzed the similarities in time and frequency domains between PPG
and ABP signals, and the experimental results reveal that there has
a high morphology correlation between PPG and ABP waveforms for
normotensive, prehypertensive and hypertensive individuals. Hubner
et al. [23] clinically investigated the potential of PPG in detecting
a spontaneous pulse from the finger and other sensory organs, and
the analysis based on a qualitative visual description of similarities
between the frequency content of PPG and ABP waveform indicate that,
during normal, chest compressions and pauses states, PPG resemble
to ABP, and PPG signal at finger can indicate pulse presence at the
moment the heart resumes beating. Furtherly, Tusman et al. [58] exper-
imentally verified the feasibility of categorizing individual’s BP based
on the contour of the PPG signal, and the accuracy reached 98.4%
and 97.8% for diagnosing hypotension and hypertension, respectively.
Dash et al. [59] investigated the mutual conversion between PPG
waveform and ABP waveform. Based on the linear transfer function
(LTF) technique, they firstly fitted a model with ABP as input and PPG

as output, and then fitted an inverse model with PPG as input and
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Fig. 13. Visualization of the learned model for converting PPG signal to ABP waveform. (a) raw PPG segment; (b) learned weights of each model layer. There are totally 14
layers presented (including 6 conv. layers in encoder, 4 dense layers, 4 conv. layers in decoder). For convolution layer, the convolution kernels (i.e. weights) were flattened
along the output channel dimension, and adjacent channels were separated by red dashed lines; (c) filters response of each layer of the model. The are totally 17 layer responses
(including 6 conv. layers response in encoder, 4 dense layers response, 4 conv. layers response in decoder, 3 up-sampling layers response in decoder). The response corresponding
the convolution layer is flattened along the channel dimension, and adjacent channels were separated by blue dashed lines.
ABP as output. Experimental results on ten individuals from MIMIC
II indicated that the average estimation accuracy reaches 84.4% and
84.7%, respectively.

From ML perspective, training predictive model using either ABP
waveform or BP value as a reference does not make much difference
in the sense that both of them are actually supervised learning tasks.
The development of ML, especially in deep learning, has achieved great
success in almost all aspects and in all kinds of scenarios due to its
strong ability of feature learning, expression and modeling of complex
relationships [41]. The proposed model could map any given signal
(e.g. PPG signal) to another signal (e.g. ABP signal), but to make the
conversion meaningful, the signals should be correlated in some way.
As mentioned above, PPG signal and the counterpart ABP signal are
highly correlated in both morphological and physiological sense, and
this pave the way for the proposed method that convert PPG signal
to ABP waveform (also known as generate ABP waveform using PPG
signal in related studies [44]).

Visualization skill is a common tool in interpreting deep learning
model [24,25]. To further understand and explore the proposed model
that converting PPG signal to ABP waveform, as Fig. 13 presents,
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we visualized the learned model weights (Fig. 13(b)) and visualized
the filters response of each model layer (Fig. 13(c)) using a PPG
segment (Fig. 13(a)) as input. As far as we know, this is the first
visual interpretation of the model for BP (waveform) prediction among
all deep learning methods [1,8,15–22,33,38,39,43,44] in this field.
Inherited from the highly symmetrical model structure comprised of
encoder and decoder, as Fig. 13(b) presents the learned weights of each
layer of Encoder is visually mirror symmetric with that of Decoder.
Differently from the hand-crafted features with explicit significance,
the features automatically learned by the deep model is highly abstract
and with hierarchical structure. We then fed the learned model with
a PPG segment, and the response of each model layer is presented.
For a convolution layer with multiple kernels, each kernel, as a feature
extractor, to learned useful representation/pattern, as Fig. 13(c) shows,
the response of each layer is sparse. For the encoder part, with the
increase of layer, the response is very like waveform segments at the
beginning, and gradually becomes more and more abstract. For the
decoder part, with the increase of layer, each layer decode the response
from the upper layer into more concrete response, and the response of
the last layer (i.e.the layer named ‘conv1d_9’ with single convolution
kernel) of Decoder is the predicted ABP waveform.
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7. Limitations

This study has several limitations. As for the data used, on the one
hand, the data comes from ICU patients whose average age and blood
pressure are generally higher than the general population [16,52]. In
other words, the data is biased. Therefore, retraining the model on
more unbiased dataset and further evaluation of the method on more
general population is meaningful. On the other hand, although the
total number of records in the final dataset is large enough, limited
by the data (each record with duration from 8 ∼ 592 s), there are
only 32 samples reserved in each record, and it may be not enough for
adequate learning of a domain. Methodologically, the proposed method
essentially utilizes the powerful abilities of deep learning in feature
learning and complex relationships modeling. At the same time, it
inherits the shortcomings of deep learning—it is a black box model
and lacks interpretability [45]. Note that we first attempt to interpret
the model through visualization in this area. In addition, we used
one-hot encoding as the ground-truth domain label when computing
domain classifier loss, of which the default assumption is that different
domains are independent of each other, and the similarity among
different domains is ignored. In fact, there are different degrees of
similarity between different domains, although there is currently no
method to quantify the waveform differences between different indi-
viduals. Therefore, we cannot further analyze the impact of individual
differences on training and on the generalizability of model. Clinically,
the sensitivity of the predictive model to a sudden rise or down of
BP is an key & challenging issue to be further explored. Currently, as
far as we know, almost all studies (including our work) research BP
(waveform) prediction in a static environment (different samples in a
record is independent, and there is no consideration of their temporal
correlation). From a long-term perspective, the blood pressure of an
individual (especially critically ill patient) changes dynamically, this
change can be roughly divided into two types: (1) changes in blood
pressure patterns, also known as concept drift [60]; (2) A transient
increase or decrease in blood pressure caused by an event or adverse
reaction, also known as abnormal. We believe that in order to achieve
long-term accurate blood pressure (waveform) prediction, the temporal
correlation of individual signals must be considered, and there must
be some mechanism to automatically detect sudden changes (rising or
falling) in blood pressure patterns.

8. Conclusions

In this study, we proposed a cuffless, continuous approach—RDAE
for visualizing ABP waveform with only single-point PPG signal as
input. Concretely, we developed convolution-based deep autoencoder,
of which an inherent end-to-end mode with high symmetry, coupled
with domain adversarial training strategy, which regularizes the latent
representation to be domain-invariant, to visualize ABP waveform.
Results show that not only a good resulting ABP waveform is obtained,
but also a high blood pressure prediction accuracy is achieved. Ablation
study reveals that, first, the fully-convolution block in building Encoder
and Decoder of AE helps RDAE to capture features effectively. Second,
domain adversarial training makes the loss converge faster in the train-
ing phase and allows the general model better adapt to new individuals
when using the same number of target samples for fine-tuning.

Specifically, we highlight this study with several insights and traits:
(𝑖) the fully-convolution block is more appropriate than the traditional
‘convolution+pooling’ block in processing physiological signal data;
(𝑖𝑖) domain adversarial training forces AE to learn a more general, low-
dimensional, cross domain latent representation, which overcome the
problem of individual differences that impede the training to a certain
extent, and improved model generalization ability; (𝑖𝑖𝑖) the results of
RDAE with different configurations were presented, providing a flexible
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selection of model in practice.
It is worth mentioning that the domain classifier module in RDAE
is only needed in training phase. In practice, the trained model (RDAE)
could be optimized to exclude the unnecessary part (e.g. domain clas-
sifier module) through tools (e.g. tensorflow lite converter [https://
tensorflow.google.cn/lite/convert/index]) before it is used for infer-
ence on mobile devices (e.g. smart phone) or embedded devices. In
other words, RDAE will not increase storage overhead and bring in-
ference latency. Actually, all one needs is a device with PPG sensor
embedded [61].

In future work, we plan to do further research from the following
aspects:

(1) Three minutes is a proper time interval for in-clinic calibration of
blood pressure system. In practice, a reasonable longer duration
than 80 s for calibration may further improve the precision [17].

(2) Actually, a proper loss function with domain similarities con-
sidered may further promote training [48]. In future work,
we consider modeling domain similarities by encoding it into
domain label.

(3) Further improve the model sensitivity to sudden rise or up in BP
by considering temporal correlation between samples and em-
ploying concept drift detection [62] in a streaming environment.

CRediT authorship contribution statement

Keke Qin: Conceptualization, Methodology, Software, Writing –
original draft. Wu Huang: Conceptualization, Writing – review & edit-
ing, Supervision. Tao Zhang: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.bspc.2021.102972. Supplementary material
contains a Table A.1 comprehensively summarizes the comparison of
related studies.

References

[1] S. Lee, J.H. Chang, Deep belief networks ensemble for blood pressure estimation,
IEEE Access PP (2017) 1, http://dx.doi.org/10.1109/ACCESS.2017.2701800.

[2] G. Thambiraj, U. Gandhi, V. Devanand, M. Umapathy, Noninvasive cuffless
blood pressure estimation using pulse transit time, Womersley number, and
photoplethysmogram intensity ratio, Physiol. Meas. 40 (2019) http://dx.doi.org/
10.1088/1361-6579/ab1f17.

[3] I. Sharifi, S. Goudarzi, M.B. Khodabakhshi, A novel dynamical approach in
continuous cuffless blood pressure estimation based on ECG and PPG signals,
Artif. Intell. Med. 97 (2018) http://dx.doi.org/10.1016/j.artmed.2018.12.005.

[4] T. Arakawa, Recent research and developing trends of wearable sensors for
detecting blood pressure, Sensors 18 (2018) 2772, http://dx.doi.org/10.3390/
s18092772.

[5] Q. Zhu, X. Tian, C.W. Wong, M. Wu, ECG reconstruction via PPG: A pilot
study, in: 2019 IEEE EMBS International Conference on Biomedical and Health
Informatics, BHI, IEEE, 2019, pp. 1–4, http://dx.doi.org/10.1109/BHI.2019.
8834612.

[6] J. Allen, Photoplethysmography and its application in clinical physiological
measurement, Physiol. Meas. 28 (2007) R1–39, http://dx.doi.org/10.1088/0967-
3334/28/3/R01.

[7] G. Martínez, N. Howard, D. Abbott, K. Lim, R. Ward, M. Elgendi, Can pho-
toplethysmography replace arterial blood pressure in the assessment of blood
pressure? J. Clin. Med. 7 (2018) 316, http://dx.doi.org/10.3390/jcm7100316.

[8] G. Slapnicar, N. Mlakar, M. Lustrek, Blood pressure estimation from Photo-
plethysmogram using a spectro-temporal deep neural network, Sensors 19 (2019)
3420, http://dx.doi.org/10.3390/s19153420.

[9] L. Peter, N. Noury, M. Cerny, A review of methods for non-invasive and contin-
uous blood pressure monitoring: Pulse transit time method is promising? IRBM

35 (2014) http://dx.doi.org/10.1016/j.irbm.2014.07.002.

https://tensorflow.google.cn/lite/convert/index
https://tensorflow.google.cn/lite/convert/index
https://tensorflow.google.cn/lite/convert/index
https://doi.org/10.1016/j.bspc.2021.102972
http://dx.doi.org/10.1109/ACCESS.2017.2701800
http://dx.doi.org/10.1088/1361-6579/ab1f17
http://dx.doi.org/10.1088/1361-6579/ab1f17
http://dx.doi.org/10.1088/1361-6579/ab1f17
http://dx.doi.org/10.1016/j.artmed.2018.12.005
http://dx.doi.org/10.3390/s18092772
http://dx.doi.org/10.3390/s18092772
http://dx.doi.org/10.3390/s18092772
http://dx.doi.org/10.1109/BHI.2019.8834612
http://dx.doi.org/10.1109/BHI.2019.8834612
http://dx.doi.org/10.1109/BHI.2019.8834612
http://dx.doi.org/10.1088/0967-3334/28/3/R01
http://dx.doi.org/10.1088/0967-3334/28/3/R01
http://dx.doi.org/10.1088/0967-3334/28/3/R01
http://dx.doi.org/10.3390/jcm7100316
http://dx.doi.org/10.3390/s19153420
http://dx.doi.org/10.1016/j.irbm.2014.07.002


Biomedical Signal Processing and Control 70 (2021) 102972K. Qin et al.
[10] A. Esmaili, M. Kachuee, M. Shabany, Nonlinear cuffless blood pressure estimation
of healthy subjects using pulse transit time and arrival time, IEEE Trans. Instrum.
Meas. PP (2017) 1–10, http://dx.doi.org/10.1109/TIM.2017.2745081.

[11] E. Monte-Moreno, Non-invasive estimate of blood glucose and blood pressure
from a photoplethysmograph by means of machine learning techniques, Artif.
Intell. Med. 53 (2011) 127–138, http://dx.doi.org/10.1016/j.artmed.2011.05.
001.

[12] S. Ahmad, S. Chen, K. Soueidan, I. Batkin, M. Bolic, H. Dajani, V. Groza,
Electrocardiogram-assisted blood pressure estimation, IEEE. Trans. Biomed. Eng.
59 (2012) 608–618, http://dx.doi.org/10.1109/TBME.2011.2180019.

[13] M. Kachuee, M.M. Kiani, H. Mohammadzade, M. Shabany, Cuff-less high-
accuracy calibration-free blood pressure estimation using pulse transit time, in:
2015 IEEE International Symposium on Circuits and Systems, ISCAS, IEEE, 2015,
pp. 1006–1009, http://dx.doi.org/10.1109/ISCAS.2015.7168806.

[14] M. Kachuee, M.M. Kiani, H. Mohammadzade, M. Shabany, Cuff-less blood pres-
sure estimation algorithms for continuous health-care monitoring, IEEE. Trans.
Biomed. Eng. 64 (2016) 1, http://dx.doi.org/10.1109/TBME.2016.2580904.

[15] N. Ibtehaz, M.S. Rahman, PPG2ABP: Translating photoplethysmogram (PPG)
signals to arterial blood pressure (ABP) waveforms using fully convolutional
neural networks, 2020, arXiv:arXiv:2005.01669.

[16] S. Baek, J. Jang, S. Yoon, End-to-End blood pressure prediction via fully
convolutional networks, IEEE Access 7 (2019) 1, http://dx.doi.org/10.1109/
ACCESS.2019.2960844.

[17] L.D. Zhang, N.C. Hurley, B. Ibrahim, E. Spatz, H.M. Krumholz, R. Jafari, M.J.
Bobak, Developing personalized models of blood pressure estimation from wear-
able sensors data using minimally-trained domain adversarial neural networks,
in: Machine Learning for Healthcare Conference, PMLR, 2020, pp. 97–120.

[18] P. Su, X.R. Ding, Y.T. Zhang, J. Liu, F. Miao, N. Zhao, Long-term blood
pressure prediction with deep recurrent neural networks, in: 2018 IEEE EMBS
International Conference on Biomedical and Health Informatics, BHI, IEEE, 2018,
pp. 323–328, http://dx.doi.org/10.1109/BHI.2018.8333434.

[19] H. Eom, D. Lee, S. Han, Y. Hariyani, Y. Lim, I. Sohn, K. Park, C. Park,
End-to-End deep learning architecture for continuous blood pressure estimation
using attention mechanism, Sensors 20 (2020) 2338, http://dx.doi.org/10.3390/
s20082338.

[20] O. Schlesinger, N. Vigderhouse, Y. Moshe, D. Eytan, Estimation and tracking of
blood pressure using routinely acquired photoplethysmographic signals and deep
neural networks, Crit. Care Explor. 2 (2020) e0095, http://dx.doi.org/10.1097/
CCE.0000000000000095.

[21] S. Tanveer, M. Hasan, Cuffless blood pressure estimation from electrocardiogram
and photoplethysmogram using waveform based ANN-LSTM network, Biomed.
Signal Process. Control 51 (2019) 382–392, http://dx.doi.org/10.1016/j.bspc.
2019.02.028.

[22] X.M. Fan, H.L. Wang, F. Xu, Y. Zhao, K.L. Tsui, Homecare-oriented intelligent
long-term monitoring of blood pressure using Electrocardiogram signals, IEEE
Trans. Ind. Inform. PP (2019) 1, http://dx.doi.org/10.1109/TII.2019.2962546.

[23] H. P, W. RWCGR, M. J, W. C, S. F, A series of case studies on detection of
spontaneous pulse by photoplethysmography in cardiopulmonary resuscitation,
AM. J. Emerg. Med. 38 (2019) http://dx.doi.org/10.1016/j.ajem.2019.05.044.

[24] G. Hinton, R. Salakhutdinov, Reducing the dimensionality of data with neu-
ral networks, Science 313 (2006) 504–507, http://dx.doi.org/10.1126/science.
1127647.

[25] A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classification with deep convo-
lutional neural networks, in: NeurIPS, Vol. 25, 2012, http://dx.doi.org/10.1145/
3065386.

[26] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9
(1997) 1735–1780, http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[27] H. Harutyunyan, H. Khachatrian, D. Kale, A. Galstyan, Multitask learning and
benchmarking with clinical time series data, Sci. Data 6 (2019) http://dx.doi.
org/10.1038/s41597-019-0103-9.

[28] S.Y. Shih, F.K. Sun, H.Y. Lee, Temporal pattern attention for multivariate time
series forecasting, Mach. Learn. 108 (2019) http://dx.doi.org/10.1007/s10994-
019-05815-0.

[29] N. Mishra, M. Rohaninejad, X. Chen, P. Abbeel, A simple neural attentive
meta-learner, 2017, arXiv:arXiv:1707.03141.

[30] S.S. Mousavi, M. Firouzmand, M. Charmi, M. Hemmati, M. Moghadam, Y.
Ghorbani, Blood pressure estimation from appropriate and inappropriate PPG
signals using a whole-based method, Biomed. Signal Process. Control 47 (2019)
196–206, http://dx.doi.org/10.1016/j.bspc.2018.08.022.

[31] Y. Gani, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M.
Marchand, V. Lempitsky, Domain-adversarial training of neural networks, J.
Mach. Learn. Res. 17 (59) (2016) 1–35.

[32] C. El-Hajj, P. Kyriacou, A review of machine learning techniques in photo-
plethysmography for the non-invasive cuff-less measurement of blood pressure,
Biomed. Signal Process. Control 58 (2020) 101870, http://dx.doi.org/10.1016/
j.bspc.2020.101870.

[33] X.M. Xing, M.S. Sun, Optical blood pressure estimation with photoplethysmogra-
phy and FFT-based neural networks, Biomed. Opt. Express 7 (2016) 3007–3020,
http://dx.doi.org/10.1364/BOE.7.003007.
15
[34] G. Thambiraj, U. Gandhi, U. Mangalanathan, J.M.J. Valanarasu, M. Anand,
Investigation on the effect of Womersley number, ECG and PPG features for cuff
less blood pressure estimation using machine learning, Biomed. Signal Process.
Control 60 (2020) 101942, http://dx.doi.org/10.1016/j.bspc.2020.101942.

[35] D. Fujita, A. Suzuki, K. Ryu, PPG-based systolic blood pressure estimation
method using PLS and level-crossing feature, Appl. Sci. 9 (2019) 304, http:
//dx.doi.org/10.3390/app9020304.

[36] S. Bose, N. Sree, K. Arumugam, Sparse representation of photoplethysmogram
using K-SVD for cuffless estimation of arterial blood pressure, in: 2017 4th
International Conference on Advanced Computing and Communication Systems,
ICACCS, 2017, pp. 1–5, http://dx.doi.org/10.1109/ICACCS.2017.8014669.

[37] F. Miao, Z.D. Liu, J.K. Liu, B. Wen, Y. Li, Multi-sensor fusion approach for
cuff-less blood pressure measurement, IEEE J. Biomed. Health PP (2019) 1,
http://dx.doi.org/10.1109/JBHI.2019.2901724.

[38] M. Forouzanfar, H. Dajani, V. Groza, M. Bolic, S. Rajan, Feature-based neural net-
work approach for oscillometric blood pressure estimation, IEEE Trans. Instrum.
Meas. 60 (2011) 2786–2796, http://dx.doi.org/10.1109/TIM.2011.2123210.

[39] Y.C. Hsu, Y.H. Li, C.C. Chang, L.N. Harfiya, Generalized deep neural network
model for cuffless blood pressure estimation with photoplethysmogram signal
only, Sensors 20 (2020) http://dx.doi.org/10.3390/s20195668.

[40] B. Zhang, J.D. Ren, Y.Q. Cheng, B. Wang, Z.Y. Wei, Health data driven on
continuous blood pressure prediction based on gradient boosting decision tree
algorithm, IEEE Access PP (2019) 1, http://dx.doi.org/10.1109/ACCESS.2019.
2902217.

[41] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444,
http://dx.doi.org/10.1038/nature14539.

[42] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical Image
Computing and Computer-Assisted Intervention, Vol. 9351, Springer, 2015, pp.
234–241, http://dx.doi.org/10.1007/978-3-319-24574-4_28.

[43] A. T., C. S., An estimation method of continuous non-invasive arterial blood
pressure waveform using photoplethysmography: A U-Net architecture-based
approach, Sensors 21 (2021) 1867, http://dx.doi.org/10.3390/s21051867.

[44] M. Sadrawi, Y.-T. Lin, C.-H. Lin, B. Mathunjwa, S.-Z. Fan, M. Abbod, J.-S.
Shieh, Genetic deep convolutional autoencoder applied for generative continuous
arterial blood pressure via Photoplethysmography, Sensors 20 (2020) 3829,
http://dx.doi.org/10.3390/s20143829.

[45] Y. Yu, K. Chan, C. You, C. Song, Y. Ma, Learning diverse and discriminative
representations via the principle of maximal coding rate reduction, in: NeurIPS,
Vol. 33, 2020.

[46] J. Oh, J. Wang, J. Wiens, Learning to exploit invariances in clinical time-series
data using sequence transformer networks, in: Machine Learning for Healthcare
Conference, PMLR, 2018, pp. 332–347.

[47] J. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity:
The all convolutional net, 2014, arXiv:arXiv:1412.6806.

[48] J.P. Li, S. Qiu, Y.Y. Shen, C.L. Liu, H.G. He, Multisource transfer learning for
cross-subject EEG emotion recognition, IEEE Trans. Cybern. PP (2019) 1–13,
http://dx.doi.org/10.1109/TCYB.2019.2904052.

[49] Y.B. Liang, M. Elgendi, Z.C. Chen, R. Ward, An optimal filter for short photo-
plethysmogram signals, Sci. Data 5 (2018) 180076, http://dx.doi.org/10.1038/
sdata.2018.76.

[50] Z.H. Zhou, Machine Learning, Tsinghua University Press, 2016.
[51] M. Simjanoska, S. Kochev, J. Tanevski, A.M. Bogdanova, G. Papa, T. Eftimov,

Multi-level information fusion for learning a blood pressure predictive model
using sensor data, Inform. Fusion 58 (2019) http://dx.doi.org/10.1016/j.inffus.
2019.12.008.

[52] M. Saeed, M. Villarroel, A.T. Reisner, G. Clifford, L.W. Lehman, G. Moody, T.
Heldt, T.H. Kyaw, B. Moody, R.G. Mark, Multiparameter intelligent monitoring
in intensive care II (MIMIC-II): A public-access intensive care unit database, Crit.
Care Med. 39 (5) (2011) 952.

[53] E. OBrien, B. Waeber, G. Parati, J. Staessen, M. Myers, Blood pressure measuring
devices: Recommendations of the European society of hypertension, BMJ (Clin.
Res. Ed.) 322 (2001) 531–536.

[54] E. OBrien, J. Petrie, W. Littler, M. Swiet, P. Padfield, K. O’Malley, M. Jamieson,
D. Altman, M. Bland, N. Atkins, The British Hypertension Society protocol for the
evaluation of automated and semi-automated blood pressure measuring devices
with special reference to ambulatory systems, J. Hypertens. 8 (1990) 607–619,
http://dx.doi.org/10.1097/00004872-199007000-00004.

[55] J.A. Hartigan, M.A. Wong, A K-means clustering algorithm: Algorithm AS 136,
28, 1979, pp. 100–108, http://dx.doi.org/10.2307/2346830,

[56] L. Maaten, G.F. Hinton, Viualizing data using t-SNE, J. Mach. Learn. Res. 9
(2008) 2579–2605.

[57] X. Zhang, X. Zhou, M. Lin, J. Sun, ShuffleNet: An extremely efficient convolu-
tional neural network for mobile devices, 2018, pp. 6848–6856, http://dx.doi.
org/10.1109/CVPR.2018.00716.

[58] G. Tusman, C. Acosta, S. Pulletz, S. Bohm, A. Scandurra, J. martinez arca,
M. Madorno, F. Suarez-Sipmann, Photoplethysmographic characterization of
vascular tone mediated changes in arterial pressure: An observational study, J
Clin. Monit. Comput. 33 (2019) http://dx.doi.org/10.1007/s10877-018-0235-z.

http://dx.doi.org/10.1109/TIM.2017.2745081
http://dx.doi.org/10.1016/j.artmed.2011.05.001
http://dx.doi.org/10.1016/j.artmed.2011.05.001
http://dx.doi.org/10.1016/j.artmed.2011.05.001
http://dx.doi.org/10.1109/TBME.2011.2180019
http://dx.doi.org/10.1109/ISCAS.2015.7168806
http://dx.doi.org/10.1109/TBME.2016.2580904
http://arxiv.org/abs/arXiv:2005.01669
http://dx.doi.org/10.1109/ACCESS.2019.2960844
http://dx.doi.org/10.1109/ACCESS.2019.2960844
http://dx.doi.org/10.1109/ACCESS.2019.2960844
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb17
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb17
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb17
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb17
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb17
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb17
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb17
http://dx.doi.org/10.1109/BHI.2018.8333434
http://dx.doi.org/10.3390/s20082338
http://dx.doi.org/10.3390/s20082338
http://dx.doi.org/10.3390/s20082338
http://dx.doi.org/10.1097/CCE.0000000000000095
http://dx.doi.org/10.1097/CCE.0000000000000095
http://dx.doi.org/10.1097/CCE.0000000000000095
http://dx.doi.org/10.1016/j.bspc.2019.02.028
http://dx.doi.org/10.1016/j.bspc.2019.02.028
http://dx.doi.org/10.1016/j.bspc.2019.02.028
http://dx.doi.org/10.1109/TII.2019.2962546
http://dx.doi.org/10.1016/j.ajem.2019.05.044
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1038/s41597-019-0103-9
http://dx.doi.org/10.1038/s41597-019-0103-9
http://dx.doi.org/10.1038/s41597-019-0103-9
http://dx.doi.org/10.1007/s10994-019-05815-0
http://dx.doi.org/10.1007/s10994-019-05815-0
http://dx.doi.org/10.1007/s10994-019-05815-0
http://arxiv.org/abs/arXiv:1707.03141
http://dx.doi.org/10.1016/j.bspc.2018.08.022
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb31
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb31
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb31
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb31
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb31
http://dx.doi.org/10.1016/j.bspc.2020.101870
http://dx.doi.org/10.1016/j.bspc.2020.101870
http://dx.doi.org/10.1016/j.bspc.2020.101870
http://dx.doi.org/10.1364/BOE.7.003007
http://dx.doi.org/10.1016/j.bspc.2020.101942
http://dx.doi.org/10.3390/app9020304
http://dx.doi.org/10.3390/app9020304
http://dx.doi.org/10.3390/app9020304
http://dx.doi.org/10.1109/ICACCS.2017.8014669
http://dx.doi.org/10.1109/JBHI.2019.2901724
http://dx.doi.org/10.1109/TIM.2011.2123210
http://dx.doi.org/10.3390/s20195668
http://dx.doi.org/10.1109/ACCESS.2019.2902217
http://dx.doi.org/10.1109/ACCESS.2019.2902217
http://dx.doi.org/10.1109/ACCESS.2019.2902217
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.3390/s21051867
http://dx.doi.org/10.3390/s20143829
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb46
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb46
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb46
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb46
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb46
http://arxiv.org/abs/arXiv:1412.6806
http://dx.doi.org/10.1109/TCYB.2019.2904052
http://dx.doi.org/10.1038/sdata.2018.76
http://dx.doi.org/10.1038/sdata.2018.76
http://dx.doi.org/10.1038/sdata.2018.76
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb50
http://dx.doi.org/10.1016/j.inffus.2019.12.008
http://dx.doi.org/10.1016/j.inffus.2019.12.008
http://dx.doi.org/10.1016/j.inffus.2019.12.008
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb52
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb52
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb52
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb52
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb52
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb52
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb52
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb53
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb53
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb53
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb53
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb53
http://dx.doi.org/10.1097/00004872-199007000-00004
http://dx.doi.org/10.2307/2346830
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb56
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb56
http://refhub.elsevier.com/S1746-8094(21)00569-3/sb56
http://dx.doi.org/10.1109/CVPR.2018.00716
http://dx.doi.org/10.1109/CVPR.2018.00716
http://dx.doi.org/10.1109/CVPR.2018.00716
http://dx.doi.org/10.1007/s10877-018-0235-z


Biomedical Signal Processing and Control 70 (2021) 102972K. Qin et al.
[59] A. Dash, N. Ghosh, A. Patra, A. Dutta Choudhury, Estimation of arterial
blood pressure waveform from photoplethysmogram signal using linear transfer
function approach, in: 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine Biology Society, Vol. 2020, EMBC, 2020, pp.
2691–2694, http://dx.doi.org/10.1109/EMBC44109.2020.9175696.

[60] P.-H. Chiang, S. Dey, Offline and online learning techniques for personalized
blood pressure prediction and health behavior recommendations, IEEE Access
PP (2019) 1, http://dx.doi.org/10.1109/ACCESS.2019.2939218.
16
[61] A. Chandrasekhar, C.S. Kim, M. Naji, K. Natarajan, J.O. Hahn, R. Mukkamala,
Smartphone-based blood pressure monitoring via the oscillometric finger-pressing
method, Sci. Transl. Med. 10 (2018) http://dx.doi.org/10.1126/scitranslmed.
aap8674.
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