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Abstract

Urban and transportation research has long sought to uncover statistically1

meaningful relationships between key variables and societal outcomes such2

as road safety, to generate actionable insights that guide the planning, de-3

velopment, and renewal of urban and transportation systems. However,4

traditional workflows face several key challenges: (1) reliance on human5

experts to propose hypotheses, which is time-consuming and prone to6

confirmation bias; (2) limited interpretability, particularly in deep learn-7

ing approaches; and (3) underutilization of unstructured data that can8

encode critical urban context. Given these limitations, we propose a Multi-9

modal Large Language Model (MLLM)-based approach for interpretable10

hypothesis inference, enabling the automated generation, evaluation, and11

refinement of hypotheses concerning urban context and road safety out-12

comes. Our method leverages MLLMs to craft safety-relevant questions13

for street view images (SVIs), extract interpretable embeddings from their14

responses, and apply them in regression-based statistical models. URBANX15

supports iterative hypothesis testing and refinement, guided by statistical16

evidence such as coefficient significance, thereby enabling rigorous scien-17

tific discovery of previously overlooked correlations between urban design18

and safety. Experimental evaluations on Manhattan street segments demon-19

strate that our approach outperforms pretrained deep learning models20

while offering full interpretability. Beyond road safety, URBANX can serve21

as a general-purpose framework for urban scientific discovery, extracting22

structured insights from unstructured urban data across diverse socioe-23

conomic and environmental outcomes. This approach enhances model24

trustworthiness for policy applications and establishes a scalable, statisti-25

cally grounded pathway for interpretable knowledge discovery in urban26

and transportation studies.27

1 Introduction28
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Figure 1: Real vs. synthetic mobility patterns.

Understanding how cities’ physical struc-29

tures shape societal outcomes is central to30

urban science. Across transportation, plan-31

ning, and policy, researchers seek links be-32

tween urban form and social indicators33

such as traffic safety (Yu et al., 2024), walka-34

bility (Ewing & Handy, 2009), equity (Guz-35

man & Bocarejo, 2017), and environmental36

health (Majchrowska et al., 2022). A key37

challenge is discovering generalizable, in-38

terpretable factors that explain urban phe-39

nomena (Batty, 2024). However, urban form is complex and heterogeneous, with relevant40

information often stored in unstructured formats such as street-level imagery and visual41

cues (Biljecki & Ito, 2021), which are difficult to analyze using traditional methods.42

Despite progress in urban analytics, identifying new interpretable factors remains chal-43

lenging. Existing methods often rely on expert-defined features, black-box models, or44
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handcrafted metrics (Xia et al., 2025), each with limitations. First, hypothesis generation is45

manual and prone to cognitive bias (Gettys & Fisher, 1979). Second, deep models usually46

lack interpretability. Third, unstructured data like SVIs are underused due to difficulties47

in extracting meaningful structure (Tang et al., 2025). These limitations hinder scalable48

and transparent urban analysis. Foundation models such as Large Language Models49

(LLMs) (Naveed et al., 2023) have transformed data-driven reasoning. Trained on large50

text corpora, LLMs perform flexible and context-aware inference (Wei et al., 2022). Recent51

extensions to visual inputs have produced Multimodal LLMs (MLLMs) (Wu et al., 2023),52

which jointly process images and text for tasks like scene interpretation and visual reasoning.53

MLLMs align visual content with language, allowing them to generate human-interpretable54

variables from raw imagery.55

Given these, we present URBANX, a framework for hypothesis-driven urban discovery56

powered by MLLMs. As illustrated in Figure 1, URBANX treats machine learning as a57

collaborator in scientific inquiry. It iteratively generates hypotheses, derives variables from58

multimodal data, and evaluates their statistical relevance. Weak hypotheses are discarded,59

and new ones are proposed, gradually refining a set of interpretable, empirically supported60

factors. We apply URBANX to urban road safety, where interpretability is crucial. In61

a Manhattan case study, the framework uncovers novel visual variables from SVIs that62

correlate with crash rates. Our approach surpasses deep learning baselines such as ResNet63

and Vision Transformer, while maintaining transparency. Our contributions are:64

• We frame scientific discovery in urban contexts as inference over a hypothesis space,65

enabling machines to generate, test, and refine hypotheses using available data.66

• We propose using MLLMs as semantic engines that transform unstructured inputs, such67

as SVIs, into interpretable variables based on natural-language hypotheses.68

• We design an interpretable, nonparametric, iterative framework that approximates the69

posterior over hypotheses, enabling scalable and statistically grounded discovery of novel70

urban factors.71

• We demonstrate the effectiveness of our framework on road safety in Manhattan, where it72

discovers visual predictors of crash rates that outperform vision baselines while offering73

interpretable results. The framework generalizes to other domains in urban science.74

2 Related Work75

Understanding how urban form influences outcomes like public health, equity, and road76

safety is central to urban science and transportation research (Hall, 2012). Traditional77

approaches rely on statistical models that relate expert-defined variables to outcomes (San-78

tamouris, 2013). In road safety, for example, street design, traffic calming, and pedestrian79

infrastructure have been linked to crash rates (Ewing & Dumbaugh, 2009). These methods,80

however, face several limitations. Hypothesis generation is often manual and based on81

intuition, making it slow, biased, and narrow in scope (Xia et al., 2025). This can restrict the82

discovery of less obvious relationships. While deep learning models can enhance prediction,83

they usually lack interpretability (Goodfellow et al., 2016), making it difficult to identify84

causal drivers or support policy decisions. Their opacity can reduce trust, particularly in crit-85

ical applications (Benara et al., 2024). Another challenge lies in the underused unstructured86

data. SVIs contain rich visual details about the urban environment, such as infrastructure87

condition and safety cues (Biljecki & Ito, 2021). Yet, their use in quantitative research is88

limited by issues of image consistency, variability, and the difficulty of extracting structured89

variables (Tang et al., 2024). Current methods often use general computer vision models90

that require extensive tuning and still may miss subtle, context-specific signals. Recent91

advances in AI-driven discovery offer promising directions. Some work uses LLMs for92

causal inference in urban settings (Xia et al., 2025), or combines LLMs with knowledge93

graphs for hypothesis generation in other domains (Lopez et al., 2025). These efforts show94

AI’s potential to support scientific reasoning, but a transparent framework that generates95

and tests hypotheses directly from SVIs remains largely unexplored. Our work addresses96

this gap by using MLLMs to build interpretable hypotheses linking urban visuals to road97

safety outcomes.98
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Figure 2: The URBANX framework consists of three iterative modules: (1) Hypothesis
Generation using LLMs, (2) Embedding Construction via MLLM-based VQA on SVIs, and
(3) Hypothesis Assessment using interpretable regression analysis.

3 Methodology99

Overview Let D = {(xi, yi)}n
i=1 denote a dataset of n SVIs xi and their associated road-100

level crash rates yi ∈ R. We define a hypothesis spaceH comprising all natural-language101

queries that describe visually observable variables potentially related to road safety. Our102

objective is to uncover an optimal subset of hypotheses H∗ = {h1, h2, . . . , hk} ⊂ H that103

captures meaningful visual semantics from each SVI and enables interpretable, accurate pre-104

diction of yi. We formalize this as a posterior mode estimation problem over the hypothesis105

space: H∗ = arg maxH′⊆H P(H′ | D) ∝ P(D | H′) · P(H′), whereH′ is a candidate hypoth-106

esis subset. The likelihood P(D | H′) captures how well the hypothesis-derived variables107

explain variation in crash rates, typically assessed via a regression model. The prior P(H′)108

encodes structural preferences over hypothesis subsets and is implicitly governed by the109

generative behavior of the MLLM. Each hypothesis hj ∈ H∗ corresponds to a semantically110

meaningful question with a categorical answer that could be inferred from an SVI using an111

MLLM. Applying these k hypotheses to each image xi yields a k-dimensional interpretable112

embedding ϕ(xi,H∗) ∈ Rk, where each component reflects the MLLM’s answer to the113

corresponding hypothesis. We denote the complete embedding matrix as E ∈ Rn×k, where114

ei = ϕ(xi,H∗) is the embedding vector for the i-th image. Since exact Bayesian inference115

over all subsets ofH is intractable due to the large search space and unknown likelihoods,116

we use an approximate approach and cast the problem as nonparametric structure learning.117

Starting with an initial setH0 sampled from an LLM, we iteratively evaluate and refine it118

using a linear regression model. For each hypothesis hj, we test the significance of its regres-119

sion coefficient via a two-sided t-test under the null hypothesis that the coefficient is zero.120

This gives a p-value vector P = {p1, p2, . . . , pk}, where each pj represents the probability121

of observing the result under the null. Hypotheses with pj > α (typically 0.05) are treated122

as statistically insignificant and removed. New hypotheses are generated to replace them,123

forming an iterative refinement loop. This procedure approximates Bayesian inference over124

H using statistical evidence and LLM priors, in a nonparametric and data-driven way. An125

overview of the URBANX framework is shown in Figure 2.126

Hypothesis Generation At each iteration t, the framework refines the hypothesis set127

Ht−1 using statistical evidence derived from the previous assessment. For each hypothesis128

hj ∈ Ht−1, we compute a p-value pj using a two-sided t-test on the coefficient estimated129

by a regression model, where the input variable is derived from the MLLM-inferred cate-130

gorical responses to hj across all SVIs. The detailed procedure for constructing hypothesis-131

driven embeddings is described in a later subsection. Hypotheses with pj > α (typically132

α = 0.05) are considered statistically insignificant. While the prompt for the LLM includes133

the full set of previous hypotheses Ht−1 and their p-values P t−1, only mt new hypothe-134

ses are generated, where mt equals the number of pruned hypotheses. This maintains a135
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fixed hypothesis set size while ensuring that each iteration incorporates empirical feed-136

back into the generative process. Formally, the hypothesis generation step is given by:137

Ht ∼ LLM
(

PromptHypoGen(Ht−1,P t−1, mt)
)

, where mt is the number of new hypotheses138

to generate. The prompt is constructed to elicit mt diverse, categorical, and visually inferable139

questions that are relevant to crash prediction. By conditioning on statistically grounded140

examples, the LLM acts as a posterior-informed generator, implicitly sampling from a dis-141

tribution biased toward hypotheses that are both semantically coherent and empirically142

promising. This design allows the system to balance exploration of new concepts with ex-143

ploitation of previously validated structure, enabling effective refinement of the hypothesis144

space over time. An illustration of this process is shown in the left panel of Figure 2.145

Embedding Construction To leverage the generated hypothesesHt = {ht
1, ht

2, . . . , ht
k} for146

downstream modeling, we must transform their semantic content into structured, machine-147

interpretable representations. Traditional deep models rely on latent high-dimensional148

features extracted from images, which lack transparency and hinder hypothesis-driven149

analysis. In contrast, our goal is to construct a hypothesis-guided embedding that is150

transparently aligned with the semantics of each generated question. For each image xi,151

we use an MLLM to answer all questions in Ht based on the visual content of the image.152

These categorical answers are then encoded into a k-dimensional vector et
i ∈ Rk, where153

each element corresponds to the response to hypothesis ht
j. Formally, we define: et

i ∼154

MLLM
(

xi, PromptEmbed(Ht)
)

, where PromptEmbed(Ht) denotes the prompt that queries the155

MLLM to answer all hypotheses inHt based on the visual content of xi. This embedding156

ensures full semantic traceability and supports interpretable downstream modeling.157

This procedure yields a hypothesis-aligned, semantically interpretable embedding for each158

image, where each dimension has a well-defined linguistic meaning. It enables transparent159

variable construction while supporting statistical assessment and iterative refinement in160

subsequent stages. The embedding process is illustrated in the center panel of Figure 2.161

Hypothesis Assessment After constructing semantically aligned embeddings E t for all162

SVIs based on the current hypothesis set Ht, the next step is to assess which hypotheses163

meaningfully explain variation in crash rates. Rather than focusing solely on predictive164

accuracy, we adopt interpretable models that provide transparent, decomposable attribution165

of outcomes to individual hypotheses. This is particularly important in societal domains166

such as road safety, where policy decisions and public accountability require not only167

reliable predictions but also actionable explanations. Each input dimension in the model168

corresponds to a specific hypothesis, enabling us to quantify its effect and assess statistical169

significance. In our implementation, we use linear regression as the default method due to170

its analytical tractability and well-established inference procedures.171

For each embedding dimension, we perform a two-sided t-test on its regression coefficient to172

test the null hypothesis that the coefficient is zero. This yields a p-value for each hypothesis173

ht
j, denoted pt

j, indicating the likelihood that the observed effect is due to chance. The174

resulting vector P t = {pt
1, pt

2, . . . , pt
k} serves as the statistical evidence that guides the next175

iteration: hypotheses with pt
j > α (typically α = 0.05) are deemed statistically insignificant176

and are replaced by new hypotheses in the next round. This assessment mechanism plays a177

dual role: it enables interpretability by quantifying the contribution of each hypothesis, and178

it drives hypothesis refinement by filtering out those that lack explanatory value. The right179

panel of Figure 2 illustrates this evaluation process.180

Iterative Posterior Approximation The overall framework is executed through an iterative181

loop that approximates posterior inference over the hypothesis space by alternating between182

generation, embedding, and statistical assessment. This process reflects a structure-learning183

approach where hypothesis subsets are progressively refined based on empirical evidence.184

Unlike standard optimization methods such as gradient descent or expectation maximiza-185

tion, where the objective function is guaranteed to monotonically improve, our setting186
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Algorithm 1 Iterative Posterior Approximation

Require: Dataset D = {(xi, yi)}n
i=1; number of total hypotheses k; number of iterations T;

interpretable modelM
Ensure: Final hypothesis setHT and embedding matrix ET

1: InitializeH0 ∼ LLM(PromptHypoGen(k))
2: for t = 1, 2, . . . , T do
3: Ht ∼ LLM(PromptHypoGen(Ht−1,P t−1, mt)) ▷ Hypothesis Generation

4: E t =
{

et
i = MLLM(xi, PromptEmbed(Ht))

}n
i=1 ▷ Embedding Construction

5: {ŷi}n
i=1,P t ←M(E t) ▷ Hypothesis Assessment

6: end for

involves sampling from a nonparametric, LLM-driven space that lacks such guarantees. To187

mitigate the risk of degeneracy or performance collapse, we adopt a conservative update188

rule: new hypothesesHt are only retained if they yield improved predictive performance189

on the validation set compared to the previous iteration.190

Algorithm 1 outlines the overall iterative procedure. In each iteration, insignificant hypothe-191

ses from the previous set Ht−1 are filtered based on their p-values P t−1. The remaining192

hypotheses serve as context for LLM-based generation of new candidates. The resulting193

hypothesis setHt is then used to construct interpretable embeddings E t via MLLM-based194

reasoning, which are subsequently used to train an interpretable model and evaluate statis-195

tical significance. This iterative process continues for a predefined number of iterations.196

4 Experiments197

Settings We study road segments in Manhattan, New York City, using crash records, traffic198

volume data, and street-view imagery from 2013 to 2019. For each segment, we compute the199

crash rate as in prior work (Yu et al., 2024): CRi =
No crashi

AADTi×Li× 365
1,000,000

, where No crashi is the200

average yearly number of crashes, AADTi is the average annual daily traffic, and Li is the201

segment length in kilometers. Crash data comes from NYC Open Data, and AADT is from202

the New York State Department of Transportation. SVIs were sampled every 15 meters along203

road centerlines using ArcGIS, and images were collected via the Google Street View API.204

After filtering, we used 16,000 panoramic SVIs for training, 2,000 for validation, and 2,000205

for testing. Unless stated otherwise, we use GPT-4o as the LLM for hypothesis generation206

and InternVL2.5-78B (Chen et al., 2024) as the MLLM for hypothesis answering during207

embedding generation. We run MLLMs using LMDeploy, an optimized inference engine208

for efficient deployment. For evaluation and comparison, we also collect 58 conventional209

built environment variables from public sources. These fall into five categories: (1) road210

attributes, (2) land use, (3) point-of-interest (POI) features, (4) traffic-related facilities, and211

(5) visual indices from panoptic segmentation of SVIs. These features are from sources212

including PLUTO, CommonPlace, Geofabrik.213

RMSE MAE R20.0

0.2

0.4

0.6

0.8

1.0
Predictive Performance Comparison

ResNet50
ViT
Ours (LR)
Ours (LGBM)

Figure 3: Performance comparison be-
tween ResNet, ViT, and our interpretable
embedding-based models using linear re-
gression (LR) and LightGBM (LGBM).

Predictive Performance We first evaluate the214

predictive performance of our interpretable215

embedding framework by comparing it with216

conventional vision-based baselines. Figure 3217

reports results across three standard metrics:218

root mean square error (RMSE), mean ab-219

solute error (MAE), and the coefficient of220

determination (R2). For baselines, we use221

two representative pretrained image encoders:222

ResNet50, a widely adopted convolutional ar-223

chitecture, and ViT-Base (ViT-B/16), specifi-224

cally the vit base patch16 224 variant that seg-225
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ments each image into 16× 16 patches and processes them with transformer blocks. These226

models are fine-tuned to predict crash rates directly from raw SVIs. We compare these227

against two variants of our framework that rely on interpretable embeddings constructed228

from MLLM responses: one using linear regression (LR) and another using LightGBM229

(LGBM) as the downstream predictor. Across all metrics, our method consistently out-230

performs the deep learning baselines while maintaining transparency and semantic inter-231

pretability. The LightGBM variant achieves the strongest overall results. These results232

demonstrate that the embeddings retain sufficient information to make accurate predictions233

while also enabling interpretability.234

Hypo_11: Is there a median strip separating opposing traffic? 
0: Yes, 1: No

Hypo_0: Is the road surface marked with visible lane lines? 
0: Yes, 1: No

Hypo_17: Are there any tunnels visible? 
0: Yes, 1: No

Hypo_41: Are there visible signs of pedestrian activity 
(people walking, crossing)?
0: No, 1: Yes

Hypo_1: Is there a pedestrian crossing visible? 
0: Yes, 1: No

Hypo_28: Is there a high traffic density visible?
0: No, 1: Yes

Hypo_16: Are there any visible advertisements or billboards? 
0: Yes, 1: No

Hypo_6: Are there barriers or guardrails present? 
0: Yes, 1: No

Hypo_24: Is there a visible multi-lane configuration on the road? 
0: No, 1: Yes

Hypo_12: Are there any bridges visible on the road? 
0: Yes, 1: No

Hypo_35: Are there visible pedestrian signals at crosswalks? 
0: No, 1: Yes

Hypo_21: Are there visible barriers separating traffic directions? 
0: No, 1: Yes

Figure 4: SHAP plot of the regression model with both tradi-
tional built environment variables and discovered hypotheses.

Discovered Factors A235

central goal of URBANX236

is not just to predict soci-237

etal outcomes, but to en-238

able interpretable, data-239

driven discovery of un-240

structured or previously241

overlooked urban factors.242

To assess whether our243

framework successfully244

identifies meaningful vi-245

sual variables, we exam-246

ine the learned regres-247

sion model using SHAP248

(SHapley Additive exPla-249

nations) analysis, which250

quantifies each variable’s251

marginal contribution to252

the prediction.253

Figure 4 presents a top-20 ranked summary of both traditional (existing) built environment254

variables and the automatically discovered hypotheses. Remarkably, a majority of the top-255

ranked variables by explanatory power are generated by our LLM-based hypothesis pipeline.256

This highlights URBANX ’s capacity to uncover impactful, interpretable factors that are not257

present in standard urban datasets, supporting its role as a scientific discovery tool rather258

than a black-box predictor. Many of the discovered hypotheses align with well-established259

urban safety principles, validating the model’s ability to recover known but unstated domain260

knowledge. For example, Hypo 11 (“Is there a median strip separating opposing traffic?”)261

and Hypo 0 (“Is the road surface marked with visible lane lines?”) are both highly ranked262

and show negative SHAP contributions when absent, suggesting their presence is associated263

with lower crash risk. These align with conventional traffic engineering wisdom on lane264

separation and visual guidance.265

At the same time, URBANX also surfaces more nuanced or less commonly considered factors.266

Several high-ranking hypotheses relate to pedestrian visibility and activity, such as Hypo 1267

(pedestrian crossing), Hypo 41 (pedestrian presence), and Hypo 35 (pedestrian signals). These268

factors may have complex and context-sensitive relationships with safety outcomes, un-269

derscoring the value of semantically grounded, hypothesis-level variables. In addition,270

URBANX identifies less conventional features that might escape manual enumeration. For271

instance, Hypo 16 (“Are there any advertisements or billboards?”) and Hypo 6 (“Are there bar-272

riers or guardrails present?”) point to visual distractions and physical protection measures273

that may subtly influence crash risk. These hypotheses extend the scope of interpretable274

modeling into environmental and perceptual dimensions that are often hard to encode using275

conventional GIS-based variables. Compared to traditional indicators such as street width or276

proximity to facilities, our hypotheses are more granular, semantically aligned, and directly277

grounded in what is observable in urban space. This illustrates the unique advantage of278

URBANX in supporting structured discovery over unstructured inputs. Taken together,279

these results show that URBANX is capable not only of achieving competitive predictive280

accuracy but also of surfacing novel, interpretable factors that enrich the understanding of281

urban safety.282
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Figure 5: (Left) Variable quality analysis: SHAP vs. statistical significance and pairwise
correlation. (Right) Robustness analysis: model performance across different LLM/MLLM
settings and hypothesis counts.

Variable Quality, Robustness, and Practical Implications We assess the quality and ro-283

bustness of URBANX’s hypotheses based on significance, independence, and sensitivity to284

model and hypothesis settings. As shown in the left panel of Figure 5, we visualize each hy-285

pothesis by its average SHAP value and the negative log of its p-value from linear regression.286

This allows us to assess both predictive contribution and statistical significance. Hypotheses287

such as Hypo 11, Hypo 41, and Hypo 0 score highly on both axes. These correspond to inter-288

pretable road safety features such as the presence of a median strip, pedestrian visibility,289

and clear lane markings. These results confirm the alignment between model-generated290

variables and established domain knowledge. The same panel also includes the pairwise291

Pearson correlation matrix, where low off-diagonal values indicate that the discovered292

variables are largely uncorrelated. This structural independence enhances interpretability293

and reduces the risk of multicollinearity.294

The right panel of Figure 5 presents a robustness analysis. We vary the capacities of the295

LLM used for hypothesis generation and the MLLM used for answering those hypotheses.296

Larger MLLMs (such as InternVL2.5-78B) consistently produce better predictive accuracy297

and faster convergence than smaller ones (such as 8B), emphasizing the importance of298

visual reasoning capability. The size of the LLM has a smaller effect. GPT-4o leads to faster299

training convergence compared to GPT-4o-mini, but both eventually reach similar levels of300

performance. We also examine the impact of hypothesis count. Accuracy improves steadily301

up to around 50 hypotheses, after which performance plateaus or slightly declines. This302

reflects a tradeoff between representational richness and statistical noise.303

5 Conclusion304

We introduced URBANX, a framework that uses MLLMs and interpretable modeling to305

automate hypothesis-driven discovery from urban data. Applied to road safety in Man-306

hattan, URBANX generates natural-language hypotheses, extracts visual embeddings, and307

evaluates them using transparent regression, outperforming deep learning baselines while308

revealing meaningful, interpretable variables. URBANX represents a new approach to urban309

science that unifies perception, language, and reasoning. Its generality supports applica-310

tions beyond road safety, including walkability, equity, and environmental quality. Future311

directions include extending to dynamic data, integrating causal inference, and leveraging312

advances in foundation models for scalable, interpretable discovery.313

References314

Michael Batty. The computable city: histories, technologies, stories, predictions. MIT Press, 2024.315

Vinamra Benara, Chandan Singh, John X Morris, Richard J Antonello, Ion Stoica, Alexan-316

der G Huth, and Jianfeng Gao. Crafting interpretable embeddings for language neuro-317

science by asking llms questions. Advances in neural information processing systems, 37:318

124137, 2024.319

Filip Biljecki and Koichi Ito. Street view imagery in urban analytics and gis: A review.320

Landscape and Urban Planning, 215:104217, 2021.321

7



Under review as a conference paper at COLM 2025

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu,322

Shenglong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of323

open-source multimodal models with model, data, and test-time scaling. arXiv preprint324

arXiv:2412.05271, 2024.325

Reid Ewing and Eric Dumbaugh. The built environment and traffic safety: a review of326

empirical evidence. Journal of Planning Literature, 23(4):347–367, 2009.327

Reid Ewing and Susan Handy. Measuring the unmeasurable: Urban design qualities related328

to walkability. Journal of Urban design, 14(1):65–84, 2009.329

Charles F Gettys and Stanley D Fisher. Hypothesis plausibility and hypothesis generation.330

Organizational behavior and human performance, 24(1):93–110, 1979.331

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-332

ume 1. MIT press Cambridge, 2016.333

Luis A Guzman and Juan P Bocarejo. Urban form and spatial urban equity in bogota,334

colombia. Transportation research procedia, 25:4491–4506, 2017.335

Randolph Hall. Handbook of transportation science, volume 23. Springer Science & Business336

Media, 2012.337

Vanessa Lopez, Lam Hoang, Marcos Martinez-Galindo, Raúl Fernández-Dı́az, Marco Luca338
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