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ABSTRACT

In model learning, when the training dataset on which the parameters are opti-
mized and the testing dataset on which the model is evaluated are not sampled
from identical distributions, we say that the datasets are misaligned. It is well-
known that this misalignment can negatively impact model performance. A com-
mon source of misalignment is that the inputs are sampled from different distri-
butions. Another source for this misalignment is that the label generating process
used to create the training dataset is imperfect. In this work, we consider this set-
ting and additionally assume that the label generating process is able to provide us
with a quantity for the role of each label in the misalignment between the datasets,
which we consider to be privileged information. Specifically, we consider the
task of regression with labels corrupted by heteroscedastic noise and we assume
that we have access to an estimate of the variance over each sample. We pro-
pose a general approach to include this privileged information in the loss function
together with dataset statistics inferred from the mini-batch to mitigate the im-
pact of the dataset misalignment. Subsequently, we propose a specific algorithm
for the heteroscedastic regression case, called Batch Inverse-Variance weighting,
which adapts inverse-variance weighting for linear regression to the case of neural
network function approximation. We demonstrate that this approach achieves a
significant improvement in network training performances compared to baselines
when confronted with high, input-independent noise.

1 INTRODUCTION

In supervised learning, a central assumption is that the samples in the training dataset, used to
train the model, and the samples in the testing set, used to evaluate the model, are sampled from
identical distributions. Formally, for input x and label y, this assumption implies that ptrain(x, y) =
ptest(x, y). This assumption can be decomposed as the product ptrain(x) · ptrain(y|x) = ptest(x) ·
ptest(y|x), which is true if two conditions are respected:

1. The features in both datasets are sampled from the same distribution: ptrain(x) = ptest(x).
When this is condition is violated, the training dataset is not representative.

2. The labels in both datasets are sampled from the same conditional distribution:
ptrain(y|x) = ptest(y|x). If this condition is violated, the training labels are noisy.

In practice, these assumptions are not always respected because gathering representative and precise
data (including labels) can be arduous. In this case, the training and testing datasets are misaligned,
and the performance of the deployed model may decrease since the training process did not actually
optimize the model’s parameters based on the correct data (Arpit et al., 2017; Kawaguchi et al.,
2020). One possible reason for misalignment is that there is some uncertainty about the labels in the
training set as a result of the labeling process. Since our objective is to optimize the performance of
the model compared to ground truth labels, we should consider that the labels in test dataset have
no uncertainty, even though it may be impossible to collect such a dataset in practice. As a result,
ptest(y|x) is sampled from a Dirac delta function, whereas ptrain(y|x) is not since it encapsulates
the uncertainty in the labelling process, which leads to misalignment.

In this paper, we propose an algorithm for more efficient model training in the case where we have
some information about the sample-wise misalignment. More specifically, we examine the case of
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regression with a deep network where labels are corrupted by heteroscedastic noise. We assume that
we have access at least an estimate of the variance of the distribution of the noise that corrupted
each label, information that is available if the labels are being generated by some stochastic process
that is capable of also jointly reporting uncertainty. We examine how the knowledge of the estimate
of the label noise variance can be used to mitigate the effect of the noise on the learning process of
a deep neural network. We refer to our method as Batch Inverse-Variance (BIV), which, inspired
by information theory, performs a re-weighting using both the the sample-wise variance but also
statistics over the entire mini-batch. BIV shows a strong empirical advantage over L2 loss as well
as over a simple filtering of the samples based on a threshold over the variance.1

Our claimed contributions are threefold:

1. A definition of the problem of learning with information quantifying the misalignment
between datasets for the case of heteroscedastic noisy labels in regression.

2. A general formulation of how to use the mini-batch to infer statistics of the dataset and
incorporate this information in the loss function when training on neural networks.

3. We present Batch Inverse-Variance as an instantiation of this framework and show its use-
fulness when applied to regression tasks with labels corrupted by heteroscedastic noise.

The outline of the paper is as follows: In section 2, we describe the task of regression with het-
eroscedastic noisy labels and its parallels with learning with privileged information, and we explain
the challenges of applying classical heteroscedastic regression methods to stochastic gradient de-
scent. In section 3, we position our work among the existing literature on learning with noisy labels.
In section 4, we present a general framework to incorporate information regarding dataset misalign-
ment in the mini-batch loss. We introduce BIV within this framework to tackle heteroscedastic
regression. In section 5, we describe the setup for the experiments we made to validate the benefits
of using BIV, and we present and analyze the results in section 6.

2 BACKGROUND

2.1 HETEROSCEDASTIC NOISY LABELS IN REGRESSION

Here, we introduce how heteroscedastic noisy labels can be generated in regression and how the
variance can be known. Consider an unlabelled dataset of inputs {xi}. To label it, one must apply
to each input xi an instance of a label generator which should provide its true label yi. This label
generator has access to some features zi correlated to xi. We define LGj : Z −→ R . When the
labelling process is not exact and causes some noise on the label, the noisy label of xi provided by
LGj is defined as ỹi,j . Noise on a measured or estimated value is often represented by a Gaussian
distribution, based on the central limit theorem, as most noisy processes are the sum of several in-
dependent variables. Gaussian distributions are also mathematically practical, although they present
some drawbacks as they can only represent unimodal and symmetric noise (Thrun et al., 2006). We
model:

ỹi,j = yi + δyi,j with δyi,j ∼ N(0, σ2
i,j) (1)

σ2
i,j can be a function of zi and LGj , without any assumption on its dependence on one or the other.

We finally assume that the label generator is able to provide an estimate of σ2
i,j , therefore being re-

defined as LGj : Z −→ R× R≥0. The training dataset is formed of triplets (xi, σ2
i,j , ỹi,j), renamed

(xk, σ
2
k, ỹk) for triplet k for simplicity. This setup describes many labelling processes, such as:

Crowd-sourced labelling: In the example case of age estimation from facial pictures, labellers
Alice and Bob are given zi = xi the picture of someone’s face and are asked to estimate the age
of that person. Age is harder to estimate for older people come (5 and 15 years of age are harder
to confuse than 75 and 85) suggesting a correlation between σ2

i,j and zi. But Alice and Bob may
also have been given different instructions regarding the precision needed, inducing a correlation
between σ2

i,j and LGj . Finally, there may be some additional interactions between zi and LGj , as
for example Alice may know Charlie, recognize him on the picture and label his age with lower

1Our code is available in supplemental material and will be publicly released after the reviewing process.
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uncertainty. Both labellers can provide an estimation of the uncertainty around their labels, for
example with a plus-minus range which can be used as a proxy for standard deviation.

Labelling from sensor readings, population studies, or simulations: Imagine you want build a
dataset of pictures xi from a camera on the ground labelled with the position yi of a drone in the sky.
To estimate the position of the drone at the moment the picture was taken, you could use state esti-
mation algorithms based on the Bayes’ filter (Thrun et al., 2006). These algorithms take as an input
zi the measurements of the drone’s sensors, and provide a full posterior distribution over the state,
sometimes under a Gaussian assumption for Kalman filters for example. The uncertainty depends,
among others, on the precision of the sensors, the observability of a given state, the precision of the
dynamic model, and the time since sensor signals were received. Similarly, studies based on pop-
ulation such as polling or pharmaceutical trials have quantified uncertainties based on the quantity
and quality of their samples. It is also possible to train on simulators, as in climate sciences (Rasp
et al., 2018) or in epidemiology (Alsdurf et al., 2020), and some of them provide their estimations’
uncertainty based on the simulation procedure and the inclusion of real measurements in the model.

Using predictions from a neural network in complex neural architectures: In deep reinforce-
ment learning for example, the critic network learns to predict a value from a state-action pair under
the supervision of the heteroscedastic noisy output of a target network plus the reward (Mnih et al.,
2015; Haarnoja et al., 2018). While the estimation of the uncertainty of the output of a neural net-
work is not an easy task, it is an active field of research (Gal & Ghahramani, 2016; Peretroukhin
et al., 2019). There, zi is the state-action pair at the next step, and LGj the target network being
updated over time. The prediction is a mix of aleatoric and epistemic uncertainties as defined by
Kendall & Gal (2017) which are dependent on both zi and LGj .

We could not find any current dataset that provides such label uncertainty information for regression.
However, as it is precious information, we argue that it should actually be provided when possible.
In classification, Xie et al. (2016; 2020) took a step in this direction by providing a “confidence”
score from 0 to 255 for each pixel in the KITTI-360 dataset .

2.2 LEARNING USING PRIVILEGED INFORMATION

Training with a dataset of triplets (xi,x∗i , yi), where x∗i is only given at training time and not avail-
able at test time, fits in the framework of learning using privileged information (LUPI), defined in
Vapnik & Vashist (2009) and mainly applied to SVMs. In most works in this field, this privileged
information makes the task easier on a sample-to-sample basis. For example, object detection can
be improved by adding segmentation masks (Feyereisl et al., 2014) or depth images (Hoffman et al.,
2016). Another interpretation of LUPI is to use privileged information as a vector for knowledge
transfer between a teacher and a student (Vapnik & Izmailov, 2015). Hernández-Lobato et al. (2014)
and Lambert et al. (2018) have made a link between privileged information and uncertainty, using it
to evaluate the confidence of the model for a training sample. The former applied the approach to
Gaussian processes through latent noise, and the latter to neural networks through Gaussian dropout.

More formally, at training time the neural network has access to triplets (xk,x∗k, yk) where xk is the
input, yk its corresponding label, and x∗k the additional information with respect to this sample.

The objective in LUPI is the same as classical supervised learning: train the network parameters θ
so that, at test time, and without access to information x∗i , the expected loss is minimized, i.e.:

θopt = argmin
θ

E{xi,yi}∈Dtest
[L (f(xi, θ), yi))] (2)

where L(f(xi, θ), yi) is the objective loss function based on the true label and on the network’s
prediction f(xi, θ), for example the L2 distance in the task of regression.

In our work, we have x∗i = σ2
i . In contrast with the usual LUPI setting, x∗i does not help the task

on a sample-to-sample basis, but instead informs about the role of each sample on the misalignment
between the datasets due to the noise in the labelling process. The objective, however, is the same:
use this privileged information during training to minimize the expected loss at test time.
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2.3 HETEROSCEDASTIC REGRESSION FOR LINEAR MODELS

The task of heteroscedastic linear regression, where the model is linear, is solved by optimizing a
weighted mean square error (WMSE) with inverse-variance weights, which is the optimal solution
as per the Gauss-Markov theorem (Shalizi, 2019):

n∑
i=0

yi − xi · β
σ2
i

(3)

where β is the vector of parameters used as linear coefficients. This is also the solution to maximum
likelihood estimation for β (Fisher, 1957).

While the solution to such an optimization is known for linear regression (β∗ = (xTwx−1)xTwy),
several problems appear when attempting to adapt it to gradient-based methods on neural networks,
such as stochastic gradient descent: (1) the learning rate in gradient-based methods impacts the
optimization process in multiple ways and should be controllable by the practitioner regardless of
the amount of noise in the samples to prevent very small or large gradients from destabilizing the
learning process (2) similarly, near ground-truth samples should not have a disproportionate learning
rate with respect to the others, as they risk to cause overfitting.

In our work, we propose a method to apply such weights to neural networks while addressing these
issues.

3 RELATED WORK

Noise on labels amounts to a loss of information. When the noise is significant enough, it leads to
overfitting and lower model performance (Liu & Castagna, 1999; Zhang et al., 2017). This effect
is more prevalent in small data settings (Van Horn et al., 2015). Four possible strategies exist in
the literature to tackle this problem: detection, correction, robustness, or re-weighting. Detection
consists of identifying noisy labels and ignoring them in the learning process. These methods are
often based on the observation that neural networks first fit on consistent, non-noisy data (Arpit et al.,
2017), thus converging to a higher loss on the noisy samples (Reed et al., 2015; Shen & Sanghavi,
2019). Other methods use several neural networks to co-teach each other (Han et al., 2018; Yu
et al., 2019) or dropout to estimate the consistency of the data (Reed et al., 2015). However, in
the case of imbalanced training datasets, higher loss can also be the signature of a non-noisy but
rare sample. Cao et al. (2020) address this ambiguity by regularizing different regions of the input
space differently. Correction strategies go further: once noise is detected, the noisy labels are
changed to probability distributions. Such an operation requires a noise model. Goldberger & Ben-
Reuven (2017); Kremer et al. (2018); Ma et al. (2018); Tanno et al. (2019); Yi & Wu (2019) learn
it jointly with the parameters, assuming a correlation between the noise and the input, the labels,
or both. Robust loss functions are less sensitive to noise. Liu & Castagna (1999) proposed to
avoid overfitting due to noise by ignoring samples during the training when the prediction error is
reasonable. Natarajan et al. (2013) compute the loss assuming knowledge of example-independant
mislabelling probabilities in binary classification, and then optimize these hyperparameters with
cross-validation. More recent works are based on reverse cross-entropy (Wang et al., 2019) or
curriculum loss (Lyu & Tsang, 2020). Others leverage a distillate of the information gathered from a
subset of clean labels to guide training with noisy labels (Li et al., 2017). Re-weighting the samples
is another efficient method for mitigating noise in datasets. Liu & Tao (2016) estimate the effective
label probabilities as well as noise rates for a given input and use these estimates to weigh the
samples using importance sampling. Shu et al. (2019) go one step further by learning the weighting
function through a meta-learning method. Jenni & Favaro (2018) control overfitting by adjusting
sample weights in the training and validation mini-batches, increasing robustness to overfitting on
noisy labels.

While most works that address noisy labels consider classification tasks (Song et al., 2020), only
some of these strategies can be generalized to regression. Heteroscedastic regression occurs when
each label’s noise is sampled from a different distribution. Nix & Weigend (1994) tackle this prob-
lem in neural networks by jointly training a variance estimator based on the maximum likelihood of
an underlying Gaussian model. Kendall & Gal (2017) use the same idea to estimate the aleatoric
(input-dependant) uncertainty of the network’s prediction, while using dropout as a Bayesian ap-
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proximation for the epistemic uncertainty (due to the learning process) as in (Gal & Ghahramani,
2016).

Our method tackles heteroscedastic regression in neural networks using a re-weighting approach.
The main distinction between our work and most of the related literature is that, while we do not
require that the noise variance is a function of the input or of the label, we do assume that we have
access to the noise variance, or at least an estimate of it. In addition, we do not seek to regress
the variance of the model’s prediction. This is significant compared to the previous works in both
regression and classification as it changes the loss function and removes the need for a regularizer
for the variance prediction.

4 INCORPORATING PRIVILEGED INFORMATION IN THE LOSS FUNCTION

In this section, we first present a general operator to incorporate privileged information and infer
dataset statistics on the loss computed at the mini-batch level. Then, we describe our solution,
BIV, an instance of this operator for heteroscedastic regression. Finally, we introduce a more basic
filtering function which we will use as a baseline in our experiments.

4.1 GENERAL OPERATOR FOR TRAINING ON THE MINI-BATCH LEVEL

The value of privileged information about misalignment between the training and testing datasets
is often higher when combined with statistics about the datasets. For example, in the case of noisy
labels, the uncertainty on each label is relevant when compared to the information carried by the
other samples, similarly to (3).

We propose to both incorporate the privileged information and infer dataset statistics during the
training of neural networks over a mini-batch, as opposed to the individual samples. There are two
main advantages in doing so. First, if the mini-batch samples are independently and identically
sampled from the dataset, they can be used to infer some statistics of the whole dataset. Working
on the mini-batch level allows us to use such an approach without any pre-processing step over the
whole dataset, which is important for many tasks such as continuous learning. Second, by focusing
on the single step of computing the loss, this approach does not interfere with any of the variety of
other methods used to optimize the learning process, such as regularization, batch normalization,
annealing learning rates, etc.

In general, this approach can be expressed by defining an operator G applied on the objective loss
function. For a mini-batch Di of K sample triplets, we define the loss as:

Lbatch(Di, θ) = G (x1:K ,x
∗
1:K ,y1:K ,L (·, ·)) (4)

Note that without any privileged information, operator G is usually the unweighted average of the
loss computed over each sample of the batch, which is equivalent to empirical risk minimization.

4.2 BATCH INVERSE-VARIANCE WEIGHTING FOR HETEROSCEDASTIC NOISY LABELS

To tackle the problem of heteroscedastic regression in neural networks, we follow the intuition of
equation (3) and describe G as a weighted average with weights wk = 1/

(
σ2
k + ε

)
. We introduce

the Batch Inverse-Variance (BIV) loss function:

Lbatch(Di, θ) =

(
K∑
k=0

1

σ2
k + ε

)−1 K∑
k=0

L (f(xk, θ), ỹk)
σ2
k + ε

(5)

Here, the inverse of the sum has two major roles. It is a normalization constant for the mini-batch,
allowing to keep a consistency in the learning rate. Note that consistency is verified as, when σ2

k is
identical for each sample, this formulation leads to empirical risk minimization.

The hyper-parameter ε is effectively a lower bound on the variance. This allows us to incorporate
samples with ground-truth labels without completely ignoring the other samples. The choice of ε
is a trade-off between regulating the weights of near-ground-truth labels and using BIV at its full
capacity. We found that it can be set between 0.01 and 0.1 and use ε = 0.1. More details on ε can
be found in appendix B.1.
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These two elements, added to the advantages of computing the loss function in the mini-batch only,
allow us to overcome the challenges related to inverse variance weighting applied to gradient de-
scent, as described in section 2.3.

4.3 CUTOFF: FILTERING HETEROSCEDASTIC NOISY LABELS

As we do not assume that there is a correlation between xk and σ2
k, most correction and re-weighting

algorithms as presented in section 3 are not applicable. Most robust loss function are specifically
designed for classification problems. We thus compare BIV to a detection and rejection strategy.

In heteroscedastic regression, an important difference from classification with noisy labels is that
all labels are corrupted, albeit not at the same scale. Defining which labels to ignore is therefore a
matter of putting a threshold on the variance. As we have access to this information, strategies such
as the ones used in section 3 are not necessary. Instead, we simply use an inverse Heaviside step
function as a weight in the loss function:

wk = 1σ2
k<C

(6)

where the threshold C is a hyper-parameter. Similarly to equation (5), we normalize the loss in the
mini-batch by the sum of the weights, equal here to the number of samples considered as valid. As
this filtering is equivalent to cutting off a part of the dataset, we refer to this method as ‘Cutoff’, and
consider it to be a relevant baseline to compare BIV against.

5 EXPERIMENTAL SETUP

To test the validity of the BIV loss (5) approach, we compared its performance with the classical L2
loss as well as cutoff loss (6) on two datasets. We refer to ground-truth (GT) labels when training
with L2 on noise-less data as the best performance that could be achieved on this dataset.

Unfortunately, we did not find any existing dataset for regression where label uncertainty is associ-
ated to the samples. We therefore used two UCI datasets (Dua & Graff, 2017) for regression cases,
and artificially added noise to them. UTKFace Aligned&Cropped (Song & Zhang, 2017) (UTKF),
is a dataset for image-based age prediction. In the Bike Sharing dataset (Fanaee-T & Gama, 2013),
the task is to predict the number of bicycles rented in Washington D.C., from structured data con-
taining the date, hour, and weather conditions. For UTKF, a convolutional neural network was used
to predict the age, while a simple multi-layer perceptron was used for BikeSharing. More details
about the datasets and models can be found in appendix A.

5.1 NOISE GENERATION

To produce the datasets {xk, σ2
k, ỹk} with noise as described in section 2.1, we use a two-step

process which does not assume any correlation between the noise and the state.

1. the noise variance σ2
k is sampled from a distribution P (σ2) which only has support for

σ2 ≥ 0

2. ỹk is sampled from a normal distribution N (yk, σ
2
k).

P (σ2) has a strong effect on the impact of BIV or Cutoff. For example, if it is a Dirac delta and
all variances are the same, BIV becomes L2. We evaluate BIV on three different types of P (σ2).
The average noise variance µP was chosen empirically so that the lowest test loss achieved by L2 is
doubled compared to the ground-truth label case: µP = 2000 for UTKF and 20000 for BikeSharing.

Uniform distribution The uniform distribution is characterized by its bounds a, b. Its expected
value µP is the average of its bounds, and its variance V = (b− a)2/12 . As P only has support for
σ2 ≥ 0, the maximum variance Vmax is when a = 0 and b = 2µP . While such a distribution is not
realistic, it is simple conceptually and allows for interesting insights.

“Binary uniform” A more realistic distribution, which can also help us understand the effects of
BIV, is when the data is generated from two regimes: low and high noise. We call the “binary
uniform” distribution a mixture of two uniform distributions balanced by parameter p.
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With probability p, the label is in a low noise regime: σ2 ∼ U(0, 1), with expected value µl = 0.5.
With probability 1−p, the label is in a high noise regime: σ2 ∼ U(ah, bh). ah and bh are chosen such
that the average is µh and the variance of the high-noise distribution is determined by Vh ∈ [0, Vmax].
Note that, if we want a given expected value of the whole distribution µP , the value of µh changes
depending on p: µh = (µP − pµl)/(1− p)
Therefore, the high-noise expected value µh of the noise variance σ2 in a distribution with high p
will be higher than the one for a low p, for the same value of µP . In other words, a higher p means
more chance to be in the low-noise regime, but the high-noise regime is noisier.

Gamma distributions While the mixture of 2 uniform distributions ensures support in the low
noise region, it is not continuous. We therefore also propose to use a Gamma distribution with shape
parameter α. If we want to control the expected value µP , we adjust β = α/µP .
For a fixed expected value µP , lower α and β mean that there is a stronger support towards low
variance noise, but the tail of the distribution spreads longer on the high-noise size. In other words,
a lower α means more chances to have low-noise samples, but when they are noisy, the variance is
higher. When α ≤ 1, the highest support is at σ2 = 0.

5.2 EVALUATING THE PERFORMANCE OF THE MODEL

The objective of BIV is to improve the performance at predicting the true label yi, as mentioned in
equation (2). While a non-noisy test dataset may not be available in a real application, we aimed
here at determining if BIV performs better than L2, and therefore measured the performance of the
network using ground-truth test data.

6 EXPERIMENTAL RESULTS AND ANALYSIS

6.1 FOR L2 LOSS, MEAN VARIANCE IS ALL THAT MATTERS

Before looking at the results for BIV, we share an interesting insight for L2 loss with noisy labels
which helps simplifying the analysis of the results. Under the unbiased, heteroscedastic Gaussian-
based noise model presented in section 5.1, the only parameter of distribution P (σ) that mattered to
describe the performance of the L2 loss is its average µP , which is also the variance of the overall
noise distribution. Independently of the distribution type, and the values of V , p and Vh, or α, as
long as µP is equal, the L2 loss trained neural networks had the same performance. This is shown in
Figure 1. For the sake of clarity, all the curves in this section were smoothed using moving average
with a 35 steps window, and the shaded area represents the standard deviation over 10 runs.

Figure 1: Performance of the neural network on UTKF trained with L2 loss, for different P (σ2)
with constant µP = 2000. No matter the distribution type or parameters, the performance is similar.

6.2 HIGH AND LOW VARIANCE NOISE REGIMES: BIV ACTS AS A FILTER

With the binary uniform distribution, the noise is split in two regimes, with high or low variances.
In this case, our results show that BIV performs better than L2, and actually similarly to the cutoff
loss presented in section 4.3 with a threshold C = 1.

Figure 2 compares the test losses on UTKF with different values of p for Vh = 0. While the L2
curves are strongly impacted by the noise, both the BIV and cutoff losses lead to better and very
similar performances for a given p. When p = 0.3, there are not a lot of information that can be
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Figure 2: Comparison between BIV, Cutoff and L2 losses for binary uniform distributions of vari-
ance with different ps for µP = 2000 and Vh = 0 on UTKF.

used, and the performance is still impacted by the noise. When p = 0.9, there is nearly as much
near-ground-truth data as in the noiseless case, and the performance is comparable.

In the case of binary uniform distributions, BIV is acting as a filter, cutting off labels which are too
noisy to contain any useful information.

6.3 CONTINUOUS, DECREASING NOISE VARIANCE DISTRIBUTION: THE ADVANTAGE OF BIV

On Gamma distributions, there is no clear threshold to define which information to use. When
α ≤ 1, BIV shows a strong advantage compared to both L2 and cutoff. Figure 3 shows the results
in both the BikeSharing and the UTKF datasets for Gamma distributions with α = 1.

Figure 3: Comparison between the performances of BIV, L2, and different cutoff values on both
datasets where the noise variance follows a Gamma distribution with α = 1.

In both datasets, when the cutoff parameter C is too low (µP /4 and µP /2), there is not enough data
to train the model. When C is too high (2µP and 5µP ), the data is too noisy and the curves go
close to the original L2 loss. Even at the best case (C = µP ), cutoff is not better than BIV. This is
because, in contrast to cutoff, BIV is able to extract some information from noisier samples while
avoiding to overfit on them.

In Table 1, we present the lowest value of the test loss curves for the different methods with other
α parameters for the Gamma distributions over both datasets. BIV consistently leads to the best
performances, regardless of P (σ2). The plots showing these runs can be found in the appendix
B.3.1. BIV is less sensitive to hyperparameters than cutoff, as it avoids the need to choose the right
cutoff parameter for each distribution P (σ2). BIV’s own hyperparameter ε can be set between 0.01
and 0.1 for any dataset with a normalized output, as shown in appendix B.1, and be ready to use.
As ε can be seen as a minimal variance, scaling it for other label distributions is straightforward: it
suffices to multiply it by the variance of the label distribution.

The benefit of BIV over L2 is clearly higher when α is lower. This is due to an increase in the support
for low-variance noise in P (σ2). The more BIV can count on low-noise elements and differentiate
them from high noise ones, the better it can perform. This is consistent with results from section
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Table 1: Lowest test loss for different α on two datasets, for BIV, L2 and several cutoff losses. The
test loss with standard deviation is computed as the average over 10 runs. In every case, BIV loss
led to the lowest value. The best C value differs based on α.

α = 1 α = 0.5 α = 0.25
UTKF Bike UTKF Bike UTKF Bike

C = µP /20 0.79±.08 0.327±.056 0.48±.04 0.125±.010 0.38 ±.05 0.092±.008
C = µP /4 0.55±.04 0.135±.016 0.45±.04 0.097±.006 0.39±.03 0.085±.006
C = µP 0.50±.04 0.111±.009 0.48±.04 0.097±.008 0.43±.03 0.088±.006
C = 5µP 0.55±.06 0.120±.009 0.54±.05 0.111±.012 0.51±.04 0.107±.009

L2 0.56±.05 0.122±.010 0.56±.05 0.116±.011 0.55±.05 0.119 ±.012
BIV (ours) 0.47±.03 0.096±.007 0.41±.03 0.084±.006 0.34±.02 0.079±.006
GT labels 0.25±.02 0.066±.004 0.25±.02 0.066±.004 0.25±.02 0.066±.004

6.2, and with other experiments we have run. For example, when α > 1, the highest support of P is
not at σ2 = 0. BIV was less able to improve the performance compared to L2.

We also ran the experiment with uniform distributions: the performance is better when variance V is
closer to Vmax (and a to 0). But even when V = Vmax, as there is less support in low noise variance
than for Gamma distributions with α ≤ 1, the improvement is less important.

In all cases, BIV was performing consistently better than L2 and at least better than cutoff in all the
experiments we ran. More details on these results can be found in appendix B.2.

6.4 ROBUSTNESS

We identified two elements that could impact the performances of BIV: the size of the mini-batches
and the accuracy of the noise variance estimation. We tested the robustness of BIV when these
factors are different than during our experiments.

Size of the mini-batches In equation 5, each weight is normalized based on the assumption that
the distribution of noise variances in the mini-batch is representative of the one in the whole training
dataset. While this is less the case with smaller mini-batches, our results show that BIV still performs
very well in these cases, as presented in section B.4.1.

Noisy variances Because the noise variance σ2
i is often estimated, the method needs to be robust

to errors in σ2
i ’s. A model for the noise of σ2

i can be a Gaussian for which the variance is proportional
to σ2

i . In this case, results show that the effect of moderate to high levels of noise on BIV is not
significant. More details can be seen in section B.4.2

7 CONCLUSION

We have proposed a mini-batch based approach to incorporate in the loss function privileged infor-
mation which quantifies the participation of each sample to the misalignment between the training
and testing datasets. We described how such a setup can occur in the case of regression with het-
eroscedastic noisy labels. To tackle this problem, we introduced BIV, a method to apply inverse-
variance weights in stochastic gradient descent. BIV is able to extract more information from the
noisy dataset than L2 loss or threshold-based filtering approaches, and consistently outperforms
them on both structured and unstructured datasets. BIV can improve the performance of supervised
learning in many heteroscedastic regression scenarios, where the label is generated by a process such
as crowd-labelling, sensor-based state estimation, simulation, or complex neural architectures. More
generally, the framework for including privileged information quantifying the datasets misalignment
in the loss function on a mini-batch level could be used to account for other types of misalignment,
such as under-represented hidden features or correlation between samples.
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A APPENDIX - DATASETS AND NEURAL NETWORKS

A.1 UTKFACE

A.1.1 DATASET DESCRIPTION

The UTKFace Aligned&Cropped dataset (Song & Zhang, 2017) consists of 20,000 pictures of faces
labelled with their age, ranging from 0 to 116 years. We use it in a regression setting: the network
must predict the age of a person given the photo of their face. Unless described otherwise, 16,000
images were used for training, and 4,000 for testing.

Some images are in black and white and some are in color. The pixel dimension of each image is
200x200.

Both the pixels and the labels were normalized before the training, so that their mean is 0 and
standard deviation is 1 over the whole dataset. The noise variances were correspondingly scaled, as
well as the cutoff threshold if applicable.

A.1.2 NEURAL NETWORK AND TRAINING HYPER-PARAMETERS

The model that we used was a Resnet-18 (He et al., 2015), not pretrained. It was trained with an
Adam optimizer (Kingma & Ba, 2017), a learning rate of 0.001 over 20 epochs. A batch size of 256
was used in order to ensure the best performance for the L2 method with noisy labels as well as to
reduce the time necessary to the training process.

A.2 BIKE SHARING DATASET

A.2.1 DATASET DESCRIPTION

The Bike Sharing Dataset (Fanaee-T & Gama, 2013) consists of 17,379 samples of structured data. It
contains, for nearly each hour of the years 2011 and 2012, the date, season, year, month, hour, day of
the week, a boolean for it being a holiday, a boolean for it being a working day, the weather situation
on a scale of 4 (1: clear and beautiful, 4: stormy or snowy), the temperature, the feeling temperature,
the humidity, and the wind speed, in the city of Washington DC. It also contains the number of
casual, registered, and total bike renters for each hour as recorded on the Capital Bikeshare system.

We use it in a regression setting: the network must predict the total number of bike renters given the
time and weather information. Unless described otherwise, 7,000 samples were used for training,
and 3,379 for testing. We used less samples than available for training because the low-data situation,
noise has a stronger effect on the performance. The minimal test loss achieved with 7000 noiseless
samples was very close to the one with 14000 samples, hinting that the additional samples did not
give a lot of additional information.

We applied some pre-processing on the data to make it easier for the network to learn. First, the
date was normalized from a scale between day 1 to day 730 to a scale between 0 and 4π. Then,
we provided the network with the cosine and the sine of this number. This allowed to have the
same representation for the same days of the year, while having the same distance between any
two consecutive days, keeping the cyclic nature of a year. A similar idea was applied to hours,
normalized from 0 to 2π instead of 0 to 24, and with the cosine and sine given to the network. The
day of the week, being a category, was given as a one-hot vector of dimension 7. We also removed
the season and the month as it was redundant information with the date.

Overall, the number of features was 19:

1 Year

2-4 Date (sine and cos)
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4-5 Hour (sine and cos)

6 to 12 Days of the week (one-hot vector)

13 Holiday boolean

14 Working day boolean

15 Weather situation

16 Temperature

17 Felt temperature

18 Humidity

19 Wind speed

We observed that the network was learning significantly faster and better provided with this format
for the data.

Both the features and the labels were normalized before the training, so that their mean is 0 and
standard deviation is 1 over the whole dataset. The noise variances were correspondingly scaled, as
well as the cutoff threshold if applicable.

A.2.2 NEURAL NETWORK AND TRAINING HYPER-PARAMETERS

The model that we used was a multi-layer perceptron with 4 hidden layers, the first one with 100
neurons, then 50, 20, and 10. The activation function was ReLU. We did not use any additional
technique such as batch normalization as it did not improve the performances.

The model was trained over 100 epochs on mini-batches of size 256 for similar reasons than ex-
plained in section A.1.2, using the Adam optimizer with learning rate 0.001.

B APPENDIX - ADDITIONAL EXPERIMENTS

B.1 THE INFLUENCE OF ε

In this section, we provide experimental results justifying our recommendation of the range of
[10−2; 10−1] for ε. In the experiments presented in this article, we have used ε = 10−1. ε must
be chosen as part of a trade-off between mitigating the effect of BIV with near ground-truth la-
bels while keeping its effect with noisy labels. To better understand these results, it is important
to remember that ε is added to the variance that is used in the loss function. When the labels are
normalized - which is the case in our work -, the noise and its variance for each label is normalized
too. The value we recommend for ε should therefore be valid for any normalized set of labels.

B.1.1 ε FOR BIV WITH NEAR GROUND-TRUTH LABELS

One of the main problems BIV induces is in the presence of ground-truth or near ground-truth (NGT)
labels. In this case, a near-zero variance can induce an very strong weight, effectively reduce the
mini-batch to this single sample, and thus ignore the other potentially valid samples.

In this case, hyperparameter ε is key, as it allows to set a maximal weight and has a stronger relative
effect on the NGT labels than on noisier ones. We tested on the UTKF dataset with a uniform
distribution of variance from a = 0 to b = 1, which is effectively very little noise for the L2 loss
but, by allowing NGT labels, can already showcase the influence of ε on the BIV performance. The
resulting graph can be seen in figure 4.

It is clear that a very small ε, such as 10−6 or 10−5, leads to a significant loss of performance.
However, over 10−2, the performance is as good as the L2 loss. Note that it is not surprising when
ε is high such as 102, as in this case the weights are very close to similar and BIV is effectively the
same as L2.
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Figure 4: Impact of ε when training with NGT labels using BIV loss on UTKF dataset. The variance
was sampled through a uniform distribution bound between 0 and 1. Very low ε shows a drastic loss
of performance compared to L2 loss, as NGT labels monopolize the weights in the mini-batch.

B.1.2 A HIGH ε REDUCES THE ADVANTAGES OF BIV ON NOISY LABELS

As discussed in the previous section, a higher value of ε makes the weights more similar for each
of samples, and therefore reduces the effect of BIV. We tested BIV with different values of ε with a
binary distribution with p = 0.5 and µP = 2000 on UTKF. In this setup, BIV should have enough
data to train correctly when filtering out the labels in the noisy regime, as shown in section 6.2. The
results are shown in figure 5.

Figure 5: Impact of ε when training with highly noisy labels using BIV loss on UTKF dataset. The
variance was sampled through a binary uniform distribution with p = 0.5, µP = 2000, and Vh = 0.
Very high ε shows a loss of performance as BIV approaches the L2 results.

As expected, when ε is very high, the results are very similar to L2. The first effects of BIV can be
seen when ε = 10, but until ε = 1 it is still not optimal. From ε = 0.1, the algorithm is correctly
filtering the data.

Considering the results from sections B.1.1 and B.1.2, we consider that ε should be between 10−2

and 10−1 to optimize the balance between regulating the importance of near ground-truth labels and
benefiting from the effect of BIV.

B.2 BIV ON DIFFERENT DISTRIBUTIONS

B.2.1 UNIFORM DISTRIBUTIONS

We present in figure 6 the results of the experiment with uniform distributions in more details.

As explained in section 6.3, we observe that BIV and L2 have the same performances when V = 0
(and a = b = µP ). This is to be expected, as all samples have the exact same noise variance and thus
the same weights. When V = Vmax (a = 0 and b = 2µP ), BIV has an advantage, as it is able to
differentiate the samples and use the support of low-noise labels. When V = Vmax/2 (a = 0.293µP
and b = 1.707µP ), the difference between the samples is less important, and BIV only does a bit
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Figure 6: Test loss for L2 and BIV learning on uniform with different variances V .

Figure 7: On BikeSharing with µP = 20000, using cutoff is not helpful in the uniform setting. This
is due to the significant loss of information induced by such a strategy.

better than L2 on BikeSharing. On UTKF, the process has more variability and it is difficult to detect
this effect.

In all cases, the benefit from using BIV is less important than with Gamma distributions with α ≤ 1,
where the support on low-noise samples is higher.

In this setting, we also show as shown in figure 7 that cutting off the noisy data is not a good strategy,
as it always performs worse than L2.

B.3 BIV ON GAMMA DISTRIBUTIONS

B.3.1 α ≤ 1

As described in section 6.3, the smaller α, the better the performance of BIV and cutoffs. We show
in figures 8 and 9 the curves that led to the numbers in Table 1. BIV consistently outperforms the
other methods. The performance of cutoff methods strongly depends on C, and the best value of C
is not the same for every distribution P .

B.3.2 α > 1

When α > 1, the highest support of P (σ2) shifts towards µP . This makes the samples less distin-
guishable for BIV and therefore the benefits of using it are reduced. This is shown in Figure 10 on
UTKF.

B.4 ROBUSTNESS OF BIV

B.4.1 SIZE OF THE MINI-BATCHES

In equation (5), the normalization constant is computed from the samples in the mini-batch. If the
distribution of the noise variances in mini-batch is representative of the whole training dataset, the
relative weight given to each sample with respect to the others is the same than if the normalization
was made over the whole dataset. The larger the mini-batch, the more representative it is. In our
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Figure 8: Test loss on the BikeSharing dataset, with α ≤ 1

Figure 9: Test loss on the UTKF dataset, with α ≤ 1

Figure 10: Test loss on the UTKF dataset for L2 and BIV learning on Gamma function with α ≥ 1.
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Figure 11: BIV with different batch sizes in both UTKF and BikeSharing datasets.

experiments, we used a size of 256, which is arguably high. We tested our algorithm with lower
batch sizes, from 16 to 128, to see if it was a critical factor in the performances.

The results are presented in figure 11. In UTKF, the batch size does not make any significant
difference in the performance with respect to the amount of samples seen, except for a slightly
steeper overfitting once the best loss has been achieved. In BikeSharing, a smaller batch size makes
the training faster with respect to the amount of samples, but with a higher minimal loss, for both
L2 and BIV. While a larger batch size leads to a lower loss function, the effect of BIV compared to
the corresponding L2 curve is not compromised by smaller batch-sizes.

Two main factors may explain this robustness. First, a mini-batch of size 16 seems to be already
representative enough of the whole dataset for the purpose of normalization. Second, the fact that
the mini-batches are populated differently at every epoch improves the robustness as a sample who
would have been in a non-representative batch at one epoch may not be at another epoch. In any
case, the size of the mini-batch is not a critical factor for BIV.

B.4.2 NOISY VARIANCE ESTIMATION

In many scenarios, the variance σ2 from which the noise was sampled is estimated, or inferred from
a proxy, and therefore prone to be noisy itself. We tested the robustness of our method to such
variance noise. In this experimental setup, the value given to the BIV algorithm is disturbed by
noise δσ2

i
. We modelled this noise on σ2

i to be sampled from a normal distribution whose standard
deviation is proportional to σ2

i with a coefficient of variance disturbance Dv:

δσ2
i
∼ N (0, Dvσ

2
i /9) (7)

Dividing σ2
i by 9 allows to scale Dv so that, when Dv = 1, δσ2

i
< −σ2

i is at 3 standard deviations
from the mean of the distribution.

We then compute the noisy variance, which needs to be positive, as σ̃2
i =

∣∣∣σ2
i + δσ2

i

∣∣∣. The noise is
therefore biased, but when Dv ≤ 1, this is negligible as it happens with probability less than 0.15%.

The results presented in figure 12 show that, when Dv ≤ 1, BIV is robust to such noise. While a
higher Dv leads to lower performance, the impact is small compared to the effect of BIV. However,
when Dv = 2, which is an arguably high level of noise and leads to bias as explained previously,
the beneficial effect of BIV is significantly affected in BikeSharing, and completely disappears in
UTKF.
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Figure 12: Robustness of BIV to noise in the variance with different disturbance coefficients Dv .
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