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Abstract

Urban and transportation research has long sought to uncover statistically
meaningful relationships between key variables and societal outcomes such
as road safety, to generate actionable insights that guide the planning, de-
velopment, and renewal of urban and transportation systems. However,
traditional workflows face several key challenges: (1) reliance on human
experts to propose hypotheses, which is time-consuming and prone to
confirmation bias; (2) limited interpretability, particularly in deep learn-
ing approaches; and (3) underutilization of unstructured data that can
encode critical urban context. Given these limitations, we propose a Multi-
modal Large Language Model (MLLM)-based approach for interpretable
hypothesis inference, enabling the automated generation, evaluation, and
refinement of hypotheses concerning urban context and road safety out-
comes. Our method leverages MLLMs to craft safety-relevant questions
for street view images (SVIs), extract interpretable embeddings from their
responses, and apply them in regression-based statistical models. URBANX
supports iterative hypothesis testing and refinement, guided by statistical
evidence such as coefficient significance, thereby enabling rigorous scien-
tific discovery of previously overlooked correlations between urban design
and safety. Experimental evaluations on Manhattan street segments demon-
strate that our approach outperforms pretrained deep learning models
while offering full interpretability. Beyond road safety, URBANX can serve
as a general-purpose framework for urban scientific discovery, extracting
structured insights from unstructured urban data across diverse socioe-
conomic and environmental outcomes. This approach enhances model
trustworthiness for policy applications and establishes a scalable, statisti-
cally grounded pathway for interpretable knowledge discovery in urban
and transportation studies.

1 Introduction

Understanding how cities’ physical structures shape societal outcomes is central to urban
science. Across transportation, planning, and policy, researchers seek links between urban
form and social indicators such as traffic safety (Yu et al., 2024), walkability (Ewing &
Handy, 2009), equity (Guzman & Bocarejo, 2017), and environmental health (Majchrowska
et al., 2022). A key challenge is discovering generalizable, interpretable factors that explain
urban phenomena (Batty, 2024). However, urban form is complex and heterogeneous, with
relevant information often stored in unstructured formats such as street-level imagery and
visual cues (Biljecki & Ito, 2021), which are difficult to analyze using traditional methods.
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Figure 1: Real vs. synthetic mobility patterns.

Despite progress in urban analyt-
ics, identifying new interpretable
factors remains challenging. Exist-
ing methods often rely on expert-
defined features, black-box mod-
els, or handcrafted metrics (Xia
et al., 2025), each with limita-
tions. First, hypothesis generation
is manual and prone to cognitive
bias (Gettys & Fisher, 1979). Sec-
ond, deep models usually lack in-
terpretability. Third, unstructured
data like SVIs are underused due
to difficulties in extracting mean-
ingful structure (Tang et al., 2025).
These limitations hinder scalable and transparent urban analysis. Foundation models such
as Large Language Models (LLMs) (Naveed et al., 2023) have transformed data-driven
reasoning. Trained on large text corpora, LLMs perform flexible and context-aware in-
ference (Wei et al., 2022). Recent extensions to visual inputs have produced Multimodal
LLMs (MLLMs) (Wu et al., 2023), which jointly process images and text for tasks like scene
interpretation and visual reasoning. MLLMs align visual content with language, allowing
them to generate human-interpretable variables from raw imagery.

Given these, we present URBANX, a framework for hypothesis-driven urban discovery
powered by MLLMs. As illustrated in Figure 1, URBANX treats machine learning as a
collaborator in scientific inquiry. It iteratively generates hypotheses, derives variables from
multimodal data, and evaluates their statistical relevance. Weak hypotheses are discarded,
and new ones are proposed, gradually refining a set of interpretable, empirically supported
factors. We apply URBANX to urban road safety, where interpretability is crucial. In
a Manhattan case study, the framework uncovers novel visual variables from SVIs that
correlate with crash rates. Our approach surpasses deep learning baselines such as ResNet
and Vision Transformer, while maintaining transparency. Our contributions are:

• We frame scientific discovery in urban contexts as inference over a hypothesis space,
enabling machines to generate, test, and refine hypotheses using available data.

• We propose using MLLMs as semantic engines that transform unstructured inputs, such
as SVIs, into interpretable variables based on natural-language hypotheses.

• We design an interpretable, nonparametric, iterative framework that approximates the
posterior over hypotheses, enabling scalable and statistically grounded discovery of novel
urban factors.

• We demonstrate the effectiveness of our framework on road safety in Manhattan, where it
discovers visual predictors of crash rates that outperform vision baselines while offering
interpretable results. The framework generalizes to other domains in urban science.

2 Related Work

Understanding how urban form influences outcomes like public health, equity, and road
safety is central to urban science and transportation research (Hall, 2012). Traditional
approaches rely on statistical models that relate expert-defined variables to outcomes (San-
tamouris, 2013). In road safety, for example, street design, traffic calming, and pedestrian
infrastructure have been linked to crash rates (Ewing & Dumbaugh, 2009). These methods,
however, face several limitations. Hypothesis generation is often manual and based on
intuition, making it slow, biased, and narrow in scope (Xia et al., 2025). This can restrict the
discovery of less obvious relationships. While deep learning models can enhance prediction,
they usually lack interpretability (Goodfellow et al., 2016), making it difficult to identify
causal drivers or support policy decisions. Their opacity can reduce trust, particularly in crit-
ical applications (Benara et al., 2024). Another challenge lies in the underused unstructured
data. SVIs contain rich visual details about the urban environment, such as infrastructure
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Figure 2: The URBANX framework consists of three iterative modules: (1) Hypothesis
Generation using LLMs, (2) Embedding Construction via MLLM-based VQA on SVIs, and
(3) Hypothesis Assessment using interpretable regression analysis.

condition and safety cues (Biljecki & Ito, 2021). Yet, their use in quantitative research is
limited by issues of image consistency, variability, and the difficulty of extracting structured
variables (Tang et al., 2024). Current methods often use general computer vision models
that require extensive tuning and still may miss subtle, context-specific signals. Recent
advances in AI-driven discovery offer promising directions. Some work uses LLMs for
causal inference in urban settings (Xia et al., 2025), or combines LLMs with knowledge
graphs for hypothesis generation in other domains (Lopez et al., 2025). These efforts show
AI’s potential to support scientific reasoning, but a transparent framework that generates
and tests hypotheses directly from SVIs remains largely unexplored. Our work addresses
this gap by using MLLMs to link urban visuals to road safety outcomes.

3 Methodology

Overview Let D = {(xi, yi)}n
i=1 denote a dataset of n SVIs xi and their associated road-

level crash rates yi ∈ R. We define a hypothesis spaceH comprising all natural-language
queries that describe visually observable variables potentially related to road safety. Our
objective is to uncover an optimal subset of hypotheses H∗ = {h1, h2, . . . , hk} ⊂ H that
captures meaningful visual semantics from each SVI and enables interpretable, accurate pre-
diction of yi. We formalize this as a posterior mode estimation problem over the hypothesis
space: H∗ = arg maxH′⊆H P(H′ | D) ∝ P(D | H′) · P(H′), whereH′ is a candidate hypoth-
esis subset. The likelihood P(D | H′) captures how well the hypothesis-derived variables
explain variation in crash rates, typically assessed via a regression model. The prior P(H′)
encodes structural preferences over hypothesis subsets and is implicitly governed by the
generative behavior of the MLLM. Each hypothesis hj ∈ H∗ corresponds to a semantically
meaningful question with a categorical answer that could be inferred from an SVI using an
MLLM. Applying these k hypotheses to each image xi yields a k-dimensional interpretable
embedding ϕ(xi,H∗) ∈ Rk, where each component reflects the MLLM’s answer to the
corresponding hypothesis. We denote the complete embedding matrix as E ∈ Rn×k, where
ei = ϕ(xi,H∗) is the embedding vector for the i-th image. Since exact Bayesian inference
over all subsets ofH is intractable due to the large search space and unknown likelihoods,
we use an approximate approach and cast the problem as nonparametric structure learning.
Starting with an initial setH0 sampled from an LLM, we iteratively evaluate and refine it
using a linear regression model. For each hypothesis hj, we test the significance of its regres-
sion coefficient via a two-sided t-test under the null hypothesis that the coefficient is zero.
This gives a p-value vector P = {p1, p2, . . . , pk}, where each pj represents the probability
of observing the result under the null. Hypotheses with pj > α (typically 0.05) are treated
as statistically insignificant and removed. New hypotheses are generated to replace them,
forming an iterative refinement loop. This procedure approximates Bayesian inference over
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H using statistical evidence and LLM priors, in a nonparametric and data-driven way. An
overview of the URBANX framework is shown in Figure 2.

Hypothesis Generation At each iteration t, the framework refines the hypothesis set
Ht−1 using statistical evidence derived from the previous assessment. For each hypothesis
hj ∈ Ht−1, we compute a p-value pj using a two-sided t-test on the coefficient estimated
by a regression model, where the input variable is derived from the MLLM-inferred cate-
gorical responses to hj across all SVIs. The detailed procedure for constructing hypothesis-
driven embeddings is described in a later subsection. Hypotheses with pj > α (typically
α = 0.05) are considered statistically insignificant. While the prompt for the LLM includes
the full set of previous hypotheses Ht−1 and their p-values P t−1, only mt new hypothe-
ses are generated, where mt equals the number of pruned hypotheses. This maintains a
fixed hypothesis set size while ensuring that each iteration incorporates empirical feed-
back into the generative process. Formally, the hypothesis generation step is given by:
Ht ∼ LLM

(
PromptHypoGen(Ht−1,P t−1, mt)

)
, where mt is the number of new hypotheses

to generate. The prompt is constructed to elicit mt diverse, categorical, and visually inferable
questions that are relevant to crash prediction. By conditioning on statistically grounded
examples, the LLM acts as a posterior-informed generator, implicitly sampling from a dis-
tribution biased toward hypotheses that are both semantically coherent and empirically
promising. This design allows the system to balance exploration of new concepts with ex-
ploitation of previously validated structure, enabling effective refinement of the hypothesis
space over time. An illustration of this process is shown in the left panel of Figure 2.

Embedding Construction To leverage the generated hypothesesHt = {ht
1, ht

2, . . . , ht
k} for

downstream modeling, we must transform their semantic content into structured, machine-
interpretable representations. Traditional deep models rely on latent high-dimensional
features extracted from images, which lack transparency and hinder hypothesis-driven
analysis. In contrast, our goal is to construct a hypothesis-guided embedding that is
transparently aligned with the semantics of each generated question. For each image xi,
we use an MLLM to answer all questions in Ht based on the visual content of the image.
These categorical answers are then encoded into a k-dimensional vector et

i ∈ Rk, where
each element corresponds to the response to hypothesis ht

j. Formally, we define: et
i ∼

MLLM
(

xi, PromptEmbed(Ht)
)

, where PromptEmbed(Ht) denotes the prompt that queries the
MLLM to answer all hypotheses inHt based on the visual content of xi. This embedding
ensures full semantic traceability and supports interpretable downstream modeling.

This procedure yields a hypothesis-aligned, semantically interpretable embedding for each
image, where each dimension has a well-defined linguistic meaning. It enables transparent
variable construction while supporting statistical assessment and iterative refinement in
subsequent stages. The embedding process is illustrated in the center panel of Figure 2.

Hypothesis Assessment After constructing semantically aligned embeddings E t for all
SVIs based on the current hypothesis set Ht, the next step is to assess which hypotheses
meaningfully explain variation in crash rates. Rather than focusing solely on predictive
accuracy, we adopt interpretable models that provide transparent, decomposable attribution
of outcomes to individual hypotheses. This is particularly important in societal domains
such as road safety, where policy decisions and public accountability require not only
reliable predictions but also actionable explanations. Each input dimension in the model
corresponds to a specific hypothesis, enabling us to quantify its effect and assess statistical
significance. In our implementation, we use linear regression as the default method due to
its analytical tractability and well-established inference procedures.

For each embedding dimension, we perform a two-sided t-test on its regression coefficient to
test the null hypothesis that the coefficient is zero. This yields a p-value for each hypothesis
ht

j, denoted pt
j, indicating the likelihood that the observed effect is due to chance. The

resulting vector P t = {pt
1, pt

2, . . . , pt
k} serves as the statistical evidence that guides the next
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iteration: hypotheses with pt
j > α (typically α = 0.05) are deemed statistically insignificant

and are replaced by new hypotheses in the next round. This assessment mechanism plays a
dual role: it enables interpretability by quantifying the contribution of each hypothesis, and
it drives hypothesis refinement by filtering out those that lack explanatory value. The right
panel of Figure 2 illustrates this evaluation process.

Algorithm 1 Iterative Posterior Approximation

Require: Dataset D = {(xi, yi)}n
i=1; number of total hypotheses k; number of iterations T;

interpretable modelM
Ensure: Final hypothesis setHT and embedding matrix ET

1: InitializeH0 ∼ LLM(PromptHypoGen(k))
2: for t = 1, 2, . . . , T do
3: Ht ∼ LLM(PromptHypoGen(Ht−1,P t−1, mt)) ▷ Hypothesis Generation

4: E t =
{

et
i = MLLM(xi, PromptEmbed(Ht))

}n
i=1 ▷ Embedding Construction

5: {ŷi}n
i=1,P t ←M(E t) ▷ Hypothesis Assessment

6: end for

Iterative Posterior Approximation The overall framework is executed through an iterative
loop that approximates posterior inference over the hypothesis space by alternating between
generation, embedding, and statistical assessment. This process reflects a structure-learning
approach where hypothesis subsets are progressively refined based on empirical evidence.
Unlike standard optimization methods such as gradient descent or expectation maximiza-
tion, where the objective function is guaranteed to monotonically improve, our setting
involves sampling from a nonparametric, LLM-driven space that lacks such guarantees. To
mitigate the risk of degeneracy or performance collapse, we adopt a conservative update
rule: new hypothesesHt are only retained if they yield improved predictive performance
on the validation set compared to the previous iteration.

Algorithm 1 outlines the overall iterative procedure. In each iteration, insignificant hypothe-
ses from the previous set Ht−1 are filtered based on their p-values P t−1. The remaining
hypotheses serve as context for LLM-based generation of new candidates. The resulting
hypothesis setHt is then used to construct interpretable embeddings E t via MLLM-based
reasoning, which are subsequently used to train an interpretable model and evaluate statis-
tical significance. This iterative process continues for a predefined number of iterations.

4 Experiments

Settings To evaluate the effectiveness of URBANX in supporting interpretable and data-
driven discovery of urban road safety factors, we conduct experiments on road segments
within Manhattan, New York City. This area provides a complex urban setting characterized
by high traffic density, varied land use, and extensive open data resources. Our objective is to
predict and explain segment-level crash risk based solely on visual inputs from street-view
SVI, without the use of predefined variables or manual feature annotation.

Crash risk is quantified using a standardized crash rate Hou et al. (2020); Zeng et al. (2017);
Yu et al. (2024), defined for each segment as:

CRi =
No crashi

AADTi × Li × 365
1,000,000

, (1)

where No crashi denotes the annual average number of reported crashes, AADTi repre-
sents the average annual daily traffic volume, and Li is the length of the road segment in
kilometers. This formulation adjusts for traffic exposure and segment size, and is widely
adopted in transportation safety research to enable fair comparisons across road types and
traffic conditions.
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Crash records were sourced from NYC Open Data1, and traffic volume data (AADT) was
obtained from the New York State Department of Transportation2. Street-view imagery was
collected using ArcGIS Wong & Lee (2005), with panoramic images sampled every 15 meters
along road centerlines and retrieved via the Google Street View API3. After preprocessing
and filtering, the dataset includes 16,000 images for training, 2,000 for validation, and 2,000
for testing.

For hypothesis generation, we use GPT-4o Hurst et al. (2024)4. To construct visual em-
beddings based on structured prompts, we use InternVL2.5-78B Chen et al. (2024)5. All
multimodal models are deployed using LMDeploy Contributors (2023), which provides an
efficient and reproducible framework for serving large-scale MLLMs.

To provide a comparative reference for evaluating our approach, we also compile a compre-
hensive set of 58 built environment features, drawn from five domains: (1) road design (e.g.,
width, highway indicator), (2) land use composition and entropy, (3) point-of-interest (POI)
features, (4) traffic-related facilities (e.g., crossings, bus stops), and (5) visual indices derived
from panoptic segmentation (e.g., vegetation, building, road proportions). These variables
serve as a baseline representation of conventional urban form and are used in a post hoc
analysis to assess the added value of the discovered hypotheses.

In our primary modeling pipeline, however, these handcrafted features are not included.
Instead, we rely exclusively on hypotheses generated by the language model and their corre-
sponding embeddings inferred by the MLLMs. This design ensures that predictive insights
emerge solely from automatically discovered, visually interpretable patterns, allowing us to
assess the capacity of URBANX to support transparent, scalable, and data-driven scientific
discovery grounded in the visual environment.

RMSE MAE R20.0
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Ours (LR)
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Figure 3: Performance comparison be-
tween ResNet, ViT, and our interpretable
embedding-based models using linear re-
gression (LR) and LightGBM (LGBM).

Predictive Performance We first evaluate the
predictive performance of our interpretable
embedding framework by comparing it with
conventional vision-based baselines. Figure 3
reports results across three standard metrics:
root mean square error (RMSE), mean ab-
solute error (MAE), and the coefficient of
determination (R2). For baselines, we use
two representative pretrained image encoders:
ResNet50, a widely adopted convolutional ar-
chitecture, and ViT-Base (ViT-B/16), specifi-
cally the vit base patch16 224 variant that seg-
ments each image into 16× 16 patches and pro-
cesses them with transformer blocks. These
models are fine-tuned to predict crash rates di-
rectly from raw SVIs. We compare these against two variants of our framework that rely on
interpretable embeddings constructed from MLLM responses: one using linear regression
(LR) and another using LightGBM (LGBM) as the downstream predictor. Across all met-
rics, our method consistently outperforms the deep learning baselines while maintaining
transparency and semantic interpretability. The LightGBM variant achieves the strongest
overall results. These results demonstrate that the embeddings retain sufficient information
to make accurate predictions while also enabling interpretability.

Discovered Factors A core objective of URBANX is to move beyond predictive accuracy
and toward interpretable, data-driven discovery of visual factors that are often missing
from conventional urban analytics. To evaluate the substantive relevance of these learned
variables, we apply SHAP (SHapley Additive exPlanations) Lundberg & Lee (2017) to a

1https://opendata.cityofnewyork.us/
2https://dos.ny.gov/location/new-york-state-department-transportation
3https://developers.google.com/maps/documentation/streetview/overview
4https://platform.openai.com/docs/models
5https://huggingface.co/OpenGVLab/InternVL2 5-78B
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regression model trained on both traditional built environment features and hypothesis-
derived embeddings. This allows us to quantify the marginal contribution of each variable
to the prediction of segment-level crash rates.

Hypo_11: Is there a median strip separating opposing traffic? 
0: Yes, 1: No

Hypo_0: Is the road surface marked with visible lane lines? 
0: Yes, 1: No

Hypo_17: Are there any tunnels visible? 
0: Yes, 1: No

Hypo_41: Are there visible signs of pedestrian activity 
(people walking, crossing)?
0: No, 1: Yes

Hypo_1: Is there a pedestrian crossing visible? 
0: Yes, 1: No

Hypo_28: Is there a high traffic density visible?
0: No, 1: Yes

Hypo_16: Are there any visible advertisements or billboards? 
0: Yes, 1: No

Hypo_6: Are there barriers or guardrails present? 
0: Yes, 1: No

Hypo_24: Is there a visible multi-lane configuration on the road? 
0: No, 1: Yes

Hypo_12: Are there any bridges visible on the road? 
0: Yes, 1: No

Hypo_35: Are there visible pedestrian signals at crosswalks? 
0: No, 1: Yes

Hypo_21: Are there visible barriers separating traffic directions? 
0: No, 1: Yes

Figure 4: SHAP summary plot of the regression model with both traditional built envi-
ronment variables and discovered hypotheses. The right panel maps the top hypothesis
variables to their natural-language question meanings.

Figure 4 presents a top-20 ranked summary of both traditional (existing) built environment
variables and the automatically discovered hypotheses. Remarkably, a majority of the top-
ranked variables by explanatory power are generated by our LLM-based hypothesis pipeline.
This highlights URBANX ’s capacity to uncover impactful, interpretable factors that are not
present in standard urban datasets, supporting its role as a scientific discovery tool rather
than a black-box predictor. Many of the discovered hypotheses align with well-established
urban safety principles, validating the model’s ability to recover known but unstated domain
knowledge. For example, Hypo 11 (“Is there a median strip separating opposing traffic?”)
and Hypo 0 (“Is the road surface marked with visible lane lines?”) are both highly ranked
and show negative SHAP contributions when absent, suggesting their presence is associated
with lower crash risk. These align with conventional traffic engineering wisdom on lane
separation and visual guidance.

At the same time, URBANX also surfaces more nuanced or less commonly considered factors.
Several high-ranking hypotheses relate to pedestrian visibility and activity, such as Hypo 1
(pedestrian crossing), Hypo 41 (pedestrian presence), and Hypo 35 (pedestrian signals). These
factors may have complex and context-sensitive relationships with safety outcomes, un-
derscoring the value of semantically grounded, hypothesis-level variables. In addition,
URBANX identifies less conventional features that might escape manual enumeration. For
instance, Hypo 16 (“Are there any advertisements or billboards?”) and Hypo 6 (“Are there bar-
riers or guardrails present?”) point to visual distractions and physical protection measures
that may subtly influence crash risk. These hypotheses extend the scope of interpretable
modeling into environmental and perceptual dimensions that are often hard to encode
using conventional GIS-based variables. Compared to traditional indicators such as street
width or proximity to facilities, our hypotheses are more granular, semantically aligned,
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and directly grounded in what is observable in urban space. This illustrates the advantage
of URBANX in supporting structured discovery over unstructured inputs. Taken together,
these results show that URBANX is capable of achieving competitive predictive accuracy
and surfacing novel, interpretable factors that enrich the understanding of urban safety.

Figure 5: (Left) Variable quality analysis: SHAP vs. statistical significance and pairwise
correlation. (Right) Robustness analysis: model performance across different settings.

Variable Quality, Robustness, and Practical Implications We assess the quality and ro-
bustness of URBANX’s hypotheses based on significance, independence, and sensitivity to
model and hypothesis settings. As shown in the left panel of Figure 5, we visualize each hy-
pothesis by its average SHAP value and the negative log of its p-value from linear regression.
This allows us to assess both predictive contribution and statistical significance. Hypotheses
such as Hypo 11, Hypo 41, and Hypo 0 score highly on both axes. These correspond to inter-
pretable road safety features such as the presence of a median strip, pedestrian visibility,
and clear lane markings. These results confirm the alignment between model-generated
variables and established domain knowledge. The same panel also includes the pairwise
Pearson correlation matrix, where low off-diagonal values indicate that the discovered
variables are largely uncorrelated. This structural independence enhances interpretability
and reduces the risk of multicollinearity.

The right panel of Figure 5 presents a robustness analysis. We vary the capacities of the
LLM used for hypothesis generation and the MLLM used for answering those hypotheses.
Larger MLLMs (such as InternVL2.5-78B) consistently produce better predictive accuracy
and faster convergence than smaller ones (such as 8B), emphasizing the importance of
visual reasoning capability. The size of the LLM has a smaller effect. GPT-4o leads to faster
training convergence compared to GPT-4o-mini, but both eventually reach similar levels of
performance. We also examine the impact of hypothesis count. Accuracy improves steadily
up to around 50 hypotheses, after which performance plateaus or slightly declines. This
reflects a tradeoff between representational richness and statistical noise.

5 Conclusion

In this paper, we presented URBANX, a framework that combines MLLMs with interpretable
statistical modeling to automate scientific discovery from urban data. Taking road safety
in the Manhattan area as a case study, URBANX formulates natural-language hypotheses,
extracts semantically meaningful embeddings through visual question answering, and
evaluates their significance using transparent regression models. Our experiments show
that URBANX outperforms conventional deep learning approaches while uncovering novel,
interpretable variables aligned with domain knowledge.

This work demonstrates a new paradigm for scientific discovery in urban research, one
that integrates perception, language, and statistical reasoning in a unified pipeline. The
generality of URBANX enables broad applicability to other domains such as walkability,
equity, and environmental quality, where unstructured data possesses rich information
and model interpretability are central. Future work may extend this approach to dynamic
data, integrate causal inference, and benefit from ongoing advances in the alignment and
efficiency of foundation models. By rethinking machine learning as a tool for interpretable,
data-driven reasoning, URBANX offers a scalable foundation for MLLM hypothesis-driven
urban science and beyond.
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