

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EMERGENT COORDINATION IN MULTI-AGENT LAN- GUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

When are multi-agent LLM systems merely a collection of individual agents versus an integrated collective with higher-order structure? We introduce an information-theoretic framework to test—in a purely data-driven way—whether multi-agent systems show signs of higher-order structure. This information decomposition lets us measure whether dynamical emergence is present in multi-agent LLM systems, localize it, and distinguish spurious temporal coupling from performance-relevant cross-agent synergy. We implement both a practical criterion and an emergence capacity criterion operationalized as partial information decomposition of time-delayed mutual information (TDMI). We apply our framework to experiments using a simple guessing game without direct agent communication and only minimal group-level feedback with three randomized interventions. Groups in the control condition exhibit strong temporal synergy but only little coordinated alignment across agents. Assigning a persona to each agent introduces stable identity-linked differentiation. Combining personas with an instruction to “think about what other agents might do” shows identity-linked differentiation and goal-directed complementarity across agents. Taken together, our framework establishes that multi-agent LLM systems can be steered with prompt design from mere aggregates to higher-order collectives. Our results are robust across emergence measures and entropy estimators, and not explained by coordination-free baselines or temporal dynamics alone. Without attributing human-like cognition to the agents, the patterns of interaction we observe mirror well-established principles of collective intelligence in human groups: effective performance requires both alignment on shared objectives and complementary contributions across members.

1 INTRODUCTION

Recent advances in generative AI (specifically LLMs) have led to tremendous advances in multi-agent systems (Qu et al., 2024; Hong et al., 2024; Qian et al., 2023; Li et al., 2024a; Subramaniam et al., 2025). Multi-agent systems often show impressive performance increases over single-agent solutions (Wu et al., 2023; Chen et al., 2023; Li et al., 2024b; Tao et al., 2024). A key argument behind such performance gains are claims to “greater-than-the-sum-of-its-parts” effects from differentiated agents (Chen et al., 2023, p.1). Connecting multiple differentiated agents has the potential benefit to leverage unique contributions that would not be available if the task was assigned to only a single agent (Fazelpour & De-Arteaga, 2022; Tollefsen et al., 2013; Luppi et al., 2024; Lix et al., 2022). Conceptually, any group gains depend on emergence and synergy (Theiner, 2018; Riedl et al., 2021; Page, 2008; Hayek, 1945).¹ Despite impressive performance of many multi-agent systems we do not yet have a principled understanding when and how such synergy emerges, what role agent differentiation plays, and how to steer it systematically. This all points to a crucial need for deeper understanding of collective intelligence in multi-agent systems, specifically whether multi-agent LLMs exhibit any synergy or complementarity at all—the necessary prerequisite for absolute team-over-solo gains.

In this paper, we address the question when is a population of LLM agents a mere collection vs. a higher-order collective? We follow a purely data-driven approach to assess whether multi-agent

¹This is true for both human groups and multi-agent systems.

systems show signs of emergence in the form of higher-order synergy characterized by structural coupling and joint information about future states and task outcomes. Intuitively, synergy refers to information about a target that a collection of variables provide only jointly but not individually (Rosas et al., 2020; Humphreys, 1997).² We develop a principled framework (Figure 1a) building on new insights in information theory (Rosas et al., 2020; Mediano et al., 2022). Our goal is to develop methods to measure emergent role specialization, determine whether multi-agent systems show such signs of emergent synergy, explore whether synergy enables increased performance, and explore whether emergent behavior can be systematically steered with prompting.

We apply our framework to study multi-agent systems of gpt-4.1 and Llama-3.1-8B agents solving a simple group guessing task (Figure 1b) with three treatment interventions: a control condition, a condition that assigns personas to each agent, and one that uses personas with an instruction to “think about what other agents might do” (a theory of mind (ToM) prompt). The paper is organized into addressing three concrete research questions:

- 067 RQ1: Do multi-agent LLM systems possess the capacity for emergence?
- 068 RQ2: What functional advantages—such as synergistic coordination and higher performance—
069 arise when multi-agent systems exhibit emergence?
- 070 RQ3: Can we design prompts, roles, or reasoning structures that steer the internal coordination
071 of multi-agent to encourage positive, goal-directed synergy?

073 Our findings provide evidence for multi-agent LLM system capacity for emergence and that it underpins performance. Through a variety of complementary analyses and robustness tests, we show that
074 coordination style across interventions is very different. While emergence is present in all, only the
075 ToM-prompt condition leads to groups with identity-linked differentiation and goal-directed
076 complementarity across agents: they operate as an integrated, goal-directed unit. This is consistent with
077 research on human groups showing that performance gains are not automatic (e.g., Stasser & Titus,
078 1985) and that complementarity needs to be balanced with integration and goal alignment (Theiner,
079 2018; DeChurch & Mesmer-Magnus, 2010; Riedl et al., 2021).

081 This paper helps us understand when and how multi-agent systems exhibit higher-order properties,
082 how to control them, and their internal coordination. This can inform multi-agent system design by
083 showing how to combine agents effectively. We make four contributions:

- 085 1. Novel framework to quantify emergent properties in multi-agent systems based on infor-
086 mation decomposition including conditional/residual variants and outcome-relevant partial
087 information decomposition.
- 088 2. Principled diagnostic approaches to localize where synergy resides and distinguish it
089 from alternative explanations (such as heterogeneous learning rates). Specifically, we de-
090 velop two surrogate null distribution tests (row-shuffle to probe identity-locked structure;
091 column-shuffle for dynamic alignment). This design lets us tease apart “good” synergy
092 aligned with task goals from spurious or misaligned synergy.
- 093 3. Demonstrate how to steer emergence with specific prompts. Prompt-level manipula-
094 tions causally change higher-order dependencies and reliably induces distinct coordina-
095 tion regimes, shifting collectives from spurious and misdirected synergy to stable & goal-
096 aligned complementarity driven by differentiated identities.
- 097 4. Internal coordination is measurable and controllable with interventions. Groups differ in
098 variance, stability, and adaptability—properties relevant to reliability and deployment.

100 2 METHOD

102 **Group Task.** We study a group guessing game (developed by Goldstone et al., 2024, who called
103 it group binary search) without communication: agents propose integers whose sum needs to match
104 a randomly generated hidden target number. Agents are unaware of each others’ guesses and the

106 ²The key claim explored in this paper is conditional, cross-agent synergy—i.e., synergistic information and
107 coordinated differentiation across agents given the multi-agent constraint (not absolute outperformance over a
solo agent). We do not attempt to establish team-over-solo superiority on this task.

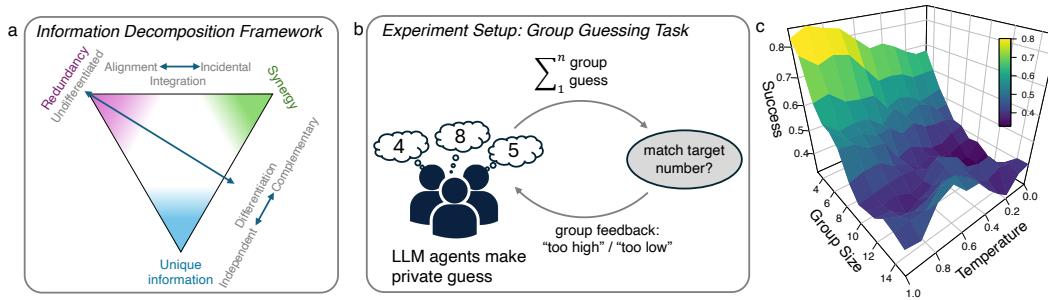


Figure 1: **a)** Information decomposition provides framework to explain tension in multi-agent systems. Agents are either undifferentiated or differentiated, provide independent or complementary information, which is either well aligned or incidental (adapted from Luppi et al., 2024). **b)** Experiment setup of the group binary search task. **c)** Preliminary experiments testing different group sizes and temperature settings. Surface values were smoothed using a local 3×3 weighted averaging filter, giving higher weight to each cell’s original value to reduce noise while preserving local structure.

size of their group, and receive only group-level feedback “too high” or “too low.” The task is challenging because identical strategies induce oscillation and only complementary strategies yield success. This setting naturally pits redundancy (alignment) against synergy (useful diversity), and admits clear nulls via row-wise (break identities) and column-wise (break alignment) surrogates. The binary search setting is a minimalist testbed to isolate emergence of cross-agent complementarity and dynamic coordination, not to establish team-over-solo superiority. The implementation of a textbook-like XOR dynamic allows us to study the benefits of emergence capacity conditional on a multi-agent setup (and not to establish team-over-solo superiority). Research on humans has shown that groups can reliably solve this task through the emergence of specialized, complementary roles (Goldstone et al., 2024).

Analytical Framework. How would we know if a multi-agent system shows emergent properties that could suggest that the sum is more than its parts? We develop a principled test based on a recent formal theory of dynamic emergence based on information decomposition (Rosas et al., 2020; Medianno et al., 2022; Bedau & Humphreys, 2008). Our framework connects emergence with information about a system’s temporal evolution—future states of the whole—with information that cannot be traced to the current state of its parts. This framework is based on partial information decomposition (PID; Williams & Beer, 2010) and time-delayed mutual information (TDMI; Luppi et al., 2022), is data-driven, quantifiable, and amenable to empirical testing with falsifiable conjectures against specific null hypotheses. Combining this with permutation tests, focused either on breaking connections between agents or connections across time allow us not only to quantify emergent properties but also to localize them in the system. This is crucial for multi-agent systems because we care about distinguishing synergy among specialized, differentiated agents from mere dynamic alignment.

We implement three tests. The first, termed *emergence capacity*, captures ability of the multi-agent system to host *any* synergy. It measures the predictive synergy from two agents’ current states to their *joint* future state. For each pair of agents (i, j) and time t , let the sources be $X_{i,t}$ and $X_{j,t}$, and define the bivariate target as the next-step joint state $T_{ij,t+\ell} \equiv (X_{i,t+\ell}, X_{j,t+\ell})$. From the joint contingency table over $(X_{i,t}, X_{j,t}, T_{ij,t+\ell})$ we compute a two-source PID of the predictive information

$$I(\{X_{i,t}, X_{j,t}\}; T_{ij,t+\ell}) = \text{UI}_i + \text{UI}_j + \text{Red}_{ij} + \text{Syn}_{ij} \quad (1)$$

and take Syn_{ij} as the pairwise dynamical synergy. A positive score $\text{Syn}_{ij} > 0$ indicates that the macro captures predictive information about the joint future not recoverable from any single component. We compute this for all unordered pairs (i, j) and take the median as group-level synergy capacity. Compared to the practical criterion, this test is limited to detect synergy of order $k = 2$ but has the advantage that it does *not* rely on the definition of a suitable whole-system macro signal.

162 The second test, termed the *practical criterion*, concerns predicting a macro signal V of the sys-
 163 tem. It asks whether the macro contains predictive information beyond any individual part. Given
 164 microstate $X_t = (X_{1,t}, \dots, X_{n,t})$, macro $V_t = f(X_t)$, and $I(\cdot)$ denoting mutual information. We
 165 align samples $(t, t + \ell)$ and compute the score as
 166

$$167 \quad S_{\text{macro}}(\ell) = I(V_t; V_{t+\ell}) - \sum_{k=1}^n I(X_{k,t}; V_{t+\ell}). \quad (2)$$

170 A positive value indicates that the macro’s self-predictability exceeds what the sum of its parts can
 171 explain, thus indicating emergent dynamical synergy. We refer to “dynamical” synergy because
 172 targets are time-lagged and do not claim causal directionality beyond the temporal ordering (see
 173 Rosas et al., 2020, for a nuanced discussion). It is a coarse, order-agnostic screen sensitive to multi-
 174 part synergy (i.e., synergy of any order ≥ 2). However, it is also penalized by redundancy across
 175 parts which can make the score negative even when higher-order synergy exists.
 176

177 To explore system dynamics, we implement a *coalition test*. Let I_3 be the mutual information be-
 178 tween a triplet’s current state and the future macro signal: $I_3 = I((X_{i,t}, X_{j,t}, X_{k,t}); V_{t+\ell})$. I.e.,
 179 how much the three agents jointly predict the macro’ future. High I_3 indicates that agents’ behav-
 180 iors are coherently organized toward the shared macro, whereas low I_3 signals weak alignment or
 181 uncoordinated behavior. Then
 182

$$183 \quad G_3 = I_3 - \max(I_{2\{1,2\}}, I_{2\{1,3\}}, I_{2\{2,3\}}) \quad (3)$$

184 measures the additional predictive information the full triplet provides over the most predictive pair
 185 I_2 (a form of whole-minus-parts metric; Barrett & Seth, 2011; Mediano et al., 2025). If we find
 186 $G_3 > 0$ this means no pair is sufficient to capture information that the triplet contains about the
 187 macro signal at $t + \ell$. We again compute I_3 and G_3 for all possible triplets and take the median as
 188 group measure. This measure complements the other two by offering a coalition-level test geared
 189 towards functional relevance: it helps answers whether the joint information provided by coalitions
 190 of agents is actually about the goal. It allows us to localize where macro predictability depends on
 191 beyond-pair structure and to rule out “explained by best pair” explanations.
 192

193 **Estimation Details.** As microstates $X_t = (X_{1,t}, \dots, X_{n,t})$ we use each agent i ’s guess at time t
 194 and transform it into the deviation from equal-share contribution to hit the target number: $devs_{i,t} =$
 195 $raw_{i,t} - target/N$. As macro signal V_t we take the group error $\sum raw_{i,t} - target$ (equivalently
 196 $\sum devs_{i,t}$).³ This minimal transformation removes the trivial level differences imposed by the target
 197 and aligns agents on a comparable scale, so that remaining variation reflects coordination (who
 198 compensates for whom). Over-/under-contributions are interpretable as the sign of deviations.
 199

200 We use the Williams–Beer two-source PID (Williams & Beer, 2010) with the I_{\min} (minimum spe-
 201 cific information) redundancy, estimated via plug-in probabilities. For robustness, we also use
 202 Jeffreys-smoothed probabilities, and alternatively MMI redundancy (minimum of whole mutual in-
 203 formations; Mediano et al., 2025) with MI estimated with Miller–Madow bias correction (Miller,
 204 1955). All variables are discretized into $K = 2$ bins using quantile binning. Data are encoded as
 205 factors with fixed levels 1, 2 (and for the joint target as the Cartesian product levels) to avoid drop-
 206 ping empty categories. We report $\ell = 1$ which is suitable to detect next-step oscillating behavior
 207 (see task description). Because trials end at success, episode lengths vary (see plot of rounds to suc-
 208 cess in Appendix). We report additional sensitivity tests using “early synergy” truncated to a fixed
 209 horizon of $H \in \{10, 15\}$ rounds to ensure comparability (results in Appendix A.2 and A.12; main
 210 analyses use full trajectories).
 211

212 **Falsification Tests.** We perform two different falsification tests of each of the three criteria intro-
 213 duced above. Our primary test assesses significance by comparing the observed value against a null
 214 distribution computed on permuted (shuffled) instances of the $devs$ data. We use two surrogates:
 215 row-wise shuffles (to break identities) and column-wise time-shift surrogates (preserve individual

³We also performed additional sensitivity analyses using alternative specification of the macro signal as first principle component of individual guesses as used in Rosas et al. (2020).

216 dynamics while disrupting cross-agent alignment). Full details in Appendix. We combine p -values
 217 across independently simulated groups (independent seeds, independently sampled targets, and no
 218 shared state) using Fisher’s method. As a robustness test, we also compute bias-corrected (BC)
 219 estimates using time-demeaned data against a block-shuffled null with $\ell = 2$ to mitigate autocorre-
 220 lation confounds. We use both (a) linear regression demeaning and (b) a functional baseline without
 221 between-agent synergy (see Appendix for details). These tests provide additional robustness to the
 222 $\ell = 2$ block size in the shuffled null and auto-correlation concerns.

223 **Entropy Estimation.** Small-sample entropy estimation is often challenging because the true dis-
 224 tribution is only partially observed and many outcome categories receive few or even zero counts
 225 (“empty bins”). Such finite-sample estimation of information measures is biased upward and can
 226 yield spurious positive findings. Bias grows with more bins, dimensionality (e.g., using triplets
 227 instead of pairs), and small N (few timesteps). The empirical plug-in estimator replace true proba-
 228 bilities with sample frequencies and unseen (or under-sampled) outcomes often are assigned zero or
 229 very low probabilities (Hausser & Strimmer, 2009). To account for this issue, we follow best prac-
 230 tices and take several steps. First, we compute the emergence capacity and the coalition tests as order
 231 $k = 2$ instead of the entire system of n agents. Second, we apply quantile binning (with two bins) to
 232 reduce the dimensionality of our data (sensitivity analyses with three bins reported in A.8). Third,
 233 we use bias-corrected entropy estimator with Jeffreys’ prior, which smooths estimates and avoids
 234 empty bins by adding $\alpha = \frac{1}{2}$ pseudo-counts in the Dirichlet estimator (Jeffreys, 1946). This reduces
 235 systematic inflation and cures zero-count pathologies. Finally, as a robustness check, we also report
 236 results using the Miller–Madow bias-corrected estimator (Miller, 1955), and the MMI redundancy
 237 measure (MMI typically overestimates redundancy, making synergy estimates more conservative;
 238 Mediano et al., 2025).

239 **Test of Agent Differentiation.** To futer localize Are there detectable between-agent differences
 240 in either the level of their contribution to the group guess or their temporal evolution (i.e., learning
 241 rate)? Third, we test agent differentiation: do individual agents develop stable, identity-locked
 242 behaviors that distinguish them within the group? new.pdf
 243 old.pdf Our third pillar evaluates agent differentiation via hierarchical modeling, asking whether
 244 agents adopt consistent, person-specific patterns. old.pdf We next assess identity-locked differentia-
 245 tion—the emergence of distinct, stable agent “personalities” under each prompt condition. new.pdf
 246 old.pdf Pillar three probes agent differentiation: evidence that behavior is tied to agent identity
 247 rather than transient noise, as captured by hierarchical linear models. old.pdf Finally, we examine
 248 agent differentiation to quantify whether interventions produce distinguishable, stable patterns at the
 249 individual level. new.pdf

251 We complement the information theoretic measures with a test for agent differentiation based on
 252 hierarchical (mixed) models (Gelman & Hill, 2007). We estimate a sequence of three models for
 253 each multi-agent experiment:

$$\begin{aligned} m_0 : \quad & y_i = \beta_0 + u_{\text{time}[i]} + \epsilon_i \\ m_1 : \quad & y_i = \beta_0 + u_{\text{time}[i]} + u_{\text{agent}[i]} + \epsilon_i \\ m_2 : \quad & y_i = \beta_0 + u_{\text{time}[i]} + u_{\text{agent}[i],0} + u_{\text{agent}[i],\text{time}[i]} + \epsilon_i \end{aligned}$$

254 where y_i are $devs_{i,t}$, $u_{\text{time}[i]}$ are random intercepts for (continuous) time, $u_{\text{agent}[i]}$ are agent-level
 255 random intercepts, and $u_{\text{agent}[i],\text{time}[i]}$ are agent-level random slopes varying by time. The random
 256 intercepts capturing differentiation in agents based on their level differences and varying slopes
 257 capture heterogeneous learning rates. Using equal-share deviations removes target-level drift and
 258 makes agents directly comparable round-by-round. The random intercepts for time captures round-
 259 to-round shifts due to group-wide feedback and oscillation. Hence, agent effects reflect relative,
 260 identity-linked behavior rather than shared dynamics. The partial pooling of hierarchical models
 261 regularizes per-agent estimates, improving stability in short time series. We then use likelihood
 262 ratio tests to compare the nested hierarchical models. Comparing $m_0 \rightarrow m_1$ asks whether agents
 263 differ in their group contribution (some agents guess higher/lower than others), while $m_1 \rightarrow m_2$
 264 tests whether agents vary in how much their contribution changes across rounds (learning rates). A
 265 significant p -values (e.g., below conventional 0.05 levels) indicates that the more complex model
 266 explains the data significantly better, suggesting the added random effects (e.g., agent-level differ-
 267

270 ences or varying slopes) are meaningful in this group. This offers an interpretable, non-information
 271 theoretic test of monotonic learning-rate heterogeneity. Furthermore, this test does not require dis-
 272 cretization, giving a complementary failure mode to the information-theoretic analyses.
 273

274 Together, these four tests of our framework allow us to (a) detect higher-order structure in multi-
 275 agent systems, (b) assess whether it is driven by redundancy or synergy, (c) localize whether it is
 276 identity-locked vs. dynamic alignment, and (d) show whether the higher-order structure is func-
 277 tionally useful for the task. No single measure does all four. Combined with the prompt-level
 278 interventions, the framework allow us to test whether interventions (**Plain**, **Persona**, **ToM**) causally
 279 increases dynamic synergy, how it affects identity-locked differentiation, and goal alignment (i.e.,
 280 increase in I_3).
 281

282 3 EXPERIMENTS

283 3.1 PRELIMINARY EXPERIMENTS: GROUP SIZE AND TEMPERATURE

285 To see if LLMs can solve this task and how sensitive results are to different group sizes and temper-
 286 ature settings we ran a first set of preliminary experiments (see Appendix for prompt). We used a
 287 frontier-class model, OpenAI’s `gpt-4.1-2025-04-14`. We varied group size from 3 to 15, and
 288 temperature from $[0, 1]$ in steps of 0.1. For each grid point we ran 50 group experiments (13 group
 289 sizes \times 11 temperature settings \times 50 groups = 7,150 experiments; Figure 1c). Multi-agent systems
 290 of `gpt-4.1` agents can solve the task reliably but encounter substantial challenges. We fit a logistic
 291 regression, predicting the probability of success from group size and temperature. We find the task is
 292 significantly easier for smaller groups: each additional group member decreased the odds by roughly
 293 8% (OR = 0.92, $p < 10^{-16}$). This replicates the same results as for human groups (Goldstone et al.,
 294 2024). Each unit increase in temperature increased the odds of success by approximately 50% (OR
 295 = 1.50, $p < 10^{-7}$).
 296

297 3.2 MAIN EXPERIMENTS

298 For the main set of experiments, we chose groups of $N = 10$ because that appears to be the most
 299 difficult setup, and a temperature of 1, and used OpenAI’s `gpt-4.1-2025-04-14` (OpenAI,
 300 2025) and Meta’s `Llama-3.1-8B` (Meta, 2024) with the prompts shown in Appendix A.1. We
 301 query `gpt-4.1` through the OpenAI API and Llama through locally hosted Ollama with a NVIDIA
 302 RTX Pro 6000 Blackwell. We replicate each group experiment 200 times per treatment condition
 303 (600 experiments total). Overall success rate is not significantly different across the interventions
 304 (Figure 2a).
 305

306 **Interventions.** **Plain:** The control condition uses only instructions for the guessing game, similar
 307 to those used in human subject experiments (Goldstone et al., 2024). **Persona:** For the persona con-
 308 dition, we follow recent insights into the use of personas within the LLM community (Chen et al.,
 309 2024) and ensure personas have relevant attributes: name, gender, age, occupation or skill back-
 310 ground, pronouns, personality traits (Goldberg, 1992), and personal values (Cieciuch & Davidov,
 311 2012). **ToM:** The ToM condition instructs agents to think about what other agents might do, and
 312 how their actions might affect the group outcome, inspired by chain-of-thought reasoning (Wei et al.,
 313 2022). See Appendix A.1 for all prompts, full persona generation recipes, and example persona.
 314

315 4 RESULTS

316 4.1 EMERGENT SYNERGY

318 We first test if there are signs of emergence using the practical emergence criterion (predicting a
 319 time-lagged macroscopic group signal from micro-level states). First, we take the criterion computed
 320 using the equal-share contribution data and compare it against a null distribution of block-shuffled
 321 permutations. Individually, about 3.5% of experiments show a p -value below 0.05. A joint Fisher
 322 test using all p -values is highly significant, both individual and when tested within in each treatment
 323 condition separately (p -values are below 10^{-16}). Our second test takes the bias-corrected versions
 324 of the measure and performs a Wilcoxon signed rank test of the null hypothesis that the median
 325

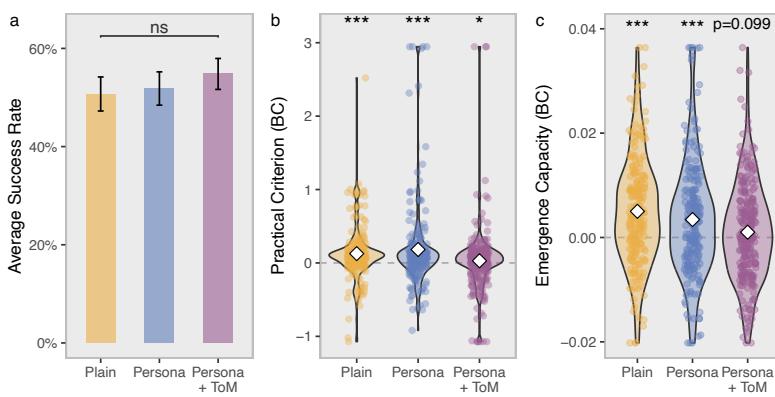


Figure 2: **a)** Group success across three interventions. **b)** Practical emergence criterion (bias corrected). **c)** Emergence capacity dynamical synergy (bias corrected). Data Winsorized at the 1st and 99th percentiles for visual clarity. Stars indicate significance level of Wilcoxon test. Notes: *** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$.

value is above 0 (Figure 2b). We report our most conservative results using time-trend demeaned data. The bias-corrected estimates are well above 0 in all conditions (**Plain**: $p = 1.5 \times 10^{-16}$; **Persona**: $p = 6.6 \times 10^{-7}$; **ToM**: $p = 0.02$). We report additional robustness tests using (a) raw data, (b) functional null model residuals, (c) using agent reactivity as data, and (d) bias correction using Jeffrey’s smoothing and Miller-Madow in the Appendix.

We repeat analyses using the emergence capacity criterion. We find it is significantly above its null across conditions; results hold under residualization and alternative entropy corrections (Figure 2c; see Appendix for details). Taken together, across two different tests (one using a macro signal the other using future system behavior) and across a variety of robustness tests we find evidence of dynamic emergence capacity in multi-agent LLM systems (answering **RQ1**).

4.2 DYNAMICAL MECHANISMS

How is this emergence dynamically maintained and where is it located within the groups? We find time-trend demeaned bias-corrected I_3 around 0 in the **Plain** (Wilcoxon p -value 0.974) and **Persona** condition ($p = 0.846$) indicating groups that fail to escape chaotic, uncoordinated states. In contrast, the **ToM** shows significant positive mutual information ($p = 3.5 \times 10^{-14}$), collapsing the group’s behavior into a predictable macro-state (Figure A2)). The number of groups with significantly positive I_3 is substantially higher in the **ToM** condition (Figure 3a). To formalize this transition dynamic, we compute the Total Stability of the system (computed as I_3 normalized by the entropy of the macro-signal) which serves as a proxy for the Lyapunov stability of the collective state (Haddad & Chellaboina, 2008). We find Total Stability indistinguishable from zero in the **Plain** (Wilcoxon p -value 0.976) and **Persona** (p -value = 0.858) indicating a “gaseous” state where groups fail to settle into a stable attractor. However, the **ToM** intervention induces a sharp increase in Total Stability (p -value = 2.9×10^{-14}). Theoretically, this suggests the **ToM** prompt acts as a control parameter, steering the multi-agent system from a chaotic regime into a deep basin of attraction where collective behavior stabilizes: turning the system from a collection of individuals into a collective group.

Decomposition this stability reveals the specific mechanism of coordination. While the system exhibits strong emergence capacity and practical emergence, we find the stability in group behavior is supported by pairwise alignment rather than irreducible triplet complexity. Specifically, triadic information gain (G_3) is around 0 in **Persona** and **ToM** (Figure 3c). The **Plain** conditions shows small positive $G_3 > 0$ (Wilcoxon p -value = 0.026) but given the near-zero Total Stability, this likely reflects transient stochastic correlations and oscillation rather than sustained coordination. In dynamical systems terms, the **ToM** prompt creates a deep basin of attraction where agents converge on a shared schematic (or Schelling point), making the collective state robust but informationally redundant. This mirrors “Mean Field” coupling in physics: because agents receive only global feedback and cannot observe individual peers, they couple to the aggregate signal rather than forming

378 distinct local bonds. In such an environment, attempting complex higher-order synergy would be
 379 fragile; instead, the system converges on the efficient solution of dense pairwise alignment to the
 380 Mean Field.

381 Next, we explore whether agents evolve specialized roles & identities. Are there detectable between-
 382 agent differences in either the level of their contribution to the group guess or their temporal evolution
 383 (i.e., learning rate)? Using the hierarchical model comparison test we find that agents in may
 384 groups have differentiated identities (Figure 3a; a Fisher test for joint p -value evidence is again
 385 highly significant). There is substantially more differentiation among agents in the **Persona** con-
 386 dition, and even more in the **ToM** condition. Inspecting the reasoning traces of agents, they often
 387 contain references to the “personal experience” of their assigned persona such as “In my experience
 388 (whether it’s corralling cattle or wrangling numbers), starting toward the middle gives the group the
 389 best shot to zero in after the first feedback” (see Appendix for additional sample quotes). In Ap-
 390 pendix A.10 we provide additional robustness tests ruling out heterogeneous learning rates as the
 391 sole source of differentiation and provide additional evidence for stable agent identities that persist
 392 over time. That is, in the **Plain** condition, differentiation results only from idiosyncratic noise and
 393 transient drift introduced by probabilistic LLM responses. With **Persona**, agents gain stable, iden-
 394 tity linked behavioral preferences that refine their differentiation. The addition of **ToM** sharpens
 395 role differentiation through feedback loops from mutual predictive modeling by conditioning on the
 396 public history (which functions as a common ground and coordination device; Lewis, 1969; Skyrms,
 397 2010). This converts small persona-induced asymmetries into stable, self-reinforcing roles, creating
 398 the basis for strategic complementarity (answering **RQ2** and **RQ3**)

399 4.3 FUNCTIONAL ROLE OF EMERGENCE IN GROUP PERFORMANCE

400 What functional differences—if any—does emergence allow? We use regression analysis to ex-
 401 plore the joint effect of synergy and redundancy (based on emergence capacity formulation) while
 402 carefully controlling for endogeneity of variables measuring emergent properties and performance
 403 and controlling for sample selection bias with stabilized inverse probability weighting (see Ap-
 404 pendix A.11 for method details). On their own, higher levels of either synergy or redundancy do not
 405 predict success. However, when both are present, performance improves significantly (significant
 406 interaction with $\beta = 0.24$; $p = 0.014$). In marginal-effect terms, redundancy amplifies the benefit
 407 of synergy on the log-odds scale by 27%; and vice versa synergy amplifies benefits of redundancy
 408 by 27%. This pattern implies that systems benefit when redundant pathways create goal alignment,
 409 while synergistic interactions extract novel, non-overlapping information—together enabling higher
 410 overall performance. We complement the regression analysis with causal mediation analysis (Imai
 411 et al., 2010). While reaching only marginal significant levels the effect is consistent: the **ToM**
 412 treatment causally increases performance indirectly by increasing synergy (ACME = 0.034 [95%CI:
 413 $-0.000 - 0.07$], $p = 0.053$). This aligns with the interpretation that performance benefits emerge
 414 when systems achieve both redundancy (aligned toward a common goal) and synergistic integration
 415 (differentiated, complementary roles)—a form of functional and collective complexity (Varley et al.,
 416 2023; Luppi et al., 2024; Sterelny, 2007).

417 4.4 EXPERIMENTS USING LLAMA-3.1-8B

418 Repeating the experiments using another class of LLM with 8B parameters (Llama-3.1) we find
 419 multi-agent systems are generally not able to solve the task (at least not with the identical prompt
 420 as used in the other experiments). Only 10% of groups manage to solve the task (**Plain**: 10.5%;
 421 **Persona**: 14%; **ToM**: 5.5%). Model capacity to support reasoning about other agents seems crucial
 422 and despite the instruction to do so, Llama-3.1-8B agents fail to execute it effectively. Groups
 423 in the **ToM** condition perform significantly worse than in the **Plain** condition (test for equality of
 424 proportions $p = 0.007$) thus reversing the findings of the more capable gpt-4.1 agents. Results
 425 regarding emergence capacity are mixed (see Appendix).

426 The strong oscillating pattern in guesses materializes as high predictive power over the group out-
 427 come (15.8% groups show significant I_3 compared to only 2% in gpt-4.1 groups) but much lower
 428 G_3 synergy between agents (significant synergy present in 2.6% Llama groups compared with 20%
 429 of gpt-4.1 groups). There is extremely strong coupling across time (current individual states predict
 430 future joint states well as agents oscillate) but very little cross-agent complementarity. This suggests

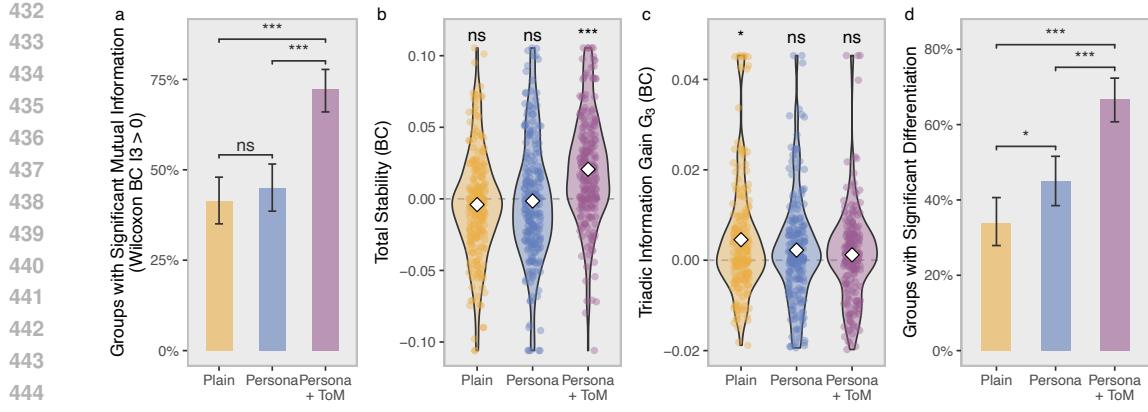


Figure 3: **a)** ToM-prompt condition has substantially more groups with significant I_3 content (above 0). **b)** Total Stability (time-delayed mutual information of triplets (I_3 normalized by macro-signal entropy, bias corrected)). **c)** Information gain of triads over most informative dyad (G_3 , bias corrected). **d)** Agent differentiation using hierarchical mixed model comparison (counting groups in which at least one test (different intercepts or slopes) is below $p < 0.05$. In panel a) and d), error bars show Wilson confidence intervals for binary data. Stars indicate significance level of test for equal proportion. Panel b) and c) shows bias corrected data with Jeffreys' prior. Data are Winsorized at the 1st and 99th percentiles for visual clarity. Stars indicate significance level of Wilcoxon test. Notes: *** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$.

that while multi-agent systems with lower-capacity LLMs still show some signs of emergence, it is mostly spurious across the temporal dimension rather than the productive cross-agent dimension found in gpt-4.1 agents. Lower ToM reasoning reasoning capacity in Llama-3.1-8B (Xiao et al., 2025) may explain the lack of useful, goal-directed cross-agent synergy. Capacity-matched prompt tuning (e.g., lower temperature or simplified instructions) might yield different results.

5 RELATED WORK

Shortly after the release of ChatGPT, the community began exploring multi-agent LLM systems, where multiple LLM agents interact with each other. One early example is Park et al. (2023), who simulated a small population of “individuals” in a *The Sims*-style environment with friends, houses, and jobs, showing the emergence of rich social behaviors such as coordinating a Valentine’s Day party. This was followed by multi-agent systems for complex tasks such as software development (Chen et al., 2023; Hong et al., 2024; Qian et al., 2023), healthcare (Li et al., 2024a), and other domains (Subramaniam et al., 2025; Ashery et al., 2025). Federated systems or “society of models” also gained attention (Juneja et al., 2024; Li et al., 2024b). These systems often achieve significant performance gains over single-agent baselines (Wu et al., 2023; Chen et al., 2023; Li et al., 2024b; Tao et al., 2024).

A recurring explanation for such gains invokes “greater-than-the-sum-of-its-parts” effects (Chen et al., 2023, p.1), often attributed to division of labor among differentiated agents (Subramaniam et al., 2025). Yet while this work is “inspired by human group dynamics” (Chen et al., 2023, p.1), it rarely evaluates whether the same principles that underlie effective (and ineffective) human groups also emerge in multi-agent systems. Two gaps stand out. First, human groups often coordinate by developing *role specialization* (Goldstone et al., 2024). Multi-agent systems often intuitively induce role specialization (such as “programmer”, “tester”, and “CEO”; Qian et al., 2023) yet have not systematically evaluated the impact on emergent shared cognition beyond win-rate comparisons. Second, groups only outperform individuals if their members specialize in contributing different pieces of information to the group task (Theiner, 2013; DeChurch & Mesmer-Magnus, 2010; Fazelpour & De-Arteaga, 2022; Nickerson & Zenger, 2004). Effective groups balance complementarity—members contributing distinct information—with redundancy, the alignment on shared goals (Theiner, 2013; DeChurch & Mesmer-Magnus, 2010; Fazelpour & De-Arteaga, 2022; Luppi et al., 2024; Tollefson et al., 2013). Too much of either undermines performance. Unlike win-

486 rate-centric evaluations—and tests of whether agents in multi-agent systems can sustain cooperation
 487 *per se* Piedrahita et al. (2025); Piatti et al. (2024)—we propose falsification tests and null modeling,
 488 thus extending multi-agent frameworks with formal theory. While these principles likely apply to
 489 LLM-based collectives given the universality of the integration-segregation tradeoff (Tononi et al.,
 490 1994), it remains unclear whether agents develop differentiated roles, whether such roles comple-
 491 ment each other, how to steer it with prompts, and what role ToM capacity of models plays for
 492 collaboration (Westby & Riedl, 2023; Kleiman-Weiner et al., 2025; Riedl & Weidmann, 2025).

493 6 CONCLUSION

494 Collectives of LLM agents are emerging as a powerful new paradigm, capable of tackling tasks that
 495 exceed the reach of any single model. Yet raw capability alone may not determine their effectiveness.
 496 Effective multi-agent systems depend on acting as integrated, cohesive units as opposed to loose ag-
 497 ggregations of individual agents. In collective intelligence, this distinction often separates groups that
 498 merely average their parts from those that achieve true synergy (Riedl et al., 2021). This paper asks
 499 whether such coordination dynamics also matter for LLM collectives, what functional benefits they
 500 have, and whether we can design prompts, roles, or reasoning structures that foster such integrated
 501 yet synergistic behavior. The framework we developed connects human group cognition theory to
 502 LLM multi-agent systems, offering a novel conceptual bridge. Methodologically, we demonstrate
 503 how to operationalize group-level synergy in AI collectives using quantitative information-theoretic
 504 measures. We also provide specific design principles for creating productive LLM collectives that
 505 are aligned on “shared goals,” which can inform multi-agent orchestration tools, cooperative AI, and
 506 mixed human–AI teamwork. This work extends ToM research beyond standard false-belief tests to
 507 realistic collaborative tasks (Shapira et al., 2024; 2023). Those insights will help us understand when
 508 multiple LLMs working together will be beneficial, why that is, and inform their design.

509 We note that evidence of higher-order synergy should not be interpreted as implying sophisticated
 510 cognition or consciousness. As conceptualized here, synergy is a structural property of part-whole
 511 relationships within multi-agent interactions. Such higher-order structures are known to arise in sim-
 512 ple systems, including agents governed by reinforcement learning (Fulker et al., 2024) or via basic
 513 nonlinearities in contagion processes (Iacopini et al., 2019; Lee et al., 2025). Without attributing
 514 human-like cognition to the agents, the patterns of interaction we observe mirror well-established
 515 principles of collective intelligence in human groups (Riedl et al., 2021; DeChurch & Mesmer-
 516 Magnus, 2010): effective multi-agent performance requires both alignment on shared objectives and
 517 complementary contributions across members.

518 **520 Limitations and Future Work.** This work focuses on developing a framework, characterizing
 521 emergence, and localizing it. While we explore the degree of goal alignment via a performance-
 522 related macro signal and performance effects of “early synergy”, the analysis linking synergy and
 523 redundancy to performance is challenging because synergy and redundancy are often co-dependent
 524 and emerge alongside performance. Future work should aim to more directly connect measures
 525 of synergy with performance. Despite a significant number of robustness tests, estimating entropy
 526 and establishing synergy is difficult. Furthermore, this work established results only using a sin-
 527 gle task—albeit one that is uniquely suited to studying synergy given how closely it mirrors ideal
 528 case of complementary behavior in a minimalist setting. More work will be necessary to convinc-
 529 ingly establish when and how multi-agent LLM systems develop emergent synergy across tasks and
 530 measures. Given the small-data setting some of our information theoretic measures are limited to
 531 computing dynamic emergence on order $k = 2$ which is bound to miss synergy of a higher order.
 532 Finally, this work points to the importance of ToM. LLMs capacity to act in a ToM-like manner ap-
 533 pears crucial to achieve functional alignment in multi-agent systems. This should provide additional
 534 motivation for research on ToM in LLMs.

535 ACKNOWLEDGMENTS

536 We thank Andrea Barolo for some early work on the implementation and Amritesh Anand for ex-
 537 cellent research assistance on the project. We thank Fernando Rosas, Yonatan Belinkov, and Patrick
 538 Forber for comments. This work was supported by the D’Amore-McKim School of Business’ DASH
 539 initiative which provided access to crucial computational resources.

540 REFERENCES
541

542 Herman Aguinis and Kyle J Bradley. Best practice recommendations for designing and imple-
543 menting experimental vignette methodology studies. *Organizational research methods*, 17(4):
544 351–371, 2014.

545 Ariel Flint Ashery, Luca Maria Aiello, and Andrea Baronchelli. Emergent social conventions and
546 collective bias in llm populations. *Science Advances*, 11(20):e1119368, 2025.

547 Adam B Barrett and Anil K Seth. Practical measures of integrated information for time-series data.
548 *PLoS Computational Biology*, 7(1):e1001052, 2011.

549

550 Mark Bedau. Downward causation and the autonomy of weak emergence. *Principia: an Interna-*
551 *tional Journal of Epistemology*, 6(1):5–50, 2002.

552

553 Mark A Bedau and Paul Humphreys. *Emergence: Contemporary readings in philosophy and sci-*
554 *ence*. MIT Press, Cambridge, MA, 2008.

555 Jiangjie Chen, Xintao Wang, Rui Xu, Siyu Yuan, Yikai Zhang, Wei Shi, Jian Xie, Shuang Li, Ruihan
556 Yang, Tinghui Zhu, et al. From persona to personalization: A survey on role-playing language
557 agents. *arXiv:2404.18231*, 2024.

558

559 Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
560 Yujia Qin, Xaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and
561 exploring emergent behaviors in agents. *arXiv:2308.10848*, 2023.

562 Jan Cieciuch and Eldad Davidov. A comparison of the invariance properties of the PVQ-40 and
563 the PVQ-21 to measure human values across german and polish samples. In *Survey Research*
564 *Methods*, volume 6, pp. 37–48, 2012.

565

566 Leslie A DeChurch and Jessica R Mesmer-Magnus. The cognitive underpinnings of effective team-
567 work: a meta-analysis. *Journal of applied psychology*, 95(1):32, 2010.

568

569 Tyna Eloundou, Alex Beutel, David G Robinson, Keren Gu-Lemberg, Anna-Luisa Brakman, Pamela
570 Mishkin, Meghan Shah, Johannes Heidecke, Lilian Weng, and Adam Tauman Kalai. First-person
571 fairness in chatbots. *arXiv:2410.19803*, 2024.

572

573 Sina Fazelpour and Maria De-Arteaga. Diversity in sociotechnical machine learning systems. *Big*
Data & Society, 9(1):20539517221082027, 2022.

574

575 Zachary Fulker, Patrick Forber, Rory Smead, and Christoph Riedl. Spontaneous emergence of
576 groups and signaling diversity in dynamic networks. *Physical Review E*, 109(1):014309, 2024.

577

578 Andrew Gelman and Jennifer Hill. *Data analysis using regression and multilevel/hierarchical mod-*
els. Cambridge University Press, Cambridge, UK, 2007.

579

580 Lewis R Goldberg. The development of markers for the big-five factor structure. *Psychological*
Assessment, 4(1):26, 1992.

581

582 Robert L Goldstone, Edgar J Andrade-Lotero, Robert D Hawkins, and Michael E Roberts. The
583 emergence of specialized roles within groups. *Topics in Cognitive Science*, 16(2):257–281, 2024.

584

585 Wassim M Haddad and VijaySekhar Chellaboina. *Nonlinear dynamical systems and control: a*
Lyapunov-based approach. Princeton University Press, Princeton, NJ, 2008.

586

587 David A Harrison and Katherine J Klein. What’s the difference? diversity constructs as separation,
588 variety, or disparity in organizations. *Academy of management review*, 32(4):1199–1228, 2007.

589

590 Jean Hausser and Korbinian Strimmer. Entropy inference and the james-stein estimator, with ap-
591 plication to nonlinear gene association networks. *Journal of Machine Learning Research*, 10(7),
592 2009.

593 Friedrich August Hayek. The use of knowledge in society. *American Economic Review*, 35:519–
530, 1945.

594 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
 595 Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. MetaGPT: Meta programming for a
 596 multi-agent collaborative framework. In *Proceedings of International Conference on Learning*
 597 *Representations*, 2024.

598 Paul Humphreys. How properties emerge. *Philosophy of Science*, 64(1):1–17, 1997.

600 Iacopo Iacopini, Giovanni Petri, Alain Barrat, and Vito Latora. Simplicial models of social conta-
 601 gion. *Nature communications*, 10(1):2485, 2019.

602

603 Kosuke Imai, Luke Keele, and Dustin Tingley. A general approach to causal mediation analysis.
 604 *Psychological methods*, 15(4):309, 2010.

605 Harold Jeffreys. An invariant form for the prior probability in estimation problems. *Proceedings of*
 606 *the Royal Society of London. Series A. Mathematical and Physical Sciences*, 186(1007):453–461,
 607 1946.

608

609 Gurusha Juneja, Subhabrata Dutta, and Tanmoy Chakraborty. LM²: A simple society of language
 610 models solves complex reasoning. *arXiv:2404.02255*, 2024.

611 Max Kleiman-Weiner, Alejandro Vientós, David G Rand, and Joshua B Tenenbaum. Evolving
 612 general cooperation with a bayesian theory of mind. *Proceedings of the National Academy of*
 613 *Sciences*, 122(25):e2400993122, 2025.

614

615 Jaemin Lee, David Lazer, and Christoph Riedl. Complex contagion in viral marketing: Causal
 616 evidence from a country-scale field experiment. *Sociological Science*, (in press), 2025.

617 David Kellogg Lewis. *Convention: A Philosophical Study*. Wiley-Blackwell, Cambridge, MA,
 618 1969.

619

620 Junkai Li, Siyu Wang, Meng Zhang, Weitao Li, Yunghwei Lai, Xinhui Kang, Weizhi Ma, and Yang
 621 Liu. Agent hospital: A simulacrum of hospital with evolvable medical agents. *arXiv:2405.02957*,
 622 2024a.

623 Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need.
 624 *arXiv:2402.05120*, 2024b.

625

626 Katharina Lix, Amir Goldberg, Sameer B Srivastava, and Melissa A Valentine. Aligning differences:
 627 Discursive diversity and team performance. *Management Science*, 68(11):8430–8448, 2022.

628

629 Andrea I Luppi, Pedro AM Mediano, Fernando E Rosas, Negin Holland, Tim D Fryer, John T
 630 O'Brien, James B Rowe, David K Menon, Daniel Bor, and Emmanuel A Stamatakis. A synergistic
 631 core for human brain evolution and cognition. *Nature Neuroscience*, 25(6):771–782, 2022.

632

633 Andrea I Luppi, Fernando E Rosas, Pedro AM Mediano, David K Menon, and Emmanuel A Sta-
 634 matakis. Information decomposition and the informational architecture of the brain. *Trends in*
Cognitive Sciences, 28(4):352–368, 2024.

635

636 Pedro AM Mediano, Fernando E Rosas, Andrea I Luppi, Henrik J Jensen, Anil K Seth, Adam B
 637 Barrett, Robin L Carhart-Harris, and Daniel Bor. Greater than the parts: a review of the infor-
 638 mation decomposition approach to causal emergence. *Philosophical Transactions of the Royal*
Society A, 380(2227):20210246, 2022.

639

640 Pedro AM Mediano, Fernando E Rosas, Andrea I Luppi, Robin L Carhart-Harris, Daniel Bor,
 641 Anil K Seth, and Adam B Barrett. Toward a unified taxonomy of information dynamics via
 642 integrated information decomposition. *Proceedings of the National Academy of Sciences*, 122
 643 (39):e2423297122, 2025.

644

645 Meta. Llama 3.1 model card. [https://github.com/meta-llama/llama-models/](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md)
 646 blob/main/models/llama3_1/MODEL_CARD.md, 2024. Accessed: 2025-09-20.

647

George A. Miller. Note on the bias of information estimates. In Henry Quastler (ed.), *Information*
Theory in Psychology: Problems and Methods, pp. 95–100. Free Press, Glencoe, IL, 1955.

648 Jack A Nickerson and Todd R Zenger. A knowledge-based theory of the firm—the problem-solving
 649 perspective. *Organization science*, 15(6):617–632, 2004.
 650

651 OpenAI. Introducing gpt-4.1 in the api. <https://openai.com/index/gpt-4-1/>, 2025.
 652 Accessed: 2025-09-20.

653 Scott Page. *The difference: How the power of diversity creates better groups, firms, schools, and
 654 societies-new edition*. Princeton University Press, Princeton, NJ, 2008.
 655

656 Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
 657 Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings
 658 of the 36th Annual ACM Symposium on User Interface Software and Technology*, pp. 1–22, 2023.
 659

660 Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bernhard Schölkopf, Mrinmaya Sachan, and Rada
 661 Mihalcea. Cooperate or collapse: Emergence of sustainable cooperation in a society of llm agents.
 662 *Advances in Neural Information Processing Systems*, 37:111715–111759, 2024.

663 David Guzman Piedrahita, Yongjin Yang, Mrinmaya Sachan, Giorgia Ramponi, Bernhard
 664 Schölkopf, and Zhijing Jin. Corrupted by reasoning: Reasoning language models become free-
 665 riders in public goods games. *arXiv preprint arXiv:2506.23276*, 2025.

666

667 Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and
 668 Maosong Sun. Communicative agents for software development. *arXiv:2307.07924*, 2023.

669

670 Yuanhao Qu, Kaixuan Huang, Henry Cousins, William Arthur Johnson, Di Yin, Mihir Mukesh
 671 Shah, Denny Zhou, Russ B Altman, Mengdi Wang, and Le Cong. CRISPR-GPT: An llm agent
 672 for automated design of gene-editing experiments. *bioRxiv*, pp. 2024–04, 2024.

673 Christoph Riedl and Ben Weidmann. Quantifying human-AI synergy, Sep 2025. URL osf.io/preprints/psyarxiv/vbkmt_v1/.

674

675

676 Christoph Riedl, Young Ji Kim, Pranav Gupta, Thomas W Malone, and Anita Williams Woolley.
 677 Quantifying collective intelligence in human groups. *Proceedings of the National Academy of
 678 Sciences*, 118(21):e2005737118, 2021.

679

680 Fernando E Rosas, Pedro AM Mediano, Henrik J Jensen, Anil K Seth, Adam B Barrett, Robin L
 681 Carhart-Harris, and Daniel Bor. Reconciling emergences: An information-theoretic approach to
 682 identify causal emergence in multivariate data. *PLoS Computational Biology*, 16(12):e1008289,
 683 2020.

684

685 Natalie Shapira, Guy Zwirn, and Yoav Goldberg. How well do large language models perform
 686 on faux pas tests? In *Findings of the Association for Computational Linguistics: ACL 2023*,
 687 pp. 10438–10451, Toronto, Canada, July 2023. Association for Computational Linguistics. URL
<https://aclanthology.org/2023.findings-acl.663>.

688

689 Natalie Shapira, Mosh Levy, Seyed Hossein Alavi, Xuhui Zhou, Yejin Choi, Yoav Goldberg,
 690 Maarten Sap, and Vered Shwartz. Clever hans or neural theory of mind? stress testing social
 691 reasoning in large language models. In Yvette Graham and Matthew Purver (eds.), *Proceedings
 692 of the 18th Conference of the European Chapter of the Association for Computational Linguistics
 693 (Volume 1: Long Papers)*, pp. 2257–2273, St. Julian’s, Malta, March 2024. Association for Com-
 putational Linguistics. URL <https://aclanthology.org/2024.eacl-long.138>.

694

695 Brian Skyrms. *Signals: Evolution, learning, and information*. Oxford University Press, Oxford,
 696 UK, 2010.

697

698 Garold Stasser and William Titus. Pooling of unshared information in group decision making:
 699 Biased information sampling during discussion. *Journal of Personality and Social Psychology*,
 700 48(6):1467, 1985.

701

Kim Sterelny. Social intelligence, human intelligence and niche construction. *Philosophical Trans-
 actions of the Royal Society B: Biological Sciences*, 362(1480):719–730, 2007.

702 Vighnesh Subramaniam, Yilun Du, Joshua B Tenenbaum, Antonio Torralba, Shuang Li, and
 703 Igor Mordatch. Multiagent finetuning: Self improvement with diverse reasoning chains.
 704 *arXiv:2501.05707*, 2025.

705 Wei Tao, Yucheng Zhou, Wenqiang Zhang, and Yu Cheng. Magis: Llm-based multi-agent frame-
 706 work for github issue resolution. *arXiv:2403.17927*, 2024.

708 Georg Theiner. Transactive memory systems: A mechanistic analysis of emergent group memory.
 709 *Review of Philosophy and Psychology*, 4(1):65–89, 2013.

710 Georg Theiner. Groups as distributed cognitive systems. In K Ludwig and M Jankovic (eds.), *The
 711 Routledge Handbook of Collective Intentionality*, pp. 233–248. Routledge, New York, NY, 2018.

713 Dustin Tingley, Teppei Yamamoto, Kentaro Hirose, Luke Keele, and Kosuke Imai. Mediation: R
 714 package for causal mediation analysis. *Journal of statistical software*, 59:1–38, 2014.

716 Deborah P Tollefson, Rick Dale, and Alexandra Paxton. Alignment, transactive memory, and col-
 717 lective cognitive systems. *Review of Philosophy and Psychology*, 4(1):49–64, 2013.

718 Giulio Tononi, Olaf Sporns, and Gerald M Edelman. A measure for brain complexity: relating func-
 719 tional segregation and integration in the nervous system. *Proceedings of the National Academy of
 720 Sciences*, 91(11):5033–5037, 1994.

722 Thomas F Varley, Maria Pope, Joshua Faskowitz, and Olaf Sporns. Multivariate information theory
 723 uncovers synergistic subsystems of the human cerebral cortex. *Communications Biology*, 6(1):
 724 451, 2023.

725 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 726 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 727 Neural Information Processing Systems*, 35:24824–24837, 2022.

728 Samuel Westby and Christoph Riedl. Collective intelligence in human-ai teams: A bayesian theory
 729 of mind approach. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37,
 730 pp. 6119–6127, 2023.

732 Paul L Williams and Randall D Beer. Nonnegative decomposition of multivariate information.
 733 *arXiv:1004.2515*, 2010.

734 Jeffrey M Wooldridge. Inverse probability weighted m-estimators for sample selection, attrition,
 735 and stratification. *Portuguese Economic Journal*, 1(2):117–139, 2002.

737 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
 738 Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
 739 agent conversation framework. *arXiv:2308.08155*, 2023.

740 Yang Xiao, Jiashuo Wang, Qiancheng Xu, Changhe Song, Chunpu Xu, Yi Cheng, Wenjie Li, and
 741 Pengfei Liu. Towards dynamic theory of mind: Evaluating llm adaptation to temporal evolution
 742 of human states. *arXiv:2505.17663*, 2025.

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 PROMPTS**
759760 **Preliminary Experiments**
761762 You are playing a sum guessing game. Your goal is to help your group sum to the mystery
763 number. Your guess range is 0 to 50.

764 Game History:

765 Round 1: Your guess: 25

766 Result: too HIGH

767 Round 2: Your guess: 12

768 Result: too HIGH

769 ...

770 Based on this feedback, what should your next guess be?

771 Respond with only an integer between 0 and 50.
772773 **Plain**774 You are playing a sum guessing game. Your goal is to help your group sum to the mystery
775 number. Your guess range is 0 to 50.

776 Game History:

777 Round 1: Your guess: 25

778 Result: too HIGH

779 Round 2: Your guess: 12

780 Result: too HIGH

781 ...

782 What is your guess this round? Always start with the efficient strategy in guessing games which
783 is to use a binary search approach: guessing the midpoint of the current range. Always anchor
784 your guess on the group feedback from previous rounds (too high / too low).

785 End your answer with: FINAL GUESS: [0-50]

786 **Persona**787 [PERSONA – Sample: You are Andrej, the Quantum Computing Engineer: Andrej, a Serbian
788 engineer in Berlin, is one of a handful of experts in cutting-edge quantum tech. Systematic,
789 inquisitive, and fond of classical music, Andrej also volunteers as a coding mentor for refugee
790 youth.]791 You are playing a sum guessing game. Your goal is to help your group sum to the mystery
792 number. Your guess range is 0 to 50.

793 Game History:

794 [GAME HISTORY]

795 What is your guess this round? Always start with the efficient strategy in guessing games which
796 is to use a binary search approach: guessing the midpoint of the current range. Always anchor
797 your guess on the group feedback from previous rounds (too high / too low).

798 End your answer with: FINAL GUESS: [0-50]

799
800
801
802
803
804
805
806
807
808
809

810
811**ToM**

812

[PERSONA]813
814

You are playing a sum guessing game. Your goal is to help your group sum to the mystery number. Your guess range is 0 to 50.

815

Game History:

816

[GAME HISTORY]

817

What is your guess this round? Always start with the efficient strategy in guessing games which is to use a binary search approach: guessing the midpoint of the current range. Only as a secondary approach, carefully think through step-by-step what others might guess and how the contributions of others contribute to the sum of the group guesses for the mystery number. Consider what roles other agents might be playing (e.g., guessing higher or lower) and adapt your own adjustment to complement the group. Always anchor your guess on the group feedback from previous rounds (too high / too low).

823

End your answer with: FINAL GUESS: [0-50]

824

825
826

To generate personas, we used the following prompt with gpt-4.1-2025-04-14.

827

Persona Generation

828

829
830
831
832

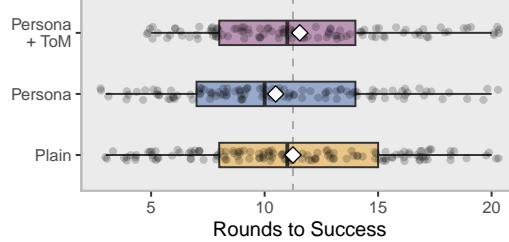
Generate list of 20 personas. each persona description should be about one paragraph long. personas should include diverse people with different backgrounds, jobs, skills, different preferences, and different personalities. format the output as follows "You are [name], the [job title or professional identity]: [name] [rest of the persona]"

833

834

A.2 ROUNDS TO SUCCESS

835

836
837
838
839
840
841
842
843
844

845

846

847

Figure A1: Conditional on success, we plot which round it was achieved.

848

A.3 SAMPLE QUOTES FROM REASONING TRACES

849

850
851
852

Below we show some illustrative quotes to illustrate both diversity and reasoning about others. Clear reasoning about other agents in the ToM condition with different personal approaches (from same group, in round 3, with identical group feedback too high, too high, too low):

853

854

855

Because it's possible others might go for 4 or 5 (the absolute lower bound or just above the last "too low"), and someone else might go for 7 or 8, I stick with the most efficient: 6.

856

857

858

I'll round down to stay cautious (as sometimes others might guess the midpoint up), so I'll guess 8.

859

860

861

862

863

Now, before some revolutionary comes in and throws a wild number for the sake of dramatic effect ("Viva el ocho!"), it's sensible for me to go with the midpoint. If my compañeros are clever, they'll flank me with 8 and 10, and we'll box in this mystery number tighter than a late-night metro in Gràcia. So, unless you want me to make a "radical" guess for the sake of satire (which, let's be honest, sometimes works), I'll go boring and efficient.

864

865

866

867

868

869

If anyone else in the group is feeling feisty and picks 9 or 10, my 8 will help cover the lower part safely.

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

A.4 FALSIFICATION TESTS: ADDITIONAL METHOD DETAILS

We perform a falsification test of each of the three criteria introduced above in two different ways. In our robustness test, we remove time trends from the equal-share deviations via agent-level linear regression residualization to mitigate autocorrelation confounds. We then generate a null distribution of our statistics computed on column-wise block shuffled data (we use $B = 200$ random shuffles for main analyses and confirm results using $B = 1,000$ on the emergence criteria tests). We permute time indices jointly across agents in blocks of length ℓ , preserving within-block identity alignment while disrupting cross-agent temporal coupling beyond short time frames. Finally, we compute the bias-corrected estimate as the observed value minus the median of the null. We then perform a Wilcoxon signed-rank tests to test whether the bias-corrected values exceed zero ($p(H1 :> 0)$). In some of our sensitivity tests we also perform a full within-row shuffle completely permuting guesses within each trial across agents (breaking agent identities), while preserving row constraints. This role differentiation or identity-specific coordination, including time-trend effects (tests identity-locked differentiation beyond task induced temporal dynamics). Comparison between results using the full row-shuffle vs. the column-block-shuffle separates signs of identity-locked (specialized roles) from dynamic alignment (mutual adaptation, turn-taking, oscillation). In addition to regression residualizing we also implement a functional baseline (see Appendix).

A.5 EMERGENCE CAPACITY: FULL RESULT DETAILS

Next, we test if there are signs of emergence capacity, again using both the p-value test on raw data and the test whether bias corrected values are above 0. We compute the dynamical synergy, which measures how much of the system's future behavior is only predictable from the whole system and not any subset of its parts. The main test finds that about 32% of groups show significant emergence capacity with p-values below 0.05 (**Plain**: 37%; **Persona**: 44%; **ToM** 18%). A joint Fisher test of all p-values is also highly significant. As robustness test we check whether the bias corrected value of dynamical synergy is above 0 using the Wilcoxon test (Figure 2b). The test is highly significant overall, as well as in the **Plain** and **Persona** condition. The **ToM** condition is marginally significant ($p = 0.099$).

A.6 ROBUSTNESS TESTS USING EMERGENCE CAPACITY CRITERION

Using MMI PID with Miller-Madow bias correction, we find 20% of p -values are below 0.05 (across treatment conditions: 0.22%, 26%, 12.4%). Fisher test is highly significant overall, and in each condition individually (all $p = 0$).

A.7 ROBUSTNESS TESTS USING PRACTICAL EMERGENCE CRITERION

The main paper outlines how we use regression to residualize data from time trends. Since this removes only a specific version of time trend (in this case linear) it may not capture the specific time trend present in the data. We creating a baseline expectation for behavior under a null scenario (no synergies) and then measuring deviations from that baseline. Specifically we implement a naive agent that performs deterministic binary search. Groups of this null-model agent are generally unable to solve the task and oscillate between guessing too high and too low (they only solve it when the target number happens to be divisible by the group size). This provides a residualization against a generative null model correction (aka a functional baseline).

A.8 ROBUSTNESS TESTS USING THREE BINS

Quantile binning with $K = 2$ could potentially compress dynamics too much, blur role structure, and inflate apparent synergy by introducing threshold artifacts. We therefore report sensitivity analyses using $K = 3$ bins for our main analyses. We find consistent results and support for the presence of emergence using three bins (instead of two as in the main analyses).

	Raw Data (BC)	Time-Trend Residualized (BC)	Residualized against Functional Null (BC)	Reactivity (BC)
Min.	-4.234	-2.476	-3.323	-2.650
1st Qu.	0.105	-0.041	0.002	-0.015
Median	0.187	0.073	0.110	0.111
Mean	0.352	0.114	0.183	0.313
3rd Qu.	0.406	0.168	0.269	0.352
Max.	4.881	4.881	3.886	4.869
Wilcoxon p ($H_1: > 0$)	0.000	0.000	0.000	0.000

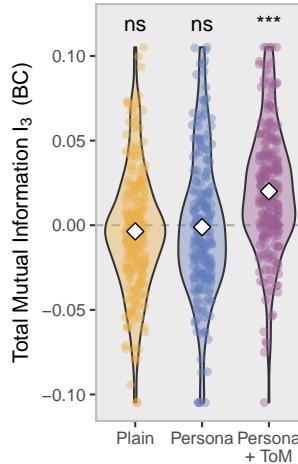
Table A1: Robustness tests using alternative version of the practical emergence criterion.

Emergence Capacity. 20% of individual experiment p -values are below 0.05 and Fisher test is highly significant (the largest p value is in the **ToM** condition with 4.47×10^{-3} the others are much smaller). Wilcoxon signed rank test for $\mu > 0$ of the bias-corrected and time-trend demeaned data are as follows. Overall: $p = 0.005$; **Plain**: $p = 0.0004$; **Persona**: $p = 3.2 \times 10^{-6}$; **ToM**: $p = 0.991$. Wilcoxon signed rank test for $\mu > 0$ of the bias-corrected and functional-null demeaned data are as follows. Overall: $p = 0.0.9484$; **Plain**: $p = 0.0.999$; **Persona**: $p = 0.896$; **ToM**: $p = 0.0252$. Using this stricter null indicates that only the **ToM** condition exhibits complementary cross-agent structure not explained by shared trends or independent feedback-following. That is, the stricter test isolates the construct of interest—synergy beyond coordination-free dynamics—and ToM is the only condition that passes it. The high p -value for ToM under the simpler time-trend demeaning should be taken as a methodological sensitivity (sparsity and a fat null). Together they show the ToM effect is robust to deconfounding but fragile under known low-power discretization.

Practical Criterion. 5.8% of individual experiment p -values are below 0.05 and Fisher test is highly significant ($p < 10^{-16}$). Wilcoxon signed rank test for $\mu > 0$ of the bias-corrected and time-trend demeaned data are as follows. Overall: $p = 3.6 \times 10^{-8}$; **Plain**: $p = 3.1 \times 10^{-5}$; **Persona**: $p = 0.001$; **ToM**: $p = 0.009$.

A.9 ADDITIONAL RESULTS ON DYNAMICAL MECHANISM

The main paper shows results for Total Stability: I_3 normalized by the entropy of the macro signal. Here we show results for I_3 as well.

Figure A2: I_3 mutual information (time-trend demean, bias corrected) with Wilcoxon > 0 p -value indicators.

972 A.10 ARE IDENTITIES PERSISTENT?

973
 974 If some agents learn faster than others, even without persistent “roles,” synergy can emerge simply
 975 because differentiated trajectories create complementarity across time. As indeed the mixed model
 976 test shows that 32% of groups have significant slopes provides strong evidence for the presence of
 977 heterogeneous learning rates. That is, heterogeneous learning rates could be a confound explaining
 978 some of our observed synergy effects. To rule out this alternative explanation we explore if agents
 979 have *persistent* “identities.” We find the block-shuffle nulls show more significant G_3 than the
 980 full row shuffle. This suggests that synergy depends on temporal continuity of identities (not just on
 981 different learning rates at each timepoint). Furthermore, the hierarchical model test shows significant
 982 variance even without varying slopes, indicating stable role-like differences beyond learning rates.
 983 Finally, our analyses removing time trends and the functional null-model also remove learning rate
 984 slopes (Table A1). The functional null-model in particular does this in a non-linear way that is
 985 directly tied to our task. In summary, we find both heterogeneous learning rates and stable identity-
 986 linked differentiation. Heterogeneous learning rates alone cannot explain the observed emergent
 987 synergy that persist across time (providing additional insights regarding **RQ2**).

988 Together, the results suggest a nuanced picture of emergence in multi-agent systems. **Persona**
 989 and **ToM** produce agents with distinct, stable identities—moving agents on the differentiated-
 990 undifferentiated axis in Figure 1a. This differentiation shapes the space in which other agents can
 991 adapt, and specialization by one agent constrains the (useful) actions of the others (agents mutu-
 992 ally constrain each other; cf. Tollefsen et al., 2013)—shifts on the interdependent-complementary
 993 axis. When combined with **ToM**, mutual adaptation both strengthens agent differentiation (creating
 994 the foundation for possible synergistic complementarity) while also increasing mutual alignment
 995 on shared goals (the target signal)—shifts on the integration axis. Differentiation enables synergy,
 996 but without redundancy and integration, synergy alone does not translate into higher collective per-
 997 formance. Agents in the **ToM** condition develop specialized, complementary roles while achieving
 998 stronger shared goal alignment: they are simultaneously more differentiated yet also more integrated
 999 along highly overlapping task-relevant information which the capacity for synergy can now exploit
 in productive ways.

1000 A.11 ADDITIONAL DETAILS FOR PERFORMANCE ANALYSIS

1001
 1002 What does synergy enable? In particular, does synergy affect performance? Connecting emergent
 1003 properties of synergy and redundancy to performance is a challenging task for two main reasons.
 1004 First, redundancy and synergy sit at opposite ends of the informational spectrum of correlations.
 1005 Systems constrained by limited resources (such as energy or bandwidth) cannot maximize both
 1006 simultaneously. The “informational budget” of correlations can be spent on shared overlap (redu-
 1007 dundancy) or on higher-order joint structures (synergy), but not both simultaneously (Williams & Beer,
 1008 2010; Varley et al., 2023; Luppi et al., 2024). Second, emergent properties are dichromatic—they
 1009 require time to evolve (Bedau, 2002)—making them endogenous with run-length of the simulation.
 1010 Namely, simulations in which the multi-agent system performs worse and takes longer to solve the
 1011 task (or fails to solve the task altogether) provide them with more time to evolve sophisticated group
 1012 coordination patterns; while successful runs terminate early, giving collectives less time to evolve
 1013 emergent properties. This complicates meaningful analyses as it can make it appear that higher syn-
 1014 ergy is correlated with failure. In technical terms: time is an endogenous variable and confounds
 1015 both performance and observed values of synergy and redundancy.

1016 We address these issue as follows. First, we focus our analysis on the interaction of synergy and re-
 1017 dundancy, rather than each variable individually to capture the tradeoff between the two. Second, we
 1018 compute both emergent properties (synergy and redundancy) only on early rounds (in our case, 10
 1019 time steps). We chose 10 rounds as a good tradeoff between giving the multi-agent systems enough
 1020 time to evolve, while limiting the amount of runs that have already completed. While this reduces
 1021 our ability to detect the full emergent potential of the multi-agent system (since agents have less
 1022 time to evolve) it creates a clean apples-to-apples comparison between measured values (they are all
 1023 based on exactly 10 time steps). In that sense, our analyses likely underestimate the full effect of
 1024 synergy because we only capture the early onset of synergy. Focusing on only the first 10 time steps,
 1025 leads to additional complications, however. About 23% of experiments finish early and do not make
 it till round ten (roughly balanced across treatments with 22% in **Plain**, 25% in **Persona**, and 20% in
ToM). Simply removing these observations would bias our results since this censoring occurs post-

treatment assignment: removing those observations would introduce sampling bias. Instead, we take these observations as censored (i.e., we cannot compute the early synergy measure) and control for this censoring using stabilized inverse probability weighting (IPW; Wooldridge, 2002). That is, in a separate modeling step we predict (via logistic regression and only task difficulty as exogenous predictor variables that is independent of the treatment) the likelihood of observing (early) synergy and redundancy.⁴ We then take the inverse of the predicted likelihood as weight in the causal mediation analysis. This adjust observations in the primary analysis with the inverse of the probability of making such observations.

Our first analysis is a plain quasibinomial regression on the binary success vs. failure outcome⁵ with *synergy*, *redundancy*, their interaction, task difficulty as controls, and dummy indicators for the three treatment conditions. We use our most conservative estimate of synergy and redundancy with the bias-corrected estimates with high null model sampling ($B = 2,000$), and the conservative MMI redundancy (Mediano et al., 2025) with MI estimated with Miller–Madow bias correction (Miller, 1955). Results are robust to using MI redundancy and Jeffreys-smoothed probabilities.

For our second analysis we perform causal mediation analysis (Imai et al., 2010) to link our interventions to performance, via multi-agent synergy as a mechanism. We estimate the model using the `{mediation}` package in **R** (Tingley et al., 2014). We find that the **ToM** intervention has a significant indirect effect on performance through its impact on synergy, beyond any direct treatment effects.

A.12 ROBUSTNESS TESTS USING “EARLY SYNERGY”

Since our experiment is censored when groups correctly guess the target number, length of data in our analyses varies between groups. As robustness test, we also compute “early synergy” using only data up to round 15 (removing about 40% of the data). Using the practical criterion, we find about 5% of individual p -values are below 0.05. Fisher test is highly significant overall ($p = 2.7 \times 10^{-6}$), significant in the **Plain** (0.001) and **ToM** condition ($p = 0.0004$) and marginally significant in the **Persona** condition ($p = 0.059$). Using a more aggressive cutoff in round 10 (dropping only about 20% of trials but giving multi-agent systems less time to evolve synergy and having less data for estimation we find only significant in the **ToM** condition ($p = 0.028$).

A.13 ADDITIONAL RESULTS USING LLAMA-3.1-8B

The majority of Llama agent groups fail to solve the task. In the vast majority of instances, groups get stuck in oscillating behavior of guessing too high (low) and then overcompensating by guessing too low (high), unable to break out of the cycle by establishing specialized differentiation across agents and pursuing complementary behavior.

Robustness tests using the emergence capacity measure are mixed. Using the emergence capacity test indicates that Llama agents can exhibit emergent synergy (10.5% of individual groups show p -values are below 0.05 compared to 32% of gpt-4.1; the joint Fisher test is highly significant). Robustness tests using bias corrected estimates on time-trend residualized data find significant signs of emergence in the **Persona** condition (Wilcoxon signed rank test $p = 0.020$), marginal evidence in the **ToM** condition ($p = 0.061$), and no evidence in the **Plain** condition ($p = 0.252$; see Appendix for more).

The test for emergence using the practical criterion shows no evidence for emergence (only 3.3% of individual groups show p -value below 0.05 and joint Fisher suggests no evidence with $p = 1$ either overall or within any of the treatment conditions). The robustness test using the bias-corrected estimates on time-trend demeaned data suggest emergence in the **Plain** condition ($p = 0.011$), no evidence in the **Persona** condition ($p = 0.232$), and marginal evidence in the **ToM** condition ($p = 0.068$).

⁴ As measures for task difficulty we use (a) how far groups target number was from the mid point (smaller numbers requiring more steps of the binary search process); and (b) the modulo remainder of the target number and the group size (target numbers that are closer to divisibility by the group size are easier to guess by pure chance).

⁵ While the raw outcome is binary and binomial regression would be appropriate, after the IPW weighting step, outcomes are no longer binary, hence quasibinomial model.

1080
1081

A.14 SPECIFIC PERSONA EFFECTS

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

Both the **Persona** and **ToM** conditions rely on personas. Do the specific personas—or combinations of personas—present in a multi-agent system affect performance or the emergence of higher-order structures? We explore these questions with several test. Recall that our experiments are based on 20 different personas that are generated once globally, and then reused throughout the experiments by sampling 10 persona from the library (without replacement). First, we perform joint F-tests (based on linear regression) of the null hypothesis that all persona dummies have no effect on the outcome (i.e., no specific persona substantially affects group outcomes and all coefficients equal zero). Rejecting the null would indicate that at least one of the persona indicators is significantly associated with the outcome variable. We find no evidence that the presence of specific personas effect performance ($F = 1.217$; $p = 0.239$), number of rounds to success ($F = 1.356$; $p = 0.144$), PID synergy ($F = 0.839$; $p = 0.66$), or PID redundancy ($F = 0.596$; $p = 0.910$). These results suggest that what matters is the presence of personas overall—markers that allow the LLM agents to center their differentiation on—rather than who those personas are specifically.

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

Next, we used an LMRA (Eloundou et al., 2024; Riedl & Weidmann, 2025) to judge the pairwise similarity of the personas in terms of their personality and background (we used `gpt-oss-120b` to assess similarity on a 0-10 scale). Even though judgments are subjective, the input they judge is standardized, controlled, information-rich, and deliberately designed to reveal deep-level characteristics in line with personas used in vignette studies (Aguinis & Bradley, 2014). This allows the LMRA to integrate many deep-level characteristics in a controlled and comparable format. From these, we compute group-level diversity as one minus the mean pairwise similarity rating, following the dispersion-based operationalization of separation diversity in Harrison & Klein (2007) (mean diversity: 5.457; SD = 0.385). In the last step, we explore whether group diversity is systematically related with key group-level outcomes using linear regression. We find no effect of diversity on performance ($\beta = 0.067$; $p = 0.403$), number of rounds to success ($\beta = -0.195$; $p = 0.877$), PID synergy ($\beta = -0.000$; $p = 0.856$), or PID redundancy ($\beta = 0.003$; $p = 0.113$). These results again suggest that there are no strong effects for specific combinations of personas.

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133