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Abstract
Audio generation is a major branch of generative
AI research. Compared with prior works in this
area that are commonly task-specific with heavy
domain knowledge, this paper advocates build-
ing universal audio generation models that can
handle various tasks in a unified manner. As re-
cent research on large language models (LLMs)
has demonstrated their strong ability to handle
multiple tasks, this work presents UniAudio, an
LLM-based audio generation model that supports
a wide range of audio generation tasks. Based on
various input conditions, such as phoneme, text
description, or audio itself, UniAudio can gen-
erate speech, sound, music, and singing voice.
The proposed UniAudio is built with 100k hours
of multi-source open-available audio data and is
scaled to 1B parameters. The audio tokenization
method and language model architecture are also
specifically designed for both performance and
efficiency. Experimentally, UniAuido supports 11
audio generation tasks and achieves competitive
results on all tasks consistently. We also show
that UniAudio can support new tasks seamlessly
via simple fine-tuning 1.

1. Introduction
Recently, the popularity of generative AI has induced in-
creasingly emergent and varying needs in audio generation,
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i.e., generating human speech, music, and other audio. Prior
works on audio generation tasks are commonly task-specific:
their designs heavily leverage domain knowledge and their
usage is restricted to fixed setups (Tan et al., 2021b; Luo
& Mesgarani, 2019; Zmolikova et al., 2023; Huang et al.,
2021b; Cho et al., 2021). Instead of taking care of each task
independently, this work advocates achieving universal au-
dio generation, which intends to accomplish multiple audio
generation tasks with only one unified model. Specifically,
building a universal model in audio generation can not only
leverage the massive data collected from various sources and
tasks but also explore the shared prior knowledge among var-
ious data modalities and domains. Additionally, compared
with building task-specific models, the proposed routine can
save human effort considerably. Thus, building a universal
audio generation model is a solution of both high perfor-
mance and cost-effectiveness towards the increasing needs
of generating diverse types of audio.

The superiority of Large Language Models (LLMs) in text-
generative tasks inspires a series of LLM-based models in
audio generation (Wang et al., 2023a; Kharitonov et al.,
2023; Huang et al., 2023d; Agostinelli et al., 2023; Bor-
sos et al., 2023). Among these works, LLM’s capability
in independent tasks has been extensively studied in tasks
like speech generation (Wang et al., 2023a; Kharitonov
et al., 2023; Huang et al., 2023d) and music generation
(Agostinelli et al., 2023; Copet et al., 2023), and achieves
competitive performance. However, LLM’s ability to pro-
cess multiple tasks with a unified model is less exploited
in audio generation research: most existing LLM-based
works are still designed for a single or a few tasks (Wang
et al., 2023a; Kharitonov et al., 2023; Wang et al., 2023c),
such as text-to-speech, speech enhancement. We argue that
achieving universality in audio generation through the LLM
paradigm is promising but has not yet been comprehensively
studied before this work.

Toward universal audio generation, this work presents Uni-
Audio, which adopts LLM techniques and can generate
multiple types of audio (speech, sounds, music, and singing)
conditioned on various input modalities, such as phoneme
sequences, text descriptions, and audio itself. By various
tokenization methods, UniAudio first transforms audio and
conditions from other modalities as discrete tokens. The
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Figure 1. UniAudio is a versatile audio generation model that conditions on multiple types of inputs and performs a variety of audio
generation tasks. All modalities are represented as discrete tokens. Based on the given conditions, the audio tokens are predicted by an
LLM (CodecFormer, see Section 2.3) and then recovered as audio. The sequence layout of the prompt TTS task is shown as an example.
Other tasks are also processed as sequences (see Table 1).

LLM then generates audio token sequences based on the con-
dition sequences. The latter can vary along with the different
task formulations. Finally, waveforms are generated from
detokenizing the generated audio token sequences. This
work follows (Kharitonov et al., 2023; Wang et al., 2023a)
to adopt a neural codec model (Zeghidour et al., 2021) for
audio tokenization. To represent multiple types of audio
uniformly and to preserve the efficiency of our LLM-based
model, a novel codec model is built and adopted. Mean-
while, the neural codec model adopts the residual vector
quantization (RVQ) technique, which results in an overly
long sequence issue in audio sequences. With a mild as-
sumption inspired by RVQ, we propose an improved LLM
architecture that significantly alleviates the negative impact
raised by audio sequence length.

UniAudio is claimed as a multi-functional model and can
seamlessly support new audio generation tasks. To demon-
strate this, the building process of UniAudio is intentionally
decoupled into two stages. Firstly, the proposed UniAudio
is trained on multiple audio generation tasks jointly, which
allows the model to obtain sufficient prior knowledge not
only of the intrinsic properties of audio but also of the in-
terrelationship between audio and other input modalities.
Secondly, through fine-tuning, the trained model can sup-
port more new audio generation tasks. Thus, UniAudio has
the potential to become a foundation model for universal au-
dio generation: it can continuously support emergent needs
in audio generation.

Experimentally, UniAudio supports 11 audio generation
tasks in total. The building process of UniAudio is scaled
up to 100k hours of audio and 1B parameters. Among
the 11 tasks, UniAudio consistently obtains competitive

performance in both objective and subjective evaluations.
We further conduct a comprehensive ablation study to verify
that building this unified audio generation model by joint
training is mutually beneficial to each task involved. Demo
and code are released, in the hope that UniAudio can support
emergent audio generation in future research.

2. UniAudio
This section introduces the technical details of the proposed
UniAudio. Section 2.1 explains how audio and other modal-
ities are tokenized. Then, all considered audio generation
tasks are uniformly formulated in section 2.2. Finally, the
CodecFormer architecture is presented in section 2.3 to han-
dle the long audio token sequences.

2.1. Tokenization

In this work, audio and all other input modalities are tok-
enized before being processed. These processes for each
modality are completed by independent modules. All of
these modules are fixed in the optimization of UniAudio.

2.1.1. AUDIO

All audio is tokenized as discrete sequences using neural
audio codec models (short as codec models) (Défossez et al.,
2022; Yang et al., 2023b; Zeghidour et al., 2021) before
being modeled by the LLM. As demonstrated in Fig. 2, the
codec models are a series of neural networks that follow
the encoder-decoder paradigm and quantize the intermedi-
ate encoder output into discrete tokens. Given the summed
embedding of these discrete tokens, the codec decoder can
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Table 1. Sequence formats of all tasks supported by UniAudio. Text color represents modality. black: audio; green: phoneme; blue: MIDI;
purple: text; brown: semantic token. ♣ means tasks that generate audio with deterministic length. ♢: means tasks that are only included
in the fine-tuning stage. The speaker prompt is a 3-second speech and is used to represent the speaker-related information.

Task Conditions Audio Target
Text-to-Speech (TTS) (Wang et al., 2023a) phoneme, speaker prompt speech
Voice Conversion (VC) ♣ (Wang et al., 2023f) semantic token, speaker prompt speech
Speech Enhancement (SE) ♣ (Wang et al., 2023b) noisy speech speech
Target Speech Extraction (TSE) ♣ (Wang et al., 2018) mixed speech, speaker prompt speech
Singing Voice Synthesis (SVS) (Liu et al., 2022) phoneme (with duration), speaker prompt, MIDI singing
Text-to-Sound (Sound) (Yang et al., 2023c) textual description sound
Text-to-Music (Music) (Agostinelli et al., 2023) textual description music
Audio Edit (A-Edit) ♣♢ (Wang et al., 2023e) textual description, original sounds sounds
Speech dereverberation (SD) ♣♢ (Wu et al., 2016) reverberant speech speech
Prompt TTS (P-TTS)♢ (Guo et al., 2023) phoneme, textual instruction speech
Speech Edit (S-Edit) ♢ (Tae et al., 2021) phoneme (with duration), original speech speech

faithfully recover the audio waveform. Thus, these interme-
diate discrete tokens of codec models have been extensively
used as the predicting targets in LLM-based audio gener-
ation, such as Borsos et al. (2023) and Kharitonov et al.
(2023). A key feature of codec models is the adoption of
residual vector quantization (RVQ) (Zeghidour et al., 2021)
in the hidden space, which uses multiple quantization layers
(3 in Fig. 2) to progressively reduce the quantization error
and achieve better reconstruction performance.

The adoption of RVQ usually raises a trade-off between
quality and efficiency: although the modeling quality can
increase with more RVQ layers due to less quantization
error, the length of the audio sequences grows proportionally
with the number of RVQ layers, which makes the audio
sequence too long to be modeled by LLM efficiently (Borsos
et al., 2023). This work follows (Kharitonov et al., 2023)
and demonstrates that even 3 RVQ layers are sufficient to
achieve impressive modeling quality. Additionally, using
only 3 RVQ layers boosts the audio modeling efficiency due
to the reduced audio sequence length. We also set our codec
model to 50 frame-per-second (FPS) for efficiency.

UniAudio is designed to generate audio of multiple types
(speech, sounds, music, or singing) with a single model.
It thus requires a codec model that: (1) can represent all
these types of audio in a shared latent space; (2) the encode-
quantization-decode process is near-lossless; (3) using few
RVQ layers to facilitate efficient training and inference. Fol-
lowing the pioneer works (Défossez et al., 2022; Kumar
et al., 2023), we build our codec model with carefully de-
signed model structure, training strategy, and data. Table.
2 presents a comparison between our codec model with the
prior works to show that our codec model achieves superior
performance on all 4 audio types, especially when only 3
RVQ layers are adopted. The details of the building process
of our codec model, along with the detailed performance
compared with prior works, are presented in Appendix D.
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Figure 2. An overview of residual vector quantization (RVQ)
adopted in neural codec models. Discrete tokens zt = [z1, ..., zN ]
stands for the t-th frame.

2.1.2. OTHER MODALITIES

Besides audio, other modalities considered in UniAudio also
need to be represented as sequences. In addition, most of
these sequences are transformed into discrete ones through
tokenization. The tokenization of these input modalities,
along with their key features, are briefly summarized below.

Phoneme: Phonemes are the basic units of speech pronun-
ciation in linguistics. Phoneme sequences have multiple
sources: (1) when only text is available, phoneme sequence
without duration information can be obtained by text-to-
phoneme mapping using a pronunciation dictionary; (2)
when only speech is available, phoneme sequence with du-
ration information is obtained by beam search of the DNN-
HMM system (Hinton et al., 2012); (3) when both text
and speech are available, phoneme sequence with duration
information is obtained by forced-align operation of the
DNN-HMM system.

MIDI: MIDI (Zhang et al., 2022) is widely used for singing
voice synthesis tasks. F0 and duration information are in-
cluded in the MIDI. We use the duration information to
flatten the F0 sequence so that the frame-level F0 sequence
is obtained.
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Table 2. Performance comparison between open-sourced universal audio codec models and our universal neural codec. FPS: frame per
second; TPS: token per second. Perceptual evaluation of speech quality (PESQ↑); Short Term Objective Intelligibility (STOI↑). We
conduct MOS evaluation for each group. Specifically, we hire 10 professional listeners to conduct the subjective study. Then we ask them
to give a score (1-5) to assess the reconstruction performance

Type Speech (VCTK) Sound (cloth) Music (musiccaps) Sing (m4sing) Average
(Veaux et al., 2017) (Drossos et al., 2020) (Agostinelli et al., 2023) (Zhang et al., 2022) -

Model Size (M) N FPS TPS PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI MOS

Encodec 14.1 3 75 225 2.18 0.79 2.03 0.48 1.86 0.57 1.95 0.76 2.05 0.65 2.12
Encodec 14.1 4 75 600 2.76 0.83 2.36 0.55 2.01 0.59 2.44 0.82 2.54 0.71 2.83
Encodec 14.1 8 75 600 3.01 0.83 2.56 0.60 2.21 0.62 2.92 0.87 2.67 0.73 4.01
DAC 70.7 3 50 150 1.76 0.78 1.97 0.48 1.48 0.52 1.36 0.68 1.64 0.615 2.08
DAC 70.7 4 50 200 2.05 0.83 2.14 0.51 1.63 0.59 1.53 0.74 1.84 0.67 2.45
DAC 70.7 8 50 400 3.35 0.91 2.79 0.61 2.45 0.74 2.98 0.88 2.96 0.78 4.33

Ours 15.0 3 50 150 2.96 0.85 2.42 0.49 1.99 0.57 3.13 0.85 2.62 0.69 3.75
Ours 15.0 4 50 200 3.11 0.86 2.5 0.51 2.08 0.59 3.27 0.86 2.73 0.71 3.92
Ours 15.0 8 50 400 3.36 0.88 2.67 0.54 2.31 0.65 3.49 0.89 2.95 0.74 4.41

Text: Text acts as an effective carrier of human instructions
in audio generation tasks (Yang et al., 2023a; Copet et al.,
2023; Guo et al., 2023). In this work, these instructions are
represented as continuous embedding sequences derived
from pre-trained text T5 model (Raffel et al., 2020), as these
embedding sequences contain rich textual semantics.

Semantic Token: The semantic tokens are derived from
the continuous embeddings output by audio self-supervised
learning (SSL) models. These continuous representations
are highly informative and can be adopted in both speech
understanding (Rubenstein et al., 2023) and generative tasks
(Borsos et al., 2023). Following Huang et al. (2023d), these
continuous representations are turned discrete by perform-
ing K-means clustering (Hsu et al., 2021) over these contin-
uous representations.

2.2. Unified Task Formulation

UniAudio does each audio generation task based on the
given conditions and task identifier. All tasks can be uni-
formly formulated as sequential modeling tasks that can be
processed by LLM: both the target audio and the conditions
are firstly transformed as sub-sequences and then spliced as
[conditions, target] before being processed by the LLM. To
avoid ambiguity, some special tokens are inserted to indicate
(1) the start and end of the whole sequence; (2) the start
and end of each sub-sequence of a certain modality; and (3)
the task identifier. For example, the sequence layout of the
prompt TTS (Guo et al., 2023) task is shown in Fig.1, in
which target speech is generated from the textual description
and phoneme sequence. The detailed sequential format of
each task is in Table 1.

2.3. CodecFormer

Denote the number of audio frames and RVQ layers as T
and N respectively. Previous work on LLM-based audio
generation (Borsos et al., 2023; Kharitonov et al., 2023) ad-
vocates modeling the audio tokens sequences in the flattened

Patch Predictor

Token Predictor Token Predictor Token Predictor

Patch 1 Patch 2 Patch 3

Patch 2 Patch 3 Patch 4

Figure 3. CodecFormer architecture. zkt denotes the k-th token in
t-th patch. Dashed boxes mean predicted values.

format to emphasize generation quality. However, these
sequences are processed in the length of T ×N , which is
highly challenging considering the quadratic space complex-
ity of Transformer (Vaswani et al., 2017) w.r.t. the sequence
length. Inspired by Yu et al. (2023), the CodecFormer archi-
tecture is specifically designed for discrete audio sequences
modeling, which is a hierarchical model that processes the
inter- and intra-frame correlation of audio separately. The
overview of the proposed architecture is in Figure 3.

The CodecFormer consists of a patch predictor and a token
predictor, both of which are Transformer decoder-only mod-
els with full causality. Define every N consecutive tokens
as a patch. Then, for audio token sequences modeling, each
patch exactly represents one audio frame. First, to align
with RVQ (Défossez et al., 2022), each patch is represented
by the sum of all token embeddings within that patch, and
then digested by the patch predictor. Second, for each t-th
frame zt, the patch predictor outputs the continuous vector
ht that encodes patch zt and all its previous content. Third,
based on ht, the tokens within patch zt+1 is predicted by
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token predictor auto-regressively. Note the ht involves in
this process by simply adding it to the input embeddings of
each token 2.

The proposed CodecFormer architecture is also compatible
with both discrete and continuous sequences besides audio.
For all discrete tokens except audio (phoneme, semantic,
MIDI, and special tokens), each token has independent se-
mantics and thus should account for one whole patch. So
these discrete tokens repeat for N times to fill each patch.
The continuous text embeddings are also repeated for N
times for the same purpose 3.

The design of the CodecFormer is based on the mild as-
sumption that the context-dependent vector ht is sufficient
to predict the token within the patch zt+1. As shown in
Fig. 2, this assumption is reasonable for audio tokens from
codec models, as the original RVQ process for each frame
depends on the encoder output of that frame only. The de-
sign of the proposed CodecFormer can effectively reduce
computational complexity, as the equivalent sequence length
for the patch predictor is reduced from T ×N to T , which
is no longer proportional to N . The token predictor empir-
ically has fewer parameters than the patch predictor as it
only works on short sequences of fixed length N .

3. Experiments
This section first introduces the experimental setup in Sec-
tion 3.1. The results for the training stage and the fine-tuning
stage are presented in Section 3.2 and 3.3 respectively. Ab-
lation studies are presented in Section 3.4.

3.1. Experimental Setup

Data and Model: UniAudio is built on 12 datasets, all of
which are publicly available. The overall audio volume is
about 100K hours. Detailed data statistics and their adoption
for each task are in Appendix A.1. Discrete tokens from
all modalities, along with the special tokens, form a joint
vocabulary of size 4212. Both patch predictor and token
predictor are vanilla decoder-only Transformers (Vaswani
et al., 2017). The overall parameter budget is roughly 1B.
Detailed model configuration is in Appendix A.2.

Training and Inference: To verify that UniAudio can
seamlessly support new audio generation tasks by fine-
tuning, our model is primarily trained on 7 tasks while
4 additional tasks are introduced in the fine-tuning stage 4.

2We append a start-of-setence and a end-of-sentence patches at
the start and end of each sequence respectively.

3The corresponding predicting targets of continuous represen-
tations are consecutive special tokens <continuous_token>.

4The task split is shown in Table 3 and 4. We intentionally
select the tasks with more massive data for the first training stage
and then fine-tune the model on tasks with less data available,

Both the training and fine-tuning are completed with 16
AMD MI200-64G GPUs. The detailed configuration of
optimization is in Appendix A.3. Cross entropy loss is
uniformly applied to the whole sequence, including both
condition and target. To retain the performance of previous
tasks during fine-tuning, following Conneau et al. (2020),
the training data are re-balanced with α = 0.05 across
tasks. Top-k sampling is adopted consistently for inference,
in which k and the temperature are set to 30 and 0.8, re-
spectively. As the patch predictor does not directly predict
tokens, the sampling process only happens in the token
predictor inference.

Evaluation: Most tasks are evaluated using both objective
and subjective metrics. Generally, for objective evaluation,
Word Error Rate (WER) is used to evaluate the intelligi-
bility of generated speech; Similarity Score (SIM) is for
similarity in terms of speaker identity (Wang et al., 2023a);
Perceptual Evaluation of Speech Quality (PESQ), VISQOL,
DNSMOS (Reddy et al., 2021) and Mel Cepstral Distortion
(MCD) are signal-level quality metrics derived from human
auditory research; Following (Copet et al., 2023), Fréchet
Audio Distance (FAD), Kullback-Leiber (KL) Divergence,
and Fréchet Distance (FD) are for audio fidelity and audio
similarity; For subjective evaluation, Mean Opinion Scores
(MOS) and Similarity Mean Opinion Scores (SMOS) are
adopted to provide human-centric judgment for speech and
sing related tasks. For text-to-sound and text-to-music tasks,
we use overall quality (OVL), and relevance to the text input
(REL) (Copet et al., 2023). Note all subjective results are
obtained from the third-party evaluation (Amazon Mechani-
cal Turk) for a fair comparison. Appendix E shows details
of the evaluation.

3.2. Training Stage Results

Table 3 presents the overall evaluation results of the pro-
posed UniAudio model over 7 audio generation tasks during
the training stage. In this table, we compare UniAudio with
one of the most advanced prior works in each task. Detailed
comparison with other competitors, including not only the
LLM-based methods but also the diffusion model-based
methods as well as other conventional audio generation
methods, is presented in Appendix B.

As suggested in Table 3, UniAudio is a versatile system that
can handle all 7 audio generation tasks together and achieve
competitive performance. Per subjective evaluation, Uni-
Audio surpasses the baselines in 3 out of 6 tasks (TTS, VC,
Text-to-Sound); per objective evaluation, it achieves better
results on 5 out of the 7 tasks except SVS and Music. We
also find that UniAudio underperforms on several metrics.
UniAudio’s subjective performance for SE and TSE is less

which is aligned with the realistic situation that the newly emerged
tasks are generally of low resources.
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Table 3. Performance evaluation for UniAudio and selected prior works in the training stage

Task Model Objective Evaluation Subjective Evaluation
Metrics Results Metrics Results

Text-to-Speech Shen et al. (2023) SIM(↑) / WER(↓) 0.62 / 2.3 MOS(↑)
/ SMOS(↑)

3.83±0.10 / 3.11±0.10
UniAudio 0.71 / 2.0 3.81±0.07 / 3.56±0.10

Voice
Conversion

Wang et al. (2023f) SIM(↑) / WER(↓) 0.82 / 4.9 MOS(↑)
/ SMOS(↑)

3.41±0.08 / 3.17±0.09
UniAudio 0.87 / 4.8 3.54±0.07 / 3.56±0.07

Speech
Enhancement

Chen et al. (2022) PESQ(↑) / VISQOL(↑)
/ DNSMOS(↑)

3.41 / 2.99 / 3.34 MOS(↑) 3.56±0.08
UniAudio 2.63 / 2.44 / 3.66 3.68±0.07

Target Speaker
Extraction

Žmolíková et al. (2019) PESQ(↑) / VISQOL(↑)
/ DNSMOS(↑)

2.89 / 2.25 / 3.18 MOS(↑) 3.43±0.09
UniAudio 1.88 / 1.68 / 3.96 3.72±0.06

Singing Voice
Synthesis

Liu et al. (2022) - - MOS(↑)
/ SMOS(↑)

3.94±0.02 / 4.05±0.06
UniAudio 4.08±0.04 / 4.04±0.05

Text-to-Sound Ghosal et al. (2023) FAD (↓) / KL (↓) 3.61 / 2.6 OVL (↑)
/ REL (↑)

66.2±1.7 / 68.6±1.5
UniAudio 3.12 / 2.6 61.9±1.9 / 66.1±1.5

Text-to-Music Copet et al. (2023) FAD (↓) / KL (↓) 4.52 / 1.4 OVL (↑)
/ REL (↑)

73.3±1.5 / 71.3±1.7
UniAudio 3.65 / 1.9 67.9±1.7 / 70.0±1.5
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Figure 4. The ablation study of the effectiveness of multi-task training. The up-arrow denotes higher metrics are better, instead down-arrow
denotes lower metrics are better.

competitive compared with its competitors, which is also
observed in previous literature (Erdogan et al., 2023) that
the signal-level evaluation metrics may not be suitable for
LLM-based generative methods. UniAudio cannot surpass
the selected competitor (Copet et al., 2023) in the Text-to-
Music task. We note that (Copet et al., 2023) is built with
more private labeled data than our UniAudio.

3.3. Support New Tasks

As UniAudio is designed to continuously support new audio
generation tasks, this section reports UniAudio’s perfor-
mance on unseen tasks. The model is obtained by fine-
tuning over 4 new tasks jointly and the results are presented
in Table 4. Similar to section 3.2, for each task, we compare
UniAudio’s performance with one selected prior work and
report the detailed results in Appendix B.

As shown in Table 4, the fine-tuned UniAudio model sur-
passes its baselines in audio edit and speech dereverberation
and is approaching the ground-truth quality in the prompt
TTS task. For speech editing, UniAudio shows considerable

improvement compared to generating the whole sentence 5.
In Appendix C.1, we additionally validate that fine-tuning
over the 4 new audio generation tasks does not affect Uni-
Audio’s performance on the original 7 tasks.

3.4. Ablation Study

3.4.1. BENEFIT OF BUILDING A UNIFIED MODEL

This work claims that building a unified model for all 11
audio generation tasks is promising and beneficial. To vali-
date this claim, we conduct ablation study to compare the
performance of the jointly trained UniAudio and the corre-
sponding models that are trained only on one task each. In
Figure 4, we present partial results of 7 tasks. Details of
this comparison on all 11 tasks are in Appendix C.2. We
observe that the jointly trained model outperforms the task-
specific models consistently on all tasks, regardless they
are included in the training stage or the fine-tuning stage,
which primarily validates the benefit of building the unified
model. The benefit of training a unified audio generation
model jointly is further validated in two factors: data scale
and cross-domain learning.

5Following Tan et al. (2021a), generating the whole sentence
with a TTS system is generally adopted as the baseline.
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Table 4. Performance evaluation for UniAudio and selected prior works in the fine-tuning stage.

Task Model Evaluation
Metrics Results

Audio Edit AUDIT FD (↓) / KL (↓) 20.78 / 0.86
UniAudio 17.78 / 0.77

Speech Derev. SGMSE+ PESQ(↑) / DNSMOS(↑) 2.87 / 3.42
UniAudio 2.13 / 3.51

P-TTS GroundTruth MOS(↑) / SMOS(↑) 3.77±0.07 / 3.85±0.08
UniAudio 3.61±0.09 / 3.71±0.09

Speech Edit TTS regeneration MCD(↓) / MOS(↑) 6.98 / 3.69±0.08
UniAudio 5.12 / 3.82±0.06

Data Scale: We note that UniAudio is trained on a mix-
ture of 12 datasets. By contrast, only a few out of these
12 datasets are applicable when training the task-specific
models. Thus, compared with the models that are built for
one task, the jointly trained UniAudio is built with datasets
collected from multiple tasks, for which it enjoys massive
data volume and then achieves non-trivial improvement over
those task-specific models. Fig. 5 experimentally demon-
strates the importance of data volume: when reducing the
data volume by randomly sampling the training data to 1/2
and 1/4 of its original size, the UniAudio model encounters
considerable performance degradation.

Cross-Domain Learning: UniAudio is trained on various
domains of audio data, such as speech, sound, and music.
We conjecture that, through joint training, the out-of-domain
data can also contribute to the in-domain learning task by
exploring the shared features of all domain (OpenAI, 2023;
Kondratyuk et al., 2023). Here we present a case study on
how the audio data from other domains (sound and speech)
can help improve the generation performance on the music
generation task, i.e., text-to-music.

With keeping all other setups the same, we train UniAudio
on 4 distinctive data combinations: (1) data for the text-to-
music task only ; (2) data for text-to-{music, sound} tasks;
(3) data for text-to-{music, speech} tasks; (4) data for text-
to-{music, sound, speech} tasks. We then evaluate their
performance on the text-to-music task and report the results
in Table 5. As suggested in that Table, compared with the
model trained only on text-to-music data, consistent per-
formance improvement on subjective metrics (OVL, REL)
is achieved by introducing extra sound data, speech data,
or both. Additionally, setup (4) contains the most diverse
training data (3 domains) and achieves the best subjective
evaluation results. All these observations support that learn-
ing the out-of-domain speech and sound data can improve
the text-to-music task.

3.4.2. ANALYSIS ON CODECFORMER

As in Section 2.1.1 & 2.3, the adoption of RVQ-based neu-
ral codecs has become a popular choice of LLM-based au-
dio generation but causes an overly long sequence issue
that needs further consideration. As described in Copet
et al. (2023), there are at least 4 approaches to predicting
these audio token sequences: (1) Flattening prediction, e.g.,
SPEARTTS (Kharitonov et al., 2023); (2) Coarse first pre-
diction, e.g., VALL-E (Wang et al., 2023a)); (3) Parallel
prediction, e.g., AudioGen (Kreuk et al., 2022); and (4)
Delay prediction e.g., MusicGen (Copet et al., 2023). We
argue that the proposed CodecFormer is an improved im-
plementation of the flattening approach. Then, as shown
in Table 6 and 7, we experimentally show that the Codec-
Former obtains better modeling quality than the other 3
approaches while achieving better efficiency compared with
the naive implementation of flattening (Kharitonov et al.,
2023). Our experiments are conducted on text-to-speech
and text-to-music tasks.

Auto-Regression and Performance: Among all 4 ap-
proaches, Copet et al. (2023) claims that the flattening series
methods provide the best audio generation quality. They fur-
ther conclude that the superior performance of flattening pre-
diction is mainly attributed to the auto-regressive property;
the other three methods do not reserve this property as the
concurrent prediction is introduced. Under the scenario of
codec adoption, we reinterpret the auto-regressive property
as: the prediction of the current token zkt is based on tokens
in prior frames: {zk′

t′ |t′ < t} and the tokens in the same
frame but in the shallower RVQ layers: {zk′

t′ |t′ = t, k′ < k}.
By adopting the full causality in both patch predictor and
token predictor, the proposed CodecFormer also satisfies
this definition and thus is an implementation of flattening.

Aligned with Copet et al. (2023), our experiments also val-
idate the importance of the auto-regressive property. As
in Table 6 and 7, flattening prediction brings better gener-
ation quality than parallel, coarse first, and delay predic-
tion. Additionally, with the same auto-regressive property,
our proposed CodecFormer achieves a comparable perfor-
mance with the naive flattening prediction in terms of gen-
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Figure 5. Performance comparison over different data quantity. We use a uniform sampling strategy for each task to select the subsets.
The up-arrow denotes higher metrics are better, instead down-arrow denotes lower metrics are better.

Table 5. Ablation study on different domain compositions of training datasets.
Data FAD (↓) KL (↓) OVL. (↑) REL. (↑)

Music only 5.24 1.80 64.4±2.1 66.2±2.4
Music + Sound 4.35 1.93 65.8±1.9 66.5±2.3
Music + Speech 4.66 1.97 64.9±1.7 67.6±2.0
Music + Sound + Speech 3.65 1.90 67.9±1.8 70.0±1.5

eration quality, which, again, validates the importance of
auto-regression.

Efficiency: Besides generation quality, efficiency is a major
concern of audio generation. Although with the desired
auto-regressive property to achieve high quality, the naive
flattening prediction is sub-optimal in terms of efficiency:
it is a standard Transformer decoder model that works on
the T × N long sequence, which has a space complexity
of O((T ∗ N)2) in self-attention. As increasing N gives
higher reconstruction quality at the cost of longer sequences
and more computation, this issue becomes more severe
when a larger N is adopted. Since the sequence length
grows proportionally with N , we experimentally find it
difficult to adopt naive flattening with N ≥ 4. By contrast,
the proposed CodecFormer distributes the inter- and intra-
frame modeling to the patch predictor and token predictor
respectively, which thus alleviates the space complexity to
O(T 2). Finally, without the requirement of auto-regression,
approaches like parallel, coarse first, and delay predictions
achieve better efficiency due to the adoption of concurrent
predictions. Since the space complexity is independent of N ,
training a larger N with the CodecFormer is then feasible.

4. Related Works
This work is an attempt to achieve universal audio gen-
eration through LLM-based techniques. There is a long
research history for many audio generation tasks. Conven-
tionally, the design of these tasks heavily leverages the do-
main knowledge of each specific task, and their workflows
are distinctive from each other: For tasks like TTS, SE, TSE,
VC, S-Edit, SVS, (1) their neural network architectures are

based on Transformer (Ren et al., 2020) or others (Oord
et al., 2016); (2) their training objectives can be either in
time-domain (Luo & Mesgarani, 2019), frequency-domain
(Yu et al., 2017) or others (Gu et al., 2021); (3) their designs
are inspired by and derived from linguistics and phonetics
(Zen et al., 2013), signal processing (Griffin & Lim, 1984),
auditory perception (Shadle & Damper, 2001) and machine
learning (Wang et al., 2016) research, etc; (4) they use dif-
ferent generative models, such as diffusion model (Shen
et al., 2023), and Seq2Seq (Ren et al., 2020).

The prosperity of LLM techniques (Radford et al., 2019;
OpenAI, 2023) significantly promotes progress in audio
generation research in several directions. First, the large
language models, along with the prompt methods, in-
spired multiple emergent audio generation tasks that are
based on textual instruction or descriptions from humans,
such as prompt-TTS (Yang et al., 2023a), text-to-sound
(Huang et al., 2023c) and text-to-music (Copet et al., 2023;
Agostinelli et al., 2023). Second, besides the text, audio can
also be tokenized as discrete sequences (Zeghidour et al.,
2021; Défossez et al., 2022; Kumar et al., 2023) that can be
further processed by LLMs. LLM-based audio generative
models then show superior capability in generalization to-
wards unseen speakers (Wang et al., 2023a), low resources
(Kharitonov et al., 2023), and multilingual (Zhang et al.,
2023) scenarios. These methods also achieve state-of-the-
art results in overall performance within their scopes.

It is laborious to handle each audio generation task case-
by-case, especially when considering the data shortage as
well as the emergent and varying needs in this area. Alter-
natively, building a universal audio generation model can
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Table 6. Model comparison among various audio token prediction methods. Experiments were conducted on the LibriTTS (Zen et al.,
2019) dataset. GPU memory and training time are obtained by a 20-second audio (average of 100 trials). All models have a similar
parameter budget.

Structure N MOS (↑) MCD (↓) GPU Mem. (GB) Time (s) / Iter.

Coarse first 8 3.48±0.05 7.37 18.7 0.58
Parallel 3 3.14±0.07 7.89 13.56 0.53
Delay 3 3.48±0.05 6.95 13.65 0.59
Naive Flattening 3 3.80±0.09 6.56 36.7 1.63
CodecFormer 3 3.77±0.05 6.52 19.4 0.73
CodecFormer 8 3.84 ±0.06 6.27 24.0 1.10

Table 7. Ablation study on text-to-music task using Million Song dataset (McFee et al., 2012). Experiments were conducted on various
audio token prediction approaches.

Structure N FAD (↓) KL (↓) OVL. (↑) REL. (↑)

Parallel 3 6.92 2.36 60.4±2.3 61.3±1.5
Delay 3 6.07 2.23 62.8±1.9 63.9±1.6
Naive Flattening 3 5.18 1.83 64.8±1.8 65.2±2.0
Ours 3 5.24 1.80 64.4±2.1 66.2±2.4

effectively utilize multiple data sources, which is a promis-
ing and practical paradigm. Given the rapid progress in
audio generation research, recent designs of audio genera-
tion, including LLM-based ones, tend to support multiple
audio generation tasks simultaneously. Some pioneer works
(Wang et al., 2023c; Le et al., 2023; Jiang et al., 2023; Vyas
et al., 2023; Liu et al., 2023a) clearly consider supporting
multiple tasks as a key strength; the designs of other prior
works (Borsos et al., 2023; Kharitonov et al., 2023; Shen
et al., 2023) do show the potential to generate audio in a
broader sense than what they originally claim. Following
these pioneering research works, UniAudio supports an ex-
tended coverage of 11 audio generation tasks in a unified
model.

5. Conclusion
To handle the emergent and varying needs in audio genera-
tion research, this work advocates building universal audio
generation models. We present UniAudio, an LLM-based
generative model that unifies a wide range of audio genera-
tion tasks. Experimentally, the proposed UniAudio achieves
competitive results on all tasks and demonstrates its ability
to support newly emergent tasks. Comprehensive ablation
studies are also conducted to validate the advantage of build-
ing this unified model over the task-specific models. Based
on these observations, we primarily validate the feasibility
of building universal audio generation models with LLM-
based routines.

Impact Statement
This work aims to advance universal audio generation,
which will ease the effort of developing multiple task-

specific models. The multitask learning on an extensive
and diverse set of audio generation tasks, enhancing its ca-
pabilities to manipulate different tasks. While our model
can produce a myriad of audio content, there’s potential for
misuse in the generation of misinformation, deepfake audio,
or any harmful content. We advocate training a detection
model to help humans identify these generated audios.
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Appendices

Table 8. Dataset adoption of all tasks
Task Training dataset Test set Train Volume (hrs)

Training Stage

TTS Librilight LibriSpeech clean-test 60k
VC Librilight VCTK 60k
SE MLS, Audioset TUT2017 Task1, VCTK 20k
TSE MLS Libri2Mix test set 10k
Sound AudioCaps, WavCaps Cloth test set 7k
Music MSD MusicCaps 7k
Singing OpenCPOP, OPenSinger, AISHEELL-3 M4Singer test set 150

Fine-Tuning Stage

Prompt-TTS PromptSpeech PromptSpeech test set 200
Speech dereverberation LibriTTS, openSLR26, openSLR28 LibriTTS test set 100
Speech edit LibriTTS LibriTTS test set 100
Audio edit AudioCaps, WavCaps AudioCaps test set 500

A. Experimental Setup
This appendix describes experimental setups in detail, including data statistics, model architecture, and optimization strategy.

A.1. Data Description

12 public datasets are adopted in this work for training. Besides, several test sets are additionally used only for zero-shot
evaluation. The statistics of these datasets are in Table 8. Datasets adoption for each task is described in Table 9. Note some
datasets are adopted by more than one task.

Table 9. Data statistics
Dataset Type Annotation Volume (hrs)

Training

LibriLight (Kahn et al., 2020) speech - 60k
LibriTTS (Zen et al., 2019) speech text 1k
MLS (Pratap et al., 2020) speech - 20k
AudioSet (Gemmeke et al., 2017) sound - 5.8k
AudioCaps (Kim et al., 2019) sound text description 500
WavCaps (Mei et al., 2023) sound text description 7k
Million Song Dataset (McFee et al., 2012) music text description 7k
OpenCPOP (Wang et al., 2022) singing text, MIDI 5.2
OpenSinger (Huang et al., 2021a) singing text, MIDI 50
AISHELL3 (Shi et al., 2020) speech text 85
PromptSpeech (Guo et al., 2023) speech text, instruction 200
openSLR26,openSLR28 (Ko et al., 2017) room impulse response - 100
Total - - about 100k

Test

LibriSpeech test-clean (Panayotov et al., 2015) speech text 8
VCTK (Veaux et al., 2017) speech text 50
TUT2017 Task1 (Mesaros et al., 2017) Noise - 10
Cloth (Drossos et al., 2020) Sound text description 3
MusicCaps (Agostinelli et al., 2023) Music text description 15
M4Singer(Zhang et al., 2022) singing text, MIDI 1

A.2. Model Configuration

The model configuration of the proposed CodecFormer is described in Table 10. We apply pre-layer normalization to the
decoder-only model. We set the dropout rate as 0. The learning rate is 6e− 4. For each batch, we set the sequence length as
6000. The activation function is GeLU. The model is trained with AdamW optimizer. We train the model with 2 epoch.
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Table 10. Model configuration (with N = 3)
Hyper-parameter Patch Predictor Token Predictor

#layer 24 8
#Attention dim 1536 1536
#Attention head 12 12
#Feed-Forward dim 6144 6144
#Position encoding Absolute position Absolute position
#Norm Types Layer normalization Layer normalization
#Params (M) 744 238
Max context length (in #tokens) 3,000 4
Causality Yes Yes

A.3. Optimization

The optimization configurations adopted in both the training and fine-tuning stages are presented in Table 11

Table 11. Optimization Configuration using AdamW optimizer
Hyper-parameter Pre-training Fine-Tuning

Batch Size (#patches/GPU) 8k 8k
Peak Learning Rate 1e-4 1e-5
AdamW Betas (0.9, 0.95) (0.9, 0.95)
Warm-up Steps 100k 1k
Training Steps 800k 50k
Learning rate decay Noam (Vaswani et al., 2017) Noam (Vaswani et al., 2017)

B. The Details of Experiments
This section presents detailed experimental results on each task. In the following, if the training set and test sets come from
different datasets, we label them as zero-shot settings.

B.1. TTS and VC tasks

For TTS tasks, UniAudio is compared with many previous SOTA models, Table 12 presents the results. Considering the
AR-style sampling bring bad cases, we sampling 5 samples for each utterance, and choose a best one by calculating the
edit distance using our ASR system. For FastSpeech 2, we only conduct QMOS evaluation as its implementation adopts
speaker id as input 6. We can see that UniAudio obtains better performance in terms of WER, SIM than YourTTS, VALL-E,
NaturalSpeech 2, and Make-A-Voice. Compared with VoiceBox, UniAudio also gets comparable performance in terms of
objective metrics. From the MOS evaluation, we can see that UniAudio can generate high-quality speech compared with
previous SOTA works. Furthermore, UniAudio realizes the best zero-shot clone ability (e.g. SMOS is 3.56 and SIM is
0.708). The demos for cross-lingual zero-shot TTS and Mandarin Chinese speech synthesis can be found on the demo page.
For the VC task, we conducted experiments on the VCTK dataset, we randomly chose 200 audio pairs. Table 13 shows the
results. PPG-VC and YourTTS are trained on small-scale datasets. Make-A-Voice and LM-VC 7 are trained on large-scale
datasets as the same as UniAudio. Compared with previous work, UniAudio got better performance in voice conversion
tasks.

B.2. Speech Enhancement and Target Speaker Extraction

For the SE task, we compare with previous SOTA methods, including discriminative methods (such as FullSubNet and
FullSubNet+) and generative methods (such as SGMSE+ and NADiffuSE). Note that the CDiffuSE and NADiffuSE are
both trained on the voicebank-demand dataset. Other models never saw the VCTK dataset in the training stage. We obtain
the inference results based on their open-source models. Table 14 presents the results, we can see that UniAuido obtains the

6https://github.com/ming024/FastSpeech2
7We seek help from the authors, they provide the inference results.
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Table 12. The performance comparison with previous SOTA methods in TTS and VC tasks. We do not conduct MOS evaluation for
VALL-E, SPEARTTS and VoiceBox due to the models are not released. SIM-o denotes that we calculate the similarity between generated
samples and ground truth. Without specifically stated, we follow VALL-E (Wang et al., 2023a), calculate the simialarity between generated
smaples and reconstructed one (SIM-r).

Model Zero-shot SIM-r (↑) SIM-o (↑) WER (↓) MOS (↑) SMOS (↑)

Text-to-Speech
GroundTruth - - - 1.9 3.99±0.08 -
FastSpeech 2 (Ren et al., 2020) ✗ - - - 3.81±0.10 -
YourTTS (Casanova et al., 2022) ✓ 0.337 0.31 7.7 3.66±0.07 3.02±0.07
VALL-E (Wang et al., 2023a) ✓ 0.580 - 5.9 - -
Make-A-Voice (TTS) (Huang et al., 2023d) ✓ 0.498 0.45 5.7 3.74±0.08 3.11±0.06
NaturalSpeech 2 (Shen et al., 2023) ✓ 0.62 0.55 2.3 3.83±0.10 3.11±0.10
SPEAR-TTS (Kharitonov et al., 2023) ✓ 0.560 - / - -
VoiceBox (Le et al., 2023) ✓ 0.681 0.66 1.9 - -
UniAudio ✓ 0.708 0.56 2.0 3.81±0.07 3.56±0.10

Table 13. The performance comparison with previous SOTA methods in VC task.
Model Zero-shot SIM (↑) WER (↓) MOS (↑) SMOS (↑)

Voice Conversion
GroundTruth - - 3.25 3.74±0.08 -
PPG-VC (Liu et al., 2021) ✗ 0.78 12.3 3.41±0.10 3.47±0.10
YourTTS (Casanova et al., 2022) ✓ 0.719 10.1 3.61±0.10 3.26±0.10
Make-A-Voice (VC) (Huang et al., 2023d) ✓ 0.678 6.2 3.43±0.09 3.47±0.10
LM-VC (Wang et al., 2023f) ✓ 0.820 4.91 3.41±0.08 3.17±0.09
UniAudio ✓ 0.868 4.8 3.54±0.07 3.56±0.07

best DNSMOS score. The PESQ and VISQOL scores are lower than other SOTA methods, we think these metrics may not
accurately assess the performance of generative methods. A similar finding is also observed in previous literature (Erdogan
et al., 2023) that the signal-level evaluation metrics may not be suitable for generative methods. In contrast, we recommend
using DNSMOS and MOS scores as the main metrics. UniAuido can get good results in extremely noisy environments,
we recommend readers refer to the demo page. For the TSE task, we conducted experiments on the LibriMix test set. The
popular TSE systems: VoiceFilter 8 and SpeakBeam9 are used as baseline systems. As Table 14 shows, we can see that
UniAudio obtains the best performance in terms of DNSMOS and MOS.

Table 14. The performance of SE and TSE tasks comparison with previous SOTA methods.
Model Zero-shot PESQ (↑) VISQOL(↑) DNSMOS(↑) MOS(↑)

Speech Enhancement
CDiffuSE (Lu et al., 2022) ✗ 1.88 1.21 2.54 -
NADiffuSE (Wang et al., 2023b) ✗ 2.96 2.41 3.03 3.30±0.08
SGMSE+ (Richter et al., 2023) ✓ 3.21 2.72 3.29 3.56±0.08
FullSubNet (Hao et al., 2021) ✓ 3.21 2.77 3.37 3.61±0.10
FullSubNet+ (Chen et al., 2022) ✓ 3.41 2.99 3.34 3.42±0.08
UniAudio ✓ 2.63 2.44 3.66 3.68±0.07

Target Speaker Extraction
SpeakerBeam (Žmolíková et al., 2019) ✗ 2.89 2.25 3.18 3.68±0.1
VoiceFilter (Wang et al., 2018) ✗ 2.41 2.36 3.35 3.43±0.09
UniAudio ✓ 1.88 1.68 3.96 3.72±0.06

B.3. Singing Voice Synthesis

Following Make-A-Voice, we conduct experiments on the M4Singer test set. We compare the generated singing samples
with other systems, including 1) Diffsinger; and 2) Make-A-Voice, a two-stage audio language model for singing voice
generation. As illustrated in Table 15, we can see that UniAudio gets comparable results with Make-A-Voice and Diffsinger.

8https://github.com/Edresson/VoiceSplit
9https://github.com/BUTSpeechFIT/speakerbeam
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Table 15. Quality and style similarity of generated samples in singing voice synthesis.
Model MOS (↑) SMOS (↑)

Diffsinger (Liu et al., 2022) 3.94±0.02 4.05±0.06
Make-A-Voice (Huang et al., 2023d) 3.96±0.03 4.04±0.05
UniAudio 4.08±0.04 4.04±0.05

B.4. Text-to-sound and text-to-music generation

The text-to-sound generation task has attracted great interest in audio research. Following Diffsound (Yang et al., 2023c),
most of the methods evaluate their systems on the AudioCaps (Kim et al., 2019) test set. However, we found that if the
training data includes the AudioCaps data, the model is easy to overfit with AudioCaps. As a result, the best performance
can be obtained when the model only trains on the Audiocaps. In this study, we conduct a zero-shot evaluation on the
Cloth test set (Drossos et al., 2020). Table 16 shows the results. We can see that UniAudio obtains better performance than
Diffsound and AudioLDM. Compared to recent SOTA models, such as Tango and Make-an-Audio 2, UniAudio also gets
comparable performance. For the text-to-music task, we follow MusicGen (Copet et al., 2023), evaluating our methods on
MusicCaps (Agostinelli et al., 2023). Compared with previous SOTAs, UniAudio gets a comparable performance with other
models. From the MOS evaluation performance, we can see that MusicGen is better than our current models. We speculate
one of the reasons is that MusicGen uses a large-scale high-quality dataset (20k hours).

Table 16. Text-to-sound and text-to-music evaluation. We report the subjective metrics including FAD(↓), and KL(↓). Furthermore, we
also conduct objective evaluation. Note that the training data of AudioGen includes Cloth datatset, thus can not be seen as zero-shot
setting.

Model Training Data (Hours) FAD KL OVL. REL.

Text-to-Sound Generation
Reference / / / 70.47±1.9 78.84±1.5

Diffsound (Yang et al., 2023c) 2k 7.8 6.53 - -
AudioGen (Kreuk et al., 2022) 4k 2.55 2.5 63.84±2.1 72.12±1.8

Tango (Ghosal et al., 2023) 3.3k 3.61 2.59 66.2±1.7 68.57±1.5
Make-an-Audio 2 (Huang et al., 2023a) 8.7k 2.13 2.49 61.52±1.6 69.9±1.5

AudioLMD (Liu et al., 2023b) 9k 4.93 2.6 60.95±1.9 65.7±1.8
UniAudio 7k 3.12 2.57 61.9±1.9 66.1±1.5

Text-to-Music Generation
Riffusion (Forsgren & Martiros, 2022) - 14.8 2.06 - -

Mousai (Schneider et al., 2023) - 7.5 1.59 - -
MusicLM (Agostinelli et al., 2023) 280k 4.0 - - -
Noise2Music (Huang et al., 2023b) 280k 2.1 - - -

MusicGen (Copet et al., 2023) 20k 4.52 1.41 73.28±1.5 71.28±1.7
UniAudio 8k 3.65 1.87 67.85±1.70 70.0±1.5

B.5. Audio Edit

Audio edit aims to edit the original audio based on Human’s instruction. AUDIT (Wang et al., 2023e) is the SOTA model
in audio edit task, which designs a data simulation strategy to get triplet training and test data (e.g., {audio, audio, text}).
The authors set 5 different tasks, including adding, dropping, replacing, inpainting, and super-resolution, and simulated
large-scale data for each task. To validate that our pre-trained model can be fine-tuned with small-scale data, we choose
adding, dropping, and super-resolution tasks to fine-tune simultaneously. To finish the fine-tuning process, we define a
new task label: Audit_task. The experimental results as Table 17 shows. We can observe that: (1) UniAudio can get better
performance with the previous SOTA model. (2) Fine-tuning pre-trained UniAudio can get better performance than training
it from scratch, which further validates the effectiveness of pre-training a model on large-scale training data.
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Table 17. Audio edit task evaluation.
Type Model FD KL

Adding task
AUDIT 21.80 0.92

UniAudio (scratch) 20.2 0.99
UniAudio (fine-tune) 19.69 0.934

Dropping task
AUDIT 22.40 0.95

UniAudio (scratch) 27.76 1.38
UniAudio (fine-tune) 23.1 1.10

Super-Resolution task
AUDIT 18.14 0.73

UniAudio (scratch) 11.51 0.29
UniAudio (fine-tune) 10.54 0.289

Table 18. Quality and style similarity of generated samples for Instructed TTS task.
Model MOS (↑) SMOS (↑)

GT 3.77±0.07 3.85±0.08
UniAudio (scratch) 3.62±0.07 3.67±0.08
UniAudio (tuning) 3.61±0.09 3.71±0.09

B.6. Prompt TTS

Using instruction to guide speech synthesis has received great attention (Guo et al., 2023; Yang et al., 2023a; Leng et al.,
2023). In this part, we fine-tune the UniAudio model on the PromptSpeech (Guo et al., 2023) dataset. Furthermore, we also
try to train a UniAudio model from scratch with the PromptSpeech dataset. Different from previous works that designed
special style encoders to capture the style information from text descriptions, we directly use the T5 text encoder to extract
representations from text and then combine it with the phoneme sequence input to the UniAudio, which is more convenient.
10 Table 18 shows the results, we can see that UniAudio has good performance in terms of style control and speech quality
when compared with the ground truth samples.

B.7. Speech Dereverberation

For the speech dereverberation task, we use the Room Impulse Response (RIR) data from the openSLR26 and openSLR28
datasets and the speech data from the LibriTTS clean part. We simulate about 100 hours of training data and 1 hour of test
data. We compare with previous SOTA systems, such as FullSubNet, FullSubNet+, and SGMSE+. Table 19 presents the
results. We can see that UniAudio obtains the SOTA performance in speech dereverberation tasks with small-scale training
data in terms of the DNSMOS metric. Similar to the speech enhancement task, we speculate that PESQ may not be suitable
for the generative methods.

Table 19. Results comparison with previous speech Dereverberation systems.
Model PESQ (↑) DNSMOS(↑)

SGMSE+ 2.87 3.42
FullSubNet 2.29 3.32
FullSubNet+ 2.27 3.25
UniAudio (scratch) 1.23 3.18
UniAudio (tuning) 2.13 3.51

10PromptTTS is not compared here as their implementation is not publicly available.
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B.8. Speech Edit

For the speech edit task, we use the LibriTTS dataset. In practice, we randomly choose some words to mask in the training
stage. We expect the model to recover the whole speech based on the phoneme sequence. In the inference stage, we can
mask the region that we want to update in the speech and input the new words so that the model can edit the speech. For this
task, we take the TTS system that regenerates a complete waveform from the whole sentence to be edited as the baseline. In
the evaluation, we mainly validate three situations: (1) word replacement; (2) insert a new word; and (3) delete a word. For
each situation, we randomly chose 10 sentences from the LibriTTS test clean set.

C. Ablation study
C.1. Fine-tuning the pre-trained model on the new task will influence the performance on previous tasks?

In this part, we conduct experiments to explore whether fine-tuning the pre-trained model on new tasks will influence
the performance of previous tasks. We evaluate the pre-trained UniAudio model (trained on 7 tasks) and fine-tuned
UniAudio model (fine-tuned on 4 new tasks) on 7 tasks. Figure 6 shows the results. We can see that the performance does
not significantly drop on previous training tasks, which demonstrates that UniAudio has the potential to add new tasks
continuously without losing previous task knowledge.

SIM
(

)

WER
(

)

SIM
(

)

WER
(

)

PE
SQ

(
)

VISQ
OL(

)

D-M
OS(

)

PE
SQ

(
)

VISQ
OL(

)

D-M
OS(

)
KL

(
)

FAD(
)

KL
(

)

FAD(
)

MOS(
)

SM
OS(

)

0.
71

2.
00

0.
86

4.
80

2.
65

2.
36

3.
66

1.
75

1.
69

3.
96

3.
12

2.
57 3.

65

1.
87

4.
08

4.
04

0.
71

2.
00

0.
85

4.
90

2.
63

2.
44

3.
60

1.
88

1.
68

3.
86

3.
12

2.
59 3.

68

1.
91

4.
02

3.
98

TTS VC SE TSE TT-Sound TT-Music SVS

Before Fine-Tuning After Fine-Tuning

Figure 6. Performance comparison over 7 audio generation tasks before/after fine-tuning. The up-arrow denotes higher metrics are better,
instead down-arrow denotes lower metrics are better.

C.2. The details of ablation study of multi-task training

In this part, we present the comparison between training UniAudio with each task separately and with all tasks jointly. The
details are shown in Table 20.

D. The details of Audio Codec Models
In this part, we give more details about our neural audio codec model in Section 2.1.1. We adopt a similar encoder-decoder
framework to the Encodec model, but we design a different discriminator and propose a sub-band STFT reconstruction loss.
In the following, we present the architecture and the training loss.

D.1. Model Architecture

Figure 7 shows the details of the mel-based discriminator. We combine the mel-spectrogram and log-mel-spectrogram
features and then input them into a network consisting of several convolutional layers. Our motivation is that the
mel-spectrogram has a strong intrinsic inductive bias, especially for sounds and music-related audio (Gong et al., 2021;
Yang et al., 2022). Thus, we speculate that choosing a mel-spectrogram-based discriminator can better promote high-fidelity
audio reconstruction. In our experiments, we use 6 different discriminators with different configurations 11. Specifically, we

11In our experiments, we find the mel-based discriminator brings better reconstruction performance when we train a universal neural
audio codec.
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Table 20. The ablation study of the effectiveness of multi-task training. UniAudio (Single) means the comparable model trained on one
task only.

Task Model Objective Evaluation Subjective Evaluation
Metrics Results Metrics Results

Text-to-Speech UniAudio (Single) SIM(↑) / WER(↓) 0.64 / 2.4 MOS(↑)
/ SMOS(↑)

3.77±0.06 / 3.46±0.10
UniAudio 0.71 / 2.0 3.81±0.07 / 3.56±0.10

Voice
Conversion

UniAudio (Single) SIM(↑) / WER(↓) 0.84 / 5.4 MOS(↑)
/ SMOS(↑)

3.45±0.07 / 3.44±0.07
UniAudio 0.87 / 4.8 3.54±0.07 / 3.56±0.07

Speech
Enhancement

UniAudio (Single) PESQ(↑)
/ VISQOL(↑) / DNSMOS(↑)

2.35 / 2.30 / 3.45 MOS(↑) 3.65±0.08
UniAudio 2.63 / 2.44 / 3.66 3.68±0.07

Target Speaker
Extraction

UniAudio (Single) PESQ(↑)
/ VISQOL(↑) / DNSMOS(↑)

1.97 / 1.61 / 3.90 MOS(↑) 3.58±0.08
UniAudio 1.88 / 1.68 / 3.96 3.72±0.06

Singing Voice
Synthesis

UniAudio (Single) - - MOS(↑)
/ SMOS(↑)

4.14±0.07 / 4.02±0.02
UniAudio 4.08±0.04 / 4.04±0.05

Text-to-Sound UniAudio (Single) FAD (↓) / KL (↓) 3.84 / 2.7 OVL (↑)
/ REL (↑)

60.0±2.1 / 61.2±1.8
UniAudio 3.12 / 2.6 61.9±1.9 / 66.1±1.5

Text-to-Music UniAudio (Single) FAD (↓) / KL (↓) 5.24 / 1.8 OVL (↑)
/ REL (↑)

64.4±2.1 / 66.2±2.4
UniAudio 3.65 / 1.9 67.9±1.7 / 70.0±1.5

Audio Edit UniAudio (single) FD (↓) / KL (↓) 19.82 / 0.92 - -
UniAudio 17.78 / 0.77 -

Speech Dereverb. UniAudio (single) PESQ(↑) / DNSMOS(↑) 1.23 / 3.18 - -
UniAudio 2.13 / 3.51 -

Instructed TTS UniAudio (single) - - MOS(↑) / SMOS(↑) 3.62±0.07 / 3.67±0.08
UniAudio - 3.61±0.09 / 3.71±0.09

Speech Edit UniAudio (single) MCD (↓) 5.26 MOS(↑) 3.73±0.07
UniAudio 5.12 3.82±0.06

set the hidden_dim as {64, 128, 256, 512, 512, 512} and the hop length as {32, 64, 128, 256, 512, 1024}.

D.2. Training Loss

The audio codec mainly consists of generators and discriminators. For discriminators, it trained with the discriminator loss
d :

Ld =
1

Kd

Kd∑
i=1

max (0, 1−Dk(x)) +max (0, 1 +Dk(x̂)) (1)

where x and x̂ denotes the input waveform and the reconstructed one. Kd denotes the number of discriminators. For
generator, it trained with following terms: the adversarial loss Ladv , feature loss Lfeat , the commitment Loss Lc and
reconstruction loss Lrec .

Ladv =
1

Kd

Kd∑
i=1

max (0, 1−Dk(x̂)) (2)

Lfeat =
1

Kd ∗ L

Kd∑
k=1

L∑
l=1

||Dl
k(x)−Dl

k(x̂)||1
mean(||Dl

k(x)||1)
(3)

Lc =
∑
i

||zi − qi(zi)||22 (4)

Lrec =
1

Ns

Ns∑
i=1

Li(x, x̂) (5)

where L denotes the number of layers in a discriminator. zi denotes the latent features produced by the qi quantizer. Li

denotes the i-th STFT sub-bands extractor. Ns denotes the number of sub-bands. Band-split (Nguyen, 1994) aims to divide
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the spectrogram into multiple sub-bands of predefined bandwidth. Recently, many works (Wang et al., 2023d; Chen et al.,
2023) found that splitting a spectrogram into multiple sub-bands is useful for speech or music separation tasks because it can
effectively split import information into several sub-bands. Inspired by these works, a sub-band STFT reconstruction loss is
proposed. The motivation is that sub-bands STFT reveal more spectrogram details, which can improve the reconstruction
performance. In our study, we set Ns = 6.

D.3. Training dataset

We carefully select the training dataset for different types of audio. For speech data, we use the Librilight dataset. For sound
and music data, we choose the audio from AudioSet. Note that we remove all speech data from AudioSet, and only retain
the sound and music-related data based on the label information. We do not choose a special singing voice dataset for codec
training. However, we find the codec model can be well generalized to the singing voice data.

D.4. Training configurations

We train the audio codec models with the learning rate of 1e− 4, the batch size is 12 for each GPUs (we use 8 V100-32G).
We set a fixed audio segment (2 seconds) during the training. We train the model with AdamW optimizer, exponentially
decayed learning rate, with γ = 0.99. We set the training step as 200k.

D.5. Results Analysis

To evaluate the reconstruction performance for different types of audio, we choose 4 different test sets: VCTK (speech),
Cloth (sound), MusicCaps (music), and M4Sing (singing voice). For each set, we randomly choose 100-200 audios. Table 2
shows the results. We can see that previous audio codec models perform poorly with few VQ layers, e.g. if the number of
RVQ layers is less than 4, the performance of Encodec and DAC is significantly decreasing. In contrast, the proposed audio
codec has better reconstruction performance even only using 3 VQ layers. This advantage is very useful for LLM-based
models for the reason that it effectively reduces the length of the target sequence.

D.6. Discussion

Recently, LLM-based audio generation has attracted great interest in the research community. Audio codec models play a
very important role, which effectively transfer the continuous audio signal into a token sequence. In theory, the reconstruction
performance is the limit of the generation model. Thus developing a good audio codec model is very important. Nowadays,
the reconstruction performance of audio codec models relies on the number of VQ layers, as Table 2 shows. A core problem
is that using more VQ layers will increase the target token sequence. Considering current LLM models are autoregressive
and the backbone is Transformer, a long sequence inevitably increases the training and inference costs. To overcome this
issue, previous works, such as VALL-E and AudioLM try to develop a two-stage generation model. We agree that such
settings are useful and effective. In this study, we explore to develop a one-stage unified model. Thus, designing a few RVQ
layers codec is useful.
All of the training process and pre-trained models will be released in the future.

E. Evaluation Metrics
For all of objective evaluation, we calculate the score based on the generated samples and the target audio resynthesized
using the codec models. For Word Error Rate (WER), we follow VALL-E (Wang et al., 2023a), using a pre-trained
HuBERT-Large model, then fine-tuning it on LibriSpeech dataset by using ESPNet tools. For speaker similarity (SIM), we
use WavLM-TDCNN 12 to extract the speaker embedding. For FAD, FD and KL, we follow previous text-to-sound works
(Yang et al., 2023c; Wang et al., 2023e), using the same models to evaluate the performance. The details of Subjective
evaluation as follows.

12https://huggingface.co/docs/transformers/model_doc/wavlm
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Figure 7. The overview of a single Mel-based discriminator. In practice, we will use multiple discriminators by setting different hop
lengths and hidden dimensions.

E.1. Subjective Evaluation

For TTS and VC tasks, we focus on speech quality (QMOS) and speaker similarity (SMOS). The details are as follows.
For speech quality evaluation, we conduct the MOS (mean opinion score) tests and explicitly ask the raters to focus on
examining the audio quality and naturalness, and ignore the differences of style (timbre, emotion, and prosody. The testers
present and rate the samples, and each tester is asked to evaluate the subjective naturalness on a 1-5 Likert scale.

For speaker similarity evaluation, we ask the raters to focus on the similarity of the speaker identity (timbre) to the reference,
and ignore the differences in content, grammar, or audio quality. We paired each synthesized utterance with a reference
utterance to evaluate how well the synthesized speech matched that of the target speaker.

For SE and TSE tasks, we write explicit instructions to ask the rater to assess the generated speech. Refer to Figure 8 to see
the details.

For SVS, we also conduct quality MOS (QMOS) and style similarity MOS (SMOS). Different from TTS’s SMOS evaluation,
we explicitly instruct the raters to focus on the similarity of the style (timbre, emotion, and prosody) to the reference, and
ignore the differences in content, grammar, or audio quality.

For sound and music generation tasks, we follow AudioGen (Kreuk et al., 2022) and MusicGen (Copet et al., 2023) to
evaluate (1) overall quality (OVL), and (2) relevance to the text input (REL).

Our subjective evaluation tests are crowd-sourced and conducted by 20 native speakers via Amazon Mechanical Turk. The
screenshots of instructions for testers have been shown in Figure 8. We paid about $500 on participant compensation. A
small subset of speech samples used in the test is available at http://dongchaoyang.top/UniAudio_demo/.

F. Limitation
Not all known audio generation tasks are included in the proposed UniAudio, such as noise removal, noise speech edit
(Wang et al., 2023c) and speech-to-speech translation (Rubenstein et al., 2023; Barrault et al., 2023). All new tasks added in
fine-tuning are formulated with the known modalities in the training stage; Introducing new modalities during fine-tuning is
unexplored in this work. Current UniAudio considers neither unlabeled data nor domain-specific foundation models, which
can possibly further improve the overall performance. The samples generated by UniAudio are not guaranteed in quality
and may contain errors.

G. Ethical Statement
We are devoted to prevent our AI models from being abused. Specifically, we demonstrate that the audio generated from our
codec model and UniAudio can be easily distinguished from the natural audio. We train a binary classification model using
the training recipe provided in (Jung et al., 2022), which only contains 297k parameters. The dataset contains three types of
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（a）Speech Enhancement （b）Target Speaker Extraction

（c）Qverall quality of Audio （d）Relevance to the text input

（e）Speech quality MOS （f）Speech Similarity  MOS 

Figure 8. Screenshots of subjective evaluations.

Precision Recall F1 Score
0.998 0.998 0.998

Table 21. Binary classification results of detecting the synthesized audio

data: (1) speech from humans; (2) speech resynthesized from Codec model and (3) generated speech from UniAudio. All
types of speech are derived from the combination of LibriSpeech Test, Dev-Clean, Other subsets with a ratio of 2:1:1. (1) is
considered positive examples while (2) and (3) are considered negative examples. We randomly reserve 1k examples for
validation and testing respectively; other examples are used for training. We select the decision threshold on the validation
set and apply it to the test set. The accuracy, recall, and F1-score for this binary classification task are as in Table 21. Based
on these results, we demonstrate that detecting the synthesized audio from UniAudio model is a trivial task.

H. Additional Experimental Results During the Peer Review Stage
We received many constructive comments during the peer review stage and did experiments accordingly. We summarize our
experiments and the corresponding findings during this stage as follows.

H.1. Impact of model size

We demonstrate that, with the same training data, increasing model size consistently leads to performance improvement, as
shown in Table 22.

H.2. The Mutual Benefits of Training Unified Speech Generation Models across Modalities

In Section 3.4.1, we demonstrate including speech data contributes to the performance of the music generation task. In the
tables below, we provide two further examples to demonstrate: (1) music data contributes to the sound generation task and
(2) music data contributes to the speech generation task. Results are in Table 23.
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Model TTS VC TSE SE Text-to-Sound Text-to-Music
SIM(↑) SIM(↑) DNSMOS(↑) DNSMOS(↑) FAD(↓) FAD(↓)

Small (200M) 0.619 0.850 3.70 3.49 4.03 5.72
Medium (200M) 0.640 0.857 3.79 3.52 3.89 5.06
Large (1B) 0.708 0.868 3.96 3.66 3.65 4.31

Table 22. Model performance with varying parameter scales

Data Setup Text-to-Sound Data Setup Text-to-Speech
FAD(↓) KL (↓) WER(↓) SIM(↑)

Sound 3.84 2.70 Speech 2.40 0.64
Sound + Music 3.42 2.66 Music + Speech 2.40 0.65

Table 23. Mutual Benefits of Training Unified Speech Generation Models across Modalities

H.3. Additional Zero-shot TTS evaluation

we additionally test our model on conversational test sets SwitchBoard (Godfrey et al., 1992), and expressive test sets
RAVDESS (Livingstone & Russo, 2018) for TTS task. For the SwitchBoard dataset, the test set includes 80 different
speakers, we randomly choose two utterances for each speaker. We use the first one as an audio prompt, and the second one
as a target. We try to evaluate our model’s zero-shot cloning ability on the SwitchBoard dataset. We choose our reproduced
VALL-E (Wang et al., 2023a) model as the baseline. We use the speaker similarity score as the metric. The results are as
Table 24 shows:

RAVDESS dataset is an emotional TTS dataset featuring 24 professional actors across 8 emotions (neutral, calm, happy,
sad, angry, fearful, surprise, and disgust). This dataset provides speech samples with the same text from the same speaker
across eight different emotions. We aim to evaluate the ability to clone emotion from the prompt. The test set includes 192
utterances (24 speakers, 8 different emotions from each speaker). Similarly, we choose a different utterance from the same
speaker with the same emotion as the prompt, expecting the model to clone the emotion from the utterance. To evaluate the
performance, we use Mel-Cepstral Distortion(MCD) for prosody evaluation by measuring the differences between generated
samples and ground truth samples. Furthermore, we also train an emotion classification model on the RAVDESS dataset.
We use classification accuracy as one metric to assess the emotion transfer ability. The results are as Table 25 shows.
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Table 24. The zero-shot TTS evaluation on SwitchBoard.
Model Similarity Score ↑

VALL-E 0.71
ours 0.77

Table 25. The zero-shot TTS evaluation on RAVDESS dataset.
Model MCD ↓ Accuracy ↑

VALL-E 4.84 60.4
Ours 4.42 68.7
GT - 87.2
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