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Abstract

Measuring Semantic Textual Similarity (STS)
is a fundamental task in biomedical text pro-
cessing, which aims at quantifying the simi-
larity between two input biomedical sentences.
Unfortunately, the STS datasets in the biomedi-
cal domain are relatively smaller but more com-
plex in semantics than common domain, often
leading to overfitting issues and insufficient text
representation even based on Pre-trained Lan-
guage Models (PLMs) due to too many biomed-
ical entities. In this paper, we propose EARA,
an entity-aligned, attention-based and retrieval-
augmented PLMs. Our proposed EARA first
aligns the same type of fine-grained entity in-
formation in each sentence pair with an entity
alignment matrix. Then, EARA regularizes
the attention mechanism with an entity align-
ment matrix with an auxiliary loss. Finally, we
add a retrieval module that retrieves similar in-
stances to expand the scope of entity pairs and
improve the model’s generalization. The com-
prehensive experiments reflect that EARA can
achieve state-of-the-art performance on both
in-domain and out-of-domain datasets. Source
code is available 1.

1 Introduction

Biomedical Semantic Textual Similarity (STS) in-
volves measuring the similarity between biomedi-
cal texts, such as scientific articles, clinical notes,
and Electronic Health Records (EHRs). This mea-
surement can be utilized to identify the relevant
information, reduce excessive redundant informa-
tion in EHRs (Zhang et al., 2011; O’Donnell et al.,
2009; Cohen et al., 2013), and improve the accu-
racy as well as the efficiency of Evidence-Based
Medicine (EBM) practices (Hassanzadeh et al.,
2019).

As more biomedical STS datasets with de-
tailed annotations have been published, such

∗ Corresponding author.
1https://github.com/xy-always/EARA
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Figure 1: (a) prediction errors of baseline model on
N2C2STS datasets and the corresponding entity num-
bers in sentences. Blue bars represent the propor-
tion of sentences containing the number of entities k
(k=0,1,2,3,4,>5) in the sentence; (b) Visualization of
the baseline model’s attention to the ‘[CLS]’ token and
‘atenolol’ token of a piece of data in N2C2STS dataset.

as EBMSASS (Hassanzadeh et al., 2019) and
N2C2STS (Wang et al., 2020b), a growing num-
ber of scholars have paid attention to those STS
tasks (Xiong et al., 2020a,b; Chen et al., 2020) and
achieved great performance by applying the Pre-
trained Language Models (PLMs) (Devlin et al.,
2019; Peng et al., 2019; Lee et al., 2020) to those
STS tasks.

Unfortunately, naively applying PLMs to
biomedical datasets may not yield promising re-
sults, owing to the greater semantic complexity of
such datasets than those in the general domain. A
sentence is deemed semantically intricate when it
contains fine-grained information of multiple types,
such as entities, which may distract the PLMs. For
instance, in Figure 1 (a), we observe a decline in
the representational capacity of BlueBERT (as evi-
denced by an increase in the prediction error ratio)
as the number of entities in sentences increases on
the N2C2STS datasets. Upon visualizing the at-



tention matrix of the ‘[CLS]’ token and ‘atenolol’
token of a specific instance in the N2C2STS with
baseline BlueBERT, we discover that the model
tends to focus on punctuation and the sentence con-
taining the selected token.

Besides, during the training process, we also
observed that the Pearson Correlation Coefficient
(PCC) of models on the training set could often
approach 1.0. However, as the PCC of models on
the validation set increased, the PCC of models on
the test set decreased. The reason might lie in that
the size of the biomedical dataset is quite small
compared to the size of the general-domain dataset.
And the complexity of PLMs is also too excessive
for the biomedical dataset, which can easily result
in overfitting.

In this paper, we propose EARA, which im-
proves the biomedical semantic textual similar-
ity with Entity-aligned Attention and Retrieval
Augmentation. EARA first makes PLMs pay more
attention to important entities by aligning the same-
type entities in sentence pairs. Secondly, EARA
builds a knowledge retriever on the MIMIC-III
database (Johnson et al., 2016). Thirdly, EARA
retrieves similar sentences to expand the scope of
entity pairs and feeds them into the entity-aware
transformer. Finally, EARA fuses the logits of
retrievals and inputs to improve the model’s gener-
alization. The experiments show that EARA can
achieve state-of-the-art performance on multiple
biomedical tasks.

In summary, our work has the following contri-
butions:

• We make the model pay more attention to the
same type of entity information by minimiz-
ing the L2 loss between the entity alignment
matrix and the multi-head attention matrix.

• We add a retriever module and feed retrievals
into transformers, which improves the model’s
generalization and eases the overfitting prob-
lem for the biomedical STS datasets.

• We make a comprehensive study on multi-
ple biomedical STS datasets. Results show
that our model can achieve promising perfor-
mance both on in-domain and out-of-domain
datasets.

2 Related Work

In this section, we mainly introduce the related
work from three perspectives: 1) Biomedical STS,

2) PLM-enhanced Models Beyond Biomedical STS
and 3) Retrieval-based Methods.

Biomedical Semantic Textual Similarity A grow-
ing number of works (Chen et al., 2021; Yang et al.,
2020) based on PLMs (Devlin et al., 2019; Peng
et al., 2019; Lee et al., 2020) have been exploited
for biomedical STS datasets, such as N2C2STS
dataset (Wang et al., 2020b). For example, Xiong
et al. evaluated the pure Siamese CNN (Yin et al.,
2016), Siamese RNN (Mueller and Thyagarajan,
2016), and BERT (Devlin et al., 2019) on these
biomedical STS datasets, and improved the per-
formance using a gate to fuse the one-hot features
representation and deep semantic representation.

There are two lines of recent work to enhance
deep learning models on the biomedical STS task.
The first used data augmentation strategies (Wang
et al., 2020c; Li et al., 2021a) or multi-task learn-
ing (Mulyar et al., 2021; Mahajan et al., 2020)
to enhance the model’s representation. The sec-
ond introduced external knowledge into the neural
network models, which can capture implicit infor-
mation (Xiong et al., 2020a; Chang et al., 2021).
These methods only integrate traditional features
and lack interpretations.

PLM-enhanced Models Beyond Biomedical STS
The PLMs are popularised on other fundamental
tasks in NLP and augmented by various knowl-
edge (Bugliarello and Okazaki, 2020; Zhou et al.,
2020; Zhang et al., 2020a). Jia et al. (Jia
et al., 2020) proposed the Char-Entity-Transformer,
which injected lexical information into the char-
level BERT and augmented the self-attention using
a concatenation of char- and entity-level informa-
tion. Liu et al. (Liu et al., 2021) proposed a more
efficient model than Char-Entity-Transformer by
adding a lexicon adapter layer to inject the lexical
information into the transformer layer of BERT.
Their model achieved the SOTA performance on
the named entity recognition, word segmentation,
and POS tasks. Stacey et al. (Stacey et al., 2022)
supervised the self-attention of BERT using hu-
man explanation to the natural language inference
tasks. Besides, some works (Zhang et al., 2020b; Li
et al., 2021b) used syntax information to train the
self-attention module in PLMs and showed promis-
ing results on various tasks, like text classification
tasks and named entity recognition tasks. Our work
leveraged the entity information to regularize the
multi-head attention module instead of directly in-
troducing the information.
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Figure 2: The architecture of our EARA. The dark red
rectangles are the newly added or modified modules.

Retrieval-based Methods Retrieval-based meth-
ods are now being utilized in various NLP tasks.
As part of retrieval augmentation research, one ap-
proach involved retrieving similar examples from
internal training sets to act as demonstrations for
prompt learning in a few-shot setting (Gao et al.,
2021; Kumar and Talukdar, 2021). Other works
used retrieval augmentation for supervised tasks;
they aimed to retrieve "answers" for their tasks,
such as retrieving the next token in the language
model pre-training task, retrieving summarizations
from the nearest passages (Chen et al., 2022; Guu
et al., 2020; Borgeaud et al., 2022b; Khandelwal
et al., 2021; Wang et al., 2022a). While other mod-
els rely on nearest neighbours solely for enhanc-
ing the prediction process, our approach retrieves
similar instances to make the model to consider a
broader range of instances, which can help avoid
overfitting and improve the models’ generaliza-
tion.

3 EARA

3.1 Problem Statement

Given two biomedical sentences Sa =
{xa1, xa2, xa3, ..., xan} and sentence Sb =
{xb1, xb2, xb3, ..., xbm}, where xi is the token
in the sentences, n and m stands for the sentence’s
length of Sa and Sb, respectively. The goal of
the biomedical STS task is to train a regressor
with biomedical STS datasets and to predict the
similarity score of two sentences. Specifically,
the gold similarity score ranges from 0 to 5 in
N2C2STS, where a higher score means the given
two sentences are more semantically similar.

3.2 Multi-Type Fine-Grained Entity
Information

We use cTAKES(Savova et al., 2010) to extract en-
tity types and totally collect 12 types of default en-
tity information. We extract 9 types of entity infor-
mation, including ‘SignSymptomMention’, ‘Predi-
cate’, ‘DiseaseDisorderMention’, ‘MedicationMen-
tion’, ‘RomanNumeralAnnotation’, ‘Anatomical-
SiteMention’, ‘FractionAnnotation’, ‘Procedure-
Mention’, and ‘DATE’. We add ‘O’ (standing for
outside) and regard the special token ‘[CLS]’ and
‘[SEP]’ in PLMs as a specific entity type. Thus, we
have a total of 12 entity types in this work.

3.3 Overall Architecture
Figure 2 shows the overall architecture of EARA.
Firstly, the retriever module retrieves the nearest in-
stance as a retrieved instance. Secondly, an embed-
ding layer encodes the tokens of the query exam-
ple and retrieved instance. Next, an entity aligned
MHA module encodes the complex semantics of
inputs. Finally, a fully-connected layer predicts the
similarity score. Figure 3 shows the details of the
retriever module and entity aligned MHA module.

3.4 Entity-Aligned Multi-Head Attention
Neural machine translation task (Bugliarello and
Okazaki, 2020; Slobodkin et al., 2021) shows posi-
tive results when introducing external structures in-
formation into the attention matrix of transformers.
Inspired by this, we introduce an entity alignment
matrix constructed from entity information to assist
PLMs in learning a more effective attention matrix,
thereby facilitating the identification of differences
between sentence pairs.

We define an entity alignment matrix M ∈
{0, 1}l×l as follows:

M [i, j] =

{
1 xi and xj are the same type,
0 otherwise,

(1)

where 0 ≤ i, j < l, and l is the total length of sen-
tence Sa and Sb, i.e., l = n+m+3. xi and xj are
tokens in sentence Sa and Sb. Since x0 is a special
token corresponding to ‘[CLS]’ in PLMs, we de-
fine M [i, 0] or M [0, j] according to the type of the
introduced entity information. we set M [i, 0] = 1
or M [0, j] = 1 only in the cases that xi or xj is
an entity mention. Then, we normalize the entity
alignment matrix M :

V [i, j] =
eM [i,j]∑l−1
j=0 e

M [i,j]
, (2)
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Figure 3: The details of Retriever module and Entity Aligned MHA module.

where V ∈ Rl×l. As shown in Figure 2, we define
an auxiliary L2 loss between multi-head attention
scores and alignment matrix to regularize the atten-
tion mechanism,

Lalign =

∑H
h=1(Vh −Ah)

2

H
, (3)

where H is the number of aligned attention heads,
Vh and Ah are the normalized alignment matrix
and the attention weight of the hth attention head,
respectively. Especially, the entity alignment ma-
trix Vh of each head is equal to V . The attention
weight Ah is calculated by:

Ah =
QT

hKh√
d

, (4)

where Qh and Kh are query and key in the hth
attention head, d is the corresponding dimension.

3.5 Retriever
The retrieval-augmented module collects the most
similar instance to the input from MIMIC-III (John-
son et al., 2016) knowledge store. In this work, we
use MIMIC-III NOTEEVENTS.csv as the knowl-
edge database.

3.5.1 MIMIC-III Knowledge Database
To implement the retrieval module, the first step
is to construct a knowledge database that can ef-
fectively capture the semantics of the input from
the MIMIC-III knowledge database C. This is
achieved by utilizing a frozen BERT encoder E

to encode the instances in the MIMIC-III. For
each sentence si in the MIMIC-III, we generate
a key-value pair (vi, si), where vi represents the
embedding of the ‘[CLS]’ token in the final layer
of PLMs.

3.5.2 Efficient Searching

Efficient retrieval is crucial considering the po-
tential enormity of the knowledge database. To
achieve this, we create a matrix D ∈ R|C|×d as
the index of MIMIC-III instances, as previously
demonstrated in the knowledge database creation
process. When a query example is presented dur-
ing training, we encode it using the encoder E
to obtain the query vector q. This query vector
q is then utilized to search for the K nearest in-
stances in the index D through the maximum inner
product search method. To perform this retrieval
process, we utilize FAISS (Johnson et al., 2019), an
excellent open-source toolkit, to enable fast nearest-
neighbour retrieval of MIMIC-III instances from
the knowledge store.

3.6 Final Similarity Score Prediction

Finally, given the input sentence pair semantic p
and nearest retrieved sentence pair r0, they get sen-
tence pair semantic representation Op and retrieved
sentence pair semantic representation Or0 . We use
a fully-connected layer with ReLU activation to
predict the final similarity score sp and sr0 . During
training, we minimize the mean square error loss



and alignment loss below:

sp = MLP (Op), sr = MLP (Or0), (5)

L = Lsts + λ ∗ Lalign, (6)

Lsts = MSE(sp + sr, sg), (7)

where sg is the gold score of the input sentence pair,
λ is a hyper-parameter to weigh the STS predic-
tion loss and alignment loss. During the inference
period, we do not use the retrieval instance.

4 Experiments

4.1 Benchmarks and Metrics

In this section, we give a brief introduction of
datasets on which we evaluate all models.
N2C2STS (Wang et al., 2020b): The N2C2STS
data are expanded on the MedSTS (Wang et al.,
2020a) data. All data in the MedSTS dataset are
used as the training set for N2C2STS, and 594
additional data are added as the new training set.
The training set of N2C2STS has 1,642 sentence
pairs in all, and the test set has 412 sentence pairs.
The similarity score of N2C2STS ranges from 0
(low similarity) to 5 (high similarity).
BIOSSES (Sogancioglu et al., 2017): The
BIOSSES comprises 100 sentence pairs, in which
each sentence is selected from the Text Analy-
sis Conference (TAC) Biomedical Summarization
Track Training Dataset containing articles from
the biomedical domain. The data is annotated by
five experts and is scored from 0 (no relation) to 4
(equivalent).
EBMSASS (Hassanzadeh et al., 2019): EBMSASS
consists of 1,000 pairs of clinical evidence. These
pairs of clinical evidence are generated from the
NICTA-PIBOSO corpus, which is retrieved from
1000 biomedical abstracts. Ten annotators, includ-
ing eight bioinformatics researchers, one clinical
terminology, and one molecular biologist, manu-
ally analyze the dataset and assign similarity scores,
ranging from 1 (low similarity) to 5 (high similar-
ity).

The BIOSSES and EBMSASS datasets have
no specific test set, so we random sample 80%
as a training set and 20% are held out as a test
set. For in-domain evaluation, following Xiong
et al. (Xiong et al., 2020a), we train our super-
vised model on the training set using a 5-fold cross-
validation and evaluate our model on the gold test
set. All experimental results are evaluated by the

PCC, which measures the linear correlation be-
tween two sets of data. PCC is calculated by the
ratio between the covariance of two variables and
the product of their standard deviations. Therefore,
it is basically a normalized measure of covariance
such that the result always has a value between -1
and 1.

4.2 Baselines and Implementation
We pick 3 representative PLMs as the baseline
models and implement our EARA based on these
PLMs.
BERT (Devlin et al., 2019): BERT is a power-
ful language model in general domain. It is pre-
trained on the BooksCorpus (Zhu et al., 2015) and
Wikipedia, and reaches state-of-the-art results on
the generic natural language processing tasks, like
GLUE (Wang et al., 2019).
BioBERT (Lee et al., 2020): BioBERT is pre-
trained with PubMed 2 abstracts and PubMed Cen-
tral full-text articles based on the pre-trained BERT
model weights. It achieves a promising perfor-
mance on the biomedical NLP task.
BlueBERT (Peng et al., 2019): BlueBERT is a pre-
trained language model based on pre-trained BERT
with the addition of PubMed data or electronic
medical record MIMIC-III data (Johnson et al.,
2016).

We apply the PLMs with 12 layers, hidden size
768 and 12 heads. For the pre-trained PLMs, we
tune the learning rate in [1e-5, 2e-5], batch size
in [3, 5, 10]. For other parameters, we tune the
initial learning rate to be [1e-5, 2e-5], and tune the
weighted loss λ in [0.1, 0.3, 0.5, 0.7, 1.0]. The
maximum sentence length varies from the dataset,
380 for N2C2STS, 200 for BIOSSES and EBM-
SASS. We run 8 epoches on both datasets. The
entire model is implemented with Tensorflow and
is trained on 12G GTX 1080 GPU.

4.3 Experimental Results
In this section, we evaluate our EARA based on dif-
ferent backbones on the N2C2STS, EBMSASS and
BIOSSES and present the results transferred from
N2C2STS to EBMSASS and BIOSSES. We com-
pare our results to existing methods and conduct
ablation studies.

4.3.1 In-Domain Performance
Table 1 presents a comprehensive summary of the
results obtained by our proposed method, EARA,

2https://pubmed.ncbi.nlm.nih.gov/



N2C2STS BIOSSES EBMSASS Average ∆%
BERT 0.8549 0.8570 0.9005 0.8708 -
EARA (BERT) 0.8650 0.9316 0.9244 0.9070 +3.62
BioBERT 0.8668 0.9057 0.9181 0.8969 -
EARA (BioBERT) 0.8782 0.9446* 0.9263 0.9163 +1.94
BlueBERT 0.8630 0.7978 0.9226 0.8611 -
EARA (BlueBERT) 0.8872* 0.8913 0.9313* 0.9033 +4.22

Table 1: Pearson Correlation Coefficient (PCC) on different STS datasets with various backbones. Bolded results
indicate the best performance on each dataset. ‘*’ denotes significant improvement. ∆(%) represents the average
improvement of the three datasets.

BIOSSES EBMSASS
BERT_CLS 0.5326 0.5241
BlueBERT_CLS 0.7752 0.6283
BioBERT_CLS 0.7759 0.6269
BERT 0.8559 0.8266
EARA (BERT) 0.8604 0.8460
BioBERT 0.8575 0.8236
EARA (BioBERT) 0.8829 0.8587
BlueBERT 0.8403 0.8138
EARA (BlueBERT) 0.8558 0.8517

Table 2: Out-of-domain performance. Bolded results
indicate the best results for each model on each dataset.

Model N2C2STS
(Xiong et al., 2020a) 0.868
(Ormerod et al., 2021) 0.870
(Chen et al., 2021) (single) 0.87
(Mulyar et al., 2021) 0.867
(Wang et al., 2022b) 0.875
EARA (BlueBERT) 0.887

Table 3: PCC improvement compared to previous work
on the N2C2STS dataset.

across three benchmark datasets: N2C2STS, EBM-
SASS, and BIOSSES. Notably, our approach con-
sistently outperforms the baseline models, with av-
erage improvements ranging from 1.94% to 4.22%.
Our best model is significantly better than the base-
line model (p-value<0.05). Interestingly, we find
that EARA based on BioBERT achieves the high-
est performance on most datasets. However, our
results also demonstrate that EARA, incorporating
retrieval augmentation and entity alignment mecha-
nisms, can enable BERT to achieve competitive re-
sults with BioBERT and BlueBERT, both of which
are pre-trained on domain-specific corpora. This
observation suggests that these techniques hold sig-
nificant potential for enhancing the performance

of BERT in domain-specific tasks. Overall, our
findings highlight the effectiveness of our proposed
approach and its potential for advancing the state-
of-the-art in natural language processing.

4.3.2 Out-of-Domain Performance
To demonstrate the generalizability of our proposed
model, we trained it on the N2C2STS dataset and
evaluated its performance on the entire BIOSSES
and EBMSASS datasets. In our evaluation, we
compare our approach, EARA, with not-finetuned
PLMs along with corresponding baseline PLMs
trained on N2C2STS datasets. The experimen-
tal results, as presented in Table 2, indicate that
our best-performing EARA model outperforms the
best not-finetuned PLMs by 9.14% and 23.18%
on the BIOSSES and EBMSASS datasets, respec-
tively. Our EARA methods demonstrate promis-
ing improvements in the out-of-domain BIOSSES
and EBMSASS datasets as compared to the base-
line PLMs. Notably, EARA based on BioBERT
achieves the highest PCC performance of 0.8829
on the BIOSSES dataset and obtains the best PCC
performance of 0.83587 on the EBMSASS dataset.
Interestingly, our findings reveal that the model
boosting observed on the BIOSSES and EBM-
SASS datasets is inconsistent with the boosting
trend observed on the N2C2STS dataset.

4.3.3 Comparison with Prior Works
We compare our model with several published
state-of-the-art baselines under the same setting
on different STS datasets. As illustrated in Table 3,
our EARA based on BlueBERT achieved the high-
est PCC performance of 0.887 on the N2C2STS
dataset, surpassing the previous best model by
1.2%. Notably, the best results for BIOSSES and
EBMSASS were reported by (Blagec et al., 2019)
and (Wang et al., 2022b), respectively, at 0.871 and
0.922. However, our EARA model outperforms



N2C2 BIOSSES EBMSASS
EARA(bert) 0.8650 0.9316 0.9244
w/o RA 0.8593 0.8750 0.9013
w/o EA 0.8640 0.8737 0.9199
w/o All 0.8549 0.8570 0.9005
EARA(bio) 0.8782 0.9446 0.9263
w/o RA 0.8726 0.9397 0.9183
w/o EA 0.8793 0.9262 0.9184
w/o All 0.8668 0.9057 0.9181
EARA(blue) 0.8872 0.8913 0.9313
w/o RA 0.8699 0.8469 0.9256
w/o EA 0.8750 0.8162 0.9284
w/o All 0.8630 0.7978 0.9226

Table 4: Ablation studies. EA=Entity Alignment
matrix; RA=Retrieval Augmentation; w/o=without;
bio=BioBERT; blue=BlueBERT. N2C2 is the abbrevia-
tion for the N2C2STS dataset, and the brackets indicate
which baseline model EARA is based on.

them by a significant margin. Taken together, these
experimental results demonstrate the effectiveness
of our proposed EARA model and its potential for
enhancing the performance of state-of-the-art mod-
els in semantic textual similarity tasks.

4.3.4 Ablation Study

We conduct ablation studies to assess the individ-
ual contributions of the entity alignment matrix
and retrieval augmentation to the final results. The
results, presented in Table 4, show that removing
each part and re-evaluating has a significant impact
on the model’s performance. Specifically, when we
remove the retrieval augmentation module, the de-
creased performance highlights the importance of
adding the logits of retrieved instances during the
training period. When we remove the entity align-
ment matrix module, there is a substantial decrease
in model performance, indicating that entity align-
ment information makes it easier for the model to
identify the similarity between two sentence seg-
ments. Most notably, when we remove all modules,
there is a larger decrease in the model’s perfor-
mance, suggesting that the entity alignment matrix
module and retrieval augmentation module com-
plement each other well in enhancing the model’s
overall performance.

5 Discussion

In this section, we conduct further analysis to better
understand the results of the experiments.

5.1 Error Reduction

Figure 5 analyzes the error rate of EARA in pre-
dicting sentences with different numbers of entities.
As shown in the figure, when the number of entities
in a sentence is greater than 5, compared to Blue-
BERT, EARA can significantly reduce the error
probability by about 20%. Moreover, the overall
error probability is also reduced from 25.7% to
18.9%. Unfortunately, when there are few entities
(less than 3) in the sentence, the introduced entity
alignment information can slightly increase the er-
ror probability. This inspires us to customize the
learning strategy based on the numbers of entities
in the future, determining when to introduce entity
alignment information.

5.2 Qualitative Analysis

We visualize the attention weights of baseline
PLMs and EARA only with the entity alignment
matrix module in Figure 4 to demonstrate that our
model provides a clearer explanation. We select
sentence pairs from the N2C2STS test sets.

As shown in Figure 4 (a), for the ‘[CLS]’ token,
the baseline model (B for ‘[CLS]’) focused more
on the first sentence and the punctuation. When
we add the entity alignment matrix (A for ‘[CLS]’),
the EARA pays more attention to important to-
kens, such as medication brands ‘ibuprofen’ and
‘atenolol’, which is consistent with human judg-
ment. Figure 4 (b) shows an example without entity
alignment information during the inference period.
The baseline model puts more attention to stop
words and punctuation, but our model learns to
focus on important nouns like ‘consent’, ‘testing’,
‘risk’, ‘benefit’, and ‘alternatives’ as well as verb
information like ‘read’, ‘accepted’, ‘explained’,
‘agreed’, and ‘proceed’.

We also pick a specific token to show the token’s
contributions. Interestingly, as shown in Figure 4
(a) and (b), the baseline model only focused on
the sentence containing the selected token. But
with our alignment matrix, EARA can attend to
not only the tokens in the sentence containing the
selected token but the aligned tokens in the other
sentence. Especially in Figure 4 (a), the tokens with
the same type as the selected token ‘atenolol’, such
as ‘ibuprofen’ or ‘tablets’, are paid more attention.
And in Figure 4 (b), the token ‘consent’ attends
to the token ‘testing’ in the first sentence, and to-
kens ‘explained’, ‘risk’, ‘benefit’, ‘alternatives’,
‘agreed’, and ‘proceed’ in the second sentence.
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(a) The gold similarity: 2.50; The predicted similarity of B:
2.93; The predicted similarity of C: 2.41.
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(b) The gold similarity: 1.00; The predicted similarity of B:
1.91; The predicted similarity of C: 1.54.

Figure 4: Token contribution heatmap. A: entity alignment matrix, B: baseline PLM, C: corresponding EARA. The
three continuous rows of A, B, and C is the attention visualization of the token enclosed by quotation on the left.
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Figure 5: The error probability of EARA(BlueBERT)
and BlueBERT on N2C2STS dataset.

5.3 Impact of Entity Number

To investigate the impact of entity information on
our proposed EARA model based on BlueBERT,
we randomly discard a certain percentage of entity
information from the data and evaluate the per-
formance on the N2C2STS dataset using only the
entity alignment matrix. Our experimental results
reveal that when we randomly mask 0%, 20%, 40%,
60%, 80%, and 100% of entities, the correspond-
ing PCC results are 0.8699, 0.8637, 0.8632, 0.8570,
0.8630, respectively. Notably, when a significant
proportion of entity types were removed (i.e., 80%
discarded), the entity information may have intro-
duced noise, potentially leading to a decline in the
model’s performance.

5.4 Generalization

To assess the generalization ability of our proposed
EARA model, we conduct a visualization analy-
sis of the representations of the training and test
sets, as depicted in Figure 6. To generate embed-
dings, we feed the BIOSSES dataset through the
model and extract the ‘[CLS]’ token representation

(a) baseline model BioBERT (b) EARA

Figure 6: The embeddings of the data in a lower-
dimensional space using t-SNE of the baseline model
and EARA on a very small dataset BIOSSES. ‘o’ stands
for test data and ‘x’ is the training dataset.

as the sentence pair representation. We then uti-
lize t-SNE (Van der Maaten and Hinton, 2008) to
reduce the dimensionality of the embeddings and
visualize them in a 2D space, with similarity scores
serving as the labels. Our analysis reveals that the
embeddings of the training and test data are closely
clustered together in the lower-dimensional space
of EARA, indicating that the model is capable of
generalizing well to new data.

6 Conclusion

In this work, we present an entity-aligned and re-
trieval augmentation PLM for the biomedical se-
mantic textual similarity tasks. We propose an
entity alignment matrix and an auxiliary loss to reg-
ularize the attention matrix of PLMs and introduce
retrieval augmentation to improve the generaliza-
tion ability of models further. The comprehensive
experiments show that the EARA achieves state-of-
the-art performance on the biomedical STS data.
Besides, EARA also improves the performance of
out-of-domain datasets.



7 Limitations

The limitations of our work mainly lie in two as-
pects. One is that when there are few entities (less
than 3) in a sentence, our proposed EARA may
hurt the representation of the sentence, leading to
a slight increase in prediction error probability, as
shown in Figure 5. The other is that the number of
retrieved examples is limited by the computation
and memory resources. Recent works (Borgeaud
et al., 2022a) have demonstrated that introducing
more retrievals can improve model’s performance.
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Figure 7: Impact on different transformer layers and
different attention heads. L6=Supervising the last 6
heads; F6=Supervising the first 6 heads; A=Supervising
all heads; N=Supervising no heads; Avg=Average PCC
results, Vote=Voting results.

A Choosing Which Layer to Supervise

We evaluate the performance of each layer in Blue-
BERT on N2C2STS. We use the ‘[CLS]’ token
representation of each layer to predict the similar-
ity score. As shown in Figure 7 (a), we find that
the last layer obtains the best PCC performance.
Therefore, we choose to supervise self-attention
heads of the last layer in PLMs with multi-type
fine-grained entity information.

B Choosing Which Heads to Supervise

The last layer of PLMs has 12 attention heads,
which play different roles (Clark et al., 2019).
We investigate which single or multiple heads we
should supervise to improve the performance. We
evaluate BlueBERT on the N2C2STS and train it
with 5-fold cross-validation. We obtain five test
results, then we ensemble the results as the voting
results to compute the PCC. Besides, we also cal-
culate each test PCC and average the PCC results.
When determining which head to regularize, we
consider both voting PCC and average PCC.

As shown in Figure 7 (b), we depict the voting
PCC and average PCC of five models for different
choices of heads as well as the error bar. From
the experimental results, we find that supervising
the 8th head, the 12th head or all heads can give
a better PCC performance. As a result, the results
in Table 1 and Table 4 are the results based on the
best-performing cases on the validation set among
these three scenarios.


