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ABSTRACT

Online multi-agent control problems, where many agents pursue competing and
time-varying objectives, are widespread in domains such as autonomous robotics,
economics, and energy systems. In these settings, robustness to adversarial dis-
turbances is critical. In this paper, we study online control in multi-agent linear
dynamical systems subject to such disturbances. In contrast to most prior work in
multi-agent control, which typically assumes noiseless or stochastically perturbed
dynamics, we consider an online setting where disturbances can be adversarial, and
where each agent seeks to minimize its own sequence of convex losses. Under two
feedback models, we analyze online gradient-based controllers with local policy
updates. We prove per-agent regret bounds that are sublinear and near-optimal in
the time horizon and that highlight different scalings with the number of agents.
When agents’ objectives are aligned, we further show that the multi-agent control
problem induces a time-varying potential game for which we derive equilibrium
tracking guarantees. Together, our results take a first step in bridging online con-
trol with online learning in games, establishing robust individual and collective
performance guarantees in dynamic continuous-state environments.

1 INTRODUCTION

From energy grids and financial markets to autonomous driving fleets and online platforms, modern
systems increasingly rely on many agents making independent decisions. These systems often operate
in dynamic and uncertain environments that are vulnerable to adversarial disturbances. For instance,
autonomous robots may suffer sensor failures or sudden disruptions from traffic and weather; financial
markets may face adversarial price movements or shocks; and energy systems can be prone to demand
spikes or strategic manipulation. In such settings, interacting agents pursue competing, time-varying
objectives that may shift adversarially over time. Ensuring robustness in these environments requires
online algorithms that adapt locally without relying on central coordination. Such algorithms are
essential to ensure the safety, efficiency, and stability of large-scale multi-agent systems.

In this paper, we study online control in multi-agent linear dynamical systems subject to such
adversarial disturbances. Specifically, we consider systems evolving as

Ty = Azy + Biul + -+ Byul¥ +wy , (LDS)

where the global state z; depends simultaneously on the controls (Ui)ie{l,--- ,N} independently
selected by IV agents, A and (B;);c(1,...,n} are time-invariant transition matrices, and w; is an
adversarial perturbation. At each time step t, every agenti € {1,---, N} observes the state z;,
selects a control input u; according to a policy 7" mapping states to controls, and subsequently incurs
an individual time-varying cost ¢ (x, ut).

In the absence of adversarial disturbances, multi-agent control with quadratic costs (linear quadratic
games) is well-studied (Basar & Olsder, 1998; Mazumdar et al., 2020; Hambly et al., 2023). Applica-
tions span diverse domains including energy markets, formation control (Aghajani & Doustmoham-
madi, 2015; Han et al., 2019; Hosseinirad et al., 2023) and bioresource management (Mazalov et al.,
2017), and we expand on these examples in Appendix B. However, most existing work on multi-agent
control focuses on noiseless settings, or assumes Gaussian i.i.d. disturbances. Such assumptions
are inadequate for modeling the adversarial disturbances that are increasingly present in modern
multi-agent systems and which motivate our work.
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In this adversarial and nonstationary setting, the natural performance measure is individual regret,
which measures an agent’s performance against a powerful class of counter-factual policies that have
full knowledge of the future in hindsight. Formally, we define the individual regret of agent ¢ by

T T
Reg! (s, {0}, 1) = Y cj(arn ) — min D ci(a ), M
t=0 el o
where A; is the learning algorithm used by the i’th agent to select its control u}, and (] i, uf) is the
counterfactual state-control pair had policy 7* been chosen by the agent starting from time ¢ = 0,
and where {u; '} are the fixed control inputs of other agents.

Achieving sublinear regret is the cornerstone of online learning, as it guarantees that an agent can
adapt effectively to adversarial costs and disturbances. However, in a multi-agent system, this
individual guarantee is only half the story. Because agents’ costs are coupled through the shared
state dynamics, the collective pursuit of low regret creates a complex decentralized dynamic. A
fundamental insight from online game theory is that when all players achieve no-regret, their joint
behavior can stabilize toward a collective equilibrium (Cesa-Bianchi & Lugosi, 2006; Nisan et al.,
2007). Extending this powerful connection—from individual rationality to collective stability—to
stateful, dynamical control systems is a major open challenge. This motivates our central question:

Can we design decentralized online control algorithms for (LDS) with adversarial
disturbances that guarantee both uniform sublinear regret for each agent and
stable equilibrium-tracking behavior for the system as a whole?

This question introduces significant challenges not present in single-agent online control:

* Decentralization: Agents act locally without access to others’ policies, so robust controllers
cannot be computed centrally and broadcasted.

* Scaling with number of agents: The state coupling across all [NV agents raises a key question:
how do individual regret guarantees scale with the number of agents? Is sublinear regret even
achievable?

* Equilibrium behavior: When agents have aligned objectives, it is unclear whether the dynamics
driven by decentralized regret minimization can lead the system to track a global equilibrium.

1.1 OUR CONTRIBUTIONS

We provide an affirmative answer to our central question, establishing the first performance guarantees
for online multi-agent control under adversarial disturbances. Our key results are:

Individual Regret with Limited Information. In an independent learning setting, where agents only
observe the state, we prove a per-agent regret bound of @) (N? \/T) using an online gradient-based
controller (Algorithm 1). This result demonstrates robustness even with minimal feedback, while the
quadratic dependence on N quantifies a "price of decentralization" (Theorem 3.2). We also prove a
matching lower bound of Q(\/T), showing our time dependence is optimal (Theorem 3.3).

Improved Regret with More Information. In an aggregated control learning setting, where agents

also observe the combined effect of others’ actions, we improve the regret to O(N+/T) (Theorem 3.4).
With an additional Lipschitz assumption on the costs, we eliminate the dependence on N entirely,

achieving a near-optimal O (V/T) regret (Theorem 3.5).

Equilibrium Tracking. In a common interest setting (a time-varying potential game), we prove that
our no-regret dynamics successfully tracks the game’s evolving Nash equilibria. The tracking error
is bounded by the rate of change in the cost functions and disturbances, formally linking individual
performance to collective stability (Theorem 4.1).

Together, these results bridge online non-stochastic control and learning in games, laying a foundation
for robust and stable learning in dynamic, multi-agent environments and opening many avenues for
future work and cross-fertilization between these two communities.
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1.2 RELATED WORK

We give a brief discussion of related works and defer more details to Appendix A.

Online non-stochastic control. Our work builds on a recent and growing line of research focusing
on the use of online learning techniques to address control problems with adversarially perturbed
dynamical systems (Hardt et al., 2018; Abbasi-Yadkori & Szepesvari, 2011; Agarwal et al., 2019;
Hazan et al., 2020; Foster & Simchowitz, 2020; Simchowitz et al., 2020; Simchowitz, 2020; Gradu
et al., 2020; Ghai et al., 2023; Cai et al., 2024; Tsiamis et al., 2024; Golowich et al., 2024). On the
one hand, when the dynamical system (LDS) involves only a single agent (i.e., N = 1), our setting
collapses to (single-agent) online non-stochastic control. This problem has been thoroughly studied
over the past years, see e.g. Hazan & Singh (2025) and the references therein. On the other hand,
most of the works in this line of research are devoted to the control of linear dynamical systems
influenced by a single controller. We discuss a few exceptions in the next section.

Multi-agent control. There is extensive research at the interface of control and game theory, see e.g.
Marden & Shamma (2018); Chen & Ren (2019) for surveys. An important body of this literature has
focused on linear-quadratic games (Basar & Olsder, 1998; Mazalov et al., 2017; Hosseinirad et al.,
2023; Zhang et al., 2019; Bu et al., 2019; Zhang et al., 2021; Wu et al., 2023; uz Zaman et al., 2024;
Mazumdar et al., 2020; Hambly et al., 2023). Some of these works typically consider the same (LDS)
and assume quadratic costs for systems which are either deterministic (w; = 0) or perturbed by a
noise sequence {w;} which is i.i.d. Gaussian. Classical approaches to design robust controllers in
optimal control rely either on using probabilistic models for disturbances or adopting a (worst-case)
‘minimax’ perspective (Basar & Bernhard, 2008).

A few recent works adopt an online learning approach for distributed control: Chang & Shahrampour
(2023b;a) study a distributed online control problem over a multi-agent network of m identical linear
systems, where each agent seeks to compete with the best centralized control policy in hindsight. This
is fundamentally different from our setting, where we consider selfish strategic agents influencing
a single linear dynamical system, and where each agent attempts to minimize their own individual
cost. Ghai et al. (2022) propose a reduction from any standard regret minimizing control method
to a distributed algorithm implemented by several controllers, which is distinct from our setting of
multiple, strategically competing agents. Recently, Golowich et al. (2024) proposed an online control
approach for population dynamics where states are distributions in the simplex. We rather focus on
the case of a finite and discrete large number of agents and discuss the influence of the total number
of agents on individual regret.

Online convex optimization and online learning in time-varying games. Our regret analysis
uses tools from online learning with memory (Anava et al., 2015; Kumar et al., 2023). Some of our
results relate to the active research area of online learning in time-varying games (Cardoso et al.,
2019; Duvocelle et al., 2023; Mertikopoulos & Staudigl, 2021; Fiez et al., 2021; Zhang et al., 2022a;
Anagnostides et al., 2023; Feng et al., 2023; Yan et al., 2023b; Meng & Liu, 2024; Taha et al., 2024;
Fujimoto et al., 2024; 2025; Crippa et al., 2025). However, these works do not address our multi-agent
online control setting where time-varying costs depend on an underlying (LDS) with coupled state
dynamics subject to adversarial disturbances.

2 PROBLEM FORMULATION: MULTI-AGENT ONLINE CONTROL

In this section, we formally introduce the multi-agent control setting over a finite time horizon 7'.
The state process evolves as a linear dynamical system

N .
xt+1=Axt+Zileiu;+wt, t=0,---,T—1, (LDS)

where z; € R9 is the state of the system initialized at a given (possibly random) state z, ui € R¥:
is the control of agent i € [N] := {1,--- N}, w; € R? is an arbitrary system disturbance
and A € R¥*? B; € R4**: are the system transition matrices defining the linear dynamical system.

2.1 ONLINE SETTING AND FEEDBACK MODELS

We consider the following online setting: at each time step ¢, all NV agents observe the state z; of
the system. Then, each agent i € [N] selects a control input u! € R¥: and incurs a loss ¢t (¢, ul),
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where ¢} : R x RF* — R is an adversarially chosen cost function. Finally, the system transitions to
the next state according to the dynamics (LDS). The goal of each agent ¢ is to minimize their own
cumulative cost over 7" rounds.

We assume that each agent i € [N] knows the dynamics (A, B;). For each i € [N], the cost
function ¢} is only locally accessible to agent i. The perturbation sequence {wy} is a priori unknown
to agents. Moreover, we distinguish between the following two information settings:

Information Setting 1 (Independent Learning). Az each time step t, agent i € [N| observes only
the state x; (fully observable setting) and their own induced cost. In particular, agent i has no access
to the control inputs of other agents j # i .

In the literature on multi-agent reinforcement learning, Information Setting 1 is commonly referred
to as the independent learning setting (see, e.g., Daskalakis et al. (2020); Ozdaglar et al. (2021);
Ding et al. (2022); Alatur et al. (2024)). We also consider a second setting where agents have access
to more information about the other interacting agents in the system. This additional information
revealed to every agent at each time step is naturally motivated by (LDS). Formally:

Information Setting 2 (Aggregated Control Learning). Az each time step t, agent i observes the
state xy and their own induced cost, as well as the aggregated feedback i Bju] that encodes
information about other agents’ control inputs. Each agent i knows the total number of agents N.

This stronger information setting is analogous to the standard setting of full-information feedback
(hindsight observability) in the literature of online learning in games. This setting allows a player
to evaluate their loss for any counterfactual action. Similarly, in our setting, observing the state and
aggregated control lets each agent reconstruct the disturbance and thus compute their counterfactual
loss for any alternative control they could have individually chosen, given others’ actions.

2.2 REGRET FRAMEWORK FOR MULTI-AGENT ONLINE CONTROL

In this section, we give a more formal definition of our performance metric for multi-agent online
control, inspired from both single-agent online control and online learning in games.

Individual policy regret. Since the system dynamics depend on unknown costs and possibly
adversarial perturbations, determining an optimal controller a priori is not possible in general.
Therefore, in contrast to classical and robust optimal control, we consider regret as a performance
measure, following the recent line of works on (single-agent) online non-stochastic control (Hazan
et al., 2020). For each agent i € [IN], consider a benchmark policy class IT; C {7 : X — U'} . Bach
agent ¢ runs their online control algorithm .4; to determine their control input u% = A;(x:), where z;
is the state of the system described by (LDS). For any 7' > H > 1, we define the regret of agent ¢
w.r.t. policy class II; when agent ¢ runs algorithm .4; and other agents use controls {u; ‘} as follows:

. T . . T . ;
H:T — . K3 7
Reg/"™ (Ai {uy "} ) = max (Zt_H cilwnup) = min 37 (] uf >> . @

where W > 0 and 27, u are the counterfactual state and controls under the policy 7* for agent i:
ul = 7i(xT ), i = Az} + Bjuj + Zj# Bju] + wy . 3

The counterfactual state sequence corresponds to the state sequence that would be observed if agent @
were to unilaterally deviate to using policy 7%, instead of their online control algorithm .A; (and where
all other agents stick to their online control input sequence). Note that when N = 1, expression (2)
recovers the regret definition for single-agent online control.

In this work, we consider two natural policy comparator classes, which we introduce as follows:

Comparator policy class 1: Strongly stable linear controllers (II'"). For agent i, a linear
controller is defined by a matrix K; € RF*?4 st vl = —K,;x;. We say that a linear policy K;
is stable if p(A — BK;) < 1 (where p(-) denotes the spectral radius), in which case the closed-
loop state-feedback linear dynamical system is globally asymptotically stable. Strong stability of a
controller is a quantitative version of stability which allows for deriving non-asymptotic guarantees.
Definition 2.1 (Strong stability, e.g. Cohen et al. (2018)). A linear policy K is (k,y)-strongly stable
(for kK > 0 and 0 < v < 1) for a linear dynamical system specified by (A, B) if || K|| < & and if
there exists matrices L, Q s.t. A — BK = QLQ ! with |L|| <1 —v,and |Q] - |Q7}|| < k.
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Note that strong stability implies stability, and any stable policy is strongly-stable for some (x,7). A
natural policy comparator class is that of strongly stable linear controllers IIi", parameterized by:

K= {KZ- € R*¥*? . K; is (k;,y;)-strongly stable for some x; > 0,; € (0, 1)} ) 4

Comparator policy class 2: Disturbance Action Controller (DAC) policies (H?AC). The state
sequence induced by a linear controller is not a linear function of its parameters. As a consequence,
the induced cost is non-convex in the control parameters in general, even if the cost function is
convex in both the state and the control input (see, e.g., Fazel et al. (2018)). Following prior work in
single-agent control, we consider Disturbance Action Controller (DAC) policies. The system state
induced by such policies is /inear in the policy parameters and one can invoke tools from online
convex optimization when the cost functions are convex in the state and control input. For a sequence
of perturbations {w;}, a DAC policy 7¢(M;, K;) for agent i € [N] is then specified by learnable

matrix parameters M; = [Mi[o], M .[1], - M [H_l}] for a memory length H > 1, with a fixed given

3 ?

stabilizing controller K;. The policy wi(Mi, K;) selects action u; at a state x; as:

. H
_ [p—1] ;
ul = — Kz + Zp:1 MP . (DAC-7)
Note that for p < 0 we let w, = 0, and moreover, the perturbations w; are not observed by the
learners but rather computed online using the structure of (LDS) and the state observations (we
discuss these points later). The policy can thus be implemented in an online fashion by agent ¢,

and we henceforth use the notation M; , = [M, i[ﬁ]]ogpg H—1 to reference the parameters of player ¢
at time ¢. For a fixed H and stabilizing controller K, let M; = {Mz = {Mi[o], e ,Mi[H_l]} :

HMi[p_l] | <2k%(1—~)P,p=1,---, H} denote the set of all DAC policy parameters for agent i,
where (k, ) are strong stability parameters of K; (with (k,v) = (k;,;) under Assumption 3 in
information setting 1 and (x,y) = (%,7) under Assumption 4 in information setting 2).

3 INDIVIDUAL REGRET GUARANTEES

In this section, we present our results on individual regret guarantees. We analyze an Online
Gradient Perturbation Controller algorithm, where each agent independently updates its DAC policy
parameters via online gradient descent (Algorithm 1). In the single-agent setting (N = 1), this
algorithm was introduced and analyzed by Agarwal et al. (2019). In our decentralized multi-agent
setting, the coupling of state dynamics across all agents induces new obstacles to implementing and
analyzing this gradient-based approach. We elaborate first on the computational challenge:

Memory. The cost ci(z¢, ut) incurred by agent i € [IV] at time step ¢ depends on the state x; of the
system, which itself depends on all past states and control inputs from ¢ = 0. However, to run the
online gradient descent subroutine of Algorithm 1, agent i must be able to evaluate its cost function c!
on counterfactual state-action pairs. Unlike the single-agent case, counterfactual evaluation here
depends not only on the agent’s own past controls but also on the entire joint sequence of other agents’
controls. This dependence breaks the straightforward counterfactual construction of the single-agent
setting and requires a new memory-based approximation tailored to the multi-agent coupling.

Focusing on agent i’s perspective, suppose all other players use a given sequence of control in-
puts {u; '} . Let 25 (M, u;*) denote the (counterfactual) state reached by the system if agent i
were to execute a DAC-i policy m;(M;, K;) with parameters M; and fixed matrix K; for all time
steps from time zero. Evaluating the induced cost would require computations that scale linearly with
time. Thus, for computational efficiency we endow agent ¢ with a memory of length H that scales
polylogarithmically with the time horizon 7" and that will be carefully tuned to obtain our results. We
denote by ytK (M) the ideal state of the system that would have been reached if agent ¢ played the
DAC-i policy 7 (M;, K;) from time ¢ — H to t, assuming that the state at time ¢ — H is zero, and while
other agents use the control sequence {u, ', } . The idealized action to be executed at time ¢ at the
state 3¢ (M;) observed at time ¢ is denoted by vi™* (M) = —K;yX (M;) + Zle Mi[p_l]wt,p .
Let £i(M;) = ¢ (yXi (M;), v (M;)) be agent i’s idealized cost function evaluated at the idealized
state and action pair. The latter constitutes the counterfactual convex loss sequence for agent ¢ that
can be evaluated efficiently, as in Algorithm 1.
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Algorithm variants. Depending on the information setting (Settings 1 and 2), we define two variants
of Algorithm 1, each described from the perspective of a fixed agent ¢« € [N]. These variants capture
different levels of feedback and are essential for obtaining our regret guarantees.

Algorithm 1 Online Gradient Perturbation Controller Algorithm (for agent i € [IN])
[0 H—1]

: Input: memory H, step size 7, initialization M,

2 Compute a stabilizing linear controller K; knowmg (A B)).
sfort=1...T do
4: Observe state T .

5:
/Update under Info. Settingl: /Update under Info. Setting2:
Compute w;_1 = x; — Azy_1 — Biul_. Observe Z#i Bju]_ .
Setu! = —K;x; + Z M[p]wt - Compute w;_1 = oy — Axy_1 — Zﬁzl Brul .

Set ul = KactJrZ Mp]wt_p.

6:  Record instantaneous cost ci(x¢, ul)

7: Construct loss £i(M;) = ci(y (M), vl ™ (M)).

8: Update Mi,t+1 = HMZ {Mi,t - nVﬁt( i,t)]

9: end for

Standing Assumptions. Finally, before introducing our regret guarantees, we present our standing
assumptions, all standard in the recent literature on online non-stochastic control:

Assumption 1 (Cost functions). The following assumptions hold for every i € [N]:
(i) The cost function ci : X x U; — R is convex w.r.t. both its arguments.

(ii) There exists 3,G > 0 s.t. forany D > 0 and every (z,u’) € X xU; s.t. ||z| < D, ||u’|| < D,
we have |ci(z,u)| < BD? and ||V ci(x,u?)||, | Vyci(z,u))|| < GD.

Lemma 3.1. Under Assumption 1, the loss function (: is convex w.r.t. M; for all i € [N].

Assumption 2 (Bounded disturbances). There exists W > 0 s.t. forallt > 0, [w]| < W.

3.1 INFORMATION SETTING |: INDEPENDENT LEARNING

Under Information Setting 1, agents do not have access to other agents’ control inputs. However,
from the viewpoint of a given agent ¢, we observe that (LDS) can be re-expressed as follows:

T = Azy + Biug + @, W = Zj# Bjuj +w; . ®)

In this view, in Algorithm 1, we naturally propose that agent 7 executes a (DAC-7) policy with
disturbance sequence w;. Given expression (5), note that w; (unlike w;) can be calculated by agent ¢
at each time step since wy = w111 — Azy — B; ui, and this computation only involves information
observed under the information setting (state observations and the agent’s own control input). Under
this strategy, agent ¢ thus faces a linear dynamical system (5) controlled by its own, single control
inputs, and for this we make a standard strong stability assumption adapted to the multi-agent setting:

Assumption 3 (Agent-wise strong stability). Each learner i € [N] knows a linear controller K; that
is (k;, i )-strongly stable for the linear dynamical system specified by (A, B;).

Under this assumption, we present our first individual regret guarantees.
Theorem 3.2 (Individual Regret in Setting 1, Independent Learning). Ler Assumptions 1, 2

and 3 hold. Suppose there exists U > 0 s.t. forallt > 0,7 € [N],|[ul|| < U. If agent i € [N]
runs Algorithm I under Setting 1 with (DAC-i) policy on perturbation sequence {w;} and step size

= @(1/(GVV/\/T)), where W = W + (N -1)U( 1), and with H > log(x;T) /v, then
forany T > H + 1, we have Reg? 11 (A;, {u; '}, Ii") = O(U2N?VT)".

'For readability, here and throughout, we use O to hide polynomial factors in natural problem parameters
and (poly)logarithmic factors in 7" and N. We state the exact dependencies in the proofs of each result.
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The proof of Theorem 3.2 consists of applying the single-agent regret guarantee for gradient per-
turbation controllers (Agarwal et al., 2019, Theorem 5.1) for each agent ¢ on the new perturbation
sequence {w;} in (5), and we give the full details in Section E. While the theorem highlights the
robustness of gradient perturbation controllers to adversarial disturbances in this setting, the regret
bound grows quadratically with both the number of agents N and the magnitude U of the control
inputs. In the multi-agent setting, this scaling reflects the price of decentralization and indicates how
performance can degrade when the number of agents in the system grows large.

Regret lower bound. In light of the regret guarantee of Theorem 3.2, it is also natural to ask whether
the v/T dependence on the time horizon can be improved. In general, we prove that the answer is no.

In particular, for any agent i € [N], we establish the following (v/T) lower bound against the class
of linear controllers that holds independently of the agent’s algorithm A;:

Theorem 3.3. For any agent i € [N, there exists an instance of (LDS) and cost functions {ct} such
that, for any algorithm A; and sequence {u;"'}, and any T > 1: Reg! (A;, {u; '}, TIi") = Q(V/T).

To prove the theorem, we construct a scalar-valued instance of (LDS) and a hard sequence of cost
functions {ci} inspired by lower bounds for (single-agent) online linear optimization (see, e.g., Arora
et al. (2012)). Importantly, we note that such (/T) lower bounds from online learning cannot be
directly applied, as the incurred cost of the agent and the incurred cost of a comparator policy depend
on different state evolution sequences. However, Theorem 3.3 implies that, due to the (possibly
adversarially) time-varying nature of the cost sequence {c:}, the individual regret of an agent in the
present setting must in general have the same dependence on 7" as in adversarial online learning. The
proof is developed in Section H.

3.2 INFORMATION SETTING 2: AGGREGATED CONTROL LEARNING

While the lower bound of Theorem 3.3 implies that a /7" dependence can not, in general, be improved
upon, the regret in Theorem 3.2 under Setting 1 scales quadratically with the number of agents. In this
section, we consider Information Setting 2 and analyze the case in which all agents run DAC policies.
Under a global assumption on the resulting dynamical system, we prove that we can guarantee an
individual regret bound with an improved dependence on the total number of agents N. We first
make our global assumption which shall replace Assumption 3 in this section.

Assumption 4 (Global strong stability). Each learner i € [N] knows a linear controller K; such
that (Ky,--- ,Kn)7T is (R,7)-strongly stable for the LDS (A, [By,--- , By]).

Assumption 4 is a natural global assumption which is relevant when each agent ¢ executes a (DAC-7)
policy (with matrix K;). Indeed, observe that the system state evolution of (LDS) in the absence
of disturbances, and when all players use their linear controllers, can be written as x; 11 = Ax; —
[Bi,--+,By](K1, -+, Ky)T2;. Bach agent i has access to the global parameters 7,4 which can
be centrally precomputed before each agent runs their Algorithm | independently. Recall that the
matrices K; are not learning parameters and need to be precomputed even in the independent learning
setting. Only the matrix parameters M; of (DAC-:) policies are learned by the agents.

Under Setting 2, all agents can compute the original disturbance w; at each time step (instead of (w;)
as in Theorem 3.2). However, note that at every timestep ¢, each agent updates their own policy
parameters independently and locally in an uncoupled fashion, without access to other agent’s policy
parameters at that round. After acting, each agent first incurs the loss according to their individual
cost function, and then observes the aggregated feedback. This feedback is used to inform their next
policy parameter update at round ¢ + 1.

Our next result shows that when agent 7 runs Algorithm 1 with (a) a conservative stepsize scaled by
N and (b) a larger memory which depends logarithmically on /N (compared to Theorem 3.2), they
guarantee a regret w.r.t. the DAC policy class scaling only linearly in N (not quadratically) . This
result is also robust to other agents’ strategies (as they can execute arbitrary (DAC-7) policies).

Theorem 3.4 (Individual Regret in Setting 2). Ler Assumptions 1, 2, 4 hold. Then if agent i € [N
runs Algorithm I under Setting 2 with a (DAC-i) policy on perturbation sequence {w;}, step size n =
O(1/N/T), and with H > log(2&N>\/T) /7, and when all other agents use a (DAC-i) policy with
perturbation sequence (w;), then for any T > H + 1: Reg ™V (A;, {u; '}, TIPAC) = O(NVT).

K2
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Proof Overview. To prove the theorem, our analysis relies on a regret decomposition with two
main terms: a counterfactual state-control error due to the use of a loss with limited memory H,
and a regret term induced by the online gradient descent component of Algorithm 1. In summary,
the main technical challenges we overcome are two-fold: first, states may grow unbounded with an
undesirable scaling in /V, and thus we control their magnitude by studying the state evolution when
all agents use DAC policies (using Assumption 4), and while tracking the dependence on N. Second,
we control both terms of the regret decomposition by carefully selecting the memory H, and with an
adequate step size 1 (optimal in terms of V). We present the full proof details in Appendix F.

We also remark that the linear dependence on N in the regret bound is enabled by global stability
(Assumption 4). By contrast, if only individual stability (Assumption 3) is assumed, even when agents
can access aggregated control information, the dependence on NV deteriorates (see Appendix C.3 for a
discussion). Moreover, under a stronger assumption on the cost functions (compared to Assumption 1-
(i1)), we further prove a sublinear regret for agent ¢ that scales only polylogarithmically in N:

Assumption 5 (Lipschitz costs). There exists E > 0s.t. for any agent i € [N] and for all state-control
pairs (z,u'), (Z,0") € X x U;, |ci(z,u") — (T, a")] < L(||lx — Z|| + |lu* — a@*|]).

Note here that the Lipschitz constant does not scale with the state and control input magnitude. Under
this assumption, we further obtain the following improved regret guarantee (proven in Appendix F):

Theorem 3.5. Under the setting of Theorem 3.4, replace gradient boundedness in Assumption 1 -(ii)
by Assumption 5. Set instead n = ©(1/v/T) and H > log(2:N~/T) /7. Then for any T > H + 1:
Reg;" " (A;, {u '}, 1IPAC) = O(VT).

Note that using Assumption 5 in Theorem 3.2 does not result in the same improved dependence on N
as the regret will still scale with the magnitude of the modified disturbance w;, which is of order V.
Finally, in Appendix H.2 we also show that the regret lower bound of Theorem 3.3 can be extended to
hold against the DAC comparator class when the linear controller component is chosen adversarially.
We state and prove this result formally in Theorem H.3 in Section H.2.

4 EQUILIBRIUM TRACKING IN THE COMMON INTEREST SETTING

In the previous section, we developed individual regret guarantees when other agents execute linear or
DAC control policies with possibly misaligned or adversarially-chosen cost functions. In this section,
we focus on the common interest setting, where the objectives of the agents are aligned and all cost
functions are identical (i.e., ¢i = ¢] := ¢, for any i,j € [N] for every t). Our goal is to establish
global equilibrium guarantees when all agents simultaneously and independently run Algorithm 1.

Since the cost functions are time-varying (not only via the strategies of the different players), our
multi-agent control problem can be seen as a time-varying game. There have been considerable
efforts endeavoring to extend the scope of traditional game-theoretic results to the time-varying
setting and this is an active research area (see the related work in Section 1). In particular, our results
in this section are inspired from recent developments for time-varying, normal-form, finite potential
games in Anagnostides et al. (2023). In such games, agents participate in a potential game at each
time step. We observe that the common interest multi-agent control problem can be seen as a stateful,
time-varying potential continuous convex game where costs are functions of states driven by an
underlying (LDS) influenced by multiple controllers. At each time step, the utility of each player is
given by their cost function, and their strategy is defined by their DAC policy parameters.

Since our setting involves adversarial, time-varying costs depending on state dynamics influenced
by adversarial (time-varying) disturbances, convergence to (static) Nash equilibria is irrelevant in
general. Nevertheless, we establish equilibrium gap tracking guarantees for our dynamic setting. To
state our result, we introduce notations for time-varying best responses and equilibrium gaps:

(®) . : . ®
BR"(M i) 1= max €(My) = (o(My, My ); EQGAPY (M) := max BR; (M_i4), (6)
where, as previously defined, ¢i(M;) = €i(M;—1_p.) = iy (My—1_m.4—1), vi’K(Mt_l_H:t))
and K = (K1, -+, Kx) . Note that the equilibrium gap explicitly depends on time (as indicated by
its superscript()) due to the time dependence of the cost function and the disturbance sequence. We
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now make regularity assumptions on the common cost function ¢; which are standard in the analysis
of gradient methods in both optimization and learning in games.

Assumption 6 (Uniform cost lower bound). The cost function ¢; : X x U — R is uniformly
lower-bounded, i.e. there exists cyyp > 0 s.t. forallz € X, u € U,t > 1, ¢ci(x,u) > cipg > —00.

Assumption 7 (Smoothness). There exists ( > 0 s.t. the cost function ¢; : X x U — R satisfies for
everyt > 0andany x,2' € X, u,u' € U,

IVec(z,u) = Vace(a, o) | + [[Vuer(@,u) = Vue (@', )| < (o — 2| + [lu = a[l) . (7)

Under these assumptions, when all agents run Algorithm 1, we bound the average equilibrium gap by
the variation of both cost functions and disturbances.

Theorem 4.1. Let Assumptions 1, 2, 4, 6 and 7 hold. Then if each agent i € [N| runs Algorithm 1
Sor T steps with constant stepsize 1 = 1/ L (where L is the smoothness constant in Lemma 1.5), then

1ZT:(EQGAP(”(M))2—O MJFEXT:A +12T:H [ 8)
T t=1 ' - T T t=1 - T t=1 wt+1 o 7

where Ac, := Max|g|| |u<piCt+1(2,u) — ci(x,u)} for every t, the O(-) notation only hides
polynomial dependence in the problem parameters N, H, W, k,5~ ', max; || B;|| and D depends
polynomially on the same constants. All the constants are made explicit in the appendix.

In a static setting, with time-independent costs in the absence of disturbances (w; = 0 or constant),
Theorem 4.1 translates into the existence of a time step t < T s.t. the joint DAC policy M, is
an e-approximate Nash equilibrium of the game induced by the loss functions ¢*,i € [N] after T
iterations (typically 7' = O(1/€?) for a O(1/T) rate). In this static case, the cumulative equilibrium
gap is bounded by the initial cost optimality gap. If both the cost variability term and the cumulative
variation in perturbations Zle |lwes1 — we || are uniformly bounded by a constant, then the theorem
results in a O(1/T) rate in terms of the average equilibrium gap squared. For example, this is clearly
the case when the noise sequence w, converges towards a (not-necessarily vanishing) constant. If we

only have Zthl |lwir1 — we]| = o(T), then we still obtain a vanishing average equilibrium gap.

Proof Overview. To prove the theorem, we extend the approach of Anagnostides et al. (2023) (who
considered time-varying (finite) normal-form potential games) to (a) cover (continuous) convex games
and (b) account for state dynamics and adversarial disturbances in addition to the time-varying costs
in our multi-agent control setting. We give an overview and details of the full proof in Appendix I.

5 CONCLUSION AND FUTURE WORK

This work initiates and makes progress on online multi-agent control in strategic environments subject
to adversarial disturbances, taking a first step toward bridging online control with learning in games.
In particular, we proved the first individual regret and global equilibrium tracking guarantees in the
online multi-agent control setting with adversarial disturbances and time-varying costs.

Our results also open several directions for future research: on the technical side, it is interesting to
investigate whether tighter regret bounds can be obtained with respect to the number of agents or
under structural assumptions such as time-invariant costs. On the modeling side, important challenges
include extending our analysis to settings with unknown or time-varying dynamics (Hazan et al.,
2020; Minasyan et al., 2021; Gradu et al., 2023) and to feedback-limited regimes (Yan et al., 2023a),
where learners can only access partially observed states and partially informed bandit costs. A broader
challenge is to design decentralized multi-agent controllers that remain robust under adversarial
disturbances beyond linear state dynamics. In conclusion, we view our work as a first step toward
further advances at the interface of online control and learning in games in dynamical strategic
environments.
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A EXTENDED RELATED WORK DISCUSSION

Online non-stochastic control. Our work builds on a recent and growing line of research focusing
on the use of online learning techniques to address control problems with adversarially perturbed
dynamical systems (Hardt et al., 2018; Abbasi-Yadkori & Szepesvari, 2011; Agarwal et al., 2019;
Hazan et al., 2020; Foster & Simchowitz, 2020; Simchowitz et al., 2020; Simchowitz, 2020; Gradu
et al., 2020; Ghai et al., 2023; Martin et al., 2024). We refer the reader to a nice introduction to
the topic in the recent monograph of Hazan & Singh (2025) and the references therein for a survey.
Recent follow-up works include studies on dynamic regret for online tracking (Tsiamis et al., 2024),
performative control (Cai et al., 2024), online control in population dynamics (Golowich et al.,
2024; Lu et al., 2025), simultaneous system identification and MPC with regret guarantees (Zhou &
Tzoumas, 2024), online RL (Muehlebach et al., 2025; Ghai et al., 2023), partial feedback settings
(Yan et al., 2023a) and bandit settings Sun & Lu (2024) to name a few. Most of the works in this line
of research are devoted to the control of linear dynamical systems influenced by a single controller.
We discuss a few exceptions in the next section.

Multi-agent control. The interface between game theory and control has given rise to a large body of
work over the last decades to study settings involving multiple interacting controllers, see e.g. Marden
& Shamma (2015; 2018); Chen & Ren (2019) for relevant surveys. Within the game-theoretic control
literature, linear-quadratic (LQ) games is one of the canonical benchmark problems which has been
studied in a variety of settings including LQ differential games (Basar & Olsder, 1998, Chap. 6),
LQ potential games (Mazalov et al., 2017; Hosseinirad et al., 2023), zero-sum LQ games (Zhang
etal., 2019; Bu et al., 2019; Zhang et al., 2021; Wu et al., 2023), static two-player quadratic games
(Calderone & Oishi, 2024) and general-sum LQ games (uz Zaman et al., 2024; Mazumdar et al.,
2020; Hambly et al., 2023; Chiu et al., 2024; Guan et al., 2024). Some of these works typically
consider the same (LDS) and assume quadratic costs for systems which are either deterministic
(w¢ = 0) or perturbed by a noise sequence {w; } which is i.i.d. Gaussian. In particular they do not
adopt the online learning perspective and do not address the case of arbitrary disturbances. Classical
approaches to design robust controllers in the optimal control literature rely either on using statistical
and probabilistic models for disturbances such as for linear quadratic Gaussian design, or adopting
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a (worst-case) game theoretic perspective via designing ‘minimax’ controllers like in H, control
(Basar & Bernhard, 2008). Only few recent works adopt an online learning perspective for distributed
control (Ghai et al., 2022; Chang & Shahrampour, 2023b;a; Martinelli et al., 2024). Chang &
Shahrampour (2023b;a) studied a distributed online control problem over a multi-agent network of m
identical linear time-invariant systems in the presence of adversarial perturbations. Each agent seeks
to generate a control sequence that can compete with the best centralized control policy in hindsight.
In contrast, we address a multi-agent setting involving strategic agents influencing a single linear
dynamical system. Our state dynamics are not separable and are influenced by all the agents. The
cost of each agent in our model is influenced by the (shared) observed state which is governed by all
the agents’ control inputs and the goal of each agent is to maximize their own individual cost.

Markov Games. Regret bounds have been previously established for discrete finite Markov games.
Our multi-agent linear control setting can be seen as a continuous analog to Markov games. However,
note that our linear dynamical system is fundamentally different from the usual Markov game
(or stochastic game) setting involving an unknown state transition kernel outputting the next state
probability distribution as a function of the current state and the (joint) actions of all players. When
considering multi-agent potential games, there are three important distinctions with existing works
on Markov potential games (e.g. Leonardos et al. (2022); Zhang et al. (2024); Ding et al. (2022);
Zhang et al. (2022b); Sun et al. (2023)):

* In our work, the state and action spaces are continuous and are not mixed extensions of finite sets of
states and actions. Most of the bounds scale with the cardinality of the action spaces of the players
and are therefore vacuous in our continuous action space setting. In addition, our results use a
suitable control policy for the linear dynamical system setting. The softmax policy used in e.g.
Zhang et al. (2022b); Sun et al. (2023) is not immediately suitable for the continuous case, unless
one puts a parametric probability distribution assumption on the disturbance sequence, which we
want to avoid in order to consider adversarial disturbances.

* Our results consider adversarial disturbances, and hence the state transitions of the underlying
system may not even be Markovian or stochastic, the disturbances can be chosen adversarially
depending on the far past.

* Our work considers cost functions that are time-varying, which is in contrast with the standard
fixed reward setting in the mentioned Markov potential games works. We also do not consider
discounted rewards, and the potential assumption we use is with respect to the cost function itself,
and not on the aggregate cost over a time horizon.

B EXAMPLES

B.1 DESCRIPTION

We provide a few concrete examples to illustrate our multi-agent control setting.

(a) Smart grid markets. In modern power grids, electricity is generated and distributed by a mix
of independent energy producers such as traditional plants and renewable energy providers. These
actors act selfishly and adapt to market conditions while they also jointly influence the grid. Let
x4 be the grid state defined by characteristics such as line loads and aggregate reserves, let u} be
generator ¢’s power output decision (i.e. their control input) and let the sequence w; capture the
demand fluctuation, the system noise and/or renewable energy shocks. Then, the system dynamics
may evolve according to (LDS) (e.g. by linearization around an operating point). Each generator ¢
has their local cost function which accounts for the cost of production including e.g. fuel and a
penalty for deviating from a target grid state.

(b) Formation control. Consider a multi-agent system consisting of N vehicles or robots. The
state (position, velocity) and control input of each agent 7 at each time step ¢ are respectively given
by xi and u} . Suppose the (joint) state of the multi-agent system evolves according to (LDS). The
formation of the multi-agent system is defined by specifying a desired distance to be maintained over
time between the states of agents that are adjacent. The goal of each agent is to minimize their own
formation error and energy consumption. A similar formation control problem has been studied in the
control literature in the absence of adversarial perturbations (w; = 0) using differential games (see
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e.g. Aghajani & Doustmohammadi (2015); Han et al. (2019)) and discrete linear quadratic games
(Hosseinirad et al., 2023).

(c) Bioresource management. A set of firms (or countries) exploit a set of renewable resources (e.g.
a fish population) whose evolution is driven by (LDS) where 2; € R? denotes the vector of quantities
of d distinct resources, the matrix A encodes their natural growth rate, the control ui models the
exploitation rate of the firm ¢ and w; refers to perturbations due to exogenous factors such as weather
conditions. Each firm ¢ has the goal to maximize their profit while minimizing their exploitation cost.
See e.g. Mazalov et al. (2017) in the noiseless setting (w; = 0).

B.2 ABOUT ADVERSARIAL DISTURBANCES

In multi-agent systems, considering adversarial disturbances allows us to model a wide range of
realistic, worst-case, or strategically motivated perturbations ranging from strategic behavior in energy
markets to adversarial environments in robotics and ecological shocks in resource management,
ensuring system robustness even under hostile or extreme scenarios.

We provide below examples of adversarial disturbances in each of the examples described in sec-
tion B.1 above and comment on their importance:

* Smart grid markets: An adversarial disturbance could model sudden demand spikes, strategic
demand manipulation by large consumers (i.e. major electricity buyers who have significant
influence over the overall demand on the grid), malicious data injection attacks that falsify renewable
generation forecasts or misreporting. For instance, an actor might manipulate demand predictions
to influence market prices or grid loads in their favor.

* Formation control: Adversarial disturbances capture environmental disturbances with structured
worst-case behavior, such as wind gusts or magnetic interference that affect formations in potentially
harmful ways. It can also capture adversarial agents or spoofed sensor data to destabilize the forma-
tion. In hostile or uncertain environments (e.g., surveillance drones in contested airspace), agents
must maintain formation despite external influences that could intentionally disrupt coordination.

* Bioresource management: Adversarial disturbances may reflect deliberate misinformation about
resource levels, illegal over-harvesting by untracked actors, or policy shocks (e.g., sudden trade
bans) that drastically affect the resource dynamics in a harmful way. Robust resource management
must consider these disturbances to avoid collapse or irreversible damage.

C FURTHER DISCUSSION OF ASSUMPTIONS

C.1 ASSUMPTION 2

To the best of our knowledge, all prior works in the online control literature assume bounded
adversarial disturbances. It would be interesting to relax this assumption further to model other
scenarios involving catastrophic failures or highly irrational agents. As for the boundedness of the
control inputs, note that this property is automatically satisfied using the gradient-based controllers
considered via the projection of policy parameters.

C.2 ASSUMPTION 3

As is standard in prior work on single-agent online control, we assume that agents have initial access
to a stabilizing controller. Note that such controllers can be obtained offline using an SDP relaxation
(e.g., using the method of Cohen et al. (2018)). Our main focus is on the challenging task of learning
DAC policy parameters under adversarial disturbances.

C.3 ASSUMPTION 4

Global stability is a key property enabling the linear dependence on N in the regret bound. There are
two explanations for this depending on whether or not all agents in the population play DAC policies.

» First, without assuming the specific policies of other agents in the population, assume agent-wise
strong stability holds (Assumption 3) in the Aggregated Control learning setting. Then, agent ¢
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can locally compute the true disturbances and run their DAC policy w.r.t. this true disturbance
sequence. However, bounding the individual regret of agent ¢ requires controlling the magnitude of
the norm of the global state, and without any assumptions on the control policy of other agents,
their “contributions” to the state evolution can only crudely be treated as an “error” term. With
(N — 1) other agents in the population, the norm of the state will still scale linearly in IV in the
worst case resulting in an N2 dependence in the regret bound for agent 1.

* On the other hand, suppose we assume all agents in the population play DAC policies. While it
is possible to show that agent-wise strong stability (Assumption 3) implies global strong stability
(Assumption 4), the resulting parameters for global strong stability will depend on the number of
agents N (note that it is natural that local strong stability does not imply global strong stability with
the same constant parameter values, independently of V). Therefore, when applying the machinery
of the proof of Theorem 3.4 using the resulting global strong stability parameters (which depend
on N), the final regret bound will still have at least an N2 dependence.

D PREPARATORY RESULTS FOR THE MAIN PROOFS

D.1 NOTATION: COUNTERFACTUAL AND IDEALIZED STATES AND ACTIONS

We introduce a few useful notations in view of our regret analysis. We focus on agent 7’s viewpoint
and we suppose that other players are using a given sequence of control inputs {u; ‘} . We will not
highlight this dependence in the notation below to avoid overloaded notations as it will be clear from
the context.

» Counterfactual state and action: We use the notation xtK (M, 0:4—1) for the state reached by the
system by execution of the non-stationary policy m;(M; o.t—1, K;), and ui’Ki(Miyozt,l) is the
action executed at time ¢. If the same (stationary) policy M; is used by agent ¢ in all time steps, we
use the more compact notation =" (M;), uy’™* (M;). We use the notation 7 (0), ul"* (0) for the
linear control policy K .

* Ideal state and action: We denote by ytKh(Miyt, 1) the ideal state of the system that would
have been reached if agent ¢ played the non-stationary policy M; ; ., from time stept — H to ¢

assuming that the state at time ¢ — H is zero while other agents use the control sequence {u; ‘5., } .
The ideal action to be executed at time ¢ + 1 if the state observed at time ¢ + 1 is yzfl (M t—n:t)

will be denoted by v} (Mt rrie41) = —KiyiyS (Mie—pre) + Sony M Jweg . We use
the compact notations yz_:{l (M), vZﬁ (M;) when M; is constant across time steps ¢t — H to t.

o Ideal cost: Let (:(M; 4—1_p.4) = ci(yZK (Mit—1-m:t—1), UZ’Ki (M;t—1-p.t)) be agent i’s cost
function evaluated at the idealized state and action pair. Again we use the notation £;(M;) when
M; is constant across time steps ¢ — H to ¢. Importantly, for every agent ¢ € [N], the function
Kf; is a convex function of M;;_ g _1.; under assumption 1: This is because the cost function of
agent 7 is supposed to be convex w.r.t. both its arguments and both ideal state and action are
linear transformations of M; ;— 1.+ (see Lemma 3.1 and its proof). Introducing and using this
idealized cost which only involves the past H controllers brings us to online convex optimization
with memory (Anava et al., 2015).

D.2 STATE EVOLUTION

In view of our analysis, we describe first the state evolution under (LDS). We introduce first some
useful notations for any i € [N],t,h < t,l < H 4 h:

h
Ak, = A— BK;, W::?(Mi,t—h:t) = Al Licp + Z Al;(iBiMi[’l,;kk_l]llfke[l,H] : ©)
k=0
N h N
= - < < I—k—1
A :=A=Y BiK;, U} /(Mypy):i=Alich+ > AR> BM T e - (10)
=1 k=0 1=1
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Here, when player ¢ plays a DAC policy (DAC-i) and other players’ control inputs are given by {u; *},
the matrix A, describes the evolution of the state when agent ¢ executes the linear controller K; in
the absence of disturbances and other players, and \I/Z?(MM_ n:t) is the disturbance-state transfer
matrix for agent ¢ which will describe the influence of the perturbation term w;_; on the next
state x4 at time ¢ + 1. When all agents execute a DAC policy (DAC-i), the evolution of the state is
driven by the matrix Ax and the influence of the perturbation term w;_; on the next state x4 is
captured by the disturbance-state transfer matrix \I/f (M _p+). Using these notations we have the
following result describing the evolution of the states under (LDS) extending the single-agent result
of Agarwal et al. (2019) (Lemma 4.3).

Proposition D.1. (State evolution) Suppose all agents but i € [N] select their actions according to

the sequence of control inputs {u; '} then for every time t and every h > 0, if agent i € [N] executes
a non-stationary DAC policy m;(M, 0.7, K;), the state of the system (LDS) is as follows:

(i) Under Setting 1, i.e. with perturbation sequence W; := w; + Zj# Bjui_,,

H+h
oo = A+ D WP (M )iy - (11)
=0

(ii) Under Setting 2, if in addition all the agents execute a DAC policy using the sequence {w;},

H+h

Tyl = A}I?letfh + Z @Zl(Mtfh:t)wtfl . (12)
=0

This result follows from unrolling the state dynamics for A steps, injecting the DAC policy for
agent ¢ (or all agents depending on the setting) and rewriting the state evolution to highlight the
linear dependence of the state on the previous disturbances. We defer a complete constructive

proof to Appendix D.2. Importantly, notice that \I!z? and \Tl? ; are linear in the h + 1 DAC policy
parameters M, ;_p.¢,7 € [N].

Proof. We prove the two claims of the Proposition separately:

Proof of Claim (i). The proof of the first part of the statement under Setting 1 is a direct application
of the known single-agent result (Agarwal et al., 2019, Lemma 4.3) with the new disturbance
sequence {w; } rather than the original disturbance sequence {w;} defining (LDS).

Proof of Claim (ii). We provide a full constructive proof which clarifies how we obtain our final
state evolution expression. Observe first that

N
T = Azy + Z Biui + wy (using (LDS))
i=1
N H
= Ax; + Z B; (Kixt + Z Mi[ﬁ_l]wf—P> + wy (using non-stat.(DAC-7))
i=1 p=1

N N H
= (A — ZBZK’L> Tt + (Bl ZMi[z_l]wtp> + Wt 9
=1 %

=1 p=1
= Ak + @) s (13)

where we define: @Y := Zf\; (Bi Zle Mi[ﬁ_l]wt_p) + w, . Expanding again the state z, yields:

T4 = Agmy + @) (see (13))
N H
= Ag (Ath1 + Z (Bi Z Mi[ﬁ:ll]wtlp> + wt1> + @2 (same steps as in (13))
i=1 p=1
= A1+ B+ B (14)
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where we define for every k = 0,--- , h:

oF L= A’;(Z (B ZM[” PRI p> + AR w; (15)

where we note for precision that the last term is not in the sum over . Unrolling the recursion (14)

for h steps yields
h

qh+1 <k
v = Al + ) @, (16)
k=0
It now remains to rewrite the second term in the above expression:

> i Z (Z B; Z M ) wi_p—p + Ay, (using definition (15))
H+h h B N ~
— <Z A’;( (Z Ble[,ltkkl]> 1l,k€[1’H]wt,l + A],“(wtk)

i=1
(index change I = k +p,0 <k < h,1 <p < H)

H+h
_ Z (AKll<h + Z A Z B; M 1z kell, H]> Wiy (simplifying 1st term)
H+h
= Z U (My—pi)we—s - (using definition of W}'; in (10)) .
(17)
O]

D.3 TRANSFER MATRIX BOUND

In view of our regret analysis, it will be useful to bound the norm of the states and actions. Given the
expression of the state evolution shown in Proposition D.1-(ii), we will need to bound the norm of the
state transfer matrix. This is the purpose of the next lemma which is similar to (Agarwal et al., 2019,
Lemma 5.4).> However, our transfer matrix which is induced by all agents playing DAC-i policies is
different from their single-agent counterpart.

Lemma D.2. Let the global strong stability assumption 4 hold, i.e. suppose that K =
(Ky,- ,Kn)T is ( ,7)-strongly stable for (A,[B1,--- ,Bn]). Let M, be a sequence s.t. for

all t,p € {0,--- — 1} [IM (v} || < 7(1 — %)P where T is some positive constant. Then for all
t> l,hgtandl §H+h wehave

N
1% (M) || < R(1 =)' Licy + HRT <Z ||Bz'||> (1=t (18)

=1

Proof. Recall the definition of \Tlf ; from (10):

h N
- - = I—k—
U (My—pet) o= A Licn + 3 AR B 1 e (19)
k=0 i=1
Using strong stability of K (see definition 2.1), there exists matrices L,Q st. Ax = A —
SN BiK; = QLQ " with ||[L] < 1 -4, and ||Q|| - ||Q || < &. Therefore using the sub-
multiplicativity of the norm we obtain for every [ =0, - - - , ¢,

1Ak = QL™ = 1QL'Q™ | < QI - IQ™ I - I L)' < R(1 =)' (20)

Note here that our powers of « are slightly different because we stick to the definition of (K, 7)-strong
stability introduced in Cohen et al. (2018) rather than the one later used in Agarwal et al. (2019) which is slightly
different, this is without any loss of generality.
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Therefore, we can bound the norm of the state transfer matrix in (19) as follows:

h N
= T T I—k—1
192 (M)l < AR i< + D NARN S 1Bl - 105 mrem
k=0

i=1

N h
<R =)" - Lcn+RTY Bl Y (1 =30 =9)"""" ke m
i1 k=0

N
<R(1='Licy + HR7 (Z ||Bi||> 1-9, @1
i=1
where the second inequality stems from using strong stability (see (20)) and the assumed
bound ||Mi[”;] | <7(1—=#%)?forp € {0,---, H—1}. As for the last inequality, observe after simplifi-
cation that the summand does not depend on the index k of the sum apart from the indicator function
and there are at most H terms in the sum (sincel — H <k <l—1lasl—ke {l,--- ,H}). O

D.4 STATE, ACTION AND DIFFERENCE OF STATE AND ACTION BOUNDS

The goal of the next proposition is to control the norms of states, actions and differences of states
and actions. Note that we pay particular attention to the problem constants involved to elucidate the
dependence of our bounds on the number of agents N and the magnitude of the control inputs of
all the agents. The result is a more refined version of (Agarwal et al., 2019, Lemma 5.5) which is
adapted to our multi-agent control setting when each agent executes a (DAC-7) policy.

Proposition D.3. Let Assumption 4 hold. Let the perturbation sequence {w;} in (LDS) satisfy
Assumption 2. Let M; ; be a sequence s.t. for any time step t, forp € {0,--- ,H — 1}, ||Ml[pt] | <
T7(1 — )? for some T > 0. Let K = (K3,--- ,Kn),K = (KY,--- ,Kjy) be s.t. K and K* are
two (R, 7)-strongly stable matrices. Then the following holds:

(i) State under (DAC-1): Foreveryt > H + 1,

W rHEL (B o)

K
|zt (Mo.i—1)] < 1= R(1—5)A+

2| =

(ii) Ideal state under (DAC-i): For everyt > H + 1,
N

w <1+THZ||BZ-II> . (23)
i=1

(iii) Linear controller state: For everyt > 0, ||z (0)| <

Iyt (My—1—mz—1)|l <

2| =

AW,
5
(iv) Action under (DAC-i): Foreveryt > H + 1,
N
2 WQ+rHYL ||Bil)

i K K T
(M. < —. -W. 24
llug™ (Mo:)|| < 5 1—R/(1—7)H+ + 5 (24)
(v) Ideal action under (DAC-i): Foreveryt > H + 1,
o™ (Mes-a) | < W (1 +THY |Bi> W (25)
i=1

(vi) State vs. ideal state comparison: For everyt > H + 1,

2 WA+ THYN |Bi)

K K —\H
[z (Mo:t—1) =y (M1 )| < (1=7) 5T ISR ) (26)
(vii) Action vs ideal action comparison: For everyt > H + 1,
; ; B W+ rHYY B
b (M) = (M) < (1 =y e TR IBD )

7T IR
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(viii) Moreover, given all the above bounds, if H +1 > @ (where Kk > 1 without loss of
generality), then we have the following simultaneous bounds:

g {1l Mou) |,y Msaemre-) | |2 @)} <D, 28)

IN

max {HU?K(MO:t)||>||U§’K(Mt717H:t)||} D, (29)

t>H+1

max {2 (Mo-1) =y (Mool ™ (Moa) =0 (Miaom) |} < (1=9)7D.
- (30)

where the constant D is defined as follows as a function of the problem parameters:

673 al
D:i=—W|1+&HY |Bi |- (31)

v i=1

Note in particular that D = O(N) where the notation O(-) here hides all other constants which are
independent of the number N of agents.

Proof. We prove each one of the statements of the proposition separately.
Proof of Claim (i). Using Proposition D.1-(ii) at time step ¢ — 1 with h = H, we have

2H

o (Mos—1) = A ey g (Mog—a—p) + U7 j(My_y 1) w11 (32)
1=0

It follows from using the boundedness of the perturbation sequence {w;} by W, the (&, 7¥)-strong
stability of the matrix K (see Eq. (20)) that

2H

l2f (Mos—1)|| < B =) |2y (Mow—2—m) | + WY IO (My—y—pa—1)l| . (33)
=0

Now invoking Lemma D.2 at time ¢ — 1 with h = H yields forevery [l < 2H,t > 1:

N
101 (Me—1—pa—)|| < R(L=F)" Licy + RTH (Z ||Bi||> -7t G4
i=1

As a consequence, we have by summing these bounds over [ =0, --- ,2H,

°H H N 20
DI (Mg )| SR Y (A=) +RTH Y [|IB] Y _(1-9) <
1=0 1=0 i=1 =1

(1 + THi ||Bi||> .

=1

2| =

Therefore we obtain

_ N
R
o (Mo:e—1)Il < R(1 = 3) " wem1- i (Mose—2-m)l| + =W (1 +THY ||B¢||> - (39)
i=1
Unrolling the recursion results in the desired state norm bound:

N
WA +7rHY 2, Bill)
1—R(1—7)H+1

l[2f (Mow—1)| < (36)

=21 =

Proof of Claim (ii). Recall that X (M;_1_fr.;_1) is the ideal system state that would have been
reached if each agent ¢ played the non-stationary policy M; ;_1_p.4—1 from time stept — 1 — H to
t — 1 assuming that the state at time ¢ — 1 — H is zero. Therefore, similarly to (32) it follows that

2H

Yt (My_1-py—1) = Z U (Mg 1) w1y - (37)
1=0
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Using similar steps as for the proof of (i) results in the following desired bound:
_ N
gt (My—1—pa—1)|l < %W <1 +THZ ||Bz||> : (38)
i=1
Proof of Claim (iii). Observe that for any time step ¢ > 1, the state induced by linear controllers
K* = (K73, -+ ,K}%) is given by
t—1
2f(0) =Y Ajwiiy. (39)
1=0

As a consequence, using (&, 7)-strongly stability of K* together with boundedness of the perturbation
sequence {w; } and the sum of the geometric series by 1/7, we have for every time step ¢ > 1:

w, (40)

and this concludes the proof.

Proof of Claim (iv). Note first that action u:K (M;,0:¢) is computed using (DAC-i) policy as follows:

H
’U,?K(MO”L/) = _KixtI((MOZt—l) =+ Z Mi[ﬁ_l]wt_p . (41)
p=1
Using the (%, 7¥)-strong stability of K (and without loss of generality | K;|| < k) and the bound
assumption on M; ; together with the state bound already established in item (i), we obtain
R2 W+ THY ||Bi)
7 1-RA-pFH

i _ T T
™ (Mot)|| < R||2E (Moa—1)| + W< WS @)

Proof of Claim (v). By definition of the ideal action vf’K(Mt,l,H;t) given the ideal
state y~ (M;_1_p.¢—1), we have:

H
v (M —p) = =Ky (M1 a1 + Z Mi[ﬁ_l]wt_p . (43)
p=1
Therefore we can bound the ideal action as follows similarly to the proof of item (iv) using the ideal
state bound already established in item (ii) to obtain

i _ T R> N T
lop ™ (M)l < Rllyt (M1 | + WesZWli+ THY |IBi|| | + WS . @4
i=1
Proof of Claim (vi). It follows from combining the state evolution expressions (32) and (37) that
2 (Mo:t—1) — yi* (My—1-mr:—1)|| = |‘Ag+lxt—1—H(M0:t—2—H)” 45)
<R =) |lzsm1—g(Mo:—o—pr)|| - (46)

Plugging in again the state bound (item (i)-(22)) in the above inequality yields the desired inequality:

R W THY || Bi)
o Moo—1) =y Mrropaen) S Q=N g =5 @)

Proof of Claim (vii). Using the definitions of the actions u.'™ (Mo.;) and vi'™ (M,_1_ ;) in
(41)-(43), we immediately have:

||Ui7K(MO:t) - ’Ui’K(Mt_l_H:t)H = HKi(ytI((Mt—l—H:t—l) _ xf((MO:t—l))”
<Ry (Mi1-pa—1) — 2 (Mou—1) |
= N
R WQA+THYL ||Bil])
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where the last inequality stems from using the inequality established in item (vii)-(47).

Proof of Claim (viii). Set 7 = 22, If H + 1 > 2% then (1 — 5)7*+1 < 1. Using this bound
and the fact that £ > 1 without loss of generality (replace % by max{1, &} otherwise), it is easy to
see that we obtain the desired bounds with the same constant D by taking the maximum of all the

bounds appearing in the inequalities of Proposition D.3 . [

E PROOF OF THEOREM 3.2

Here, we give the proof of Theorem 3.5, which we restate here:

Theorem 3.2 (Individual Regret in Setting 1, Independent Learning). Ler Assumptions 1, 2
and 3 hold. Suppose there exists U > 0 s.t. forallt > 0,5 € [N],||ul|| < U. If agent i € [N]
runs Algorithm | under Setting 1 with (DAC-i) policy on perturbation sequence {w; } and step size

n= @(1/(GW\/T)) where W = W + (N — 1)U (max, || Bjl|), and with H > log(x;T) /v;, then
forany T > H + 1, we have Reg! 1T (A;, {u; '}, Ii") = O(U2N?VT)’.

Remark E.1. The notation O in Theorem 3.2 hides polynomial factors in ~y; Yk || Bill, G, d and
logarithmic factors in T .

Proof. Under Assumptions 1, 2 and 3, we apply Agarwal et al. (2019, Theorem 5.1) for each
agent ¢ € [N]. It remains to ensure that the considered perturbation sequence {w;} in (5) also
satisfies the boundedness condition of Assumption 2 using the boundedness of control inputs by U as
follows:

il = |32, Byl wil| < el + 35 IBs -l | < W+ (N = 1)U (max | By ) 49)

where the last inequality follows from using boundedness of the control inputs of all the agents
together with the bounded disturbances assumption (Assumption 2).

Selecting a step size n = 6(1/(GW\/T)), where W = W + (N — 1)U(max; ||B,]|), and a
(per-agent) memory length H > log(x;T)/v:, we obtain the desired regret for any 7' > H + 1,

Reg /1T (A;, {u; '}, 11"y = O(U2N?VT) . (50)
This concludes the proof. O

F PROOF OF THEOREM 3.4

This section is devoted to developing the proof of Theorem 3.4, which we restate here:

Theorem 3.4 (Individual Regret in Setting 2). Let Assumptions 1, 2, 4 hold. Then if agent i € [N
runs Algorithm I under Setting 2 with a (DAC-i) policy on perturbation sequence {w; }, step size ) =
O(1/NV/T), and with H > log(2&N>\/T) /7, and when all other agents use a (DAC-i) policy with
perturbation sequence (wy), then for any T > H + 1: Reg? ™V (A;, {u; '}, TIPAC) = O(NVT).

K3

Remark F.1. The notation O(-) in Theorem 3.4 hides polynomial factors in
W,5~1, &, max; || B;|, G, d, and only polylogarithmic factors in T and N.

The proof of the result is based on the regret decomposition that we outline in Section F.1. We start
by making the following remark regarding the “burn-in” regret:

Remark F.2. Under Assumption I-(ii), the ‘burn-in’ regret Regl ™ (A;, {u; '}, TIPAC) can be
bounded by 2H 3D? which only scales polylogarithmically in T and can scale with N? in the

worst case. This worst-case dependence can be offset by considering a sufficiently large T'. If the cost
Sfunction is uniformly bounded by a constant C, then the bound becomes 2H C, independently of N .

We now proceed to develop the main overview of the proof:

3For readability, here and throughout, we use O to hide polynomial factors in natural problem parameters
and (poly)logarithmic factors in 7" and N. We state the exact dependencies in the proofs of each result.
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F.1 REGRET DECOMPOSITION AND PROOF OVERVIEW

Define the regret from time step H to 7" as follows:

T T
Reg/" " (A;, A, TIPAC) = Z Ci(xt’ui)*MmieT}w Z ch(f (M M_i ), up ™ (M, M) -
t=H R

‘ (51)
In the rest of this proof we use the shorthand notation Reg*” for Reg*” (A;, A_;, TI"PAC) . First,
it follows from Lemma J.2 that:

Reg? < Reg?:H + Rengl:T . (52)

Then we decompose the regret from time step H + 1 to T as follows:

T T
H+1:T ] i : i (o HCi i, K
RegiJr = Z C;(xtvui)_Mmg}M_ Z Cz(‘rt (Mi,*’M*i,t)vui (Mi,*vM*iyt)) (53)
t=H+1 o “t=H+1
T
= > (ci(mr,uf) = 1{(Miy—p-14)) (54)
t=H+1
Counterfactual state and action deviation error
T T
+ > U(Mig—pgore)— min Y 1(M;,) (55)
M; eM;
t=H+1 t=H+1

Online gradient descent with memory regret

T T
boming S0 GO = min ST el (O M) O M)
o “t=H+1 o Y t=H+1

Counterfactual state and action deviation optimality error

(56)

We conclude the proof of Theorem 3.4 by collecting the upper bounds of each one of the terms
established in sections F.2 (see (62) with the choice H > W) and F.3 (see (63) and (67)) below.
In conclusion, we obtain

Reg /1T = O(NVT), (57)
where O hides polylogarithmic factors in N and polynomial factors in all other problem parameters
but N . Note that we pick H > 18 Ag)ﬁ + 103%2,:; = log 2’;";\’ VT by combining the two conditions
on the horizon length obtained in section F.2 and in Proposition D.3-(viii).

F.2 COUNTERFACTUAL STATE AND ACTION DEVIATION ERROR

In this section, we upper bound the first and last error terms in the regret decomposition in (53),
namely the error terms due to the difference between the realized incurred costs and the costs
corresponding to the counterfactual states and actions.

Fort > H + 1, each term in the first error sum term can be upper bounded as follows:
et (e, up) = (Mg —1:4)]
= | (@f (Mou—1), up ™ (Mout)) — i (yf (My—1—prie—1), 00" (My—1-p1.4))|
< GD([laf (Mos—1) = 4 (My—1— e 1) + lJug ™ (Mo) — 0™ (My—1 -4 )
<2GD*(1-H)", (58)

where the first inequality stems from using Assumption 1-(ii) together with Proposition D.3 and the
second inequality follows from using Proposition D.3-(viii), Eq. (30). Note that the constant D is
defined in (31).
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Summing up the above inequality for H + 1 < ¢ < T, we obtain
T
> (ch(@iuf) = (M- -14)) < 2GD*(T — H)(1 - )" . (59)
t=H+1

The last counterfactual error term in the regret decomposition in (53) can be upper bounded the exact
same way as in (59). Indeed pick a policy parameterization

T
M, € argmin > cj(af (M, M), up™ (M, M_i ). (60)
Mi,*eMit:H+1

Then we can write

T T
: i . i K i, K
t=H+1 t=H+1
T T
o . i _ o 7 Kinr. . o, K 117 . .
= Mln*nel}\/tb Z L (M ) Z cp(@y  (Miw, M—ig), ug ™ (M, M—_i )
t=H+1 t=H+1
T ~ ~ .
< > (M) = (@ (M, M), ug ™ (M, M_i.4)) (61)
t=H+1

and the last sum is of the exact same form as the one we upper bounded in (59). Observe that
Assumption [-(ii) together with Proposition D.3 can be used again upon noticing that the results of
Proposition D.3 are also valid when fixing player ¢’s matrix to be MZ-’* € M,, it suffices to replace
M; 11— . by the constant matrix Mi,* everywhere in the proof of Proposition D.3 and using the

fact that Mi,* € M, the proof remains unchanged.
In conclusion of this section, we have shown that

T

Z (ci(ze,up) = (M- p-1:4))
t—H+1
T T 4
"‘Mmg}v[, Z L{(M; 4) _Mmierjw Z szt(xtKi(Mi,*vM7i7t)au?Ki(Mi,*aM7i7t))
s i t—H+1 Q% i t=H 11

<4GDX(T - H)(1-3)". (62)

Now, note from the definition of D in (31) that D = O(NN) . Therefore, the above error term scales
in T and N as O(N?T(1 — 4)#) . Choosing H > W guarantees that the error term is of

the order O(\/T), where O hides polylogarithmic factors in N and polynomial factors in all other
problem parameters but [V .

F.3 ONLINE GRADIENT DESCENT WITH MEMORY REGRET BOUND

Applying Theorem J.1 of Appendix J.1 in Anava et al. (2015) gives:

T T
. ) ) D?2
Do (Mipgo) = min Y0 (ML) < 0+ (G + LH*GonT . (63)
t=H+1 STt =H 41 n

It remains to check assumptions 1 to 3 of Theorem J.1 and specify the values of the diameter
bound Dy, the coordinate-wise Lipschitz constant L and the gradient bound constant G.

As for the diameter boundedness, we can set Dy = 4+/2%> /7 . This is because for any M7, My € M,
(for any ¢ € [N]), we have

H H
1My — M| < V2 (Z M| 4k ||> <4V2Y RA(1-7)P <4V2RP/F. (64)
p=1

p=1
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Coordinatewise loss lipschitzness and gradient loss boundedness are respectively established in
subsections F.3.1 (Lemma F.3) and F.3.2 (Lemma F.4) below.

Now in order to set the stepsize in the regret bound (63) above, we focus on optimizing the dependence
on the time horizon 7" as well as the total number NV of agents. Observe now from Lemma F.3 and
Lemma (F.4) together with the definition of D in (31) that

where the big O(+) notation hides problem parameters that are independent of N. Hence the regret
bound in (63) is of the order

1
O ( + NQnT) , (66)
Ui
where again the big O(+) notation hides problem parameters that are independent of N. Therefore
we set ) = ©(1/(N+/T)) and the final online gradient descent regret bound we obtain scales as

O(NVT), (67)
which concludes the proof. Note here that we have optimized the stepsize to obtain the best
dependence on both the time horizon 7" and notably the number N of agents. In particular, using the
standard optimal upper bound giving the smallest regret bound (without focusing on any parameter in
particular) would result in a worse dependence on the number of agents.

F.3.1 COORDINATE-WISE LOSS LIPSCHITZNESS

Lemma F.3 (Coordinate-wise loss lipschitzness). For any agent i € [NV],
let (Mit1—p,--- My g, -+, M) and (Mit1-p,--- M4 g, -+, M;;) be two pol-
icy parameter sequences for agent i differing only in time step t — k for k € 0, -- - , H with M; 1_y,

replaced by szt— k. Suppose that the policy parameters of other agents but i are given by the same
sequence M_; ;_1_p. (i.e. the same for both joint policies, the difference is only in player i’s
policy). Then we have for everyt > H + 1,

(M t—1—ry s Mgy Mig) = U(Mig—1—py s Mgy -+, My )|

H
< LZ HM}f’Lk - Mi[ﬁ]ka , (68)
p=1

where L = 2GDWR? I}laXN”Bj || and G, D are respectively defined in Assumption 1-(ii) and (31).
J=1,,

Proof. The proof follows a similar approach to that of (Agarwal et al., 2019, Lemma 5.6). However,
we provide a complete proof of this result since our multi-agent setting is different and induces a
different state evolution given that all the agents run DAC-: policies.

We introduce a few convenient notation for the rest of this proof. Define for every t > H |
K K
Y =Y (Mt—l—Hv"' 7Mt—k7"' aMt—l)v
~ K K Y
yt = yt (Mt717H7"' 7Mt7k7"' 7Mt71)7
H
i K i K -1
vt =0y (My—a— ) = — Ky + ZMB hwiy,
p=1
K K .
'Uz = ,Uz (MtflfH)"' 7Mt7k7"' 1Mt>

H H
. ~ [p—1 -1 -1
= —Kgl + Y Y - M Nyl + ST M (69)
p=1 p=1
Using this notation, we have
(Mig—1—prs s Mig—gy e Mig) = Myg1—py - Migogy o Myl
i i K i ~K ~i, K
= Icz(ytKﬂ}zqf ) - szf(ytKﬂjz )I
< Ici(ytKaU?K) - Ci(gfavi7K)| + |Ci(gtKvU;7K) - ci(gtKvﬁ?K”

< GD(ly* — 3511+ o™ — o™, (70)
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where the last step uses Assumption 1-(ii).

Recall that we can write the counterfactual states y,f( , gjtK using the transition matrix (see (37)):
2H

= U (M g wie (71
1=0
2H

it = Z UL (Myy e My, My )wy 1y (72)
1=0

Note for clarification that in the notation above M;_j is identical to M;_j, except for its ¢-th matrix
element,i.e. M; . = M, for every j # . Therefore, using the definition of the state transfer
matrix in (12) the difference of counterfactual states can be expressed as follows:

LU ZA B; M[lt klc ! Mi[,lt__kk_l])ll—ke[l,H]wtfl~ (73)

We can now bound the difference of counterfactual states using (%, 7)-strong stability and bounded-
ness of the disturbance sequence by W':

~ 1 1
lyE — G| < Wr(1 - 5)* - || B; HZHMF;,J il B (74)
p=1

where the bound uses a re-indexation of the sum in (73) with p = [ — k. As for the difference of
counterfactual actions, it stems from (69) that:

H
" o = Kl — i) e + Y - M e 1. (75)
p=1

As a consequence, we have

o — ol Ul o — e + W 3 LA — 0By 9
p=1

SWR - max B, I3 Iy - an
p=1

where the last inequality stems from using the bound (74) together with the simplifying assumption
that K2 max;—1,... n ||Bj|| > 1 (without any loss of generality).

Combining (70) with the bounds (74) and (76) yields the desired inequality and concludes the proof:
U(Mig—1—p, - Migop,  Mig) = Migoa—g,  Migp, -+, My
< 2GDW#? max || ||ZHM — ML (78)
p=1

O

F.3.2 GRADIENT LOSS BOUNDEDNESS

Lemma F4. Let M = (M;, M_;) be s.t. |MP|| < 7(1 = 5)? forp € {0,--- ,H — 1} and for
every i € [N]. Then we have for any i € [N],

v

where G, D are respectively defined in Assumption 1-(ii) and (31) whereas d is the dimension of the
state vector.

) 2%2 R B
IV anli (M) s < GDVEAW (1+ Ao maxj—1,. . | J”>,

(79

Proof. The proof is similar to that of (Agarwal et al., 2019, Lemma 5.7) and is therefore omitted. [
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G PROOF OF THEOREM 3.5

Here, we develop the proof of Theorem 3.5, restated here:

Theorem 3.5. Under the setting of Theorem 3.4, replace gradient boundedness in Assumption 1 -(ii)
by Assumption 5. Set instead n = ©(1/v/T) and H > log(2:N~/T) /7. Then for any T > H + 1:
Reg; ™1 (Ay, {u; '}, I2*C) = O(VT).

Proof. The proof of this refined result follows the same lines as the proof of Theorem 3.4. We
indicate here the required modifications to establish the result of Theorem 3.5 using the uniform
Lipschitz cost assumption 5 instead of gradient boundedness in Assumption 1 -(ii).

Recall the regret decomposition in (53) in Section F.1. We adapt the bounds in F.2 and F.3 to our new
assumption.

¢ Counterfactual state and action deviation error. For this term, it suffices to observe that under
the uniform Lipschitz cost assumption 5, we can replace GD in (58) by the uniform Lipschitz
constant L (which is supposed to be independent of V). The rest of the proof is unchanged and
the resulting counterfactual state-action deviation error is of the order:

O@LD(1-7)"), (80)
where we recall that D is defined in (31) and D = O(N).

* Online gradient descent with memory regret bound. We recall here from (63) that this regret

term is bounded by
2

D
70 + (G2 + LH?Go)nT . (81)

It suffices to reevaluate the coordinate-wise Lipschitzness constant L and the gradient bound G
made explicit in Lemma F.3 and Lemma F.4 respectively. We now make the two following
observations regarding these two constants and their dependence on the number N of agents:

(i) Again using Assumption 5, we can replace G.D by L in (70) in the proof of Lemma F.3, the
rest of the proof is unchanged. The result is that the coordinate-wise Lipschitz constant L
of Lemma F.3 becomes L = 2LW k% max;—_1 ... n || B;|| and therefore independent of the
number of agents.

(ii) Similarly, the constant GD in the gradient bound of Lemma F.4 can be replaced by L
(which is independent of V), resulting in a gradient bound which is independent of the
number of agents.

Combining the above insights, it suffices to choose H > log(2&N+/T)/7¥ in (80) and n = ©(1/V/T)
in (81) to obtain the desired result for T" > H + 1:
Reg”t1T (4;, A_;, TI"PAC) = O (\/T) 7 (82)

where O(-) hides polynomial factors in W, 5!, &, max; || B; ||, G, d and only polylogarithmic factors
in T"and N. This concludes the proof. O

H PROOFS OF REGRET LOWER BOUNDS

In this section, we develop the proof of Theorem 3.3, which we restate here:

Theorem 3.3. For any agent i € [N, there exists an instance of (LDS) and cost functions {ci} such
that, for any algorithm A; and sequence {u;"}, and any T > 1: Reg! (A;, {u; '}, TII") = Q(V/T).

H.1 PROOF OF THEOREM 3.3

Fix agent ¢ € [N]. To prove the theorem, we specify an LDS and a (randomized) sequence of cost
functions {c!}, and we will prove that the lower bound holds in expectation. By the probabilistic
method, this implies the existence of a deterministic sequence of cost functions where the lower bound
holds with probability 1. We begin by specifying the LDS instance and cost function constructions:
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Construction of LDS instance. We specify a scalar-valued instance of (LDS), where all
A, B;,w: € R. Specifically, we use the following settings which implies a state evolution of

A=0

B =1 1.

Bj=0forallj #i€[N] = a441= iuz forall ¢ > 0. (83)
wy =0 forallt € [T]

To € (0, 1]

In other words, due to the construction, the state z; is driven only by the control of the ¢’th agent.
Observe also that for the scalar LDS (0, 1/2) as specified in (83), we have by Definition 2.1 that a
linear controller K € R is (k, 7)-strongly stable when |K| < k and |K/2| < 1 — ~, forvy € (0,1).

Construction of Agent ; cost functions. We now construct a hard sequence of randomized cost
functions for agent ¢, which are roughly inspired by lower bound constructions in (adversarial) online
linear optimization settings (see e.g., Arora et al. (2012, Section 4)). Specifically, for all times ¢ > 0
and z,u € R, let ci be given by

i(a,u) = <<1ﬁu) , (11’;2>> (b - 1)+ 1 (84)

for all z, u € R, where each b, is an independent Bern(1/2) random variable (i.e., each b, = 0 with
probability half and b, = 1 with probability half).

Under the LDS of (83) and cost functions of (84), in show a expected lower bound on the regret of
agent ¢, we establish bounds on (i) the expected cost of agent 7, and (ii) the expected counterfactual
cost of the best fixed linear controller in hindsight.

Expected cost of agent ;. Under the cost functions of (84), it is straightforward to compute the
total expected cost of agent ¢:

Proposition H.1. Ler {u}} be the sequence of controls of agent i using any algorithm and with
respect to the cost sequence {c}} from (84). Let {x+} be the resulting state evolution as in (83). Then

over the randomness of {b},
T

E [ch(xt,ui)] - g (85)

t=0

Proof. For any fixed t > 0, and any x, u € R, observe under the randomness of b; that

E[ci(z,u)] = E [u(bt -y %} = % (86)

Then by linearity of expectation we have E[Y"/_ ¢i(z;,ul)] = L. O

Expected cost of comparator. Let IC; C R be the set of strongly stable linear controllers. For a
fixed K € K;, let (by slight abuse of notation) 7X denote the counterfactual state evolution on the

LDS in (83) using the fixed linear controller with (counterfactual) control sequence ﬂi’K = KzK at
all times ¢ > 0. Then for each k € KC, let ®(k) be the random variable

T T
B(K) == > d@EE @) =Y (K%f(bt 4 %). (87)
t=1 t=1
Using a fixed linear controller K, and under the assumption that 2y € (0, 1] observe from (83) that
the counterfactual state evolution of ZX can be written as

T = K7, = (LK) 'z .
It follows that
T
Kt 1 1
@) = 3 (S w(bi-3) +3)

t=1
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Letting K, = K; N[0, 1] C K;, observe that (with probability 1)

T
min ®(K) < min ®(K) < =>

88
Kek; T KeKky et (88)

N

Moreover, for K € [0, 1] and g € (0, 1], and using the fact that b; € {0, 1} by definition, observe
that we can bound (with probability 1)
Kt
2t

1
'xo(bt - §) + =

2] < (89)

for all ¢ € [T]. Finally, for z € (0, 1], observe that the image of ® over K. is non-singleton.

Tail bounds on cost of comparator. It remains to derive an upper bound on the expected cost of
the optimal comparator of the form E[mingex ®(K)] < % — Q(V/T). For this, we will establish
under the randomness of {b; } that the random variable mingcx, ®(K) is small with sufficiently
large probability. Fix K and define

t+1

Pr(br, K) = zo(b — 1) +% .

It follows that we can write
T
K) = Z¢t(bt7K) 9
t=1

which by (89) means ®(K) is the sum of T" independent and bounded random variables.

We now leverage the following lower bound on the tail of a sum of bounded random variables:

Lemma H.2 (Zhang & Zhou (2020), Corollary 2). Let Z = Zy + - - - + Zr such that E[Z;] = 0 and
|Z| < C forall t € [T] and some absolute constant C > 0. Then there exist absolute constants
0 <a<1landp > 0 such that

Pr(ngao\FT> > p

By centering ¢ = v;(b;, K) — %, we have E[t;] = 0 and each [1;| bounded (which follows from

expression (89)). Then applying Lemma H.2 to the sum Zthl 1}, we conclude that there exist
absolute constants a, p > 0 such that

Pr(@(K)gg—wﬁ) > p. (90)

Moreover, as ¢(K) < % —a- VT = mingex, (K) < % — a - VT, we further have

T
Pr(minfb(K)<——a \/>>Pr((K)§——a-\/T)2p. 1)
KeKy 2
Finally, since by expression (88) we have mingex ®(K) < % with probability 1, it follows that
T
. < . . T
B pieuo] < B[ pip 000] < pavT g ©

Combining expressions (85) and (92), we conclude that over the randomness of {b; }

{ic (@) = pip@(K)] > 5 = (pavT+5) = pavT.

kex -

Thus in expectation over the sequence {b;}, Reg’. is at least Q(+/T)), which implies that for some
realization of {b;}, the same lower bound holds. O
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H.2 LOWER BOUND AGAINST DAC POLICIES

In this section, we extend the regret lower bound against linear policies from Theorem 3.3 to also
hold for the DAC comparator class. Note that as the class of DAC policies contains the class of linear
policies, a regret lower bound against linear policies does not immediately imply a lower bound
against DAC policies. However, by slightly modifying the hard LDS construction from (83), and
under the assumption that the linear controller component of the DAC policy is chosen adversarially,
then a similar lower bound can be established following the proof of Theorem 3.3. Formally:

Theorem H.3. Fixi € [N], and let TI"PAC denote the set of DAC policies for agent i. Then there
exists an instance of (LDS) and cost functions {ct} such that, for any algorithm A; and control
sequence {u; '}, and any T > 1, when the linear DAC component K; is chosen adversarially:

Regip(Ai, {u ), TIP) = (V)

Proof. Similar to the proof of Theorem 3.3, we specify a scaler-value instance of (LDS). Now we
use settings with corresponding state evolution as follows:

A=0

Bj=0forallj#i€c[N] = a1 =u.+1 forallt>D0. 93)
wy = 1forallt € [T]

QEOZO

We use the same construction of costs {ci} from expression (84) in the proof of Theorem 3.3. By
Proposition H.1, this implies
T
{Z (e, ul } =
t=0

Next, we control the expected (counterfactual) cost of the optimal comparator policy. For this, let
M denote the subset of DAC parameters in M, such that Mi[p ) = Mi[h] for all p, h € [H]. In other
words, for a DAC policy parameter in M, all H parameter values are equal. We denote such a
policy in M by a scalar M € R. As clearly M C M,, it follows that

no| N

T T

min 3@ @) < min 3@, @)

MeM; MeM
M M3

where (by slight abuse of notation) ¥ and @’ &M denote counterfactual state and control sequences
under a fixed comparator policy parameter M. Thus for the purposes of a regret lower bound, it
suffices to derive an upper bound on the optimal comparator cost with respect to the class M .

For this, using similar notation as in the proof of Theorem 3.3, for M € M, define ®(M) as

~M w]VI
g HEraTha

Under an adversarial choice of linear controller K; = 0, and using the LDS settings of (93), it follows
by definition of DAC policies in M that

H
M = Koy +y MP = HM . (94)
p=1

Then using the definition of ¢! from expression (84), we have
T

Z @ a™) = Y HM(b —3) + 5 -
t=1
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Then clearly ®(0) = L, and thus also

min ®(M) < &(0) =

T
MeM 2

Now using the fact that, under the randomness of {b;}, for each M € M ®(M) is the sum of T,
independent random variables bounded by H > 1, we apply the tail bound of Lemma H.2 (as in the
proof of Theorem 3.3) to find

Pr(@(M) < %—a\/f) > p

for absolute constants a, p > 0. Then following identical calculations as in expressions (91) and (92),
we conclude that

E[ici(mt,ui)— min (D(M)} > paVT,

MeM
t=1 +

which by the probabilistic method implies the lower bound of the theorem statement. O

I PROOF OF THEOREM 4.1

We first recall the theorem:

Theorem 4.1. Let Assumptions 1, 2, 4, 6 and 7 hold. Then if each agent i € [N|] runs Algorithm 1
Sor T steps with constant stepsize 1 = 1/ L (where L is the smoothness constant in Lemma 1.5), then

1§T:(EQGAP(t)(M))2—O M—’_liA _|_1§T:H — wy| 8)
thl t = T thl ce thl Wi41 — W )

where Ac, := max|y|| |u|<piCt+1(2,u) — ci(x,u)} for every t, the O(-) notation only hides
polynomial dependence in the problem parameters N, H, W, k,5~ 1, max; || B;|| and D depends
polynomially on the same constants. All the constants are made explicit in the appendix.

Outline of the proof. The proof of Theorem 4.1 can be divided into three main steps that are recorded
in the following three propositions:

1. Proposition I.1 upperbounds the sum of equilibrium gaps by the sum of policy parameter
deviations across time and players.

2. Proposition 1.2 upperbounds the latter policy parameter deviations by the sum of loss deviations
along time.

3. Finally, Proposition 1.3 upperbounds the sum of loss deviations by the initial distance to the
infimal cost value, the cost function variability and the sum of disturbance variations.

The proof of Theorem 4.1 follows from combining Proposition 1.1 with Propositions 1.2 and 1.3 by
chaining them. The rest of this section I is devoted to proving each one of Propositions I.1, 1.3 and 1.3
separately.

Proposition 1.1. Let Assumption 1 hold. Then for every time horizon T' > 1,

T T N
3 (EQGAP® (1)) < Cag 337 M 1 — M. 95)

t=1 t=1 i=1

. 2
where Cpq := vazl (% + GD) and G, D are the constants in Assumption 1 .

Proposition L.2. Let Assumptions 1, 2 and 7 hold. Then running Algorithm 1 for T steps with step
size n = 1/L where L is the smoothness constant in Lemma 1.5 yields:

T N T
SON My — Mig|® <) (M) = 1(Miya).- (96)

t=1 i=1 t=1
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Proposition 1.3. Letr Assumptions 2, 4 hold. For every T > 1,
T T T
S G00) — (M) — O (eluwn Y A s — wtu) R
t=1 t=1 t=1

where Ac, := max|g|| |ju<piCtr1(x,u) — ci(x,u)} for every t, the O(-) notation only hides
polynomial dependence in the problem parameters N, H, W, k,5~ 1, max; || B;|| and D depends
polynomially on the same constants.

I.1 PROOF OF PROPOSITION I.1

First, recall the following notations of the best response and equilibrium gap for every ¢ € [N],¢ > 1:

BR{" (M) := max ((M,) ~ ((M;, M_i,) (98)
and EQGAPY (M) := max BR(M_; ). (99)
1€

Observe in particular that BREt) (M_; 7t) > 0 (use M; = M, ,t) . Using the definition of the equilibrium
gap, it immediately follows that

T

T 2 T N 2
EQGAPY (M,)? = (maXBR() M., ) < BRY (M _; . (100)
; QGAP® (1) g max BR" (M) _; g (M)

We now relate the best response quantities to the deviation of DAC policy parameters via the following
proposition whose proof is deferred to section .4.

Proposition L.4. Let Assumption 1 hold. Then for every i € [N], M; € M;,t > 1, we have

diam(M;)
n

(M, M_i) — 6(My) > — ( + GD) IMyres — My, (101)

where diam(M;) = maxpyr,vrem; |M' — M| and G, D are the constants in Assumption I .

Invoking Proposition 1.4 gives the following inequality

<diam(/\/l¢)
n

0<BRY(M_,,) < + GD) M o1 — M| - (102)

Summing up this inequality across all the N players yields:

N N diam(M,)
0< ZBREt)(M—i,t) < Z (777 + GD) |1 M1 — My o]l - (103)

i=1 i=1

Using now the Cauchy-Schwarz inequality on the squared sum of best responses gives

N
(ZBR§t>(M ><Z(d‘am +GD> ZHM”H Miq||?. (104)
=1

Finally, we obtain the desired inequality by summing up the above inequality over the time steps
t=1,---,7 and using (100),

T N
ZEQGAP“) M)?<C ZZHMi,tH—Mi,AF, (105)
t=1 i=1

, 2
where Cp = Zfil (% + GD)
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1.2 PROOF OF PROPOSITION 1.2

The proof of Proposition 1.2 follows from using the smoothness of the potential function together
with the update rule of the multi-agent gradient perturbation controller algorithm.

Lemma LS5 (Cai et al. (2024), Lemma B.6). Under Assumptions 2 and 7, the loss function l; is
L-smooth where L is a constant depending on H, W, (. d, k.

Using the smoothness of the loss function I; (see Lemma [.5) which plays the role of a (time-varying)
potential function, we have

L
U (Myyr) < 6(My) + (Ve (My), My — My) + §||Mt+1 — M|)?. (106)

Define now the product set M := Hf\;l M; which is the space of joint policy parameters. Observe
that for any M = (M, -- , My) € M, we have

(M) = (I, (Ma), - -+, gy (My)) - (107)
Given the potential structure of the game, observe in addition that
Varls(My) = [Viéi(Mt)]i:L__yN ; (108)
fi=u, (109)
and My = [Mi],_, .y (110)

where we recall that V; /i denotes the gradient of ¢} w.r.t. its variable M; . As a consequence, the
update rules of all the players in Algorithm | can be compactly written as follows:

M =TIy (Mt - 77VMlt(Mt)) s (111D

where M; 1 = [M;441],_, ... - Using the characterization of the projection operator, we have:

VMGM, <M—Mt+17Mt—HVMlt(Mt)—Mt+1> SO (112)
Setting M = M, and rearranging the inequality gives:
1
(Varly(My), Myyr — M) < _5“Mt+1 — My|*. (113)

It follows from injecting (113) into (106) that

N
L 1
Ce(Myyq) < Lo(My) + (2 - n) E | M 11 — M| (114)
=1

Setting 7 = 1/L, rearranging and summing up the above inequality yields the desired result, namely
forallt > 1,

=2

T
SO IMien = Mig? <20 6(My) — £,(Mypq) . (115)

T
t=1 i=1 t=1

1.3 PROOF OF PROPOSITION 1.3

First, we decompose the sum of difference of losses as follows:

Zet(Mt) — U (Mytq) = th(Mt) — b1 (Mygq) + th-s-l(MtH) — 0 (My11)

t=1 t=1 t=1

T
= 0(My) = b (Misa) + ) lera(Mir) = 6(Mesr)
t=1
T

<G (My) = e+ Y lipar (Myg1) — G(Mya) (116)

t=1
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where the second identity follows from simplifying the telescoping sum and the last inequality uses
our uniform lower bound assumption on the cost function.

Now we control each term of the last sum above. Recall that for any M & Hf\il M,
((M) = ca(yf (M), vy ™ (M) (117)

where K := (K;, K_;) and yX (M), v"" (M) are the counterfactual state and action induced by
the (DAC-7) policy with the matrix K and the policy parameters M as previously defined.

We start with the following decomposition:

Lot (My1)—le(Mysr) = coan (Uf5 1 (Mis1)), vl (M) = (0l (M), vl (M 41))
+ (i1 (M), vy (M 41)) — e (Y (M) 0™ (M g1)) . (118)
For the first term, we have
Copr (951 (Me41)), vy (M 1)) =€o(yisn (M), oty (M) € maxeppn (@, 0)—cy(w,u)

llzll,lull<D
(119)
For the second term, we use Assumption 1 to write

(Y (M), 07 (M p11)) — co(yf (M), vy ™ (Mi41))
< GD - (lyffs(Mys1) — yf (Mygr) | + lopl (Miesr) — o0 ™ (M) l) . (120)

Define the following convenient notations for the counterfactual state and control differences for the
rest of this proof:

AV =yl (M) — yf (Mig)
AYy =T (M pn) — 0™ (M) - (121)
Using these notations together with (120) and (119) in (116), it follows that:
T

T
Z Co(My)—Ce(Mygq) < 4y (Ml)—Cinf+Z

t=1

ce1 (2, u)—ce(w, u) +GDZ (AL AL D -
t=1
(122)

Hw\l HuH<D

It remains to bound Zt LAY LI+ A, || to conclude the proof of Proposition 1.3. We upper
bound each one of the terms separately starting with the first one (Et 1 1AY 1 ]]) which will be
useful for bounding the second one (Zt LAY LD

Bound of 3./, [|AY ' 1]|- We split the sum into two sums by isolating the first burn-in period of time
length 2H + 1for T > 2H + 1,

ZHAMH—ZHAM\H Z 1AY - (123)

t=2H+1

The first sum can be bounded as follows using the boundedness of the counterfactual states by D,
ZHAMH <2HD. (124)

The second sum requires a special treatment using the expression of the evolution of the counterfactual
state involving the state transfer matrix which gives:

2H
Al = Z i’ﬁkl,l(MtJrl) Et—ts  &t—1 1= W1 — Wiy, (125)
=0
= [l—k—1]
Ui (M) o= A Licn +ZA ZB M AT en (126)
k=0 =1

36



Under review as a conference paper at ICLR 2026

where the last transfer matrix was previously introduced in (10) and the first identity follows from
using Proposition D.1. Fort > 2H + 1, we have

2H H
Z‘I’t+1z Mii1) & Z—ZAK& Y YAk ZB MY e & (127)
=0 k=0 =1
*ZAK@ z+ZZAl ”ZB A (128)
=0 p=1

where the last identity follows from a change of index p = I — k and the fact thatp € [1: H]|,k > 0.

Using now (%, 7)-strong stability together with the bound on matrices M, [p ti +1_, specified by the

projection sets M; (see Algorlthm 1), we obtain

T
> olal,l< Z Z (L= )&l + Z ZZ 1-% ”’ZIIBII% (1= 7)7l€ell
t=2H-+1 t=2H-+1 t=2H+1 =0 p=1
< Z Z 1— )&= l|+<2/‘632||3||> Z le— Y l€e—ill
t=2H+1 =0 =1 t=2H+1 =0
T 2H
< Z Z 1—)'&- l|+<2n32||3 ||> QH+1) > > 1= &l
t=2H+1 =0 =1 t=2H+1 =0
N T H
=(m+z<zH+mgz|Bi) S S ]
=1 t=2H+1 =0
N H
(m&mwzwi) S a-iel
1=1 s=H+1 [=0
F+22H+1DRYN Bl &
<t 5" 2= |5l >l (129)
v s=H+1

where the last equality follows from re-indexing the sum (s = ¢ — [) and using 2H + 1 <t < T and
0 <[ < H . In conclusion, we obtain by combining (129) and (124) that

Rr2H + DRSS B &
Z||At+1||s2HD+ ( i iz 1B D llwepr —will. (130)
s=H+1

Bound of Zt 1 IIAY, || For this term, we use the definition of the counterfactual state to obtain for
everyt > H:

||At+1|| = HK Aif}+1 Z i t+1 wt-’rl—p - wt—p)

RIIAMIHZ (1= 3P| wis1—p — we—p]| - (131)

Therefore summing up these inequalities for 2H + 1 <t < Tyields:

T T T H
Yoo lIAval<E Yo ALl +E DL D A=AV lweri—p — wepl|
t=2H+1 t=2H+1 t=2H+1p=1
T
=K Z [AY 1]l + R Z Z (1 = )P[lwst1 — ws]|
t=2H+1 s=H+1p=1
T s Tl
<E Y A%+ D llwsn — sl (132)
t=2H+1 Ry
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Similarly to (124), using boundedness of the counterfactual actions, we get
2H
> lAv, |l < 2HD. (133)
t=1

Combining (133) with (132) and (129), we obtain

R24+202H + RN 1B N

T
ZHA%)JAH <2HD + ( -
t=1 v

T
) 3 wer —wsl. (134

s=H+1

21| =

Finally to conclude the proof of Proposition 1.3, we inject (134) and (130) into (122) to obtain the
desired result:

T T
Z Le(My) — Li(Myyq) < Li(Mi) — cint + Z Hw||1,ﬂ2ﬂ(<DCt+l(I7 u) — ci(x,u)
t=1 ) . t=1 o .
+GD <4HD L RA2RHACH + DRTD iy |Bi|> 3 fwps —wyll. (135)
v s=H+1
This concludes the proof of Proposition I.3. We have shown that
T T T
Z le(My) = l;(Myy1) = O <11(M1) — Cinf + ZAQ + Z lwes1 — wf|> , (136)
t=1 t=1 t=1

where A, := max|; | |u|<p{Ct+1(x, 1) — c;(x,u)} for every t and the O(-) notation only hides
polynomial dependence in the problem parameters N, H, W, &, 7~ !, max; || B;|| where D also de-
pends polynomially on the same constants.

1.4 PROOF OF PROPOSITION [.4

The proof proceeds in several steps as follows:

(i) Convexity. Using convexity of the loss function /! w.r.t. M; (see Lemma 3.1), we have for every
player i € [N] and every time step ¢ > 1,

G (M, M_; 1) — G (My) > (Vily(My), M; — M; ;)

= (Vill(My), M; — M; 4 1) + (Vili(My), My 1 — M,g) . (137)

(ii) Lower-bound of the first inner product in (137). Recall now the gradient update rule of
Algorithm 1:

M; 441 = Proj g, (Miy —nVily(My)) . (138)
Using the characterization of the projection yields:
VM; € My, (Mi — Mi 41, My o — My o1 —nVily(My)) < 0. (139)

Rearranging this inequality and using the Cauchy-Schwarz inequality, we obtain:

) 1
(M; — M; 441, Vily(My)) > ;<Mz — M1, My — M;111)

1
> —5||Mi = Myl - 1M — M g1 |
S _ diam(M;)

[Mi — M1, (140)

where diam(M;) := maxp prem, | M — M|

(iii) Lower-bound of the second inner product in (137). Using again the Cauchy-Schwarz inequality
gives _ _
(Vily (M), My 11 — M; i) > =[|Vili (M| - [| M0 — M| - (141)
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Then, using the boundedness of the gradients following from Assumption 1, there exists a constant
GD > 0 (independent of ¢ and ¢) s.t. ||V;l2(M;)|| < GD . Therefore, we obtain

(Vile(My), M; 411 — My ) > —GD||M; 411 — M; 4| - (142)

(iv) Combining all the steps. Using (140) and (142) in (137), we have for all ¢ € [N], M; € M;,
andt > 1

(M, M_y ) — £i(M;) > — (Mnn(M)

+ GD) | M1 — Mgl (143)

where diam(M;) := maxas, mem; |M' — M| and G, D are the constants defined in Assumption 1.
This concludes the proof of Proposition [.4.

1.5 PROOF OF LEMMA 3.1

Recall that the loss function /i is defined for every M; € M, by

(M) = ci(yp ™ (M), 0" (M) (144)
where the counterfactual idealized state y."*** (1;) and action v{"** (M;) are defined in section D.1.

By Assumption 1, the loss function ¢! is convex w.r.t. both its variables. It suffices to show

that 3" (M;) and v/"* (M;) are both affine in M; = Ml-[LH] to obtain the desired result as the
composition of a convex function and an affine function is also convex. This is clearly the case
given the state evolution unfolding using the transfer matrix, see section D.2, (9)-(10) for the transfer
matrices which are linear in the policy parameter M; of agent ¢ and (37)-(43) for the unrolled

expressions of ng’ (M;) and vz’Ki (M;). Note that this result holds in both cases where other agents
but ¢ use either arbitrary control inputs or DAC policies throughout time.

J TooLS FROM ONLINE CONVEX OPTIMIZATION

J.1 ONLINE CONVEX OPTIMIZATION WITH MEMORY

Algorithm 2 Online Gradient Descent with Memory

1: Input: step size 7, loss functions {¢;}1;.

2: Initialize zg,...,zg_1 € K arbitrarily.

3: fort=H...T do

4:  Play z; € K, suffer loss 0 (z¢—m, . .., xt).
5 Set Ti41 = H)C(.Tt —nVEt(xt,...,xt)).
6: end for

Theorem J.1 (Anava et al. (2015)). Let {Et}?zl be a sequence of loss functions where {y : XHAL
R for each t € [T). Moreover, suppose the following hold:

1. (Coordinate-wise Lipschitzness): There exists L > 0 s.t. for any x1,...,xqg,%; € X,

|€t(I1,...,I‘j,...,IH)—ét(xh...,i‘j,...,[ﬁH” S LHZ‘] —i‘jH.

2. (Bounded gradients) There exists Gy > 0 s.t. forallx € X and t € [T,

Vft(l',.. ,1’)” < G0~

3. (Bounded diameter) There exists Dy > 0 s.t. forall x,y € X, || — y|| < D.

Then running Algorithm 2 for T iterations with any positive stepsize 1 yields:

T T

D2
Z b(ze—p,...,x¢) —min Z l(xy.. . x) < =2 4+ (G2 4+ LH?*Go)nT . (145)
t=H veY I Th K

Running Algorithm 2 for T iterations with stepsize n := Dy /\/Go(Go + LH?)T guarantees:

T T
— mi < 2 .
;{Et(:ct_H, , Tt) gél)ré;{&(x, ,x) < 3D0\/G0(G0—|—LH T
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We provide a few remarks regarding this result and its use in our work:

* This result has been used in single-agent online control.

* Note that we are using here the notations Dy, G to avoid confusion with the constant D defined
in (31) and G as introduced in Assumption 1-(ii).

 The specification of the constants G, L and the stepsize 7 in our setting will be important to
elucidate the dependence of our final regret bound on the number [V of agents involved in our
multi-agent setting.

J.2  TIME REGRET DECOMPOSITION

Lemma J.2. For every agent i € [N], every horizon H > 1 and every time T > H, we have:
Reg! (A, {u; '} 10;) < Reg) ™' (A;, {u; '}, 11;) + Regf ™ (A;, {uy '}, 11;) (146)

where we recall that Reg™ T (A;, {u; '}, 11;) is defined in (51) and {u; "} is an arbitrary sequence.

Proof. From the definition of the regret of agent ¢, we can write

T T
Reng(Aia {u;l}’Hl) = Ci(xtvui) - I,inin Zci(x?lvugl)
t=0 el o
H-1 T T ‘ ‘
= > dlmnu) + Y ci(znuf) — min Y @] uf).  (147)
mtell;
t=0 t=H t=0
Now observe that
T H-1 T
min cy(xy ,u > min cy(xy ,u + min cy(xf ,u . 148
wenzzt t t) ﬂeHth t t) wemzt t t) (148)
The desired result follows from combining (147) and (148). O]
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K SIMULATIONS

K.1 SETTING

We consider a 2-dimensional (d = 2) LDS with N = 3 agents and scalar control inputs (k; = 1 for
i €{1,2,3}) with:

0.95 0.1 1 0 6
A= |: 0 09:| , Bi1=B3= |:0:| , Ba= |:1:| y Lo = |:6:| . (149)
Each agent i € {1,2, 3} has their quadratic cost function ci(z, u’) = x " Q;x + r;(u’)? where:
Q; = {1 I 1+0_4(]8_1_Z.)] o =011+04), weR. (150

The cost functions reflect different distances to the origin goal state (0, 0), see figures 1, 2, 3 below
(bottom right subplots).

We test Algorithm | with three different kinds of disturbances w; € R?:

(1) Constant disturbance: w; = 0.7 (see Fig. 1),

(2) Sinusoidal disturbance: w; 1 = sin(0.1t), w; 2 = sin(0.1¢) where wy 1, w; 2 are the coordi-
nates of wy (see Fig. 2),

(3) Independent and identically distributed Gaussian: w; ~ AN (0, 02) with 0 = 0.5 (see Fig. 3).

For the hyperparameters of Algorithm 1, we set 7' = 500 for the time horizon, n = 10~* for the step
size, H = 5 for the memory parameter and DAC policy parameters are initialized with zero values.
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Figure 1: Ilustration of the performance of Algorithm 1 on a simple multi-agent LDS with constant
disturbance sequence. ‘IL’ stands for Independent Learning (see Information Setting 1, ‘ACL’ for
Aggregated Control Learning (see Information Setting 2), ‘start’ refers to the initial state zg, ‘end’ to
the state at the last time step fort = T..
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Figure 2: Illustration of the performance of Algorithm | on a simple multi-agent LDS with sinusoidal
disturbance sequence. ‘IL’ stands for Independent Learning (see Information Setting 1, ‘ACL’ for
Aggregated Control Learning (see Information Setting 2), ‘start’ refers to the initial state z(, ‘end’ to
the state at the last time step fort = T'.
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Figure 3: Illustration of the performance of Algorithm 1 on a simple multi-agent LDS with Gaussian
disturbance sequence. ‘IL’ stands for Independent Learning (see Information Setting 1, ‘ACL’ for
Aggregated Control Learning (see Information Setting 2), ‘start’ refers to the initial state zg, ‘end’ to
the state at the last time step fort = T'.
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K.2 COMMENTS

We make a few remarks on the results of the simulations (see Figs. 1, 2, 3 above):

Starting from the initial state x( (see bottom right subplots in all the figures), the state
evolves quickly towards the goal origin state minimizing the costs by strong stability of the
controllers. In particular, this quick phase corresponds to an application of higher control
inputs by all agents in all three disturbance scenarios (see Figs. 1 to 3, top right subplots).
Then the control inputs have a similar shape to the disturbances themselves to stabilize the
system (almost constant in the first case, sinusoidal in the second and random Gaussian in
the third case).

Remark that in all figures (bottom left subplots), per-agent time-average costs vanish over
time as expected. This corroborates our theoretical guarantees regarding the behavior of
Algorithm 1 and our individual regret guarantees.

It can be seen in all the figures that there is a slight advantage to the ACL setting (which
can infer the disturbance values) compared to the independent learning setting in our simple
simulation setting. Compare for instance the dotted per-agent time-average cost curves to
the plain ones in bottom left subplots of all three figures.

We can also observe from all the state trajectories (bottom right subplots) that Algorithm |
in the ACL setting is more stable than in the IL setting. For instance, in the sinusoidal case
(see Fig. 2, bottom right subplot), there are less oscillations and their magnitude is smaller
in the ACL setting as expected from our theory. In particular, the state trajectory converges
to a neighborhood of the goal state defined by the amplitude of the disturbance sequence.
The same observation can be made in the case of the Gaussian noise disturbance where
the state trajectory in the ACL setting concentrates more around the origin than in the IL
setting as expected. The region of concentration is controlled by the standard deviation of
the Gaussian noise disturbance sequence.

43



	Introduction
	Our Contributions
	Related Work

	Problem Formulation: Multi-Agent Online Control
	Online setting and feedback models
	Regret framework for multi-agent online control

	Individual Regret Guarantees
	Information setting 1: Independent learning
	Information setting 2: Aggregated control learning

	Equilibrium Tracking in the Common Interest Setting
	Conclusion and Future Work
	Extended Related Work Discussion
	Examples
	Description
	About Adversarial Disturbances

	Further Discussion of Assumptions
	Assumption 2
	Assumption 3
	Assumption 4

	Preparatory Results for the Main Proofs
	Notation: counterfactual and idealized states and actions
	State evolution
	Transfer matrix bound
	State, action and difference of state and action bounds

	Proof of Theorem 3.2
	Proof of Theorem 3.4
	Regret decomposition and proof overview
	Counterfactual state and action deviation error
	Online gradient descent with memory regret bound
	Coordinate-wise loss lipschitzness
	Gradient loss boundedness


	Proof of Theorem 3.5
	Proofs of Regret Lower Bounds
	Proof of Theorem 3.3
	Lower Bound Against DAC Policies

	Proof of Theorem 4.1
	Proof of Proposition I.1
	Proof of Proposition I.2
	Proof of Proposition I.3
	Proof of Proposition I.4
	Proof of Lemma 3.1

	Tools from Online Convex Optimization
	Online convex optimization with memory
	Time regret decomposition

	Simulations
	Setting
	Comments


