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Abstract
In this work, we address two main shortcom-
ings of transformer architectures: input corruption
and rank collapse in their output representation.
We unveil self-attention as an autonomous state-
space model that inherently promotes smoothness
in its solutions, leading to lower-rank outputs
and diminished representation capacity. More-
over, the steady-state solution of the model is
sensitive to input perturbations. We incorporate
a Proportional-Integral-Derivative (PID) closed-
loop feedback control system with a reference
point into the model to improve robustness and
representation capacity. This integration aims to
preserve high-frequency details while bolstering
model stability, rendering it more noise-resilient.
The resulting controlled state-space model is theo-
retically proven robust and adept at addressing the
rank collapse. Motivated by this control frame-
work, we derive a novel class of transformers,
PID-controlled Transformer (PIDformer), aimed
at improving robustness and mitigating the rank-
collapse issue inherent in softmax transformers.
We empirically evaluate the model for advan-
tages and robustness against baseline transform-
ers across various practical tasks, including object
classification, image segmentation, and language
modeling.

1. Introduction
Transformer models (Vaswani et al., 2017) have shown re-
markable achievements across various domains such as rein-
forcement learning (Chen et al., 2021a; Janner et al., 2021),
computer vision (Dosovitskiy et al., 2021b; Touvron et al.,
2021; Zhao et al., 2021; Guo et al., 2021), natural language
processing (Devlin et al., 2018; Al-Rfou et al., 2019; Child
et al., 2019; Raffel et al., 2020) and other practical applica-
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tions (Zhang et al., 2019; Gulati et al., 2020). At the core
of transformers lies the self-attention mechanism, which
computes weighted averages of token representations within
a sequence based on the similarity scores between pairs of
tokens, thus capturing diverse syntactic and semantic rela-
tionships effectively (Cho et al., 2014; Parikh et al., 2016).
This flexibility in capturing relationships has been identified
as a key factor contributing to the success of transformers.

1.1. Background: Self-Attention

Given a sequence of tokens Xℓ := [xℓ(1), · · · ,xℓ(N)]⊤,
Xℓ ∈ RN×Dx , the query, key and value matrices at layer ℓ-
th are Qℓ = XWℓ

Q

⊤; Kℓ = XWℓ
K

⊤; and Vℓ = XWℓ
V

⊤,
respectively. The weight matrix Wℓ

Q,W
ℓ
K ∈ RDqk×Dx

and Wℓ
V ∈ RD×Dx . The attention mechanism computes

the output of token i at layer ℓ-th as follows

uℓ(i) =

N∑
j=1

softmax
(
qℓ(i)⊤kℓ(j)/

√
Dqk

)
vℓ(j), (1)

where qℓ(i) is the row i-th of Qℓ and kℓ(j),vℓ(j) are the
row j-th of Kℓ,Vℓ, respectively. The softmax function
computes the attention score between token i and j, for
all i, j = 1, . . . , N . The self-attention (1) is referred to as
softmax attention. Our work refers to a transformer that
uses softmax attention as a softmax transformer.

Despite their remarkable success, transformers exhibit prac-
tical performance issues in their robustness and representa-
tion capacity. For example, recent studies (Mahmood et al.,
2021; Madry et al., 2017; Zhou et al., 2022) have provided
empirical evidence of Vision Transformer’s susceptibility to
adversarial attacks and common input perturbations, such as
noise or blur. Additionally, deep transformer-based models
have been observed to suffer from rank-collapse in their
outputs, wherein token embeddings become increasingly
similar as the model depth increases (Shi et al., 2022; Dong
et al., 2021; Wang et al., 2022). This issue severely con-
strains the representation capacity of transformers, hinder-
ing their performance in various tasks. Addressing these
issues is crucial for ensuring the reliability and effectiveness
of transformer models across different applications.
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1.2. Contribution

We introduce self-attention as a self-evolving state-space
model (SSM) and provide insights into the non-robustness
and rank-collapse issues inherent in transformers. Specif-
ically, we demonstrate that self-attention can be seen as a
discretization of an SSM from a gradient flow, minimizing
the nonlocal total variation (Gilboa & Osher, 2008) of an
input signal and promoting smoothness. This characteristic
leads to rank collapse and diminishes the output’s represen-
tation capacity. Additionally, the steady-state solution of the
SSM is sensitive to input perturbation. Motivated by this
novel understanding, we propose the Proportional-Integral-
Derivative (PID) control transformer, PIDformer, as a new
transformer class that mitigates both issues. PIDformer is
derived as a discretization of a PID-control integrated SSM
proven to enhance the model’s stability and representation
capacity. Our contributions are four-fold.

1. We present a novel control framework for self-attention
mechanisms, unveiling the connection between self-
attention and the state-space model. Our analysis sheds
light on the shortcomings of transformers, which ex-
hibit non-robust behavior to input perturbations and
are prone to rank collapse.

2. Motivated by these analyses, we propose PID-
former, a new class of transformers, that integrates a
Proportional-Integral-Derivative (PID) controller into
transformers. PIDformer enhances model robustness
and effectively mitigates the rank-collapse issue.

3. We demonstrate how the connection between energy
optimization and our controlled SSMs enhances the
understanding of these models.

4. We theoretically prove that employing softmax self-
attention is inherently sensitive to noise and tends to
produce low-rank outputs. In contrast, our controlled
SSM is guaranteed to exhibit superior robustness and
avoid the rank-collapse issue.

We empirically demonstrate the advantages of PIDformers
on various large-scale applications, including the ImageNet
object classification (Deng et al., 2009) (under diverse in-
put perturbations and robustness benchmarks), ADE20K
image segmentation (Zhou et al., 2018), and WikiText-103
language modeling (Merity et al., 2017). tasks.

Organization. We structure our paper as follows: In Sec-
tion 2, we introduce a control framework for self-attention,
offering insights into the non-robustness and rank-collapse
issues in transformer-based models. In Section 3, we incor-
porate a PID controller into the SSM, providing theoretical
guarantees of its stability and ability to mitigate the rank-
collapse issue. Subsequently, we developed PIDformer, a
discretization of the PID-controlled SSM, and established

the connection between these dynamics and energy opti-
mization for further understanding. In Section 4, we empiri-
cally validate the benefits of PIDformer. We review related
work in Section 5. Finally, we summarize our main contri-
butions and provide additional results, details, and proofs in
the Appendix.

2. A Control Framework for Self-Attention
Consider the value matrix of layer ℓ-th Vℓ :=
[vℓ(1), · · · ,vℓ(N)]⊤ ∈ RN×D in Section 1.1. Let Ω ⊂ R,
x ∈ Ω, and v(x, t) := [v1(x, t), . . . , vD(x, t)]T be a real
vector-valued function, v : Ω × [0,∞) → RD, v ∈
L2(Ω × [0,∞)). Assume the value matrix Vℓ discretizes
the function v(x, t) on the spatial and time dimension. In
the context of a control system, v(x) can be considered as
the state signal of the following state-space model:

dv(x, t)

dt
=

∫
Ω

(v(y, t)− v(x, t))K(x, y, t)dy + z(x, t)

v(x, 0) = v0(x), z(x, t) = 0,∀x ∈ Ω,∀t ≥ 0 (2)

where z ∈ L2(Ω× [0,∞)) is a control input and v0 is the
initial state. The function K(x, y, t) is the kernel function
that captures the proximity of the signal v at positions x, y
at time t. Here, the SSM is autonomous, as no control in-
puts or feedback are fed into the system. In this section,
we illustrate that system in (2) induces smoothness to the
signal by minimizing the nonlocal total variation (Gilboa &
Osher, 2008) of the signal, hence losing detailed informa-
tion as it evolves. Subsequently, we show that self-attention
serves as a discretization of this dynamic. Lastly, we the-
oretically demonstrate that the SSM in 2 is vulnerable to
input perturbation and representation collapse.

2.1. Connection between State Space Model and
Nonlocal Variational Minimization

We show that the gradient flow aimed at minimizing the
following nonlocal functional is a case of our SSM described
in (2)

J(v) =
1

2

∫
Ω×Ω

∥v(x)− v(y)∥22k(x, y)dxdy. (3)

Here, J(v), the sum of the square of the nonlocal
derivative on the spatial dimension ∂yv(x) =

(
v(x) −

v(y)
)√

k(x, y) (Gilboa & Osher, 2008) , represents the
non-local variation of the signal v. k(x, y) captures the
proximity between position x and y in the signal. Mini-
mizing J(v) promotes the smoothness of v and penalizes
high-frequency in the signal.

The gradient of J with respect to v is then given by

∇vJ(v) =

[
∂J

∂v1
,
∂J

∂v2
, . . . ,

∂J

∂vD

]T
. (4)

2



PIDformer: Transformer Meets Control Theory

As shown in the Appendix B.10, the Frechet derivative of J
with respect to vj is

∂J

∂vj
=

∫
Ω

(vj(x)− vj(y)(k(x, y) + k(y, x))dy. (5)

Substituting the formula for ∂J/∂vj in (5) into (4) for
∇vJ(v)(x), we obtain the following gradient flow

dv(x, t)

dt
= −∇vJ(v)

=

∫
Ω

(
v(y, t)− v(x, t)

)(
k(x, y) + k(y, x)

)
dy,

(6)
The autonomous state-space representation in (2) simplifies
to this dynamic when K(x, y, t) := k(x, y)+k(y, x), which
is symmetric and time-invariant. In this scenario, the model
reduces the total nonlocal variance of the signal, resulting in
a smoother solution. This renders the model susceptible to
rank collapse in the output representation. In Section 2.2, we
prove that the model suffers from rank collapse regardless
of whether K(x, y, t) is symmetric.

Connection between SSM and self-attention. We show
that a discretization of our SSM recovers the self-attention
mechanism. Let q,k : Ω× [0,∞) → RDqk , q,k ∈ L2(Ω×
[0,∞)) be real vector-valued functions. Similar to v(x, t),
we can discretize q(x, t),k(x, t) on spatial dimension to
attain the query vectors qℓ(1), . . . , qℓ(N) ∈ RDqk , and the
key vectors kℓ(1), . . . ,kℓ(N) ∈ RDqk of layer ℓ-th. We
define the proximity kernel as

K(x, y, t) :=
exp
(
q(x, t)Tk(y, t)/

√
Dqk

)∫
Ω
exp
(
q(x, t)Tk(y′, t)/

√
Dqk

)
dy′

.

Applying the Euler method to discretize (2) with the time
step ∆t(x) := 1, the update step of the system becomes

v(x, t+ 1)

≈
∫
Ω

exp
(
q(x, t)Tk(y, t)/

√
Dqk

)∫
Ω
exp
(
q(x, t)Tk(y′, t)/

√
Dqk

)
dy′

v(y, t)dy.
(7)

Using the Monte-Carlo method (Metropolis & Ulam, 1949)
to approximate the integrals in the spatial dimension in (7),
we attain

vℓ+1(i) ≈
N∑
j=1

softmax
(
qℓ(i)⊤kℓ(j)/

√
Dqk

)
vℓ(j).

which recovers uℓ(i), the output token i of self-attention at
layer ℓ-th as in (1). As self-attention discretizes the SSM
outlined in (2), it inherits the characteristics of the model,
making it susceptible to input corruption and output rank
collapse. These properties are theoretically demonstrated in
Section 2.2.

2.2. Stability and Representation Collapse of the State
Space Model

Model robustness is its ability to maintain high performance
despite encountering uncertain or challenging scenarios
such as noisy data, distribution shifts, or adversarial at-
tacks (Wang & Bansal, 2018; Dong et al., 2020). Robustness
also entails stability, wherein the model’s output remains
relatively unchanged even when the input is perturbed.

For the theoretical analysis of our SSMs, we assume that
the kernel K is time-invariant, i.e., K(x, y, t) = K(x, y).
This assumption is practical in the context of transformers,
particularly in deep transformer models, where the attention
matrix tends to remain similar after the initial layers (Shi
et al., 2022). The discretization of model in (2) on the spatial
dimension gives

dv(i, t)

dt
=

N∑
j=1

(v(j, t)− v(i, t))K(i, j),

for i, j = 1, 2, . . . , N By choosing K(i, j) :=
softmax

(
q(i)Tk(j)/

√
Dqk

)
, its corresponding matrix rep-

resentation is obtained as

V′(t)dt = KV(t)−V(t),V(0) = V0, (8)

where K is a right-stochastic matrix with all positive entries.
In the context of transformer, K is the attention matrix and
V = [v0(1), . . . ,v0(N)]T is the value matrix at the first
layer. Lemma 1 sheds light on the stability and representa-
tion collapse of the solution for the SSM in (2).
Lemma 1. Given {α1, α2, . . . , αM},M ≤ N , is the com-
plex spectrum of K − I ∈ RN×N . The solution of the
ordinary differential equation (ODE) (8) is given by

V(t) = P exp(Jt)P−1V0, (9)

where PJP−1 is the Jordan decomposition of K − I , P
is invertible and contains the generalized eigenvectors of
K − I , and J = diag(Jα1,m1

,Jα2,m2
, . . . ,JαM ,mM

) is
the Jordan form of matrix K − I with,

Jαi,mi
=


αi 1 . . . 0
...

. . .
...

αi 1
0 . . . αi

 ∈ Rmi×mi , for i =

1, . . . ,M are Jordan blocks. Here,
∑M

i=1 mi = N .

The proof of Lemma 1 is shown in the Appendix B.2.
Since K is a positive right-stochastic matrix, its largest
and unique eigenvalue α1 is 1 and |αi| < 1 (see Theorem
4.1 in (Bandeira et al., 2020)), meaning Re(αi) ∈ [−1, 1),
for i = 2, . . . ,M . Hence, the matrix K−I, whose eigenval-
ues are α1−1, . . . , αM −1, has a unique largest eigenvalue
of 0 and the real part of other eigenvalues in [−2, 0). This
leads to the rank collapse of the steady-state solution, as
stated in the following Lemma 2.
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Lemma 2. limt→∞ V(t) =
[
c1,1p1, . . . , c1,Dxp1

]
,

where p1 is the eigenvector corresponds with the eigen-
value (α1 − 1) = 0 of K − I , and c1,1, . . . , c1,Dx are the
coefficients w.r.t p1 of the decomposition of V 0’s columns
in the Jordan basis (column vectors of P ).

The proof of Lemma 2 is shown in the Appendix B.3. This
yields two insights. Firstly, the steady-state solution of
the system depends on the initial V 0, implying that any
perturbation in the input results in changes in the output.
Secondly, the solution experiences rank collapse, with the
rank of its steady state solution being 1 as t → ∞. This
indicates that our SSM in (2) not only yields a non-robust
solution but also experiences information loss (low-rank
output representation). As the self-attention mechanism
discretizes the model in (2), it inherently exhibits both issues.

3. Transformer with PID-Controller for
State-Space Representation

To counteract the loss of detailed information caused by
smoothness and to bolster model stability, a PID controller
is integrated into the state-space representation as follows:

dv(x, t)

dt
=

∫
Ω

(v(y, t)− v(x, t))K(x, y, t)dy + z(x, t)

z(x, t) = λPe(x, t) + λI

∫ t

0

e(x, t) + λD
de(x, t)

dt

v(x, 0) = v0(x), z(x, 0) = 0. (10)

The regularizer term, denoted as e(x, t) = f(x)− v(x, t),
encapsulates the loss of information as v(x, t) becomes
smoother over time. Here, the reference function f(x) rep-
resents a high-frequency signal containing detailed informa-
tion about the original inputs. We select f(x) as the scaled
initial value function, denoted as βv(x, 0). In the context of
a transformer, we set f(i) = βv0(i), representing the value
vector embedding at token index i of the first layer. This
choice is motivated by our desire to have flexibility in de-
termining the detailed information from the input signal we
wish to preserve. This flexibility is governed by the param-
eter β ∈ (0, 1]. The regularizer e(x, t) is fed back into the
system, guiding the model to reintegrate the lost information
while maintaining stability through three components: (P),
(I), and (D).

• The (P) term is directly proportional to the regularizer,
e(x, t). In cases of substantial information loss, the
control input z(x, t) should be proportionately large,
determined by the gain factor λP , to reintroduce the
lost information into the system. A small choice of
λP results in slow convergence, while a large choice
may lead to overshooting issues, causing instability in
reaching the reference point.

• The (I) term accumulates all past errors, given by
λI

∫ t

0
e(x, t). This component aids in reintroducing

any persistent, long-term loss of information that might
persist despite proportional control.

• Finally, the (D) term, λD
de(x, t)

dt
, anticipates future

losses of information by considering the rate at which
the error is changing. A more rapid change in error
prompts a greater control effect, and the derivative
term proves beneficial in enhancing the stability and
responsiveness of the control system.

In this section, we unveil a connection between the two
components, (P) and (I), of the SSM in (10) and different
optimization methods applied to minimize a regularized
functional. This functional is tailored to preserve the de-
tailed information of the solution. Moreover, we show that
the P-control (where λI = λD = 0), PD-control (λI = 0),
and PID-controlled SSM in (10) are theoretically guaranteed
to be more robust and mitigate the issue of rank collapse.
Subsequently, we introduce the PID-controlled transformer
(PIDformer), a novel architecture that enhances performance
and robustness.

3.1. Connection between (P) and (I) Components with
Different Optimization Methods

In Section 2.1, we have shown that the SSM in (2) implic-
itly performs a gradient descent to minimize the nonlocal
variation J(v), which leads to the loss of signal information.
Now, we illustrate that the feedback-controlled state-space
in (10), without the derivative (D) (λD = 0), implicitly
minimizes the following functional:

E(v,f) = J(v) +G(v,f)

=
1

2

∫
Ω×Ω

∥v(x)− v(y)∥22k(x, y)dxdy

+
λ

2

∫
Ω

∥v(x)− f(x)∥22dx.

(11)

where the data fidelity term G(v,f) = λ
2

∫
Ω
∥v(x) −

f(x)∥22dx (Gilboa & Osher, 2008; 2007) is introduced to pe-
nalize significant information loss. This observation further
validates that systems in (10) retains relevant information
from the reference signal f .

P-controlled SSM as gradient descent to min-
imize E(v,f). The gradient of E w.r.t v is
∇vE(v) = ∇vJ(v) + λ

(
v(x)− f(x)

)
. The derivation of

the derivative is given in Appendix B.10. Using the gradient
descent method, we obtain the gradient flow:

dv(x, t)

dt
= −∇uE(v)

=

∫
Ω

(
v(y, t)− v(x, t)

)(
k(x, y) + k(y, x)

)
dy

+ λ
(
f(x)− v(x, t)

)
.

(12)
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If we set K(x, y, t) := k(x, y) + k(y, x) to be symmetric
and time-invariant, and λP = λ, λI = λD = 0, the con-
trolled system in (10) simplifies to the gradient flow of E
in (12). It suggests that integrating the (P) component into
the system in (2) minimizes the functional E and reintro-
duces the lost information to the system.

PI-controlled SSM as Bregman iteration to minimize
E(v,f). An alternative to gradient descent, Bregman itera-
tion (Yin et al., 2008; Zhang et al., 2010) iteratively refines
the solution by minimizing a Bregman divergence, which
measures the discrepancy between the current solution and
a reference point. Given the convex functional J(v), the
Bregman divergence of J between v and s ∈ L2(Ω) is
Dp

J(v, s) := J(v)− J(s)− ⟨p,v − s⟩, where p ∈ ∂J(s),
the subgradient of J at s. Dp

J(v, s) captures the difference
between J(v) and the tangent plane J(s)−⟨p,v−s⟩. The
ℓ+1-th Bregman iteration to minimize minv J(v) with the
contraint G(v,f) is given by:

vℓ+1=argmin
v

Dpℓ

J (v,vℓ) +G(v,f), pℓ ∈ ∂J(vℓ) (13)

The following Lemma 3 shows that the optimization prob-
lem in (13) can be turned into solving iterative subproblems.
Lemma 3. Applying Bregman iteration to minimize E(v,f)
involves solving iterative subproblems:

vℓ+1 = argmin
v

J(v) +
λ

2

∫
Ω

∥v(x)− f(x)− eℓa(x)∥22dx

eℓa(x) =

ℓ∑
m=1

em(x) =

ℓ∑
m=1

(
f(x)− vm(x)

)
, (14)

The proof of Lemma 3 is in Appendix B.4. Here, the term
eℓa(x) captures the accumulated information loss between
the original and the smoothed signals vm(x) of each itera-
tion m = 1, . . . , ℓ. Taking a one-step update in the direction
of gradient descent (see Appendix B.11), we obtain

vℓ+1(x) =

∫
Ω

(
vℓ(y)− vℓ(x)

)(
k(x, y) + k(y, x)

)
dy

+ vℓ(x) + λeℓ(x) + λeℓa(x). (15)

On the other hand, the Euler discretization with ∆t = 1 of
the PI-controlled state-space in (10) (as λD = 0) is:

vℓ+1(x) = vℓ(x) +

∫
Ω

(
vℓ(y)− vℓ(x)

)
K(x, y)dy

+ λPe
ℓ(x) + λI

ℓ∑
m=1

em(x).

(16)

By selecting a time-independent K(x, y, t) := k(x, y) +
k(y, x) and setting λP = λI = λ, the update step of the
PI-controlled model in (16) simplifies to the update step of
Bregman iteration in (15). This connection suggests that the
PI-controlled SSM minimizes E(v,f).

3.2. Stability and Representation Collapse of
PID-Controlled State Space Model

In this section, we aim to show that: (i) Integrating the (P)
term enhances robustness against input perturbations and
mitigates rank collapse of the output representation; (ii)
Adding the (D) term in PD-control further stabilizes the
system by mitigating rapid and unstable changes of V(t),
(iii) finally, integrating the (I) term in the PID-controlled
SSM described in (10) guarantees system stability, making
it robust to input corruption. Following the same assumption
in Section 2.2, we assume that K(x, y, t) is time-invariant
for our theoretical analysis in this section.

3.2.1. ANALYSIS OF P-CONTROL SSM

Robustness of P-controlled SSM. From the SSM in (10),
by choosing λI = λD = 0, and applying Euler discretiza-
tion on the spatial domain, the P-control model is given
as:

dv(i, t)

dt
=

N∑
j=1

(v(j, t)− v(i, t))K(i, j)

+ λP

(
f(i)− v(i, t)

)
,

(17)

for i, j = 1, 2, . . . , N , and K(i, j) :=
softmax

(
q(i)Tk(j)/

√
Dqk

)
. The corresponding

matrix representation is given as

dV(t)

dt
= KV(t)− (λP + 1)V(t) + λPF ,V(0) = V0.

(18)
where F = [f(1), . . . ,f(N)]T . The following Lemma 4
help us analyze the stability and representation collapse of
the solution for the SSM in (18). Here, since the eigenvalues
of K the has the real part in [0, 1], λP +1 (λP > 0) can not
be one of them. This implies that det(K − (λP + 1)I) ̸= 0
hence the matrix is non-singular.

Lemma 4. Let B := K−(λP +1)I ∈ RN×N , the solution
of the ordinary differential equation (18) is

V(t) = exp(Bt)(V0 +B−1F )− λPB
−1F . (19)

If B has only eigenvalues with negative real parts, then
limt→∞ V (t) = −λPB

−1F .

The proof of Lemma 4 is shown in the Appendix B.5.
As shown in Section 2.2, since the eigenvalues of K has
Re(αi) ∈ [−1, 1], i = 1, . . . ,M , therefore the real parts
of eigenvalues of B must be in the range [−2− λP ,−λp],
which are all negative. As the result of 4, the steady state
solution in (19) limt→∞ V (t) = −λPB

−1F . Therefore,
adding any perturbation to the initial state V0 does not
change the steady state solution. However, in our context
of a transformer, the perturbation also affects the reference
point F , which is chosen to be a scaled βV0, leading to the
steady state solution becomes −λPβB

−1V0. Fortunately,
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the P-control system allows the error caused by perturbation
to be as neglectable as desired. The following Proposition 1
confirms the robustness of the P-control SSM.

Proposition 1. Given the coefficient λP > 0 in (10), and
any arbitrary ϵ̄, δ > 0, by adding the perturbation ϵ ∈
RN×D, ∥ϵ∥∞ ≤ ϵ̄ to V0, the corresponding change in the
steady state solution of the system in (18) is independent of
λP and becomes negligible with an amount of at most δ if

β ≤ δ/ϵ̄. (20)

The proof of Proposition 1 is shown in the Appendix B.6.
Proposition 1 suggests that we can select the hyper-
parameter β to make the impact of input perturbation on the
output as small as desired.

P-controlled SSM on representation collapse. Since B−1

is full rank (B is non-singular), hence rank(−λPB
−1F ) =

rank(F ) (Strang, 2006). In the case of a transformer, when
choosing F = βV0, the rank of the steady state solution
equals the rank of the input V0. This implies that the P-
control dynamic in (18) prevents rank collapse.

3.2.2. ANALYSIS OF PD-CONTROLLED SSM

Since λD
de(x,t)

dt = λD
d
dt (f(x) − v(x, t)) = −λD

dv(x,t)
dt ,

from the SSM in (10), by choosing λI = 0, K(i, j) :=
softmax

(
q(i)Tk(j)/

√
Dqk

)
for i, j = 1, 2, . . . , N , and

applying Euler discretization on the spatial domain, the
PD-control model can be represented in the matrix form:

V′(t) = KV(t)− (λP + 1)V(t) + λPF − λDV′(t)

=
1

1 + λD

(
K − (λP + 1)I

)
V(t) +

λP

1 + λD
F ,

(21)
with V(0) = V0. The solution of (21) is provided in the
following Lemma 5.

Lemma 5. Let B := K−(λP +1)I ∈ RN×N , the solution
of the ordinary differential equation (21) is

V(t) = exp(
1

1 + λD
Bt)(V0 +B−1F )− λPB

−1F .

and limt→∞ V (t) = −λPB
−1F .

The proof of Lemma 5 is provided in Appendix B.7. This
intriguing result suggests two key insights. Firstly, incor-
porating the (D) component into the P-control system does
not alter the steady state of the solution. Consequently, the
solution of the PD-controlled SSM retains the advantages
of a P-control model, including avoiding rank collapse and
ensuring bounded error. Secondly, the derivative term offers
an additional benefit of further stabilizing the system by de-
creasing the eigenvalue by a factor of 1/(1 + λD), thereby
mitigating rapid changes in V(t).

3.2.3. ANALYSIS OF PID-CONTROLLED SSM

Following the same analysis in Section 3.2.1, by choosing
K(i, j) := softmax

(
q(i)Tk(j)/

√
Dqk

)
and discretizing

on the spatial domain, the matrix representation of the PID-
controlled SSM reduced from (10) becomes

V′(t) =
1

λD + 1

((
K− (λP + 1)I

)
V(t)

+ λI

∫ t

0

(F −V(t))dt+ λPF

)
,

(22)

where V(0) = V0. To deal with the integral in (22), we take
the derivative of both sides, the equation becomes V′′(t) =

1

λD + 1

((
K−(λP+1)I

)
V′(t)−λIV(t)

)
, which is turned

into a system of 1-st order differential equation:

[
V′(t)
V′′(t)

]
=

 0 I

− λII

λD + 1

K − (λP + 1)I

λD + 1

[V(t)
V′(t)

]
,

(23)

where V(0) = V0, and V′(0) =
1

λD + 1

(
(K − (λP +

1))V0+λPF
)
. To gain robustness, the steady state solution

of the model should be independent of any perturbation of
the input V0 The following Proposition 2 illustrates the
stability of the system.

Proposition 2. For any λP , λI , λD > 0, the system in (23)
has a stable solution.

The proof of Proposition 2 is in the Appendix B.8. The
Proposition implies that the PID-controlled SSM in (10)
remains robust and stable for any selection of positive values
for λP , λI , λD.

3.3. Transformer with PID Control

By applying the Euler discretization with time step ∆t = 1,
initializing v at t = 0 as v(x, 0) = v0(x), and choosing

K(x, y, t) :=
exp
(
q(x, t)Tk(y, t)/

√
Dqk

)∫
Ω
exp
(
q(x, t)Tk(y′, t)/

√
Dqk

)
dy′

,

the update step of PID-controlled SSM in (10) becomes:

vℓ+1(x)

≈
∫
Ω

(
vℓ(y)− vℓ(x)

) exp
(
qℓ(x)Tkℓ(y)/

√
Dqk

)∫
Ω
exp
(
qℓ(x)Tkℓ(y′)/

√
Dqk

)
dy′

dy

+ vℓ(x) + λPe
ℓ(x) + λI

ℓ∑
m=1

em(x) + λD(eℓ(x)− eℓ−1(x)),

(24)
where em(x) = f(x)−vm(x) for m = 1, . . . , ℓ. Applying
the Monte-Carlo method to approximate the integrals in (24)
and discretizing vl+1(x), vm(x), and v0(x) on a spatial
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Figure 1. Our proposed PIDformer model at each layer.

dimension, and by choosing f(x) = v(x), we attain the
output of the following novel PID-attention at layer ℓ-th is
defined as
Definition 1 (PID-control Transformer (PIDformer)). Given
a set of key and value vectors {kℓ(j),vℓ(j)}Nj=1 in each
layer ℓ, ℓ = 1, . . . , L, for each query vector qℓ(i), i =
1, . . . , N , in the same layer, the self-attention unit at layer
ℓ in a PID-control Transformer (PIDformer) computes the
corresponding output vector uℓ(i) of the query qℓ(i) by the
following attention formula:

uℓ(i) =

N∑
j=1

softmax
(
qℓ(i)⊤kℓ(j)/

√
Dqk

)
vℓ(y)

+ λPe
ℓ(i) + λI

ℓ∑
m=1

em(i) + λD(eℓ(i)− eℓ−1(i)),

(25)
where eℓ = v0−vℓ, v0(1), . . . ,v0(N) ∈ RD are the value
vectors in the first layer of PIDformer.

Since PID-attention is a discretization of the controlled SSM
in (10), it is inherently a more robust attention mechanism.
Fig. 1 illustrates the architecture of PIDformer.

4. Experimental Results
In this section, we empirically demonstrate the advan-
tages of our proposed PIDformer approach across multiple
tasks, including ImageNet classification (Deng et al., 2009),
ADE20K image segmentation (Zhou et al., 2018), and lan-
guage modeling on WikiText-103 (Merity et al., 2017). Our
objectives are to: (i) illustrate that PIDformer significantly
outperforms the transformer baseline with softmax-attention
across diverse tasks, (ii) highlight that the PID DeiT model
exhibits significantly higher robustness than softmax at-
tention under various adversarial attacks, and for out-of-
distribution generalization, (iii) demonstrate that PID DeiT
does not suffer from rank collapse in output representation.
Throughout our experiments, we compare the performance
of our proposed models with baselines of the same config-
uration. For additional details regarding datasets, models,
and training procedures, please refer to Appendix A.

Object Classification on ImageNet. To demonstrate the ad-
vantage of our PIDformer, we compare it with the DeiT base-
line (Touvron et al., 2021) on the ImageNet image classifi-
cation task. Our PID DeiT surpasses the DeiT baseline, as
shown in Table 1. Notably, our model performs significantly

Table 1. Evaluation of PID DeiT versus Softmax DeiT on the clean
ImageNet validation set, as well as under various adversarial at-
tacks and out-of-distribution datasets.

Attack Metric/Model Softmax DeiT PID DeiT (%)

Clean Top-1 Acc (%) 72.17 73.13
Top-5 Acc (%) 91.02 91.76

FGSM Top-1 Acc (%) 33.64 38.52
Top-5 Acc (%) 68.18 72.53

PGD Top-1 Acc (%) 12.02 15.08
Top-5 Acc (%) 34.99 39.69

SPSA Top-1 Acc (%) 65.75 67.98
Top-5 Acc (%) 90.07 90.58

SLD Top-1 Acc (%) 69.32 70.84
Top-5 Acc (%) 90.8 91.43

Noise Top-1 Acc (%) 69.2 70.87
Top-5 Acc (%) 89.67 90.77

Imagenet-A Top-1 Acc (%) 6.90 8.82
Imagenet-R Top-1 Acc (%) 32.83 34.89
Imagenet-C mCE (↓) 71.20 68.41
Imagenet-O AUPR 17.47 19.22

better than the baseline under white-box attacks, including
fast gradient sign method (FGSM) (Dong et al., 2020), pro-
jected gradient descent method (PGD) (Tramer & Boneh,
2019b); score-based black-box attack method SPSA (Ue-
sato et al., 2018); and sparse L1 descent (SLD) (Tramer
& Boneh, 2019a) method as well as noise-adding attack.
Moreover, the last four rows of Table 1 demonstrate that
PID DeiT is consistently more robust than the DeiT baseline
under other adversarial examples and out-of-distribution
dataset, including the Imagenet-C (common data corruption
and perturbations, such as adding noise and blurring the
images) (Hendrycks & Dietterich, 2019), Imagenet-A (ad-
versarial examples) (Hendrycks et al., 2021b), Imagenet-R
(out of distribution generalization) (Hendrycks et al., 2021a),
and Imagenet-O(out-of-distribution detection) (Hendrycks
et al., 2021b) datasets. Furthermore, in Appendix C.1, we
visualize the performance gap between PID DeiT and the
baseline DeiT model under attacks with escalating pertur-
bation levels. This result demonstrates the significant ad-
vantages PIDformer has over the baseline model in terms of
robustness, further confirming the benefits of our model.

Image Segmentation on ADE20K dataset. We evaluate
the performance of Segmenter models (Strudel et al., 2021)
using both PID DeiT and DeiT backbones on the ADE20K
image segmentation task (Zhou et al., 2017), as outlined in
Table 2. The outcomes illustrate significant performance en-
hancements obtained by employing the PID DeiT backbone
instead of the DeiT backbone across both single-scale (SS)
and multi-scale (MS) Mean Intersection over Union (MIoU)
metrics.

Language Model on WikiText-103. In addition to com-
puter vision tasks, we evaluate our model’s performance
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Table 2. Single-scale (SS) MIoU and multi-scale MIoU (MS) of
the PID DeiT vs. the DeiT on the ADE20K image segmentation.

Model/Metric SS MIoU MS MIoU (%)

Softmax DeiT 35.72 36.68
PID DeiT 37.42 38.28

Table 3. Test and valid perplexity (Test PPL and Valid PPL) on
WikiText-103 of PIDformer compared to the softmax transformer.

Method/Metric Valid PPL Test PPL

Softmax Transformer 33.15 34.29
PIDformer 32.44 33.45

PID DeiT DeiT

C
os

in
e 

Si
m

ila
rit

y 
of

 A
tte

nt
io

n 
M

at
ric

es
 b

et
w

ee
n 

la
ye

rs

Layer

Figure 2. The cosine similarity of token representations in PID
DeiT compared to baseline DeiT models across layers for Ima-
geNet classification. The DeiT baseline demonstrates representa-
tion rank collapse as tokens become increasingly similar as depth
increases. In contrast, PID DeiT models exhibit significantly
greater diversity in tokens, indicating a mitigation in rank-collapse.

in the language modeling task on the WikiText-103 dataset
(Table 3). Our PIDformer language model surpasses the
softmax transformer model (Xiong et al., 2021) in test and
valid perplexity. These results, combined with findings
across various tasks, empirically demonstrate the significant
advantages of PIDformer models.

Representation Collapse Analysis. We empirically show
PIDformer’s effectiveness in addressing rank collapse in
transformers. In Fig. 2, we compare token representation
cosine similarity across layers in PID DeiT and softmax
baseline models pretrained on Imagenet. PID DeiT exhibits
significantly lower similarity, especially in later layers, al-
leviating rank collapse and enhancing token embedding
diversity. Further details are in Appendix A.6.

5. Related Work
Robust transformer. Ensuring the generalization and ro-
bustness of both vision transformer and language model
remains an ongoing research focus. Large language mod-
els are vulnerable to input corruption (Wang et al., 2021;
Peyrard et al., 2022; Jin et al., 2020; Zang et al., 2019),
posing a challenge in developing robust real-world applica-
tions that can withstand unforeseen adversarial threats. For
ViTs, investigations into model robustness against adversar-

ial attacks, domain shifts, and out-of-distribution data are
crucial for real-world deployment. Techniques such as data
augmentation, regularization, and adversarial training are ac-
tively explored to enhance the robustness and generalization
capabilities of ViTs. Many investigations (e.g., (Yuan et al.,
2023; Paul & Chen, 2022; Mahmood et al., 2021; Bhojana-
palli et al., 2021; Madry et al., 2017; Mao et al., 2022; Zhou
et al., 2022)) have attempted to explain and improve the
resilience of ViT models against typical adversarial attacks.
For example, (Mahmood et al., 2021) empirically mitigates
ViT’s vulnerability to white-box adversarial attacks by in-
troducing a simple ensemble defense strategy that notably
enhanced robustness without sacrificing accuracy on clean
data.

Rank-collapse in transformer. Rank collapse in deep
transformers, observed across domains from natural
language processing (Shi et al., 2022) to computer
vision (Wang et al., 2022; Dong et al., 2021), is evident.
In computer vision, Zhou et al. (2021) find that adding
more layers to the Vision Transformer (ViT) (Dosovitskiy
et al., 2021a) quickly saturates its performance. Moreover,
their experiments show that a 32-layer ViT performs worse
than a 24-layer ViT, attributed to token representations
becoming identical with increasing model depth. To
address this matter, (Wang et al., 2022) discovers that
self-attention functions as a low-pass filter, causing token
representations in ViTs to be smoothed. Furthermore,
(Shi et al., 2022) identifies a similar phenomenon in
BERT (Devlin et al., 2018), and investigates rank-collapse
from a graph perspective. Their work shows that the
self-attention matrix is like a normalized adjacency matrix
of a graph and layer normalization is crucial in addressing
the over-smoothing issue in Transformer models. If the
standard deviation of layer normalization is too large,
Transformer outputs converge to a low-rank subspace,
causing over-smoothing. To mitigate this, the authors
use hierarchical fusion strategies to adaptively combine
representations from different layers, ensuring more
diverse outputs. Our work is orthogonal to the existing
method as we develop a control framework to tackle the
non-robustness and rank-collapse issues in transformers.
Our work is orthogonal to these works since we explain the
rank-collapse of transformers from the point of view of
control theory.

Control theory in deep learning There are exisit-
ing works using control theory to design other network
structures in our revision. Among these works, (Chen
et al., 2021b) introduces the Close-Loop Control Neural
Network (CLC-NN), which utilizes an additional control
signal to implicitly minimize a running loss that measures
discrepancies between true and observed features under
input perturbation at each layer, hence promoting robustness
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of the model.
Additionally, (Luo et al., 2023) explores the use of
optimal control to design multi-round prompt tuning
for large language models. This approach provides a
different perspective on leveraging control theory for neural
networks, focusing on enhancing dynamics multi-round
interactions in prompt engineering rather than directly on
network robustness.
Orthogonal to these existing approaches, our work
introduces a unique control framework for self-attention
mechanisms, establishing a novel connection between
self-attention and the state-space model (SSM). Through
a detailed analysis of the SSM, we elucidate the vulner-
abilities inherent in transformer models and propose a
solution by integrating PID control into the transformer.
This integration not only addresses identified vulnerabilities
but also contributes to the broader discourse on applying
control theory principles to deepen our understanding and
enhance the robustness of neural network architectures.
Another work that integrate control to improve deep
learning models is ControlVAE framework, proposed
by (Shao et al., 2020). ControlVAE employs Proportional-
Integral (PI) control to tune a hyperparameter in the
Variational Autoencoder (VAE) objective automatically.
Our approach, however, integrates PID control directly into
the architecture of transformers, marking a conceptual and
practical departure from adjusting hyperparameters.

6. Concluding Remarks
In this paper, we present a novel control framework for
self-attention mechanisms, revealing their inherent non-
robustness and susceptibility to rank collapse in token repre-
sentation. Leveraging this control perspective, we introduce
the PIDformer, a novel PID-control Transformer designed
to enhance robustness and mitigate the rank-collapse issue.
Empirical validation across a range of large-scale appli-
cations, including ImageNet object classification (under
various input perturbations and robustness benchmarks),
ADE20K object segmentation, and WikiText-103 language
modeling, confirms PIDformer’s benefits. A limitation of
our paper is the oversight regarding the privacy-preserving
aspects of PIDformer. Exploring the potential of controlled
transformers in enhancing privacy-preserving techniques is
an intriguing avenue for future research.
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A. Additional Details on the Experiments in Section 4
This section provides datasets, models, and training details for experiments in Section 4.

A.1. Image Classification on Imagenet

Datasets and Metrics. The ImageNet dataset, as described in (Deng et al., 2009; Russakovsky et al., 2015), consists of
1.28 million images for training and 50, 000 images for validation, covering the classification of 1000 different categories.
Performance evaluation is based on top-1 and top-5 accuracies.

Models and Baselines. Our baseline model is the DeiT-tiny model (Touvron et al., 2021), which consists of 12
transformer layers, 3 attention heads per layer, and a model dimension of 192. For model setting and setting and configura-
tion, we follow (Touvron et al., 2021). Their implementation is available at https://github.com/facebookresearch/deit. The
λP , λI , λD, and β used for our PID DeiT method is 0.8, 0.5, 0.05, and 0.1, respectively.

A.2. Image Segmentation on ADK20 dataset

Datasets and Metrics. The ADE20K dataset is renowned for its incorporation of complex scenes featuring detailed labels,
establishing it as one of the most rigorous semantic segmentation datasets. It comprises a training set of 20, 210 images
covering 150 semantic classes. Furthermore, the dataset includes 2, 000 images in the validation set and 3, 352 images
in the test set. Performance in this task is evaluated using the Single-scale mean Intersection over Union (SS mIoU) and
Multi-scale (MS mIoU) metrics.

Models and baselines. The training configuration and setting for our models are followed by (Strudel et al., 2021). The
baseline model is finetuned with the pretrained DeiT-tiny backbone while our segmenter model used the pretrained PID
DeiT-tiny, with λP , λI , λD, and β are 0.5, 0.3, 0.05, and 1, respectively.

A.3. Language Modeling on WikiText-103

Datasets and Metrics. The WikiText-103 dataset is composed of Wikipedia articles tailored to capture extensive contextual
dependencies. Its training set includes roughly 28, 000 articles, totaling around 103 million words. Each article consists of
text blocks averaging about 3, 600 words. The validation and test sets contain 218, 000 and 246, 000 words, respectively,
divided into 60 articles per set and approximately 268, 000 words each. Our experiment adheres to the standard setup
outlined in (Merity et al., 2017; Schlag et al., 2021), which entails segmenting the training data into independent long
segments of length L words. For evaluation, we utilize a batch size of 1 and process the text sequence using a sliding
window of size L. When calculating perplexity (PPL), we only consider the last position, except for the first segment where
all positions are evaluated, consistent with the methodology in (Al-Rfou et al., 2019; Schlag et al., 2021).

Models and baselines. For our language modeling implementation, we rely on the publicly available code
https://github.com/IDSIA/lmtool-fwp developed by (Schlag et al., 2021). In our experiments, we set the dimensions
of keys, values, and queries to 128, while the training and evaluation context length is set to 256. In this experiment,
λP , λI , λD, and β being set to 0.4, 0.5, 0.1 and 0.3, respectively, yields the best performance of PIDformer language model.

A.4. Adversarial Examples and Out-of-distribution datasets

Imagenet-C To assess robustness against typical image corruptions, we employ the ImageNet-C dataset (Hendrycks &
Dietterich, 2019), which comprises 15 categories of artificially generated corruptions spanning five levels of severity.
ImageNet-C evaluates models using the mean corruption error (mCE) metric, where a lower mCE value indicates greater
resilience to corruption.

Imagenet-A ImageNet-A (Hendrycks et al., 2021b) is a dataset consisting of authentic images that have been filtered to
deceive ImageNet classifiers. Specifically, it focuses on a subset of 200 classes chosen from the original 1000 classes in
ImageNet-1K. Errors made within these 200 classes are regarded as significant, encompassing a wide range of categories
represented in ImageNet-1K.

Imagenet-O This dataset comprises examples that have been adversarially filtered to challenge out-of-distribution detectors
for ImageNet (Hendrycks et al., 2021b). It includes samples from the larger ImageNet-22K dataset but excludes those from
ImageNet1K. Specifically, samples are chosen if they are confidently misclassified as an ImageNet-1K class by a ResNet-50
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model. The evaluation metric utilized is the area under the precision-recall curve (AUPR).

Imagenet-R This dataset comprises diverse artistic interpretations of object classes found in the original ImageNet dataset,
a practice discouraged by the creators of the original ImageNet (Hendrycks et al., 2021a). ImageNet-R encompasses
30,000 renditions of images representing 200 classes from the ImageNet dataset, with a selection made from a subset of the
ImageNet-1K classes.

A.5. Adversarial Attacks

We employ fast gradient sign method (FGSM) (Dong et al., 2020), projected gradient descent method (PGD) (Tramer &
Boneh, 2019b); and Sparse L1 descent method as well as noise-adding attack These attacks were applied to the entire
validation set of ImageNet. FGSM and PGD attacks distort the input image with a perturbation budget ϵ = 3/255, and
ϵ = 0.1 for SPSA, under l∞ norm, while the PGD attack uses 20 steps with a step size of α = 0.15. For the SLD and noise
attack, we follow the same setting in https://github.com/cleverhans-lab

A.6. Rank-collapse Analysis

The average cosine similarity between all pairs of token’s representations (xi,xj) in a sequence is computed as

1

N(N − 1)

∑
i̸=j

xT
i xj

∥xi∥2∥xj∥2
.

The result is then averaged over 1000 randomly chosen test data in ImageNet. The result is then reported for each layer, as
in Fig. 2.

B. Technical Proofs
B.1. Solution of the first order ODE

Given Q ∈ Rn×n, Y (t) ∈ RN×P , t > 0, we are interested in the solution of the first order ODE stated as:

Y ′(t) = QY (t),Y (0) = Y 0. (26)

The general solution of (26) is Y (t) = exp(Qt)C, where C ∈ Rn×p is an any constant matrix. Indeed,

Y ′(t) = (I +Qt+
Q2t2

2!
+

Q3t3

3!
+ . . . )′C

= (Q+Q2t+
Q3t

2!
+ . . . )C

= Qexp(Qt)C = QY (t).

(27)

To satisfy the intitial condition, Y (0) = Qexp(Q0)C = Y 0. Hence, C = Y 0 and the solution for the intial
value problem in (26) is exp(Qt)Y 0.

Every square matrix can be Jordan decomposed as the form of Q = SJS−1, where S is invertible and contains
the generalized eigenvectors of Q, and J = diag(Jη1,m1 ,Jη2,m2 , . . . ,JηM ,mM

) is the Jordan form of matrix Q with,

Jηi,mi
=


ηi 1 . . . 0
...

. . .
...

ηi 1
0 . . . ηi

 ∈ Rmi×mi , for i = 1, . . . ,M are Jordan blocks and η1, . . . ηM are eigenvalues of Q.

We rewrite the solution of (26) using the Jordan decomposition as

Y (t) = exp(Qt)Y 0 = exp(SJS−1t)Y 0

= (SS−1 + SJS−1t+
(SJS−1)2t2

2!
+ . . . )Y 0

= Sexp(Jt)S−1Y 0.

(28)
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We are now interested in the asymptotic behavior of the solution in (28) as t → ∞.
When Q only has eigenvalues negative real parts. As η1, . . . ηM < 0, we consider

exp(Jηi,mi
t) =

∞∑
k=0

(Jηi,mi
t)k

k!

=



∞∑
k=0

tkηki
k!

∞∑
k=1

tkηk−1
i

(k − 1)!
. . .

∞∑
k=mi

tkηk−mi+1
i

(k −mi + 1)!

...
. . .

0 . . .

∞∑
k=0

tkηki
k!

∞∑
k=1

tkηk−1
i

(k − 1)!

0 . . . 0

∞∑
k=0

tkηki
k!



=


eηit teηit . . . tmi−1eηit

...
. . .

0 . . . eηit teηit

0 . . . 0 eηit



(29)

which is derived from the result Jk
ηi,mi

=


ηki

(
j
1

)
ηk−1
i . . .

(
j

mi − 1

)
ηk−mi+1
i

...
. . .

0 . . . ηki

(
j
1

)
ηk−1
i

0 . . . 0 ηki


Therefore, when t → 0, exp(Jηi,mit) → 0, making exp(Jt) → 0 and hence the solution in (28) will goes to 0 or being
stable.
When Q only has at least one eigenvalue with positive real part. Without the loss of generalization, let Re(η1) > 0. Hence
∥exp(Jη1,mi

t)∥ → ∞ when t → ∞. In other words, the solution of (26) will explode or unstable.

B.2. Proof of Lemma 1

The proof of Lemma 1 is the direct result in Appendix B.1. The solution of the ordinary differential equa-
tion (ODE) in (8) is V(t) = P exp(Jt)P−1V0, where PJP−1 if the Jordan decomposition of K − I , J =
diag(Jα1,m1

,Jα2,m2
, . . . ,JαM ,mM

) and α1 ≥ α2 ≥ . . . ,≥ αM ,M ≤ N are eigenvalues K − I. Consequently,
we have proved the Lemma 1

B.3. Proof of Lemma 2

In Section 2.2, we have shown that K − I has a unique largest eigenvalue λ1 = 0. This means that the Jordan blocks
corresponding with other eigenvalues which has negative real parts will approach exp(Jηi,mi

t) → 0, for i = 1, . . . ,M ; , i ̸=
1, as t → ∞. As the consequence, exp(Jt) are fill with 0 for all entries except for the first entry exp(Jt)(0, 0) = 1. Hence,
the solution in (9) becomes

[
c1,1p1, . . . , c1,Dx

p1

]
.

This concludes the proof.
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B.4. Proof of Lemma 3

For vℓ+1 to be the solution of the optimization problem in (13), since 0 ∈ ∂J(vℓ+1) − pℓ + ∂G(vℓ+1,f), hence the
iteration becomes:  vℓ+1 = argmin

v
J(v)− < pℓ,v > +G(v,f)

pℓ+1 ∈ pℓ − ∂G(vℓ+1,f).

When G(v,f) = λ
2

∫
Ω
∥v(x)− f(x)∥22dx,

G(v,f)− ⟨pℓ,v⟩ = λ

2

∫
Ω

((
∥v(x)∥22 − 2⟨v(x),f(x)⟩+ ∥ f(x)∥22

)
+ λ⟨

ℓ∑
m=1

(vm(x)− f(x)) ,v(x)⟩

)
dx

=
λ

2

∫
Ω

(
∥v(x)∥22 − λ⟨f(x)−

ℓ∑
m=1

(
vm(x)− f(x)

)
,v(x)⟩

)
dx+ constant

=
λ

2

∫
Ω

∥v(x)− f ℓ(x)∥22dx+ constant,

where f ℓ(x) = f ℓ−1(x) + f(x)− vℓ(x).
Substituting G(v,f)− ⟨pℓ,v⟩ into the iteration, it becomes vℓ+1 = argmin

v
J(v) +

λ

2

∫
Ω

∥v(x)− f ℓ(x)∥22dx

f ℓ(x) = f ℓ−1(x) + f(x)− vℓ(x).
(30)

The iteration in Lemma 3 can be reformulated as:

vℓ+1 = argmin
v

J(v) +
λ

2

∫
Ω

∥v(x)− f(x)− eℓa(x)∥22dx

where eℓa(x) =
∑ℓ

m=1 e
m(x) =

∑ℓ
m=1

(
f(x)− vm(x)

)
we conclude the proof for Lemma 3.

B.5. Proof of Lemma 4

To find the solution of Eqn 18, firstly, we find the solution for the homogenous ODE:

V(h)′(t) =
(
K− (λP + 1)I

)
V(h)(t) (31)

From the result in Appendix B.1, the solution for this ODE is exp(Bt)C where B = K− (λP + 1)I and C ∈ RN×Dx is
any constant matrix. Secondly, we find a particular solution for (18) by solving V(p)′(t) = BV(t)(p) + λPF = 0. Since
B is invertible, the solution for this equation is V(p)(t) = −λPB

−1F . It is easy to check that V(t) = V(h)(t) +V(p)(t)
is the solution of the V′(t) = BV(t) + λPF . Applying the initial condition, V(0) = C − λPB

−1F = V0, we
find C = V0 + λPB

−1F . Therefore, we have proved that the solution for the IVP problem in (18) is indeed
V(t) = exp(Bt)(V0 +B−1F )− λPB

−1F .

In Section 3.2.1, we show that B has only eigenvalues with negative real parts. As the result in Appendix B.1,
when t → 0, the exp(Bt) → 0 , leading to the vanishing of the V(h)(t). Hence the steady state solution for the ODE
in (18) becomes −λPB

−1F .

This concludes the proof.

B.6. Proof of Proposition 1

We first show that B is a strictly diagonal dominant (SDD) matrix, i.e., |B(i, i)| > |
∑N

j ̸=i B(i, j)|, for i, j = 1, . . . , N . In

fact, |B(i, i)| = |K(i, i)− λp − 1| > |1−K(i, i)| = |
∑N

j ̸=i K(i, j)| = |
∑N

j ̸=i B(i, j)| because K is a right-stochastic
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matrix with all entries in (0, 1] and sum of each row is 1.
Hence, following (Morača, 2007), the upper bound of ∥B−1∥∞, when B is an SDD matrix, is given as

∥B−1∥∞ ≤ 1

min
i∈N

(|B(i, i)| − |
N∑
j ̸=i

B(i, j)|)

(32)

=
1

|K(i, i)− λp − 1| − |1−K(i, i)|
=

1

λP
, (33)

where ∥B−1∥∞ =
N

max
i=1

N∑
j=1

|B−1(i, j)|.

On the other hand,
∥ − λPβB

−1ϵ∥∞ ≤ λPβ∥B−1∥∞∥ϵ∥∞

= λPβ
1

λP
ϵ̄ = βϵ̄

(34)

For the bounded error get arbitrarily small, we constraint βϵ̄ ≤ δ, making β ≤ δ
ϵ̄ .

Here in the proof, we used the submultiplicity property of ∥.∥∞ norm of matrices, which is proved as follow:

∥B−1ϵ∥∞ = sup
x

∥B−1ϵx∥∞
∥x∥∞

= sup
x

∥B−1ϵx∥∞∥ϵx∥∞
∥ϵx∥∞∥x∥∞

≤ sup
x

∥B−1ϵx∥∞
∥ϵx∥∞

sup
x

∥ϵx∥∞
∥x∥∞

≤ sup
x

∥B−1x∥∞
∥x∥∞

sup
x

∥ϵx∥∞
∥x∥∞

= ∥B−1∥∞∥ϵ∥∞
With this, we conclude the proof of Proposition 1

B.7. Proof of Lemma 5

To find the solution of (21), firstly, we find the solution for the homogenous ODE:

V(h)′(t) =
1

1 + λD

(
K− (λP + 1)I

)
V(h)(t)

From the result in Appendix B.1, the solution for this ODE is exp(
1

λD + 1
Bt)C where B = K − (λP + 1)I

and C ∈ RN×Dx is any constant matrix. Secondly, we find a particular solution for (21) by solving

V(p)′(t) =
1

λD + 1
(BV(t)(p) +λPF ) = 0. Since B is invertible, the solution for this equation is V(p)(t) = −λPB

−1F .

The solution is V(t) = V(h)(t) + V(p)(t). Applying the initial condition, V(0) = C − λPB
−1F = V0, we

find C = V0 + λPB
−1F . Therefore, we have proved that the solution for the IVP problem in (21) is indeed

V(t) = exp(
1

λD + 1
Bt)(V0 +B−1F )− λPB

−1F .

In Section 3.2.1, we show that B has only eigenvalues with negative real parts. As the result in Appendix B.1,

when t → 0, the exp(
1

λD + 1
Bt) → 0 , leading to the vanishing of the V(h)(t). Hence the steady state solution for the

ODE in (21) becomes −λPB
−1F . We have proved Lemma 5.

B.8. Proof of Proposition 2

Let

M =

 0 I

− λII

λD + 1

K − (λP + 1)I

λD + 1

 (35)
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For the solution of (23) to be stable, the real part of eigenvalues of M must be all negative. Let B := K − (λP + 1)I , for
any eigenvalue γ of M

det(M − γI) = det

( −γI I

− λI

λD + 1
I

1

λD + 1
(B − γI)

)

= det
( 1

λD + 1
(−γB + γ2I + λII)

)
, (since B − γI and −λII commute, see (Silvester, 2000))

= 0
(36)

Notice that γ = 0 is not a solution of (36). This fact is proved by contradiction. If γ = 0 is a solution, det(−γB +
γ2I + λII) = det(λII) = (λI)

Ndet(I) = (λI)
N > 0 because λI > 0. This is contradict to (36). Since γ ̸= 0, we can

rewrite (36) as:

(− γ

λD + 1
)Ndet(B − (γ +

λI

γ
)I) = 0 (37)

⇐⇒ det(B − (γ +
λI

γ
)I) = 0. (38)

Therefore, γ +
λI

γ
are eigenvalues of B. Given κi, for i = 1, . . . ,m;m ≤ N are eigenvalues of B. For each i, we find the

solution of

γi +
λI

γi
= κi (39)

⇐⇒ γ2
i − κγi + λI = 0 (40)

Let γi,1, γi,1 are the solution of (39), and then

{
γi,1 + γi,2 = κi

γi,1γi,2 = λI

⇐⇒


Re(γi,1) + Re(γi,2) = Re(κi)

Im(γi,1) + Im(γi,2) = Im(κi)

Re(γi,1)Re(γi,2)− Im(γi,1)Im(γi,2) = λI

Re(γi,1)Im(γi,2) + Im(γi,1)Re(γi,2) = 0

(41)

In Section 3.2.1, we show that B has only eigenvalues with negative real parts. Hence, Re(κi) < 0. Firstly, without any
loss of generalization, suppose that Re(γi,1) = 0. This means

Re(γi,2) = Re(κi) < 0

−Im(γi,1)Im(γi,2) = λI

Im(γi,1)Re(γi,2) = 0

⇒

{
Im(γi,1) = 0

−Im(γi,1)Im(γi,2) = 0 ̸= λI > 0
(42)

which causes contradiction. Therefore, Re(γi,1) ̸= 0. As the result, Im(γi,2) = − Im(γi,1)Re(γi,2)

Re(γi,1)
, substituting to (41),

we obtain

Re(γi,1)Re(γi,2) = λI − Im(γi,1)
2Re(γi,2)

Re(γi,1)
. (43)

Suppose that Re(γi,1)Re(γi,2) < 0, hence
Re(γi,2)

Re(γi,1)
< 0 leading to −Im(γi,1)

2Re(γi,2)

Re(γi,1)
> 0, (because Im(γi,1)

2 >

0). Therefore the RHS of (43) is greater than 0 (since λI also greater than 0), which contradicts our assumption that
Re(γi,1)Re(γi,2) < 0. As a consequence, we obattain the following result:{

Re(γi,1) + Re(γi,2) = Re(κi) < 0

Re(γi,1)Re(γi,2) > 0
⇐⇒

{
Re(γi,1) < 0

Re(γi,2) < 0,
(44)

for i = 1, . . . ,m. Therefore, all eigenvalues of M as negative real parts. Combined with result in Appendix B.1, we have
the system described by (23) has stable solution when t → 0, for all λP , λI , λD > 0. This concludes our proof.
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B.9. The Fretchet derivation of the derivative of J w.r.t vj .

The partial derivative ∂J/∂vj , j = 1, 2, . . . , D, is defined through its dot product with an arbitrary function hj ∈
L2(Ω× [0,∞)) as follows

∂J

∂vj
· hj(x, t) =

d

dτ
J(vj + τhj)

∣∣
τ=0

=
1

2

(
d

dτ

∫
Ω×Ω

(vj(x)− vj(y) + τhj(x)− τhj(y))
2k(x, y)dxdy

) ∣∣∣∣
τ=0

=

(∫
Ω×Ω

(vj(x, t)− vj(y) + τhj(x)− τhj(y, t))(hj(x)− hj(y))k(x, y)dxdy

) ∣∣∣∣
τ=0

=

∫
Ω×Ω

(vj(x)− vj(y))(hj(x)− hj(y))k(x, y)dxdy

=

∫
Ω×Ω

(vj(x)− vj(y))hj(x)k(x, y)dxdy −
∫
Ω×Ω

(vj(x)− vj(y))hj(y)k(x, y)dxdy

Applying a change of variables (x, y) → (y, x) to the second term of the above integral, we have

∂J

∂vj
· hj(x) =

∫
Ω×Ω

(vj(x)− vj(y))hj(x)k(x, y)dxdy −
∫
Ω×Ω

(vj(y)− vj(x))hj(x, t)k(y, x)dxdy

=

∫
Ω×Ω

(vj(x)− vj(y)(k(x, y) + k(y, x))dyhj(x)dx

Thus, the Frechet derivative of J with respect to vj is given by

∂J

∂vj
=

∫
Ω

(vj(x)− vj(y)(k(x, y) + k(y, x))dy.

B.10. The derivation of the gradient flow of E(v, f)

Taking the gradient of E(v,f) with respect to v, we obtain

∇vE = ∇vJ +

[
∂G

∂u1
,
∂G

∂u2
, . . . ,

∂G

∂uD

]T
. (45)

The partial derivative ∂G/∂vj , j = 1, 2, . . . , D, is defined through its dot product with an arbitrary function hj ∈ L2(Ω) as
follows

∂G

∂vj
· hj(x) =

d

dτ
G(vj + τhj)

∣∣
τ=0

=
λ

2

(
d

dτ

∫
Ω

(vj(x)− fj(x) + τhj(x))
2dx

) ∣∣∣∣
τ=0

= λ

∫
Ω

(vj(x)− fj(x))hj(x)dx.

Thus, the Frechet derivative of F with respect to vj is given by

∂G

∂vj
= λ(vj(x)− fj(x)) (46)

Substituting the formula for ∂G/∂vj in (46) into (45) for ∇vE(v,f), we obtain the following gradient flow

dv(x, t)

dt
= −∇vE(v,f) = −∇vJ(v)(x) + λ

(
f(x)− v(x)

)
. (47)

This concludes the derivation.
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B.11. The derivation of (15)

Denote H(v,f) :=
λ

2

∫
Ω

∥v(x)− f(x)− eℓ(x)∥22dx. Taking the gradient of J(v) +H(v,f) with respect to v, we obtain

∇vE = ∇vJ +

[
∂H

∂v1
,
∂H

∂v2
, . . . ,

∂H

∂vD

]T
. (48)

The partial derivative ∂H/∂vj , j = 1, 2, . . . , D, is defined through its dot product with an arbitrary function hj ∈ L2(Ω) as
follows

∂H

∂vj
· hj(x) =

d

dτ
H(vj + τhj)

∣∣
τ=0

=
λ

2

(
d

dτ

∫
Ω

(vj(x)− fj(x)− eℓj(x) + τhj(x))
2dx

) ∣∣∣∣
τ=0

= λ

∫
Ω

(vj(x)− fj(x)− eℓj)hj(x)dx.

Thus, the Frechet derivative of F with respect to vj is given by

∂H

∂vj
= λ(vj(x)− fj(x)− eℓj) (49)

Substituting the formula for ∂H/∂vj in (49) into (48) for ∇vE(v,f), we obtain the following gradient flow at iteration
ℓ+ 1

dv(x, t)

dt
=

∫
Ω

(
v(y, t)− v(x, t)

)(
k(x, y) + k(y, x)

)
dy

+ λ
(
f(x)− v(x, t) + eℓ(x)

)
.

(50)

Applying Euler method to discretize (50) with ∆t = 1 and v(x, 0) = vℓ(x), we approximate the vℓ+1 with one-step
gradient descent:

vℓ+1(x) =

∫
Ω

(
vℓ(y)− vℓ(x)

)(
k(x, y) + k(y, x)

)
dy

+ vℓ(x) + λeℓ(x) + λeℓa(x).

This concludes the derivation.

C. Additional Experiment results
C.1. PID DeiT and softmax DeiT under escalating perturbation attacks.

We evaluate PID DeiT and softmax DeiT under FGSM and PGD attack methods with increasing perturbation budgets (see
Fig. 3) (scaled by 255). The proposed PID DeiT exhibits stronger defense in both attack methods and various perturbation
budgets.

C.2. Combine PIDformer with other defense model

To further demonstrate the advantages of PID control in enhancing model robustness, we employ the Fully Attention
Network (FAN) (Zhou et al., 2022), a state-of-the-art robust vision transformer, as a baseline, detailed in Table 4 below.
Our experiments illustrate the significant increase in model robustness against various adversarial attacks and out-of-
distribution datasets when our PID control is integrated with the FAN baseline. We use the publicly available code
https://github.com/NVlabs/FAN for the implementation and model configuration.

C.3. PIDformer with different hyperparameters

We have performed an extensive study of hyperparameters on the ADE20K image segmentation task (see Table 3), where
we investigate the impact of different settings for the PIDformer’s hyperparameters, i.e., λP , λI , λD, and β. In this study,
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Figure 3. The top-1 classification accuracy curves on ImageNet against FGSM and PGD attack methods, plotted against perturbation
budgets (scaled by 255).

Table 4. Evaluation of PID FAN versus FAN on the clean ImageNet validation set, as well as under various adversarial attacks and
out-of-distribution datasets.

Attack Metric/Model FAN PID FAN

Clean Top-1 Acc (%) 77.11 77.40
Top-5 Acc (%) 93.71 93.85

FGSM Top-1 Acc (%) 38.27 39.61
Top-5 Acc (%) 71.62 73.74

PGD Top-1 Acc (%) 12.87 15.5
Top-5 Acc (%) 29.16 34.64

SLD Top-1 Acc (%) 75.6 76.1
Top-5 Acc (%) 93.56 93.68

Noise Top-1 Acc (%) 75.2 75.9
Top-5 Acc (%) 92.52 92.71

Imagenet-A Top-1 Acc (%) 13.96 15.65
Imagenet-R Top-1 Acc (%) 41.45 42.95
Imagenet-C mCE (↓) 60.06 58.66
Imagenet-O AUPR 18.46 19.67

λP is in [0.2, 0.5, 0.8], λI is in [0.3, 0.6, 0.9], λD from [0.05, 0.3, 0.6], and β from [0.3, 0.6, 1.0]. The evaluation reports
model performance on clean/attacked datasets to assess robustness under various conditions. Our findings indicate that the
model’s performance is generally stable across a wide range of hyperparameter settings, suggesting that PIDformer is not
overly sensitive to specific parameter values. However, we note an exception with higher values of λD, where performance
as increasing λD from 0.05 to 0.3 then to 0.6 decrease the performance of the model. This insight suggests that there is
some sensitivity to the derivative term (D), which could guide practitioners in tuning PIDformer for specific applications.

C.4. Compare with other baselines

In order to further illustrate the benefits of our model, we compare our model with FeatScale, a state-of-the-art model
designed to address oversmoothing in vision transformers. The new results in Table 6 reveal that PIDformer significantly
outperforms FeatScale (Wang et al., 2022). Furthermore, when combining PIDformer with FeatScale, we observe substantial
improvements compared to DeiT plus FeatScale, underscoring our approach’s compatibility and additive benefits when
integrated with existing methods targeting oversmoothing.
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Table 5. Single-scale (SS) and multi-scale (MS) DeiT and PID DeiT (different hyperparameters) under clean data and FGMS-attacked
data on the ADE20K image segmentation

Model λP λI λD β Clean data FGMS
SS MS SS MS

Softmax 0 0 0 0 35.72 36.68 27.26 32.27

PID DeiT

0.5 0.3 0.05 1.0 37.42 38.28 28.7 33.87
0.8 0.3 0.05 1.0 36.56 37.37 28.0 33.68
0.2 0.3 0.05 1.0 35.77 36.63 28.01 33.23
0.5 0.6 0.05 1.0 36.72 37.77 29.01 33.85
0.5 0.9 0.05 1.0 36.09 36.82 27.99 32.69
0.5 0.3 0.3 1.0 36.01 36.98 28.11 32.83
0.5 0.3 0.6 1.0 34.27 35.17 27.61 32.54
0.5 0.3 0.05 0.3 37.19 38.17 29.11 34.81
0.5 0.3 0.05 0.6 37.06 37.92 28.13 32.63

Table 6. We compare PID DeiT with DeiT combined with FeatScale (Wang et al., 2022) and incorporate our method with FeatScale
model.

Model/Metric Top-1 Acc (%) Top-5 Acc (%)

PID DeiT 73.13 91.76
DeiT + FeatScale 72.346 91.22
PID DeiT + FeatScale 72.93 91.55
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