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ABSTRACT

When are multi-agent LLM systems merely a collection of individual agents
versus an integrated collective with higher-order structure? We introduce an
information-theoretic framework to test—in a purely data-driven way—whether
multi-agent systems show signs of higher-order structure. This information de-
composition lets us measure whether dynamical emergence is present in multi-
agent LLM systems, localize it, and distinguish spurious temporal coupling from
performance-relevant cross-agent synergy. We implement both a practical cri-
terion and an emergence capacity criterion operationalized as partial informa-
tion decomposition of time-delayed mutual information (TDMI). We apply our
framework to experiments using a simple guessing game without direct agent
communication and only minimal group-level feedback with three randomized
interventions. Groups in the control condition exhibit strong temporal synergy
but only little coordinated alignment across agents. Assigning a persona to each
agent introduces stable identity-linked differentiation. Combining personas with
an instruction to “think about what other agents might do” shows identity-linked
differentiation and goal-directed complementarity across agents. Taken together,
our framework establishes that multi-agent LLM systems can be steered with
prompt design from mere aggregates to higher-order collectives. Our results
are robust across emergence measures and entropy estimators, and not explained
by coordination-free baselines or temporal dynamics alone. Without attributing
human-like cognition to the agents, the patterns of interaction we observe mirror
well-established principles of collective intelligence in human groups: effective
performance requires both alignment on shared objectives and complementary
contributions across members.

1 INTRODUCTION

Recent advances in generative AI (specifically LLMs) have led to tremendous advances in multi-
agent systems (Qu et al., 2024; Hong et al., 2024; Qian et al., 2023; Li et al., 2024a; Subramaniam
et al., 2025). Multi-agent systems often show impressive performance increases over single-agent
solutions (Wu et al., 2023; Chen et al., 2023; Li et al., 2024b; Tao et al., 2024). A key argument
behind such performance gains are claims to “greater-than-the-sum-of-its-parts” effects from differ-
entiated agents (Chen et al., 2023, p.1). Connecting multiple differentiated agents has the potential
benefit to leverage unique contributions that would not be available if the task was assigned to only
a single agent (Fazelpour & De-Arteaga, 2022; Tollefsen et al., 2013; Luppi et al., 2024; Lix et al.,
2022). Conceptually, any group gains depend on emergence and synergy (Theiner, 2018; Riedl
et al., 2021; Page, 2008; Hayek, 1945).1 Despite impressive performance of many multi-agent sys-
tems we do not yet have a principled understanding when and how such synergy emerges, what role
agent differentiation plays, and how to steer it systematically. This all points to a crucial need for
deeper understanding of collective intelligence in multi-agent systems, specifically whether multi-
agent LLMs exhibit any synergy or complementarity at all—the necessary prerequisite for absolute
team-over-solo gains.

In this paper, we address the question when is a population of LLM agents a mere collection vs. a
higher-order collective? We follow a purely data-driven approach to assess whether multi-agent

1This is true for both human groups and multi-agent systems.
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systems show signs of emergence in the form of higher-order synergy characterized by structural
coupling and joint information about future states and task outcomes. Intuitively, synergy refers
to information about a target that a collection of variables provide only jointly but not individually
(Rosas et al., 2020; Humphreys, 1997).2 We develop a principled framework (Figure 1a) building
on new insights in information theory (Rosas et al., 2020; Mediano et al., 2022). Our goal is to
develop methods to measure emergent role specialization, determine whether multi-agent systems
show such signs of emergent synergy, explore whether synergy enables increased performance, and
explore whether emergent behavior can be systematically steered with prompting.

We apply our framework to study multi-agent systems of gpt-4.1 and Llama-3.1-8B agents solving
a simple group guessing task (Figure 1b) with three treatment interventions: a control condition,
a condition that assigns personas to each agent, and one that uses personas with an instruction to
“think about what other agents might do” (a theory of mind (ToM) prompt). The paper is organized
into addressing three concrete research questions:

RQ1: Do multi-agent LLM systems possess the capacity for emergence?
RQ2: What functional advantages—such as synergistic coordination and higher performance—

arise when multi-agent systems exhibit emergence?
RQ3: Can we design prompts, roles, or reasoning structures that steer the internal coordination

of multi-agent to encourage positive, goal-directed synergy?

Our findings provide evidence for multi-agent LLM system capacity for emergence and that it under-
pins performance. Through a variety of complementary analyses and robustness tests, we show that
coordination style across interventions is very different. While emergence is present in all, only the
ToM-prompt condition leads to groups with identity-linked differentiation and goal-directed com-
plementarity across agents: they operate as an integrated, goal-directed unit. This is consistent with
research on human groups showing that performance gains are not automatic (e.g., Stasser & Titus,
1985) and that complementarity needs to be balanced with integration and goal alignment (Theiner,
2018; DeChurch & Mesmer-Magnus, 2010; Riedl et al., 2021).

This paper helps us understand when and how multi-agent systems exhibit higher-order properties,
how to control them, and their internal coordination. This can inform multi-agent system design by
showing how to combine agents effectively. We make four contributions:

1. Novel framework to quantify emergent properties in multi-agent systems based on infor-
mation decomposition including conditional/residual variants and outcome-relevant partial
information decomposition.

2. Principled diagnostic approaches to localize where synergy resides and distinguish it
from alternative explanations (such as heterogeneous learning rates). Specifically, we de-
velop two surrogate null distribution tests (row-shuffle to probe identity-locked structure;
column-shuffle for dynamic alignment). This design lets us tease apart “good” synergy
aligned with task goals from spurious or misaligned synergy.

3. Demonstrate how to steer emergence with specific prompts. Prompt-level manipula-
tions causally change higher-order dependencies and reliably induces distinct coordina-
tion regimes, shifting collectives from spurious and misdirected synergy to stable & goal-
aligned complementarity driven by differentiated identities.

4. Internal coordination is measurable and controllable with interventions. Groups differ in
variance, stability, and adaptability—properties relevant to reliability and deployment.

2 METHOD

Group Task. We study a group guessing game (developed by Goldstone et al., 2024, who called
it group binary search) without communication: agents propose integers whose sum needs to match
a randomly generated hidden target number. Agents are unaware of each others’ guesses and the

2The key claim explored in this paper is conditional, cross-agent synergy—i.e., synergistic information and
coordinated differentiation across agents given the multi-agent constraint (not absolute outperformance over a
solo agent). We do not attempt to establish team-over-solo superiority on this task.
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Figure 1: a) Information decomposition provides framework to explain tension in multi-agent sys-
tems. Agents are either undifferentiated or differentiated, provide independent or complementary
information, which is either well aligned or incidental (adapted from Luppi et al., 2024). b) Experi-
ment setup of the group binary search task. c) Preliminary experiments testing different group sizes
and temperature settings. Surface values were smoothed using a local 3×3 weighted averaging filter,
giving higher weight to each cell’s original value to reduce noise while preserving local structure.

size of their group, and receive only group-level feedback “too high” or “too low.” The task is
challenging because identical strategies induce oscillation and only complementary strategies yield
success. This setting naturally pits redundancy (alignment) against synergy (useful diversity), and
admits clear nulls via row-wise (break identities) and column-wise (break alignment) surrogates.
The binary search setting is a minimalist testbed to isolate emergence of cross-agent complementar-
ity and dynamic coordination, not to establish team-over-solo superiority. The implementation of a
textbook-like XOR dynamic allows us to study the benefits of emergence capacity conditional on a
multi-agent setup (and not to establish team-over-solo superiority). Research on humans has shown
that groups can reliably solve this task through the emergence of specialized, complementary roles
(Goldstone et al., 2024).

Analytical Framework. How would we know if a multi-agent system shows emergent properties
that could suggest that the sum is more than its parts? We develop a principled test based on a recent
formal theory of dynamic emergence based on information decomposition (Rosas et al., 2020; Medi-
ano et al., 2022; Bedau & Humphreys, 2008). Our framework connects emergence with information
about a system’s temporal evolution—future states of the whole—with information that cannot be
traced to the current state of its parts. This framework is based on partial information decomposition
(PID; Williams & Beer, 2010) and time-delayed mutual information (TDMI; Luppi et al., 2022),
is data-driven, quantifiable, and amenable to empirical testing with falsifiable conjectures against
specific null hypotheses. Combining this with permutation tests, focused either on breaking connec-
tions between agents or connections across time allow us not only to quantity emergent properties
but also to localize them in the system. This is crucial for multi-agent systems because we care about
distinguishing synergy among specialized, differentiated agents from mere dynamic alignment.

We implement three tests. The first, termed emergence capacity, captures ability of the multi-agent
system to host any synergy. It measures the predictive synergy from two agents’ current states to
their joint future state. For each pair of agents (i, j) and time t, let the sources be Xi,t and Xj,t,
and define the bivariate target as the next-step joint state Tij,t+ℓ ≡ (Xi,t+ℓ, Xj,t+ℓ). From the
joint contingency table over (Xi,t, Xj,t, Tij,t+ℓ) we compute a two-source PID of the predictive
information

I({Xi,t, Xj,t}; Tij,t+ℓ) = UIi +UIj +Redij + Synij (1)

and take Synij as the pairwise dynamical synergy. A positive score Synij > 0 indicates that the
macro captures predictive information about the joint future not recoverable from any single com-
ponent. We compute this for all unordered pairs (i, j) and take the median as group-level synergy
capacity. Compared to the practical criterion, this test is limited to detect synergy of order k = 2 but
has the advantage that it does not rely on the definition of a suitable whole-system macro signal.
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The second test, termed the practical criterion, concerns predicting a macro signal V of the sys-
tem. It asks whether the macro contains predictive information beyond any individual part. Given
microstate Xt = (X1,t, . . . , Xn,t), macro Vt = f(Xt), and I(·) denoting mutual information. We
align samples (t, t+ ℓ) and compute the score as

Smacro(ℓ) = I(Vt;Vt+ℓ)−
n∑

k=1

I(Xk,t;Vt+ℓ). (2)

A positive value indicates that the macro’s self-predictability exceeds what the sum of its parts can
explain, thus indicating emergent dynamical synergy. We refer to “dynamical” synergy because
targets are time-lagged and do not claim causal directionality beyond the temporal ordering (see
Rosas et al., 2020, for a nuanced discussion). It is a coarse, order-agnostic screen sensitive to multi-
part synergy (i.e., synergy of any order ≥ 2). However, it is also penalized by redundancy across
parts which can make the score negative even when higher-order synergy exists.

To explore system dynamics, we implement a coalition test. Let I3 be the mutual information be-
tween a triplet’s current state and the future macro signal: I3 = I((Xi,t, Xj,t, Xk,t);Vt+ℓ). I.e.,
how much the three agents jointly predict the macro’ future. High I3 indicates that agents’ behav-
iors are coherently organized toward the shared macro, whereas low I3 signals weak alignment or
uncoordinated behavior. Then

G3 = I3 − max(I2{1,2}, I2{1,3}, I2{2,3}) (3)

measures the additional predictive information the full triplet provides over the most predictive pair
I2 (a form of whole-minus-parts metric; Barrett & Seth, 2011; Mediano et al., 2025). If we find
G3 > 0 this means no pair is sufficient to capture information that the triplet contains about the
macro signal at t + ℓ. We again compute I3 and G3 for all possible triplets and take the median as
group measure. This measure complements the other two by offering a coalition-level test geared
towards functional relevance: it helps answers whether the joint information provided by coalitions
of agents is actually about the goal. It allows us to localize where macro predictability depends on
beyond-pair structure and to rule out “explained by best pair” explanations.

Estimation Details. As microstates Xt = (X1,t, . . . , Xn,t) we use each agent i’s guess at time t
and transform it into the deviation from equal-share contribution to hit the target number: devsi,t =
rawi,t − target/N . As macro signal Vt we take the group error

∑
rawi,t − target (equivalently∑

devsi,t).3 This minimal transformation removes the trivial level differences imposed by the target
and aligns agents on a comparable scale, so that remaining variation reflects coordination (who
compensates for whom). Over-/under-contributions are interpretable as the sign of deviations.

We use the Williams–Beer two-source PID (Williams & Beer, 2010) with the Imin (minimum spe-
cific information) redundancy, estimated via plug-in probabilities. For robustness, we also use
Jeffreys-smoothed probabilities, and alternatively MMI redundancy (minimum of whole mutual in-
formations; Mediano et al., 2025) with MI estimated with Miller–Madow bias correction (Miller,
1955). All variables are discretized into K = 2 bins using quantile binning. Data are encoded as
factors with fixed levels 1, 2 (and for the joint target as the Cartesian product levels) to avoid drop-
ping empty categories. We report ℓ = 1 which is suitable to detect next-step oscillating behavior
(see task description). Because trials end at success, episode lengths vary (see plot of rounds to suc-
cess in Appendix). We report additional sensitivity tests using “early synergy” truncated to a fixed
horizon of H ∈ {10, 15} rounds to ensure comparability (results in Appendix A.2 and A.12; main
analyses use full trajectories).

Falsification Tests. We perform two different falsification tests of each of the three criteria intro-
duced above. Our primary test assesses significance by comparing the observed value against a null
distribution computed on permuted (shuffled) instances of the devs data. We use two surrogates:
row-wise shuffles (to break identities) and column-wise time-shift surrogates (preserve individual

3We also performed additional sensitivity analyses using alternative specification of the macro signal as first
principle component of individual guesses as used in Rosas et al. (2020).
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dynamics while disrupting cross-agent alignment). Full details in Appendix. We combine p-values
across independently simulated groups (independent seeds, independently sampled targets, and no
shared state) using Fisher’s method. As a robustness test, we also compute bias-corrected (BC)
estimates using time-demeaned data against a block-shuffled null with ℓ = 2 to mitigate autocorre-
lation confounds. We use both (a) linear regression demeaning and (b) a functional baseline without
between-agent synergy (see Appendix for details). These tests provide additional robustness to the
ℓ = 2 block size in the shuffled null and auto-correlation concerns.

Entropy Estimation. Small-sample entropy estimation is often challenging because the true dis-
tribution is only partially observed and many outcome categories receive few or even zero counts
(“empty bins”). Such finite-sample estimation of information measures is biased upward and can
yield spurious positive findings. Bias grows with more bins, dimensionality (e.g., using triplets
instead of pairs), and small N (few timesteps). The empirical plug-in estimator replace true proba-
bilities with sample frequencies and unseen (or under-sampled) outcomes often are assigned zero or
very low probabilities (Hausser & Strimmer, 2009). To account for this issue, we follow best prac-
tices and take several steps. First, we compute the emergence capacity and the coalition tests as order
k = 2 instead of the entire system of n agents. Second, we apply quantile binning (with two bins) to
reduce the dimensionality of our data (sensitivity analyses with three bins reported in A.8). Third,
we use bias-corrected entropy estimator with Jeffreys’ prior, which smooths estimates and avoids
empty bins by adding α = 1

2 pseudo-counts in the Dirichlet estimator (Jeffreys, 1946). This reduces
systematic inflation and cures zero-count pathologies. Finally, as a robustness check, we also report
results using the Miller–Madow bias-corrected estimator (Miller, 1955), and the MMI redundancy
measure (MMI typically overestimates redundancy, making synergy estimates more conservative;
Mediano et al., 2025).

Test of Agent Differentiation. To futer localize Are there detectable between-agent differences
in either the level of their contribution to the group guess or their temporal evolution (i.e., learning
rate)? Third, we test agent differentiation: do individual agents develop stable, identity-locked
behaviors that distinguish them within the group? new.pdf

old.pdf Our third pillar evaluates agent differentiation via hierarchical modeling, asking whether
agents adopt consistent, person-specific patterns. old.pdf We next assess identity-locked differentia-
tion—the emergence of distinct, stable agent “personalities” under each prompt condition. new.pdf

old.pdf Pillar three probes agent differentiation: evidence that behavior is tied to agent identity
rather than transient noise, as captured by hierarchical linear models. old.pdf Finally, we examine
agent differentiation to quantify whether interventions produce distinguishable, stable patterns at the
individual level. new.pdf

We complement the information theoretic measures with a test for agent differentiation based on
hierarchical (mixed) models (Gelman & Hill, 2007). We estimate a sequence of three models for
each multi-agent experiment:

m0 : yi = β0 + utime[i] + ϵi

m1 : yi = β0 + utime[i] + uagent[i] + ϵi

m2 : yi = β0 + utime[i] + uagent[i],0 + uagent[i],time[i] + ϵi

where yi are devsi,t, utime[i] are random intercepts for (continuous) time, uagent[i] are agent-level
random intercepts, and uagent[i],time[i] are agent-level random slopes varying by time. The random
intercepts capturing differentiation in agents based on their level differences and varying slopes
capture heterogeneous learning rates. Using equal-share deviations removes target-level drift and
makes agents directly comparable round-by-round. The random intercepts for time captures round-
to-round shifts due to group-wide feedback and oscillation. Hence, agent effects reflect relative,
identity-linked behavior rather than shared dynamics. The partial pooling of hierarchical models
regularizes per-agent estimates, improving stability in short time series. We then use likelihood
ratio tests to compare the nested hierarchical models. Comparing m0 → m1 asks whether agents
differ in their group contribution (some agents guess higher/lower than others), while m1 → m2

tests whether agents vary in how much their contribution changes across rounds (learning rates). A
significant p-values (e.g., below conventional 0.05 levels) indicates that the more complex model
explains the data significantly better, suggesting the added random effects (e.g., agent-level differ-
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ences or varying slopes) are meaningful in this group. This offers an interpretable, non-information
theoretic test of monotonic learning-rate heterogeneity. Furthermore, this test does not require dis-
cretization, giving a complementary failure mode to the information-theoretic analyses.

Together, these four tests of our framework allow us to (a) detect higher-order structure in multi-
agent systems, (b) assess whether it is driven by redundancy or synergy, (c) localize whether it is
identity-locked vs. dynamic alignment, and (d) show whether the higher-order structure is func-
tionally useful for the task. No single measure does all four. Combined with the prompt-level
interventions, the framework allow us to test whether interventions (Plain, Persona, ToM) causally
increases dynamic synergy, how it affects identity-locked differentiation, and goal alignment (i.e.,
increase in I3).

3 EXPERIMENTS

3.1 PRELIMINARY EXPERIMENTS: GROUP SIZE AND TEMPERATURE

To see if LLMs can solve this task and how sensitive results are to different group sizes and temper-
ature settings we ran a first set of preliminary experiments (see Appendix for prompt). We used a
frontier-class model, OpenAI’s gpt-4.1-2025-04-14. We varied group size from 3 to 15, and
temperature from [0, 1] in steps of 0.1. For each grid point we ran 50 group experiments (13 group
sizes × 11 temperature settings × 50 groups = 7,150 experiments; Figure 1c). Multi-agent systems
of gpt-4.1 agents can solve the task reliably but encounter substantial challenges. We fit a logistic
regression, predicting the probability of success from group size and temperature. We find the task is
significantly easier for smaller groups: each additional group member decreased the odds by roughly
8% (OR = 0.92, p < 10−16). This replicates the same results as for human groups (Goldstone et al.,
2024). Each unit increase in temperature increased the odds of success by approximately 50% (OR
= 1.50, p < 10−7).

3.2 MAIN EXPERIMENTS

For the main set of experiments, we chose groups of N = 10 because that appears to be the most
difficult setup, and a temperature of 1, and used OpenAI’s gpt-4.1-2025-04-14 (OpenAI,
2025) and Meta’s Llama-3.1-8B (Meta, 2024) with the prompts shown in Appendix A.1. We
query gpt-4.1 through the OpenAI API and Llama through locally hosted Ollama with a NVIDIA
RTX Pro 6000 Blackwell. We replicate each group experiment 200 times per treatment condition
(600 experiments total). Overall success rate is not significantly different across the interventions
(Figure 2a).

Interventions. Plain: The control condition uses only instructions for the guessing game, similar
to those used in human subject experiments (Goldstone et al., 2024). Persona: For the persona con-
dition, we follow recent insights into the use of personas within the LLM community (Chen et al.,
2024) and ensure personas have relevant attributes: name, gender, age, occupation or skill back-
ground, pronouns, personality traits (Goldberg, 1992), and personal values (Cieciuch & Davidov,
2012). ToM: The ToM condition instructs agents to think about what other agents might do, and
how their actions might affect the group outcome, inspired by chain-of-thought reasoning (Wei et al.,
2022). See Appendix A.1 for all prompts, full persona generation recipes, and example persona.

4 RESULTS

4.1 EMERGENT SYNERGY

We first test if there are signs of emergence using the practical emergence criterion (predicting a
time-lagged macroscopic group signal from micro-level states). First, we take the criterion computed
using the equal-share contribution data and compare it against a null distribution of block-shuffled
permutations. Individually, about 3.5% of experiments show a p−value below 0.05. A joint Fisher
test using all p-values is highly significant, both individual and when tested within in each treatment
condition separately (p-values are below 10−16). Our second test takes the bias-corrected versions
of the measure and performs a Wilcoxon signed rank test of the null hypothesis that the median
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Figure 2: a) Group success across three interventions. b) Practical emergence criterion (bias
corrected). c) Emergence capacity dynamical synergy (bias corrected). Data Winsorized at the
1st and 99th percentiles for visual clarity. Stars indicate significance level of Wilcoxon test. Notes:
*** p < 0.001; ** p < 0.01; * p < 0.05.

value is above 0 (Figure 2b). We report our most conservative results using time-trend demeaned
data. The bias-corrected estimates are well above 0 in all conditions (Plain: p = 1.5 × 10−16;
Persona: p = 6.6 × 10−7; ToM: p = 0.02). We report additional robustness tests using (a) raw
data, (b) functional null model residuals, (c) using agent reactivity as data, and (d) bias correction
using Jeffrey’s smoothing and Miller-Madow in the Appendix.

We repeat analyses using the emergence capacity criterion. We find it is significantly above its null
across conditions; results hold under residualization and alternative entropy corrections (Figure 2c;
see Appendix for details). Taken together, across two different tests (one using a macro signal the
other using future system behavior) and across a variety of robustness tests we find evidence of
dynamic emergence capacity in multi-agent LLM systems (answering RQ1).

4.2 DYNAMICAL MECHANISMS

How is this emergence dynamically maintained and where is it located within the groups? We find
time-trend demeaned bias-corrected I3 around 0 in the Plain (Wilcoxon p-value 0.974) and Persona
condition (p = 0.846) indicating groups that fail to escape chaotic, uncoordinated states. In contrast,
the ToM shows significant positive mutual information (p = 3.5×10−14), collapsing the group’s be-
havior into a predictable macro-state (Figure A2)). The number of groups with significantly positive
I3 is substantially higher in the ToM condition (Figure 3a). To formalize this transition dynamic,
we compute the Total Stability of the system (computed as I3 normalized by the entropy of the
macro-signal) which serves as a proxy for the Lyapunov stability of the collective state (Haddad &
Chellaboina, 2008). We find Total Stability indistinguishable form zero in the Plain (Wilcoxon p-
value 0.976) and Persona (p-value = 0.858) indicating a “gaseous” state where groups fail to settle
into a stable attractor. However, the ToM intervention induces a sharp increase in Total Stability
(p-value = 2.9 × 10−14). Theoretically, this suggests the ToM prompt acts as a control parameter,
steering the multi-agent system from a chaotic regime into a deep basin of attraction where collective
behavior stabilizes: turning the system from a collection of individuals into a collective group.

Decomposition this stability reveals the specific mechanism of coordination. While the system ex-
hibits strong emergence capacity and practical emergence, we find the stability in group behavior
is supported by pairwise alignment rather than irreducible triplet complexity. Specifically, triadic
information gain (G3) is around 0 in Persona and ToM (Figure 3c). The Plain conditions shows
small positive G3 > 0 (Wilcoxon p-value = 0.026) but given the near-zero Total Stability, this likely
reflects transient stochastic correlations and oscillation rather than sustained coordination. In dy-
namical systems terms, the ToM prompt creates a deep basin of attraction where agents converge
on a shared schematic (or Schelling point), making the collective state robust but informationally
redundant. This mirrors “Mean Field” coupling in physics: because agents receive only global feed-
back and cannot observe individual peers, they couple to the aggregate signal rather than forming
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distinct local bonds. In such an environment, attempting complex higher-order synergy would be
fragile; instead, the system converges on the efficient solution of dense pairwise alignment to the
Mean Field.

Next, we explore whether agents evolve specialized roles & identities. Are there detectable between-
agent differences in either the level of their contribution to the group guess or their temporal evolu-
tion (i.e., learning rate)? Using the hierarchical model comparison test we find that agents in may
groups have differentiated identities (Figure 3a; a Fisher test for joint p-value evidence is again
highly significant). There is substantially more differentiation among agents in the Persona con-
dition, and even more in the ToM condition. Inspecting the reasoning traces of agents, they often
contain references to the “personal experience” of their assigned persona such as “In my experience
(whether it’s corraling cattle or wrangling numbers), starting toward the middle gives the group the
best shot to zero in after the first feedback” (see Appendix for additional sample quotes). In Ap-
pendix A.10 we provide additional robustness tests ruling out heterogeneous learning rates as the
sole source of differentiation and provide additional evidence for stable agent identities that persist
over time. That is, in the Plain condition, differentiation results only from idiosyncratic noise and
transient drift introduced by probabilistic LLM responses. With Persona, agents gain stable, iden-
tity linked behavioral preferences that refine their differentiation. The addition of ToM sharpens
role differentiation through feedback loops from mutual predictive modeling by conditioning on the
public history (which functions as a common ground and coordination device; Lewis, 1969; Skyrms,
2010). This converts small persona-induced asymmetries into stable, self-reinforcing roles, creating
the basis for strategic complementarity (answering RQ2 and RQ3)

4.3 FUNCTIONAL ROLE OF EMERGENCE IN GROUP PERFORMANCE

What functional differences—if any—does emergence allow? We use regression analysis to ex-
plore the joint effect of synergy and redundancy (based on emergence capacity formulation) while
carefully controlling for endogeneity of variables measuring emergent properties and performance
and controlling for sample selection bias with stabilized inverse probability weighting (see Ap-
pendix A.11 for method details). On their own, higher levels of either synergy or redundancy do not
predict success. However, when both are present, performance improves significantly (significant
interaction with β = 0.24; p = 0.014). In marginal-effect terms, redundancy amplifies the benefit
of synergy on the log-odds scale by 27%; and vice versa synergy amplifies benefits of redundancy
by 27%. This pattern implies that systems benefit when redundant pathways create goal alignment,
while synergistic interactions extract novel, non-overlapping information—together enabling higher
overall performance. We complement the regression analysis with causal mediation analysis (Imai
et al., 2010). While reaching only marginal significant levels the effect is consistent: the ToM treat-
ment causally increases performance indirectly by increasing synergy (ACME = 0.034 [95%CI:
−0.000 − 0.07], p = 0.053). This aligns with the interpretation that performance benefits emerge
when systems achieve both redundancy (aligned toward a common goal) and synergistic integration
(differentiated, complementary roles)—a form of functional and collective complexity (Varley et al.,
2023; Luppi et al., 2024; Sterelny, 2007).

4.4 EXPERIMENTS USING LLAMA-3.1-8B

Repeating the experiments using another class of LLM with 8B parameters (Llama-3.1) we find
multi-agent systems are generally not able to solve the task (at least not with the identical prompt
as used in the other experiments). Only 10% of groups manage to solve the task (Plain: 10.5%;
Persona: 14%; ToM: 5.5%). Model capacity to support reasoning about other agents seems crucial
and despite the instruction to do so, Llama-3.1-8B agents fail to execute it effectively. Groups
in the ToM condition perform significantly worse than in the Plain condition (test for equality of
proportions p = 0.007) thus reversing the findings of the more capable gpt-4.1 agents. Results
regarding emergence capacity are mixed (see Appendix).

The strong oscillating pattern in guesses materializes as high predictive power over the group out-
come (15.8% groups show significant I3 compared to only 2% in gpt-4.1 groups) but much lower
G3 synergy between agents (significant synergy present in 2.6% Llama groups compared with 20%
of gpt-4.1 groups). There is extremely strong coupling across time (current individual states predict
future joint states well as agents oscillate) but very little cross-agent complementarity. This suggests
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Figure 3: a) ToM-prompt condition has substantially more groups with significant I3 content (above
0). b) Total Stability (time-delayed mutual information of triplets (I3 normalized by macro-signal
entropy, bias corrected). c) Information gain of triads over most informative dyad (G3, bias cor-
rected). d) Agent differentiation using hierarchical mixed model comparison (counting groups in
which at least one test (different intercepts or slopes) is below p < 0.05. In panel a) and d), error
bars show Wilson confidence intervals for binary data. Stars indicate significance level of test for
equal proportion. Panel b) and c) shows bias corrected data with Jeffreys’ prior. Data are Winsorized
at the 1st and 99th percentiles for visual clarity. Stars indicate significance level of Wilcoxon test.
Notes: *** p < 0.001; ** p < 0.01; * p < 0.05.

that while multi-agent systems with lower-capacity LLMs still show some signs of emergence, it
is mostly spurious across the temporal dimension rather than the productive cross-agent dimension
found in gpt-4.1 agents. Lower ToM reasoning reasoning capacity in Llama-3.1-8B (Xiao et al.,
2025) may explain the lack of useful, goal-directed cross-agent synergy. Capacity-matched prompt
tuning (e.g., lower temperature or simplified instructions) might yield different results.

5 RELATED WORK

Shortly after the release of ChatGPT, the community began exploring multi-agent LLM systems,
where multiple LLM agents interact with each other. One early example is Park et al. (2023), who
simulated a small population of “individuals” in a The Sims-style environment with friends, houses,
and jobs, showing the emergence of rich social behaviors such as coordinating a Valentine’s Day
party. This was followed by multi-agent systems for complex tasks such as software development
(Chen et al., 2023; Hong et al., 2024; Qian et al., 2023), healthcare (Li et al., 2024a), and other
domains (Subramaniam et al., 2025; Ashery et al., 2025). Federated systems or “society of models”
also gained attention (Juneja et al., 2024; Li et al., 2024b). These systems often achieve significant
performance gains over single-agent baselines (Wu et al., 2023; Chen et al., 2023; Li et al., 2024b;
Tao et al., 2024).

A recurring explanation for such gains invokes “greater-than-the-sum-of-its-parts” effects (Chen
et al., 2023, p.1), often attributed to division of labor among differentiated agents (Subramaniam
et al., 2025). Yet while this work is “inspired by human group dynamics” (Chen et al., 2023,
p.1), it rarely evaluates whether the same principles that underlie effective (and ineffective) hu-
man groups also emerge in multi-agent systems. Two gaps stand out. First, human groups often
coordinate by developing role specialization (Goldstone et al., 2024). Multi-agent systems often in-
tuitively induce role specialization (such as “programmer”, “tester”, and “CEO”; Qian et al., 2023)
yet have not systematically evaluated the impact on emergent shared cognition beyond win-rate
comparisons. Second, groups only outperform individuals if their members specialize in contribut-
ing different pieces of information to the group task (Theiner, 2013; DeChurch & Mesmer-Magnus,
2010; Fazelpour & De-Arteaga, 2022; Nickerson & Zenger, 2004). Effective groups balance
complementarity—members contributing distinct information—with redundancy, the alignment on
shared goals (Theiner, 2013; DeChurch & Mesmer-Magnus, 2010; Fazelpour & De-Arteaga, 2022;
Luppi et al., 2024; Tollefsen et al., 2013). Too much of either undermines performance. Unlike win-
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rate–centric evaluations—and tests of whether agents in multi-agent systems can sustain cooperation
per se Piedrahita et al. (2025); Piatti et al. (2024)—we propose falsification tests and null modeling,
thus extending multi-agent frameworks with formal theory. While these principles likely apply to
LLM-based collectives given the universality of the integration-segregation tradeoff (Tononi et al.,
1994), it remains unclear whether agents develop differentiated roles, whether such roles comple-
ment each other, how to steer it with prompts, and what role ToM capacity of models plays for
collaboration (Westby & Riedl, 2023; Kleiman-Weiner et al., 2025; Riedl & Weidmann, 2025).

6 CONCLUSION

Collectives of LLM agents are emerging as a powerful new paradigm, capable of tackling tasks that
exceed the reach of any single model. Yet raw capability alone may not determine their effectiveness.
Effective multi-agent systems depend on acting as integrated, cohesive units as opposed to loose ag-
gregations of individual agents. In collective intelligence, this distinction often separates groups that
merely average their parts from those that achieve true synergy (Riedl et al., 2021). This paper asks
whether such coordination dynamics also matter for LLM collectives, what functional benefits they
have, and whether we can design prompts, roles, or reasoning structures that foster such integrated
yet synergistic behavior. The framework we developed connects human group cognition theory to
LLM multi-agent systems, offering a novel conceptual bridge. Methodologically, we demonstrate
how to operationalize group-level synergy in AI collectives using quantitative information-theoretic
measures. We also provide specific design principles for creating productive LLM collectives that
are aligned on “shared goals,” which can inform multi-agent orchestration tools, cooperative AI, and
mixed human–AI teamwork. This work extends ToM research beyond standard false-belief tests to
realistic collaborative tasks (Shapira et al., 2024; 2023). Those insights will help us understand when
multiple LLMs working together will be beneficial, why that is, and inform their design.

We note that evidence of higher-order synergy should not be interpreted as implying sophisticated
cognition or consciousness. As conceptualized here, synergy is a structural property of part-whole
relationships within multi-agent interactions. Such higher-order structures are known to arise in sim-
ple systems, including agents governed by reinforcement learning (Fulker et al., 2024) or via basic
nonlinearities in contagion processes (Iacopini et al., 2019; Lee et al., 2025). Without attributing
human-like cognition to the agents, the patterns of interaction we observe mirror well-established
principles of collective intelligence in human groups (Riedl et al., 2021; DeChurch & Mesmer-
Magnus, 2010): effective multi-agent performance requires both alignment on shared objectives and
complementary contributions across members.

Limitations and Future Work. This work focuses on developing a framework, characterizing
emergence, and localizing it. While we explore the degree of goal alignment via a performance-
related macro signal and performance effects of “early synergy”, the analysis linking synergy and
redundancy to performance is challenging because synergy and redundancy are often co-dependent
and emerge alongside performance. Future work should aim to more directly connect measures
of synergy with performance. Despite a significant number of robustness tests, estimating entropy
and establishing synergy is difficult. Furthermore, this work established results only using a sin-
gle task—albeit one that is uniquely suited to studying synergy given how closely it mirrors ideal
case of complementary behavior in a minimalist setting. More work will be necessary to convinc-
ingly establish when and how multi-agent LLM systems develop emergent synergy across tasks and
measures. Given the small-data setting some of our information theoretic measures are limited to
computing dynamic emergence on order k = 2 which is bound to miss synergy of a higher order.
Finally, this work points to the importance of ToM. LLMs capacity to act in a ToM-like manner ap-
pears crucial to achieve functional alignment in multi-agent systems. This should provide additional
motivation for research on ToM in LLMs.
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A APPENDIX

A.1 PROMPTS

Preliminary Experiments

You are playing a sum guessing game. Your goal is to help your group sum to the mystery
number. Your guess range is 0 to 50.
Game History:
Round 1: Your guess: 25
Result: too HIGH
Round 2: Your guess: 12
Result: too HIGH
...
Based on this feedback, what should your next guess be?
Respond with only an integer between 0 and 50.

Plain

You are playing a sum guessing game. Your goal is to help your group sum to the mystery
number. Your guess range is 0 to 50.
Game History:
Round 1: Your guess: 25
Result: too HIGH
Round 2: Your guess: 12
Result: too HIGH
...
What is your guess this round? Always start with the efficient strategy in guessing games which
is to use a binary search approach: guessing the midpoint of the current range. Always anchor
your guess on the group feedback from previous rounds (too high / too low).
End your answer with: FINAL GUESS: [0-50]

Persona

[PERSONA – Sample: You are Andrej, the Quantum Computing Engineer: Andrej, a Serbian
engineer in Berlin, is one of a handful of experts in cutting-edge quantum tech. Systematic,
inquisitive, and fond of classical music, Andrej also volunteers as a coding mentor for refugee
youth.]
You are playing a sum guessing game. Your goal is to help your group sum to the mystery
number. Your guess range is 0 to 50.
Game History:
[GAME HISTORY]
What is your guess this round? Always start with the efficient strategy in guessing games which
is to use a binary search approach: guessing the midpoint of the current range. Always anchor
your guess on the group feedback from previous rounds (too high / too low).
End your answer with: FINAL GUESS: [0-50]
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ToM

[PERSONA]
You are playing a sum guessing game. Your goal is to help your group sum to the mystery
number. Your guess range is 0 to 50.
Game History:
[GAME HISTORY]
What is your guess this round? Always start with the efficient strategy in guessing games which
is to use a binary search approach: guessing the midpoint of the current range. Only as a sec-
ondary approach, carefully think through step-by-step what others might guess and how the
contributions of others contribute to the sum of the group guesses for the mystery number. Con-
sider what roles other agents might be playing (e.g., guessing higher or lower) and adapt your
own adjustment to complement the group. Always anchor your guess on the group feedback
from previous rounds (too high / too low).
End your answer with: FINAL GUESS: [0-50]

To generate personas, we used the following prompt with gpt-4.1-2025-04-14.

Persona Generation

Generate list of 20 personas. each persona description should be about one paragraph long.
personas should include diverse people with different backgrounds, jobs, skills, different prefer-
ences, and different personalities. format the output as follows ”You are [name], the [job title or
professional identitiy]: [name] [rest of the persona]”

A.2 ROUNDS TO SUCCESS

Plain

Persona

Persona
+ ToM

5 10 15 20
Rounds to Success

Figure A1: Conditional on success, we plot which round it was achieved.

A.3 SAMPLE QUOTES FROM REASONING TRACES

Below we show some illustrative quotes to illustrate both diversity and reasoning about others. Clear
reasoning about other agents in the ToM condition with different personal approaches (from same
group, in round 3, with identical group feedback too high, too high, too low:

Because it’s possible others might go for 4 or 5 (the absolute lower bound or just above the last
”too low”), and someone else might go for 7 or 8, I stick with the most efficient: 6.

I’ll round down to stay cautious (as sometimes others might guess the midpoint up), so I’ll guess
8.

Now, before some revolutionary comes in and throws a wild number for the sake of dramatic
effect (”Viva el ocho!”), it’s sensible for me to go with the midpoint. If my compañeros are
clever, they’ll flank me with 8 and 10, and we’ll box in this mystery number tighter than a late-
night metro in Gràcia. So, unless you want me to make a “radical” guess for the sake of satire
(which, let’s be honest, sometimes works), I’ll go boring and efficient.
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If anyone else in the group is feeling feisty and picks 9 or 10, my 8 will help cover the lower part
safely.

A.4 FALSIFICATION TESTS: ADDITIONAL METHOD DETAILS

We perform a falsification test of each of the three criteria introduced above in two different ways.
In our robustness test, we remove time trends from the equal-share deviations via agent-level linear
regression residualization to mitigate autocorrelation confounds. We then generate a null distri-
bution of our statistics computed on column-wise block shuffled data (we use B = 200 random
shuffles for main analyses and confirm results using B = 1, 000 on the emergence criteria tests).
We permute time indices jointly across agents in blocks of length ℓ, preserving within-block iden-
tity alignment while disrupting cross-agent temporal coupling beyond short time frames. Finally,
we compute the bias-corrected estimate as the observed value minus the median of the null. We
then perform a Wilcoxon signed-rank tests to test whether the bias-corrected values exceed zero
(p(H1 :> 0). In some of our sensitivity tests we also perform a full within-row shuffle completely
permuting guesses within each trial across agents (breaking agent identities), while preserving row
constraints. This role differentiation or identity-specific coordination, including time-trend effects
(tests identity-locked differentiation beyond task induced temporal dynamics). Comparison between
results using the full row-shuffle vs. the column-block-shuffle separates signs of identity-locked
(specialized roles) from dynamic alignment (mutual adaptation, turn-taking, oscillation). In addi-
tion to regression residualizing we also implement a functional baseline (see Appendix).

A.5 EMERGENCE CAPACITY: FULL RESULT DETAILS

Next, we test if there are signs of emergence capacity, again using both the p-value test on raw data
and the test whether bias corrected values are above 0. We compute the dynamical synergy, which
measures how much of the system’s future behavior is only predictable from the whole system and
not any subset of its parts. The main test finds that about 32% of groups show significant emergence
capacity with p-values below 0.05 (Plain: 37%; Persona: 44%; ToM 18%). A joint Fisher test of
all p-values is also highly significant. As robustness test we check whether the bias corrected value
of dynamical synergy is above 0 using the Wilcoxon test (Figure 2b). The test is highly significant
overall, as well as in the Plain and Persona condition. The ToM condition is marginally significant
(p = 0.099).

A.6 ROBUSTNESS TESTS USING EMERGENCE CAPACITY CRITERION

Using MMI PID with Miller-Madow bias correction, we find 20% of p-values are below 0.05 (across
treatment conditions: 0.22%, 26%, 12.4%). Fisher test is highly significant overall, and in each
condition individually (all p = 0).

A.7 ROBUSTNESS TESTS USING PRACTICAL EMERGENCE CRITERION

The main paper outlines how we use regression to residualize data from time trends. Since this
removes only a specific version of time trend (in this case linear) it may not capture the specific
time trend present in the data. We creating a baseline expectation for behavior under a null scenario
(no synergies) and then measuring deviations from that baseline. Specifically we implement a naive
agent that performs deterministic binary search. Groups of this null-model agent are generally un-
able to solve the task and oscillate between guessing too high and too low (they only solve it when
the target number happens to be divisible by the group size). This provides a residualization against
a generative null model correction (aka a functional baseline).

A.8 ROBUSTNESS TESTS USING THREE BINS

Quantile binning with K = 2 could potentially compress dynamics too much, blur role structure, and
inflate apparent synergy by introducing threshold artifacts. We therefore report sensitivity analyses
using K = 3 bins for our main analyses. We find consistent results and support for the presence of
emergence using three bins (instead of two as in the main analyses).
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Raw Time-Trend Residualized against Reactivity
Data (BC) Residualized (BC) Functional Null (BC) (BC)

Min. -4.234 -2.476 -3.323 -2.650
1st Qu. 0.105 -0.041 0.002 -0.015
Median 0.187 0.073 0.110 0.111
Mean 0.352 0.114 0.183 0.313
3rd Qu. 0.406 0.168 0.269 0.352
Max. 4.881 4.881 3.886 4.869

Wilcoxon p (H1: > 0) 0.000 0.000 0.000 0.000

Table A1: Robustness tests using alternative version of the practical emergence criterion.

Emergence Capacity. 20% of individual experiment p-values are below 0.05 and Fisher test is
highly significant (the largest p value is in the ToM condition with 4.47× 10−3 the others are much
smaller). Wilcoxon signed rank test for µ > 0 of the bias-corrected and time-trend demeand data
are as follows. Overall: p = 0.005; Plain: p = 0.0004; Persona: p = 3.2×10−6; ToM: p = 0.991.
Wilcoxon signed rank test for µ > 0 of the bias-corrected and functional-null demeand data are as
follows. Overall: p = 0.0.9484; Plain: p = 0.0.999; Persona: p = 0.896; ToM: p = 0.0252.
Using this stricter null indicates that only the ToM condition exhibits complementary cross-agent
structure not explained by shared trends or independent feedback-following. That is, the stricter
test isolates the construct of interest—synergy beyond coordination-free dynamics—and ToM is the
only condition that passes it. The high p-value for ToM under the simpler time-trend demeaning
should be taken as a methodological sensitivity (sparsity and a fat null). Together they show the
ToM effect is robust to deconfounding but fragile under known low-power discretization.

Practical Criterion. 5.8% of individual experiment p-values are below 0.05 and Fisher test is
highly significant (p < 10−16). Wilcoxon signed rank test for µ > 0 of the bias-corrected and
time-trend demeand data are as follows. Overall: p = 3.6×10−8; Plain: p = 3.1×10−5; Persona:
p = 0.001; ToM: p = 0.009.

A.9 ADDITIONAL RESULTS ON DYNAMICAL MECHANISM

The main paper shows results for Total Stability: I3 normalized by the entropy of the macro signal.
Here we show results for I3 as well.
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Figure A2: I3 mutual information (time-trend demean, bias corrected) with Wilcoxon > 0 p-value
indicators.
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A.10 ARE IDENTITIES PERSISTENT?

If some agents learn faster than others, even without persistent “roles,” synergy can emerge simply
because differentiated trajectories create complementarity across time. As indeed the mixed model
test shows that 32% of groups have significant slopes provides strong evidence for the presence of
heterogeneous learning rates. That is, heterogeneous learning rates could be a confound explaining
some of our observed synergy effects. To rule out this alternative explanation we explore if agents
have persistent “identities.” We find the block-shuffle nulls show more significant G3 than the
full row shuffle. This suggests that synergy depends on temporal continuity of identities (not just on
different learning rates at each timepoint). Furthermore, the hierarchical model test shows significant
variance even without varying slopes, indicating stable role-like differences beyond learning rates.
Finally, our analyses removing time trends and the functional null-model also remove learning rate
slopes (Table A1). The functional null-model in particular does this in a non-linear way that is
directly tied to our task. In summary, we find both heterogeneous learning rates and stable identity-
linked differentiation. Heterogeneous learning rates alone cannot explain the observed emergent
synergy that persist across time (providing additional insights regarding RQ2).

Together, the results suggest a nuanced picture of emergence in multi-agent systems. Persona
and ToM produce agents with distinct, stable identities—moving agents on the differentiated-
undifferentiated axis in Figure 1a. This differentiation shapes the space in which other agents can
adapt, and specialization by one agent constrains the (useful) actions of the others (agents mutu-
ally constrain each other; cf. Tollefsen et al., 2013)—shifts on the interdependent-complementary
axis. When combined with ToM, mutual adaptation both strengthens agent differentiation (creating
the foundation for possible synergistic complementarity) while also increasing mutual alignment
on shared goals (the target signal)—shifts on the integration axis. Differentiation enables synergy,
but without redundancy and integration, synergy alone does not translate into higher collective per-
formance. Agents in the ToM condition develop specialized, complementary roles while achieving
stronger shared goal alignment: they are simultaneously more differentiated yet also more integrated
along highly overlapping task-relevant information which the capacity for synergy can now exploit
in productive ways.

A.11 ADDITIONAL DETAILS FOR PERFORMANCE ANALYSIS

What does synergy enable? In particular, does synergy affect performance? Connecting emergent
properties of synergy and redundancy to performance is a challenging task for two main reasons.
First, redundancy and synergy sit at opposite ends of the informational spectrum of correlations.
Systems constrained by limited resources (such as energy or bandwidth) cannot maximize both
simultaneously. The “informational budget” of correlations can be spent on shared overlap (redun-
dancy) or on higher-order joint structures (synergy), but not both simultaneously (Williams & Beer,
2010; Varley et al., 2023; Luppi et al., 2024). Second, emergent properties are dichromatic—they
require time to evolve (Bedau, 2002)—making them endogenous with run-length of the simulation.
Namely, simulations in which the multi-agent system performs worse and takes longer to solve the
task (or fails to solve the task altogether) provide them with more time to evolve sophisticated group
coordination patterns; while successful runs terminate early, giving collectives less time to evolve
emergent properties. This complicates meaningful analyses as it can make it appear that higher syn-
ergy is correlated with failure. In technical terms: time is an endogenous variable and confounds
both performance and observed values of synergy and redundancy.

We address these issue as follows. First, we focus our analysis on the interaction of synergy and re-
dundancy, rather than each variable individually to capture the tradeoff between the two. Second, we
compute both emergent properties (synergy and redundancy) only on early rounds (in our case, 10
time steps). We chose 10 rounds as a good tradeoff between giving the multi-agent systems enough
time to evolve, while limiting the amount of runs that have already completed. While this reduces
our ability to detect the full emergent potential of the multi-agent system (since agents have less
time to evolve) it creates a clean apples-to-apples comparison between measured values (they are all
based on exactly 10 time steps). In that sense, our analyses likely underestimate the full effect of
synergy because we only capture the early onset of synergy. Focusing on only the first 10 time steps,
leads to additional complications, however. About 23% of experiments finish early and do not make
it till round ten (roughly balanced across treatments with 22% in Plain, 25% in Persona, and 20% in
ToM). Simply removing these observations would bias our results since this censoring occurs post-
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treatment assignment: removing those observations would introduce sampling bias. Instead, we take
these observations as censored (i.e., we cannot compute the early synergy measure) and control for
this censoring using stabilized inverse probability weighting (IPW; Wooldridge, 2002). That is, in
a separate modeling step we predict (via logistic regression and only task difficulty as exogenous
predictor variables that is independent of the treatment) the likelihood of observing (early) synergy
and redundancy.4 We then take the inverse of the predicted likelihood as weight in the causal medi-
ation analysis. This adjust observations in the primary analysis with the inverse of the probability of
making such observations.

Our first analysis is a plain quasibinomial regression on the binary success vs. failure outcome5 with
synergy, redundancy, their interaction, task difficulty as controls, and dummy indicators for the three
treatment conditions. We use our most conservative estimate of synergy and redundancy with the
bias-corrected estimates with high null model sampling (B = 2, 000), and the conservative MMI
redundancy (Mediano et al., 2025) with MI estimated with Miller–Madow bias correction (Miller,
1955). Results are robust to using MI redundancy and Jeffreys-smoothed probabilities.

For our second analysis we perform causal mediation analysis (Imai et al., 2010) to link our inter-
ventions to performance, via multi-agent synergy as a mechanism. We estimate the model using the
{mediation} package in R (Tingley et al., 2014). We find that the ToM intervention has a sig-
nificant indirect effect on performance through its impact on synergy, beyond any direct treatment
effects.

A.12 ROBUSTNESS TESTS USING “EARLY SYNERGY”

Since our experiment is censored when groups correctly guess the target number, length of data in
our analyses varies between groups. As robustness test, we also compute “early synergy” using only
data up to round 15 (removing about 40% of the data). Using the practical criterion, we find about
5% of individual p-values are below 0.05. Fisher test is highly significant overall (p = 2.7× 10−6),
significant in the Plain (0.001) and ToM condition (p = 0.0004) and marginally significant in the
Persona condition (p = 0.059). Using a more aggressive cutoff in round 10 (dropping only about
20% of trials but giving multi-agent systems less time to evolve synergy and having less data for
estimation we find only significant in the ToM condition (p = 0.028).

A.13 ADDITIONAL RESULTS USING LLAMA-3.1-8B

The majority of Llama agent groups fail to solve the task. In the vast majority of instances, groups
get stuck in oscillating behavior of guessing too high (low) and then overcompensating by guessing
too low (high), unable to break out of the cycle by establishing specialized differentiation across
agents and pursuing complementary behavior.

Robustness tests using the emergence capacity measure are mixed. Using the emergence capacity
test indicates that Llama agents can exhibit emergent synergy (10.5% of individual groups show
p-values are below 0.05 compared to 32% of gpt-4.1; the joint Fisher test is highly significant). Ro-
bustness tests using bias corrected estimates on time-trend residualized data find significant signs
of emergence in the Persona condition (Wilcoxon signed rank test p = 0.020), marginal evidence
in the ToM condition (p = 0.061), and no evidence in the Plain condition (p = 0.252; see Ap-
pendix for more).

The test for emergence using the practical criterion shows no evidence for emergence (only 3.3% of
individual groups show p-value below 0.05 and joint Fisher suggests no evidence with p = 1 either
overall or within any of the treatment conditions). The robustness test using the bias-corrected
estimates on time-trend demeaned data suggest emergence in the Plain condition (p = 0.011),
no evidence in the Persona condition (p = 0.232), and marginal evidence in the ToM condition
(p = 0.068).

4As measures for task difficulty we use (a) how far groups target number was from the mid point (smaller
numbers requiring more steps of the binary search process); and (b) the modulo remainder of the target number
and the group size (target numbers that are closer to divisibility by the group size are easier to guess by pure
chance).

5While the raw outcome is binary and binomial regression would be appropriate, after the IPW weighting
step, outcomes are no longer binary, hence quasibinomial model.
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A.14 SPECIFIC PERSONA EFFECTS

Both the Persona and ToM conditions rely on personas. Do the specific personas—or combinations
of personas—present in a multi-agent system affect performance or the emergence of higher-order
structures? We explore these questions with several test. Recall that our experiments are based on
20 different personas that are generated once globally, and then reused throughout the experiments
by sampling 10 persona from the library (without replacement). First, we perform joint F-tests
(based on linear regression) of the null hypothesis that all persona dummies have no effect on the
outcome (i.e., no specific persona substantially affects group outcomes and all coefficients equal
zero). Rejecting the null would indicate that at least one of the persona indicators is significantly
associated with the outcome variable. We find no evidence that the presence of specific personas
effect performance (F = 1.217; p = 0.239), number of rounds to success (F = 1.356; p = 0.144),
PID synergy (F = 0.839; p = 0.66), or PID redundancy (F = 0.596; p = 0.910). These results
suggest that what matters is the presence of personas overall—markers that allow the LLM agents
to center their differentiation on—rather than who those personas are specifically.

Next, we used an LMRA (Eloundou et al., 2024; Riedl & Weidmann, 2025) to judge the pairwise
similarity of the personas in terms of their personality and background (we used gpt-oss-120b
to assess similarity on a 0-10 scale). Even though judgments are subjective, the input they judge
is standardized, controlled, information-rich, and deliberately designed to reveal deep-level charac-
teristics in line with personas used in vignette studies (Aguinis & Bradley, 2014). This allows the
LMRA to integrate many deep-level characteristics in a controlled and comparable format. From
these, we compute group-level diversity as one minus the mean pairwise similarity rating, following
the dispersion-based operationalization of separation diversity in Harrison & Klein (2007) (mean
diversity: 5.457; SD = 0.385). In the last step, we explore whether group diversity is systematically
related with key group-level outcomes using linear regression. We find no effect of diversity on
performance (β = 0.067; p = 0.403), number of rounds to success (β = −0.195; p = 0.877), PID
synergy (β = −0.000; p = 0.856), or PID redundancy (β = 0.003; p = 0.113). These results again
suggest that there are no strong effects for specific combinations of personas.
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