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ABSTRACT

Online multi-agent control problems, where many agents pursue competing and
time-varying objectives, are widespread in domains such as autonomous robotics,
economics, and energy systems. In these settings, robustness to adversarial dis-
turbances is critical. In this paper, we study online control in multi-agent linear
dynamical systems subject to such disturbances. In contrast to most prior work in
multi-agent control, which typically assumes noiseless or stochastically perturbed
dynamics, we consider an online setting where disturbances can be adversarial, and
where each agent seeks to minimize its own sequence of convex losses. Under two
feedback models, we analyze online gradient-based controllers with local policy
updates. We prove per-agent regret bounds that are sublinear and near-optimal in
the time horizon and that highlight different scalings with the number of agents.
When agents’ objectives are aligned, we further show that the multi-agent control
problem induces a time-varying potential game for which we derive equilibrium
tracking guarantees. Together, our results take a first step in bridging online con-
trol with online learning in games, establishing robust individual and collective
performance guarantees in dynamic continuous-state environments.

1 INTRODUCTION

From energy grids and financial markets to autonomous driving fleets and online platforms, modern
systems increasingly rely on many agents making independent decisions. These systems often operate
in dynamic and uncertain environments that are vulnerable to adversarial disturbances. For instance,
autonomous robots may suffer sensor failures or sudden disruptions from traffic and weather; financial
markets may face adversarial price movements or shocks; and energy systems can be prone to demand
spikes or strategic manipulation. In such settings, interacting agents pursue competing, time-varying
objectives that may shift adversarially over time. Ensuring robustness in these environments requires
online algorithms that adapt locally without relying on central coordination. Such algorithms are
essential to ensure the safety, efficiency, and stability of large-scale multi-agent systems.

In this paper, we study online control in multi-agent linear dynamical systems subject to such
adversarial disturbances. Specifically, we consider systems evolving as

xt+1 = Axt +B1u
1
t + · · ·+BNu

N
t + wt , (LDS)

where the global state xt depends simultaneously on the controls (uit)i∈{1,··· ,N} independently
selected by N agents, A and (Bi)i∈{1,··· ,N} are time-invariant transition matrices, and wt is an
adversarial perturbation. At each time step t, every agent i ∈ {1, · · · , N} observes the state xt,
selects a control input uit according to a policy πi mapping states to controls, and subsequently incurs
an individual time-varying cost cit(xt, u

i
t).

In the absence of adversarial disturbances, multi-agent control with quadratic costs (linear quadratic
games) is well-studied (Başar & Olsder, 1998; Mazumdar et al., 2020; Hambly et al., 2023). Applica-
tions span diverse domains including energy markets, formation control (Aghajani & Doustmoham-
madi, 2015; Han et al., 2019; Hosseinirad et al., 2023) and bioresource management (Mazalov et al.,
2017), and we expand on these examples in Appendix B. However, most existing work on multi-agent
control focuses on noiseless settings, or assumes Gaussian i.i.d. disturbances. Such assumptions
are inadequate for modeling the adversarial disturbances that are increasingly present in modern
multi-agent systems and which motivate our work.
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In this adversarial and nonstationary setting, the natural performance measure is individual regret,
which measures an agent’s performance against a powerful class of counter-factual policies that have
full knowledge of the future in hindsight. Formally, we define the individual regret of agent i by

RegTi (Ai, {u−i
t },Πi) =

T∑
t=0

cit(xt, u
i
t)− min

πi∈Πi

T∑
t=0

cit(x
πi

t , u
πi

t ) , (1)

where Ai is the learning algorithm used by the i’th agent to select its control uit, and (xπ
i

t , u
πi

t ) is the
counterfactual state-control pair had policy πi been chosen by the agent starting from time t = 0,
and where {u−i

t } are the fixed control inputs of other agents.

Achieving sublinear regret is the cornerstone of online learning, as it guarantees that an agent can
adapt effectively to adversarial costs and disturbances. However, in a multi-agent system, this
individual guarantee is only half the story. Because agents’ costs are coupled through the shared
state dynamics, the collective pursuit of low regret creates a complex decentralized dynamic. A
fundamental insight from online game theory is that when all players achieve no-regret, their joint
behavior can stabilize toward a collective equilibrium (Cesa-Bianchi & Lugosi, 2006; Nisan et al.,
2007). Extending this powerful connection—from individual rationality to collective stability—to
stateful, dynamical control systems is a major open challenge. This motivates our central question:

Can we design decentralized online control algorithms for (LDS) with adversarial
disturbances that guarantee both uniform sublinear regret for each agent and
stable equilibrium-tracking behavior for the system as a whole?

This question introduces significant challenges not present in single-agent online control:

• Decentralization: Agents act locally without access to others’ policies, so robust controllers
cannot be computed centrally and broadcasted.

• Scaling with number of agents: The state coupling across all N agents raises a key question:
how do individual regret guarantees scale with the number of agents? Is sublinear regret even
achievable?

• Equilibrium behavior: When agents have aligned objectives, it is unclear whether the dynamics
driven by decentralized regret minimization can lead the system to track a global equilibrium.

1.1 OUR CONTRIBUTIONS

We provide an affirmative answer to our central question, establishing the first performance guarantees
for online multi-agent control under adversarial disturbances. Our key results are:

Individual Regret with Limited Information. In an independent learning setting, where agents only
observe the state, we prove a per-agent regret bound of Õ(N2

√
T ) using an online gradient-based

controller (Algorithm 1). This result demonstrates robustness even with minimal feedback, while the
quadratic dependence on N quantifies a "price of decentralization" (Theorem 3.2). We also prove a
matching lower bound of Ω(

√
T ), showing our time dependence is optimal (Theorem 3.3).

Improved Regret with More Information. In an aggregated control learning setting, where agents
also observe the combined effect of others’ actions, we improve the regret to Õ(N

√
T ) (Theorem 3.4).

With an additional Lipschitz assumption on the costs, we eliminate the dependence on N entirely,
achieving a near-optimal Õ(

√
T ) regret (Theorem 3.5).

Equilibrium Tracking. In a common interest setting (a time-varying potential game), we prove that
our no-regret dynamics successfully tracks the game’s evolving Nash equilibria. The tracking error
is bounded by the rate of change in the cost functions and disturbances, formally linking individual
performance to collective stability (Theorem 4.1).

Together, these results bridge online non-stochastic control and learning in games, laying a foundation
for robust and stable learning in dynamic, multi-agent environments and opening many avenues for
future work and cross-fertilization between these two communities.
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1.2 RELATED WORK

We give a brief discussion of related works and defer more details to Appendix A.

Online non-stochastic control. Our work builds on a recent and growing line of research focusing
on the use of online learning techniques to address control problems with adversarially perturbed
dynamical systems (Hardt et al., 2018; Abbasi-Yadkori & Szepesvári, 2011; Agarwal et al., 2019;
Hazan et al., 2020; Foster & Simchowitz, 2020; Simchowitz et al., 2020; Simchowitz, 2020; Gradu
et al., 2020; Ghai et al., 2023; Cai et al., 2024; Tsiamis et al., 2024; Golowich et al., 2024). On the
one hand, when the dynamical system (LDS) involves only a single agent (i.e., N = 1), our setting
collapses to (single-agent) online non-stochastic control. This problem has been thoroughly studied
over the past years, see e.g. Hazan & Singh (2025) and the references therein. On the other hand,
most of the works in this line of research are devoted to the control of linear dynamical systems
influenced by a single controller. We discuss a few exceptions in the next section.

Multi-agent control. There is extensive research at the interface of control and game theory, see e.g.
Marden & Shamma (2018); Chen & Ren (2019) for surveys. An important body of this literature has
focused on linear-quadratic games (Başar & Olsder, 1998; Mazalov et al., 2017; Hosseinirad et al.,
2023; Zhang et al., 2019; Bu et al., 2019; Zhang et al., 2021; Wu et al., 2023; uz Zaman et al., 2024;
Mazumdar et al., 2020; Hambly et al., 2023). Some of these works typically consider the same (LDS)
and assume quadratic costs for systems which are either deterministic (wt = 0) or perturbed by a
noise sequence {wt} which is i.i.d. Gaussian. Classical approaches to design robust controllers in
optimal control rely either on using probabilistic models for disturbances or adopting a (worst-case)
‘minimax’ perspective (Başar & Bernhard, 2008).

A few recent works adopt an online learning approach for distributed control: Chang & Shahrampour
(2023b;a) study a distributed online control problem over a multi-agent network of m identical linear
systems, where each agent seeks to compete with the best centralized control policy in hindsight. This
is fundamentally different from our setting, where we consider selfish strategic agents influencing
a single linear dynamical system, and where each agent attempts to minimize their own individual
cost. Ghai et al. (2022) propose a reduction from any standard regret minimizing control method
to a distributed algorithm implemented by several controllers, which is distinct from our setting of
multiple, strategically competing agents. Recently, Golowich et al. (2024) proposed an online control
approach for population dynamics where states are distributions in the simplex. We rather focus on
the case of a finite and discrete large number of agents and discuss the influence of the total number
of agents on individual regret.

Online convex optimization and online learning in time-varying games. Our regret analysis
uses tools from online learning with memory (Anava et al., 2015; Kumar et al., 2023). Some of our
results relate to the active research area of online learning in time-varying games (Cardoso et al.,
2019; Duvocelle et al., 2023; Mertikopoulos & Staudigl, 2021; Fiez et al., 2021; Zhang et al., 2022a;
Anagnostides et al., 2023; Feng et al., 2023; Yan et al., 2023b; Meng & Liu, 2024; Taha et al., 2024;
Fujimoto et al., 2024; 2025; Crippa et al., 2025). However, these works do not address our multi-agent
online control setting where time-varying costs depend on an underlying (LDS) with coupled state
dynamics subject to adversarial disturbances.

2 PROBLEM FORMULATION: MULTI-AGENT ONLINE CONTROL

In this section, we formally introduce the multi-agent control setting over a finite time horizon T .
The state process evolves as a linear dynamical system

xt+1 = Axt +
∑N

i=1
Biu

i
t + wt, t = 0, · · · , T − 1 , (LDS)

where xt ∈ Rd is the state of the system initialized at a given (possibly random) state x0, uit ∈ Rki

is the control of agent i ∈ [N ] := {1, · · · , N}, wt ∈ Rd is an arbitrary system disturbance
and A ∈ Rd×d, Bi ∈ Rd×ki are the system transition matrices defining the linear dynamical system.

2.1 ONLINE SETTING AND FEEDBACK MODELS

We consider the following online setting: at each time step t, all N agents observe the state xt of
the system. Then, each agent i ∈ [N ] selects a control input uit ∈ Rki and incurs a loss cit(xt, u

i
t),

3
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where cit : Rd × Rki → R is an adversarially chosen cost function. Finally, the system transitions to
the next state according to the dynamics (LDS). The goal of each agent i is to minimize their own
cumulative cost over T rounds.

We assume that each agent i ∈ [N ] knows the dynamics (A,Bi). For each i ∈ [N ], the cost
function cit is only locally accessible to agent i. The perturbation sequence {wt} is a priori unknown
to agents. Moreover, we distinguish between the following two information settings:
Information Setting 1 (Independent Learning). At each time step t, agent i ∈ [N ] observes only
the state xt (fully observable setting) and their own induced cost. In particular, agent i has no access
to the control inputs of other agents j ̸= i .

In the literature on multi-agent reinforcement learning, Information Setting 1 is commonly referred
to as the independent learning setting (see, e.g., Daskalakis et al. (2020); Ozdaglar et al. (2021);
Ding et al. (2022); Alatur et al. (2024)). We also consider a second setting where agents have access
to more information about the other interacting agents in the system. This additional information
revealed to every agent at each time step is naturally motivated by (LDS). Formally:
Information Setting 2 (Aggregated Control Learning). At each time step t, agent i observes the
state xt and their own induced cost, as well as the aggregated feedback

∑
j ̸=iBju

j
t that encodes

information about other agents’ control inputs. Each agent i knows the total number of agents N .

This stronger information setting is analogous to the standard setting of full-information feedback
(hindsight observability) in the literature of online learning in games. This setting allows a player
to evaluate their loss for any counterfactual action. Similarly, in our setting, observing the state and
aggregated control lets each agent reconstruct the disturbance and thus compute their counterfactual
loss for any alternative control they could have individually chosen, given others’ actions.

2.2 REGRET FRAMEWORK FOR MULTI-AGENT ONLINE CONTROL

In this section, we give a more formal definition of our performance metric for multi-agent online
control, inspired from both single-agent online control and online learning in games.

Individual policy regret. Since the system dynamics depend on unknown costs and possibly
adversarial perturbations, determining an optimal controller a priori is not possible in general.
Therefore, in contrast to classical and robust optimal control, we consider regret as a performance
measure, following the recent line of works on (single-agent) online non-stochastic control (Hazan
et al., 2020). For each agent i ∈ [N ], consider a benchmark policy class Πi ⊂ {πi : X → U i} . Each
agent i runs their online control algorithm Ai to determine their control input uit = Ai(xt), where xt
is the state of the system described by (LDS). For any T ≥ H ≥ 1, we define the regret of agent i
w.r.t. policy class Πi when agent i runs algorithm Ai and other agents use controls {u−i

t } as follows:

RegH:T
i (Ai, {u−i

t },Πi) = max
w1:T :∥wt∥≤W

(∑T

t=H
cit(xt, u

i
t)− min

πi∈Πi

∑T

t=H
cit(x

πi

t , u
πi

t )

)
, (2)

where W > 0 and xπ
i

t , u
πi

t are the counterfactual state and controls under the policy πi for agent i:

uπ
i

t = πi(xπ
i

t ), xπ
i

t+1 = Axπ
i

t +Biu
πi

t +
∑

j ̸=i
Bju

j
t + wt . (3)

The counterfactual state sequence corresponds to the state sequence that would be observed if agent i
were to unilaterally deviate to using policy πi, instead of their online control algorithm Ai (and where
all other agents stick to their online control input sequence). Note that when N = 1, expression (2)
recovers the regret definition for single-agent online control.

In this work, we consider two natural policy comparator classes, which we introduce as follows:

Comparator policy class 1: Strongly stable linear controllers (Πlin
i ). For agent i, a linear

controller is defined by a matrix Ki ∈ Rki×d s.t. uit = −Kixt. We say that a linear policy Ki

is stable if ρ(A − BKi) < 1 (where ρ(·) denotes the spectral radius), in which case the closed-
loop state-feedback linear dynamical system is globally asymptotically stable. Strong stability of a
controller is a quantitative version of stability which allows for deriving non-asymptotic guarantees.
Definition 2.1 (Strong stability, e.g. Cohen et al. (2018)). A linear policy K is (κ, γ)-strongly stable
(for κ > 0 and 0 < γ < 1) for a linear dynamical system specified by (A,B) if ∥K∥ ≤ κ and if
there exists matrices L,Q s.t. A−BK = QLQ−1 with ∥L∥ ≤ 1− γ, and ∥Q∥ · ∥Q−1∥ ≤ κ .

4
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Note that strong stability implies stability, and any stable policy is strongly-stable for some (κ, γ). A
natural policy comparator class is that of strongly stable linear controllers Πlin

i , parameterized by:

Ki :=
{
Ki ∈ Rki×d : Ki is (κi, γi)-strongly stable for someκi > 0, γi ∈ (0, 1)

}
. (4)

Comparator policy class 2: Disturbance Action Controller (DAC) policies (ΠDAC
i ). The state

sequence induced by a linear controller is not a linear function of its parameters. As a consequence,
the induced cost is non-convex in the control parameters in general, even if the cost function is
convex in both the state and the control input (see, e.g., Fazel et al. (2018)). Following prior work in
single-agent control, we consider Disturbance Action Controller (DAC) policies. The system state
induced by such policies is linear in the policy parameters and one can invoke tools from online
convex optimization when the cost functions are convex in the state and control input. For a sequence
of perturbations {wt}, a DAC policy πi(Mi,Ki) for agent i ∈ [N ] is then specified by learnable
matrix parameters Mi = [M

[0]
i ,M

[1]
i , · · · ,M [H−1]

i ] for a memory length H ≥ 1, with a fixed given
stabilizing controller Ki. The policy πi(Mi,Ki) selects action uit at a state xt as:

uit = −Kixt +
∑H

p=1
M

[p−1]
i wt−p . (DAC-i)

Note that for p < 0 we let wp = 0, and moreover, the perturbations wt are not observed by the
learners but rather computed online using the structure of (LDS) and the state observations (we
discuss these points later). The policy can thus be implemented in an online fashion by agent i,
and we henceforth use the notation Mi,t = [M

[p]
i,t ]0≤p≤H−1 to reference the parameters of player i

at time t . For a fixed H and stabilizing controller Ki, let Mi =
{
Mi = {M [0]

i , · · · ,M [H−1]
i } :

∥M [p−1]
i ∥ ≤ 2κ2(1− γ)p, p = 1, · · · , H

}
denote the set of all DAC policy parameters for agent i,

where (κ, γ) are strong stability parameters of Ki (with (κ, γ) = (κi, γi) under Assumption 3 in
information setting 1 and (κ, γ) = (κ̄, γ̄) under Assumption 4 in information setting 2).

3 INDIVIDUAL REGRET GUARANTEES

In this section, we present our results on individual regret guarantees. We analyze an Online
Gradient Perturbation Controller algorithm, where each agent independently updates its DAC policy
parameters via online gradient descent (Algorithm 1). In the single-agent setting (N = 1), this
algorithm was introduced and analyzed by Agarwal et al. (2019). In our decentralized multi-agent
setting, the coupling of state dynamics across all agents induces new obstacles to implementing and
analyzing this gradient-based approach. We elaborate first on the computational challenge:

Memory. The cost cit(xt, u
i
t) incurred by agent i ∈ [N ] at time step t depends on the state xt of the

system, which itself depends on all past states and control inputs from t = 0 . However, to run the
online gradient descent subroutine of Algorithm 1, agent i must be able to evaluate its cost function cti
on counterfactual state-action pairs. Unlike the single-agent case, counterfactual evaluation here
depends not only on the agent’s own past controls but also on the entire joint sequence of other agents’
controls. This dependence breaks the straightforward counterfactual construction of the single-agent
setting and requires a new memory-based approximation tailored to the multi-agent coupling.

Focusing on agent i’s perspective, suppose all other players use a given sequence of control in-
puts {u−i

t } . Let xKi
t (Mi, u

−i
t ) denote the (counterfactual) state reached by the system if agent i

were to execute a DAC-i policy πi(Mi,Ki) with parameters Mi and fixed matrix Ki for all time
steps from time zero. Evaluating the induced cost would require computations that scale linearly with
time. Thus, for computational efficiency we endow agent i with a memory of length H that scales
polylogarithmically with the time horizon T and that will be carefully tuned to obtain our results. We
denote by yKi

t (Mi) the ideal state of the system that would have been reached if agent i played the
DAC-i policy πi(Mi,Ki) from time t−H to t, assuming that the state at time t−H is zero, and while
other agents use the control sequence {u−i

t−H:t} . The idealized action to be executed at time t at the

state yKi
t (Mi) observed at time t is denoted by vi,Ki

t (Mi) = −Kiy
Ki
t (Mi) +

∑H
p=1M

[p−1]
i wt−p .

Let ℓit(Mi) = cit(y
Ki
t (Mi), v

i,Ki

t (Mi)) be agent i’s idealized cost function evaluated at the idealized
state and action pair. The latter constitutes the counterfactual convex loss sequence for agent i that
can be evaluated efficiently, as in Algorithm 1.

5
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Algorithm variants. Depending on the information setting (Settings 1 and 2), we define two variants
of Algorithm 1, each described from the perspective of a fixed agent i ∈ [N ]. These variants capture
different levels of feedback and are essential for obtaining our regret guarantees.

Algorithm 1 Online Gradient Perturbation Controller Algorithm (for agent i ∈ [N ])

1: Input: memory H , step size η, initialization M [0:H−1]
i,1 .

2: Compute a stabilizing linear controller Ki knowing (A,Bi).
3: for t = 1 . . . T do
4: Observe state xt .
5:

/Update under Info. Setting 1:
Compute w̃t−1 = xt −Axt−1 −Biu

i
t−1 .

Set uit = −Kixt +
∑H

p=1M
[p]
i,t w̃t−p .

/Update under Info. Setting 2:
Observe

∑
j ̸=iBju

j
t−1 .

Compute wt−1 = xt −Axt−1 −
∑N

k=1Bku
k
t−1 .

Set uit = −Kixt +
∑H

p=1M
[p]
i,twt−p .

6: Record instantaneous cost cit(xt, u
i
t)

7: Construct loss ℓit(Mi) = cit(y
Ki
t (Mi), v

i,Ki

t (Mi)).
8: Update Mi,t+1 = ΠMi

[
Mi,t − η∇ℓit(Mi,t)

]
.

9: end for

Standing Assumptions. Finally, before introducing our regret guarantees, we present our standing
assumptions, all standard in the recent literature on online non-stochastic control:
Assumption 1 (Cost functions). The following assumptions hold for every i ∈ [N ]:

(i) The cost function cit : X × Ui → R is convex w.r.t. both its arguments.

(ii) There exists β,G > 0 s.t. for any D > 0 and every (x, ui) ∈ X ×Ui s.t. ∥x∥ ≤ D, ∥ui∥ ≤ D,
we have |cit(x, u)| ≤ βD2 and ∥∇xc

i
t(x, u

i)∥, ∥∇uc
i
t(x, u

i)∥ ≤ GD .

Lemma 3.1. Under Assumption 1, the loss function ℓit is convex w.r.t. Mi for all i ∈ [N ].

Assumption 2 (Bounded disturbances). There exists W > 0 s.t. for all t ≥ 0, ∥wt∥ ≤W .

3.1 INFORMATION SETTING 1: INDEPENDENT LEARNING

Under Information Setting 1, agents do not have access to other agents’ control inputs. However,
from the viewpoint of a given agent i, we observe that (LDS) can be re-expressed as follows:

xt+1 = Axt +Biu
i
t + w̃t , w̃t =

∑
j ̸=i

Bju
j
t + wt . (5)

In this view, in Algorithm 1, we naturally propose that agent i executes a (DAC-i) policy with
disturbance sequence w̃t. Given expression (5), note that w̃t (unlike wt) can be calculated by agent i
at each time step since w̃t = xt+1 −Axt −Biu

i
t, and this computation only involves information

observed under the information setting (state observations and the agent’s own control input). Under
this strategy, agent i thus faces a linear dynamical system (5) controlled by its own, single control
inputs, and for this we make a standard strong stability assumption adapted to the multi-agent setting:

Assumption 3 (Agent-wise strong stability). Each learner i ∈ [N ] knows a linear controller Ki that
is (κi, γi)-strongly stable for the linear dynamical system specified by (A,Bi).

Under this assumption, we present our first individual regret guarantees.
Theorem 3.2 (Individual Regret in Setting 1, Independent Learning). Let Assumptions 1, 2
and 3 hold. Suppose there exists U > 0 s.t. for all t ≥ 0, j ∈ [N ], ∥ujt∥ ≤ U . If agent i ∈ [N ]
runs Algorithm 1 under Setting 1 with (DAC-i) policy on perturbation sequence {w̃t} and step size
η = Θ(1/(GW̃

√
T )), where W̃ =W + (N − 1)U(maxj ∥Bj∥), and with H ≥ log(κiT )/γi, then

for any T ≥ H + 1, we have RegH+1:T
i (Ai, {u−i

t },Πlin
i ) = Õ(U2N2

√
T )1.

1For readability, here and throughout, we use Õ to hide polynomial factors in natural problem parameters
and (poly)logarithmic factors in T and N . We state the exact dependencies in the proofs of each result.
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The proof of Theorem 3.2 consists of applying the single-agent regret guarantee for gradient per-
turbation controllers (Agarwal et al., 2019, Theorem 5.1) for each agent i on the new perturbation
sequence {w̃t} in (5), and we give the full details in Section E. While the theorem highlights the
robustness of gradient perturbation controllers to adversarial disturbances in this setting, the regret
bound grows quadratically with both the number of agents N and the magnitude U of the control
inputs. In the multi-agent setting, this scaling reflects the price of decentralization and indicates how
performance can degrade when the number of agents in the system grows large.

Regret lower bound. In light of the regret guarantee of Theorem 3.2, it is also natural to ask whether
the

√
T dependence on the time horizon can be improved. In general, we prove that the answer is no.

In particular, for any agent i ∈ [N ], we establish the following Ω(
√
T ) lower bound against the class

of linear controllers that holds independently of the agent’s algorithm Ai:

Theorem 3.3. For any agent i ∈ [N ], there exists an instance of (LDS) and cost functions {cit} such
that, for any algorithm Ai and sequence {u−i

t }, and any T ≥ 1: RegTi (Ai, {u−i
t },Πlin

i ) = Ω(
√
T ).

To prove the theorem, we construct a scalar-valued instance of (LDS) and a hard sequence of cost
functions {cit} inspired by lower bounds for (single-agent) online linear optimization (see, e.g., Arora
et al. (2012)). Importantly, we note that such Ω(

√
T ) lower bounds from online learning cannot be

directly applied, as the incurred cost of the agent and the incurred cost of a comparator policy depend
on different state evolution sequences. However, Theorem 3.3 implies that, due to the (possibly
adversarially) time-varying nature of the cost sequence {cit}, the individual regret of an agent in the
present setting must in general have the same dependence on T as in adversarial online learning. The
proof is developed in Section H.

3.2 INFORMATION SETTING 2: AGGREGATED CONTROL LEARNING

While the lower bound of Theorem 3.3 implies that a
√
T dependence can not, in general, be improved

upon, the regret in Theorem 3.2 under Setting 1 scales quadratically with the number of agents. In this
section, we consider Information Setting 2 and analyze the case in which all agents run DAC policies.
Under a global assumption on the resulting dynamical system, we prove that we can guarantee an
individual regret bound with an improved dependence on the total number of agents N . We first
make our global assumption which shall replace Assumption 3 in this section.

Assumption 4 (Global strong stability). Each learner i ∈ [N ] knows a linear controller Ki such
that (K1, · · · ,KN )T is (κ̄, γ̄)-strongly stable for the LDS (A, [B1, · · · , BN ]).

Assumption 4 is a natural global assumption which is relevant when each agent i executes a (DAC-i)
policy (with matrix Ki). Indeed, observe that the system state evolution of (LDS) in the absence
of disturbances, and when all players use their linear controllers, can be written as xt+1 = Axt −
[B1, · · · , BN ](K1, · · · ,KN )Txt. Each agent i has access to the global parameters κ̄, γ̄ which can
be centrally precomputed before each agent runs their Algorithm 1 independently. Recall that the
matrices Ki are not learning parameters and need to be precomputed even in the independent learning
setting. Only the matrix parameters Mi of (DAC-i) policies are learned by the agents.

Under Setting 2, all agents can compute the original disturbance wt at each time step (instead of (w̃t)
as in Theorem 3.2). However, note that at every timestep t, each agent updates their own policy
parameters independently and locally in an uncoupled fashion, without access to other agent’s policy
parameters at that round. After acting, each agent first incurs the loss according to their individual
cost function, and then observes the aggregated feedback. This feedback is used to inform their next
policy parameter update at round t+ 1.

Our next result shows that when agent i runs Algorithm 1 with (a) a conservative stepsize scaled by
N and (b) a larger memory which depends logarithmically on N (compared to Theorem 3.2), they
guarantee a regret w.r.t. the DAC policy class scaling only linearly in N (not quadratically) . This
result is also robust to other agents’ strategies (as they can execute arbitrary (DAC-i) policies).

Theorem 3.4 (Individual Regret in Setting 2). Let Assumptions 1, 2, 4 hold. Then if agent i ∈ [N ]
runs Algorithm 1 under Setting 2 with a (DAC-i) policy on perturbation sequence {wt}, step size η =

Θ(1/N
√
T ), and with H ≥ log(2κ̄N2

√
T )/γ̄, and when all other agents use a (DAC-i) policy with

perturbation sequence (wt), then for any T ≥ H + 1: RegH+1:T
i (Ai, {u−i

t },ΠDAC
i ) = Õ(N

√
T ).
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Proof Overview. To prove the theorem, our analysis relies on a regret decomposition with two
main terms: a counterfactual state-control error due to the use of a loss with limited memory H ,
and a regret term induced by the online gradient descent component of Algorithm 1. In summary,
the main technical challenges we overcome are two-fold: first, states may grow unbounded with an
undesirable scaling in N , and thus we control their magnitude by studying the state evolution when
all agents use DAC policies (using Assumption 4), and while tracking the dependence on N . Second,
we control both terms of the regret decomposition by carefully selecting the memory H , and with an
adequate step size η (optimal in terms of N ). We present the full proof details in Appendix F.

We also remark that the linear dependence on N in the regret bound is enabled by global stability
(Assumption 4). By contrast, if only individual stability (Assumption 3) is assumed, even when agents
can access aggregated control information, the dependence on N deteriorates (see Appendix C.3 for a
discussion). Moreover, under a stronger assumption on the cost functions (compared to Assumption 1-
(ii)), we further prove a sublinear regret for agent i that scales only polylogarithmically in N :

Assumption 5 (Lipschitz costs). There exists L̄ > 0 s.t. for any agent i ∈ [N ] and for all state-control
pairs (x, ui), (x̃, ũi) ∈ X × Ui, |cit(x, ui)− cit(x̃, ũ

i)| ≤ L̄(∥x− x̃∥+ ∥ui − ũi∥) .

Note here that the Lipschitz constant does not scale with the state and control input magnitude. Under
this assumption, we further obtain the following improved regret guarantee (proven in Appendix F):

Theorem 3.5. Under the setting of Theorem 3.4, replace gradient boundedness in Assumption 1 -(ii)
by Assumption 5. Set instead η = Θ(1/

√
T ) and H ≥ log(2κ̄N

√
T )/γ̄. Then for any T ≥ H + 1:

RegH+1:T
i (Ai, {u−i

t },ΠDAC
i ) = Õ(

√
T ).

Note that using Assumption 5 in Theorem 3.2 does not result in the same improved dependence on N
as the regret will still scale with the magnitude of the modified disturbance w̃t, which is of order N .
Finally, in Appendix H.2 we also show that the regret lower bound of Theorem 3.3 can be extended to
hold against the DAC comparator class when the linear controller component is chosen adversarially.
We state and prove this result formally in Theorem H.3 in Section H.2.

4 EQUILIBRIUM TRACKING IN THE COMMON INTEREST SETTING

In the previous section, we developed individual regret guarantees when other agents execute linear or
DAC control policies with possibly misaligned or adversarially-chosen cost functions. In this section,
we focus on the common interest setting, where the objectives of the agents are aligned and all cost
functions are identical (i.e., cit = cjt := ct for any i, j ∈ [N ] for every t). Our goal is to establish
global equilibrium guarantees when all agents simultaneously and independently run Algorithm 1.

Since the cost functions are time-varying (not only via the strategies of the different players), our
multi-agent control problem can be seen as a time-varying game. There have been considerable
efforts endeavoring to extend the scope of traditional game-theoretic results to the time-varying
setting and this is an active research area (see the related work in Section 1). In particular, our results
in this section are inspired from recent developments for time-varying, normal-form, finite potential
games in Anagnostides et al. (2023). In such games, agents participate in a potential game at each
time step. We observe that the common interest multi-agent control problem can be seen as a stateful,
time-varying potential continuous convex game where costs are functions of states driven by an
underlying (LDS) influenced by multiple controllers. At each time step, the utility of each player is
given by their cost function, and their strategy is defined by their DAC policy parameters.

Since our setting involves adversarial, time-varying costs depending on state dynamics influenced
by adversarial (time-varying) disturbances, convergence to (static) Nash equilibria is irrelevant in
general. Nevertheless, we establish equilibrium gap tracking guarantees for our dynamic setting. To
state our result, we introduce notations for time-varying best responses and equilibrium gaps:

BR(t)
i (M−i,t) := max

Mi∈Mi

ℓt(Mt)− ℓt(Mi,M−i,t); EQGAP(t)(Mt) := max
i∈[N ]

BR(t)
i (M−i,t) , (6)

where, as previously defined, ℓit(Mt) = ℓit(Mt−1−H:t) = cit(y
K
t (Mt−1−H:t−1), v

i,K
t (Mt−1−H:t))

and K = (K1, · · · ,KN ) . Note that the equilibrium gap explicitly depends on time (as indicated by
its superscript(t)) due to the time dependence of the cost function and the disturbance sequence. We

8
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now make regularity assumptions on the common cost function ct which are standard in the analysis
of gradient methods in both optimization and learning in games.

Assumption 6 (Uniform cost lower bound). The cost function ct : X × U → R is uniformly
lower-bounded, i.e. there exists cinf > 0 s.t. for all x ∈ X , u ∈ U , t ≥ 1, ct(x, u) ≥ cinf > −∞ .

Assumption 7 (Smoothness). There exists ζ > 0 s.t. the cost function ct : X × U → R satisfies for
every t ≥ 0 and any x, x′ ∈ X , u, u′ ∈ U ,

∥∇xct(x, u)−∇xct(x
′, u′)∥+ ∥∇uct(x, u)−∇uct(x

′, u′)∥ ≤ ζ(∥x− x′∥+ ∥u− u′∥) . (7)

Under these assumptions, when all agents run Algorithm 1, we bound the average equilibrium gap by
the variation of both cost functions and disturbances.

Theorem 4.1. Let Assumptions 1, 2, 4, 6 and 7 hold. Then if each agent i ∈ [N ] runs Algorithm 1
for T steps with constant stepsize η = 1/L (where L is the smoothness constant in Lemma I.5), then

1

T

T∑
t=1

(
EQGAP(t)(Mt)

)2
= O

(
ℓ1(M1)− cinf

T
+

1

T

T∑
t=1

∆ct +
1

T

T∑
t=1

∥wt+1 − wt∥

)
, (8)

where ∆ct := max∥x∥,∥u∥≤D{ct+1(x, u) − ct(x, u)} for every t, the O(·) notation only hides
polynomial dependence in the problem parameters N,H,W, κ̄, γ̄−1,maxi ∥Bi∥ and D depends
polynomially on the same constants. All the constants are made explicit in the appendix.

In a static setting, with time-independent costs in the absence of disturbances (wt = 0 or constant),
Theorem 4.1 translates into the existence of a time step t ≤ T s.t. the joint DAC policy Mt is
an ϵ-approximate Nash equilibrium of the game induced by the loss functions ℓi, i ∈ [N ] after T
iterations (typically T = O(1/ϵ2) for a O(1/T ) rate). In this static case, the cumulative equilibrium
gap is bounded by the initial cost optimality gap. If both the cost variability term and the cumulative
variation in perturbations

∑T
t=1 ∥wt+1 −wt∥ are uniformly bounded by a constant, then the theorem

results in a O(1/T ) rate in terms of the average equilibrium gap squared. For example, this is clearly
the case when the noise sequence wt converges towards a (not-necessarily vanishing) constant. If we
only have

∑T
t=1 ∥wt+1 − wt∥ = o(T ), then we still obtain a vanishing average equilibrium gap.

Proof Overview. To prove the theorem, we extend the approach of Anagnostides et al. (2023) (who
considered time-varying (finite) normal-form potential games) to (a) cover (continuous) convex games
and (b) account for state dynamics and adversarial disturbances in addition to the time-varying costs
in our multi-agent control setting. We give an overview and details of the full proof in Appendix I.

5 CONCLUSION AND FUTURE WORK

This work initiates and makes progress on online multi-agent control in strategic environments subject
to adversarial disturbances, taking a first step toward bridging online control with learning in games.
In particular, we proved the first individual regret and global equilibrium tracking guarantees in the
online multi-agent control setting with adversarial disturbances and time-varying costs.

Our results also open several directions for future research: on the technical side, it is interesting to
investigate whether tighter regret bounds can be obtained with respect to the number of agents or
under structural assumptions such as time-invariant costs. On the modeling side, important challenges
include extending our analysis to settings with unknown or time-varying dynamics (Hazan et al.,
2020; Minasyan et al., 2021; Gradu et al., 2023) and to feedback-limited regimes (Yan et al., 2023a),
where learners can only access partially observed states and partially informed bandit costs. A broader
challenge is to design decentralized multi-agent controllers that remain robust under adversarial
disturbances beyond linear state dynamics. In conclusion, we view our work as a first step toward
further advances at the interface of online control and learning in games in dynamical strategic
environments.
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A EXTENDED RELATED WORK DISCUSSION

Online non-stochastic control. Our work builds on a recent and growing line of research focusing
on the use of online learning techniques to address control problems with adversarially perturbed
dynamical systems (Hardt et al., 2018; Abbasi-Yadkori & Szepesvári, 2011; Agarwal et al., 2019;
Hazan et al., 2020; Foster & Simchowitz, 2020; Simchowitz et al., 2020; Simchowitz, 2020; Gradu
et al., 2020; Ghai et al., 2023; Martin et al., 2024). We refer the reader to a nice introduction to
the topic in the recent monograph of Hazan & Singh (2025) and the references therein for a survey.
Recent follow-up works include studies on dynamic regret for online tracking (Tsiamis et al., 2024),
performative control (Cai et al., 2024), online control in population dynamics (Golowich et al.,
2024; Lu et al., 2025), simultaneous system identification and MPC with regret guarantees (Zhou &
Tzoumas, 2024), online RL (Muehlebach et al., 2025; Ghai et al., 2023), partial feedback settings
(Yan et al., 2023a) and bandit settings Sun & Lu (2024) to name a few. Most of the works in this line
of research are devoted to the control of linear dynamical systems influenced by a single controller.
We discuss a few exceptions in the next section.

Multi-agent control. The interface between game theory and control has given rise to a large body of
work over the last decades to study settings involving multiple interacting controllers, see e.g. Marden
& Shamma (2015; 2018); Chen & Ren (2019) for relevant surveys. Within the game-theoretic control
literature, linear-quadratic (LQ) games is one of the canonical benchmark problems which has been
studied in a variety of settings including LQ differential games (Başar & Olsder, 1998, Chap. 6),
LQ potential games (Mazalov et al., 2017; Hosseinirad et al., 2023), zero-sum LQ games (Zhang
et al., 2019; Bu et al., 2019; Zhang et al., 2021; Wu et al., 2023), static two-player quadratic games
(Calderone & Oishi, 2024) and general-sum LQ games (uz Zaman et al., 2024; Mazumdar et al.,
2020; Hambly et al., 2023; Chiu et al., 2024; Guan et al., 2024). Some of these works typically
consider the same (LDS) and assume quadratic costs for systems which are either deterministic
(wt = 0) or perturbed by a noise sequence {wt} which is i.i.d. Gaussian. In particular they do not
adopt the online learning perspective and do not address the case of arbitrary disturbances. Classical
approaches to design robust controllers in the optimal control literature rely either on using statistical
and probabilistic models for disturbances such as for linear quadratic Gaussian design, or adopting
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a (worst-case) game theoretic perspective via designing ‘minimax’ controllers like in H∞ control
(Başar & Bernhard, 2008). Only few recent works adopt an online learning perspective for distributed
control (Ghai et al., 2022; Chang & Shahrampour, 2023b;a; Martinelli et al., 2024). Chang &
Shahrampour (2023b;a) studied a distributed online control problem over a multi-agent network of m
identical linear time-invariant systems in the presence of adversarial perturbations. Each agent seeks
to generate a control sequence that can compete with the best centralized control policy in hindsight.
In contrast, we address a multi-agent setting involving strategic agents influencing a single linear
dynamical system. Our state dynamics are not separable and are influenced by all the agents. The
cost of each agent in our model is influenced by the (shared) observed state which is governed by all
the agents’ control inputs and the goal of each agent is to maximize their own individual cost.

Markov Games. Regret bounds have been previously established for discrete finite Markov games.
Our multi-agent linear control setting can be seen as a continuous analog to Markov games. However,
note that our linear dynamical system is fundamentally different from the usual Markov game
(or stochastic game) setting involving an unknown state transition kernel outputting the next state
probability distribution as a function of the current state and the (joint) actions of all players. When
considering multi-agent potential games, there are three important distinctions with existing works
on Markov potential games (e.g. Leonardos et al. (2022); Zhang et al. (2024); Ding et al. (2022);
Zhang et al. (2022b); Sun et al. (2023)):

• In our work, the state and action spaces are continuous and are not mixed extensions of finite sets of
states and actions. Most of the bounds scale with the cardinality of the action spaces of the players
and are therefore vacuous in our continuous action space setting. In addition, our results use a
suitable control policy for the linear dynamical system setting. The softmax policy used in e.g.
Zhang et al. (2022b); Sun et al. (2023) is not immediately suitable for the continuous case, unless
one puts a parametric probability distribution assumption on the disturbance sequence, which we
want to avoid in order to consider adversarial disturbances.

• Our results consider adversarial disturbances, and hence the state transitions of the underlying
system may not even be Markovian or stochastic, the disturbances can be chosen adversarially
depending on the far past.

• Our work considers cost functions that are time-varying, which is in contrast with the standard
fixed reward setting in the mentioned Markov potential games works. We also do not consider
discounted rewards, and the potential assumption we use is with respect to the cost function itself,
and not on the aggregate cost over a time horizon.

B EXAMPLES

B.1 DESCRIPTION

We provide a few concrete examples to illustrate our multi-agent control setting.

(a) Smart grid markets. In modern power grids, electricity is generated and distributed by a mix
of independent energy producers such as traditional plants and renewable energy providers. These
actors act selfishly and adapt to market conditions while they also jointly influence the grid. Let
xt be the grid state defined by characteristics such as line loads and aggregate reserves, let uit be
generator i’s power output decision (i.e. their control input) and let the sequence wt capture the
demand fluctuation, the system noise and/or renewable energy shocks. Then, the system dynamics
may evolve according to (LDS) (e.g. by linearization around an operating point). Each generator i
has their local cost function which accounts for the cost of production including e.g. fuel and a
penalty for deviating from a target grid state.

(b) Formation control. Consider a multi-agent system consisting of N vehicles or robots. The
state (position, velocity) and control input of each agent i at each time step t are respectively given
by xit and uit . Suppose the (joint) state of the multi-agent system evolves according to (LDS). The
formation of the multi-agent system is defined by specifying a desired distance to be maintained over
time between the states of agents that are adjacent. The goal of each agent is to minimize their own
formation error and energy consumption. A similar formation control problem has been studied in the
control literature in the absence of adversarial perturbations (wt = 0) using differential games (see
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e.g. Aghajani & Doustmohammadi (2015); Han et al. (2019)) and discrete linear quadratic games
(Hosseinirad et al., 2023).

(c) Bioresource management. A set of firms (or countries) exploit a set of renewable resources (e.g.
a fish population) whose evolution is driven by (LDS) where xt ∈ Rd denotes the vector of quantities
of d distinct resources, the matrix A encodes their natural growth rate, the control uit models the
exploitation rate of the firm i and wt refers to perturbations due to exogenous factors such as weather
conditions. Each firm i has the goal to maximize their profit while minimizing their exploitation cost.
See e.g. Mazalov et al. (2017) in the noiseless setting (wt = 0).

B.2 ABOUT ADVERSARIAL DISTURBANCES

In multi-agent systems, considering adversarial disturbances allows us to model a wide range of
realistic, worst-case, or strategically motivated perturbations ranging from strategic behavior in energy
markets to adversarial environments in robotics and ecological shocks in resource management,
ensuring system robustness even under hostile or extreme scenarios.

We provide below examples of adversarial disturbances in each of the examples described in sec-
tion B.1 above and comment on their importance:

• Smart grid markets: An adversarial disturbance could model sudden demand spikes, strategic
demand manipulation by large consumers (i.e. major electricity buyers who have significant
influence over the overall demand on the grid), malicious data injection attacks that falsify renewable
generation forecasts or misreporting. For instance, an actor might manipulate demand predictions
to influence market prices or grid loads in their favor.

• Formation control: Adversarial disturbances capture environmental disturbances with structured
worst-case behavior, such as wind gusts or magnetic interference that affect formations in potentially
harmful ways. It can also capture adversarial agents or spoofed sensor data to destabilize the forma-
tion. In hostile or uncertain environments (e.g., surveillance drones in contested airspace), agents
must maintain formation despite external influences that could intentionally disrupt coordination.

• Bioresource management: Adversarial disturbances may reflect deliberate misinformation about
resource levels, illegal over-harvesting by untracked actors, or policy shocks (e.g., sudden trade
bans) that drastically affect the resource dynamics in a harmful way. Robust resource management
must consider these disturbances to avoid collapse or irreversible damage.

C FURTHER DISCUSSION OF ASSUMPTIONS

C.1 ASSUMPTION 2

To the best of our knowledge, all prior works in the online control literature assume bounded
adversarial disturbances. It would be interesting to relax this assumption further to model other
scenarios involving catastrophic failures or highly irrational agents. As for the boundedness of the
control inputs, note that this property is automatically satisfied using the gradient-based controllers
considered via the projection of policy parameters.

C.2 ASSUMPTION 3

As is standard in prior work on single-agent online control, we assume that agents have initial access
to a stabilizing controller. Note that such controllers can be obtained offline using an SDP relaxation
(e.g., using the method of Cohen et al. (2018)). Our main focus is on the challenging task of learning
DAC policy parameters under adversarial disturbances.

C.3 ASSUMPTION 4

Global stability is a key property enabling the linear dependence on N in the regret bound. There are
two explanations for this depending on whether or not all agents in the population play DAC policies.

• First, without assuming the specific policies of other agents in the population, assume agent-wise
strong stability holds (Assumption 3) in the Aggregated Control learning setting. Then, agent i
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can locally compute the true disturbances and run their DAC policy w.r.t. this true disturbance
sequence. However, bounding the individual regret of agent i requires controlling the magnitude of
the norm of the global state, and without any assumptions on the control policy of other agents,
their “contributions” to the state evolution can only crudely be treated as an “error” term. With
(N − 1) other agents in the population, the norm of the state will still scale linearly in N in the
worst case resulting in an N2 dependence in the regret bound for agent i.

• On the other hand, suppose we assume all agents in the population play DAC policies. While it
is possible to show that agent-wise strong stability (Assumption 3) implies global strong stability
(Assumption 4), the resulting parameters for global strong stability will depend on the number of
agents N (note that it is natural that local strong stability does not imply global strong stability with
the same constant parameter values, independently of N ). Therefore, when applying the machinery
of the proof of Theorem 3.4 using the resulting global strong stability parameters (which depend
on N ), the final regret bound will still have at least an N2 dependence.

D PREPARATORY RESULTS FOR THE MAIN PROOFS

D.1 NOTATION: COUNTERFACTUAL AND IDEALIZED STATES AND ACTIONS

We introduce a few useful notations in view of our regret analysis. We focus on agent i’s viewpoint
and we suppose that other players are using a given sequence of control inputs {u−i

t } . We will not
highlight this dependence in the notation below to avoid overloaded notations as it will be clear from
the context.

• Counterfactual state and action: We use the notation xKi
t (Mi,0:t−1) for the state reached by the

system by execution of the non-stationary policy πi(Mi,0:t−1,Ki), and ui,Ki

t (Mi,0:t−1) is the
action executed at time t. If the same (stationary) policy Mi is used by agent i in all time steps, we
use the more compact notation xKi

t (Mi), u
i,Ki

t (Mi). We use the notation xKi
t (0), ui,Ki

t (0) for the
linear control policy Ki .

• Ideal state and action: We denote by yKi
t+1(Mi,t−H:t) the ideal state of the system that would

have been reached if agent i played the non-stationary policy Mi,t−H:t from time step t−H to t
assuming that the state at time t−H is zero while other agents use the control sequence {u−i

t−H:t} .
The ideal action to be executed at time t+ 1 if the state observed at time t+ 1 is yi,Ki

t+1 (Mi,t−h:t)

will be denoted by vi,Ki

t+1 (Mi,t−H:t+1) = −Kiy
i,Ki

t+1 (Mi,t−H:t) +
∑H

p=1M
[p−1]
i,t+1wt+1−p . We use

the compact notations yi,Ki

t+1 (Mi), v
i,Ki

t+1 (Mi) when Mi is constant across time steps t−H to t.

• Ideal cost: Let ℓit(Mi,t−1−H:t) = cit(y
i,Ki

t (Mi,t−1−H:t−1), v
i,Ki

t (Mi,t−1−H:t)) be agent i’s cost
function evaluated at the idealized state and action pair. Again we use the notation ℓit(Mi) when
Mi is constant across time steps t −H to t . Importantly, for every agent i ∈ [N ], the function
ℓit is a convex function of Mi,t−H−1:t under assumption 1: This is because the cost function of
agent i is supposed to be convex w.r.t. both its arguments and both ideal state and action are
linear transformations of Mi,t−H−1:t (see Lemma 3.1 and its proof). Introducing and using this
idealized cost which only involves the past H controllers brings us to online convex optimization
with memory (Anava et al., 2015).

D.2 STATE EVOLUTION

In view of our analysis, we describe first the state evolution under (LDS). We introduce first some
useful notations for any i ∈ [N ], t, h ≤ t, l ≤ H + h:

ÃKi
:= A−BiKi , Ψi,h

t,l (Mi,t−h:t) := Ãl
Ki

1l≤h +

h∑
k=0

Ãk
Ki
BiM

[l−k−1]
i,t−k 1l−k∈[1,H] , (9)

ĀK := A−
N∑
i=1

BiKi , Ψ̄h
t,l(Mt−h:t) := Āl

K1l≤h +

h∑
k=0

Āk
K

N∑
i=1

BiM
[l−k−1]
i,t−k 1l−k∈[1,H] . (10)
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Here, when player i plays a DAC policy (DAC-i) and other players’ control inputs are given by {u−i
t },

the matrix ÃKi
describes the evolution of the state when agent i executes the linear controller Ki in

the absence of disturbances and other players, and Ψi,h
t,l (Mi,t−h:t) is the disturbance-state transfer

matrix for agent i which will describe the influence of the perturbation term wt−l on the next
state xt+1 at time t+ 1. When all agents execute a DAC policy (DAC-i), the evolution of the state is
driven by the matrix ĀK and the influence of the perturbation term wt−l on the next state xt+1 is
captured by the disturbance-state transfer matrix Ψ̄h

t,l(Mt−h:t). Using these notations we have the
following result describing the evolution of the states under (LDS) extending the single-agent result
of Agarwal et al. (2019) (Lemma 4.3).
Proposition D.1. (State evolution) Suppose all agents but i ∈ [N ] select their actions according to
the sequence of control inputs {u−i

t } then for every time t and every h ≥ 0, if agent i ∈ [N ] executes
a non-stationary DAC policy πi(Mi,0:T ,Ki), the state of the system (LDS) is as follows:

(i) Under Setting 1, i.e. with perturbation sequence w̃t := wt +
∑

j ̸=iBju
j
t−k,

xt+1 = Ãh+1
Ki

xt−h +

H+h∑
l=0

Ψi,h
t,l (Mi,t−h:t)w̃t−l . (11)

(ii) Under Setting 2, if in addition all the agents execute a DAC policy using the sequence {wt},

xt+1 = Āh+1
K xt−h +

H+h∑
l=0

Ψ̄h
t,l(Mt−h:t)wt−l . (12)

This result follows from unrolling the state dynamics for h steps, injecting the DAC policy for
agent i (or all agents depending on the setting) and rewriting the state evolution to highlight the
linear dependence of the state on the previous disturbances. We defer a complete constructive
proof to Appendix D.2. Importantly, notice that Ψi,h

t,l and Ψ̄h
t,l are linear in the h + 1 DAC policy

parameters Mi,t−h:t, i ∈ [N ] .

Proof. We prove the two claims of the Proposition separately:

Proof of Claim (i). The proof of the first part of the statement under Setting 1 is a direct application
of the known single-agent result (Agarwal et al., 2019, Lemma 4.3) with the new disturbance
sequence {w̃t} rather than the original disturbance sequence {wt} defining (LDS).

Proof of Claim (ii). We provide a full constructive proof which clarifies how we obtain our final
state evolution expression. Observe first that

xt+1 = Axt +

N∑
i=1

Biu
i
t + wt (using (LDS))

= Axt +

N∑
i=1

Bi

(
−Kixt +

H∑
p=1

M
[p−1]
i,t wt−p

)
+ wt (using non-stat.(DAC-i))

=

(
A−

N∑
i=1

BiKi

)
xt +

N∑
i=1

(
Bi

H∑
p=1

M
[p−1]
i,t wt−p

)
+ wt ,

= ĀKxt + φ̃0
t,i , (13)

where we define: φ̃0
t :=

∑N
i=1

(
Bi

∑H
p=1M

[p−1]
i,t wt−p

)
+ wt . Expanding again the state xt yields:

xt+1 = ĀKxt + φ̃0
t (see (13))

= ĀK

(
ĀKxt−1 +

N∑
i=1

(
Bi

H∑
p=1

M
[p−1]
i,t−1wt−1−p

)
+ wt−1

)
+ φ̃0

t (same steps as in (13))

= Ā2
Kxt−1 + φ̃1

t−1 + φ̃0
t , (14)
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where we define for every k = 0, · · · , h:

φ̃k
t−k := Āk

K

N∑
i=1

(
Bi

H∑
p=1

M
[p−1]
i,t−kwt−k−p

)
+ Āk

Kwt−k , (15)

where we note for precision that the last term is not in the sum over i. Unrolling the recursion (14)
for h steps yields

xt+1 = Āh+1
K xt−h +

h∑
k=0

φ̃k
t−k . (16)

It now remains to rewrite the second term in the above expression:
h∑

k=0

φ̃k
t−k =

h∑
k=0

Āk
K

(
N∑
i=1

Bi

H∑
p=1

M
[p−1]
i,t−k

)
wt−k−p + Āk

Kwt−k (using definition (15))

=

H+h∑
l=1

(
h∑

k=0

Āk
K

(
N∑
i=1

BiM
[l−k−1]
i,t−k

)
1l−k∈[1,H]wt−l + Āk

Kwt−k

)
(index change l = k + p, 0 ≤ k ≤ h, 1 ≤ p ≤ H)

=

H+h∑
l=0

(
Āl

K1l≤h +

h∑
k=0

Āk
K

N∑
i=1

BiM
[l−k−1]
i,t−k 1l−k∈[1,H]

)
wt−l (simplifying 1st term)

=

H+h∑
l=0

Ψ̄h
t,l(Mt−h:t)wt−l . (using definition of Ψ̄h

t,l in (10)) .

(17)

D.3 TRANSFER MATRIX BOUND

In view of our regret analysis, it will be useful to bound the norm of the states and actions. Given the
expression of the state evolution shown in Proposition D.1-(ii), we will need to bound the norm of the
state transfer matrix. This is the purpose of the next lemma which is similar to (Agarwal et al., 2019,
Lemma 5.4).2 However, our transfer matrix which is induced by all agents playing DAC-i policies is
different from their single-agent counterpart.
Lemma D.2. Let the global strong stability assumption 4 hold, i.e. suppose that K =
(K1, · · · ,KN )T is (κ̄, γ̄)-strongly stable for (A, [B1, · · · , BN ]) . Let Mi,t be a sequence s.t. for
all t, p ∈ {0, · · · , H − 1}, ∥M [p]

i,t ∥ ≤ τ(1 − γ̄)p where τ is some positive constant. Then for all
t ≥ 1, h ≤ t and l ≤ H + h, we have

∥Ψ̄h
t,l(Mt−h:t)∥ ≤ κ̄(1− γ̄)l · 1l≤H +Hκ̄τ

(
N∑
i=1

∥Bi∥

)
(1− γ̄)l−1 . (18)

Proof. Recall the definition of Ψ̄h
t,l from (10):

Ψ̄h
t,l(Mt−h:t) := Āl

K1l≤h +

h∑
k=0

Āk
K

N∑
i=1

BiM
[l−k−1]
i,t−k 1l−k∈[1,H] . (19)

Using strong stability of K (see definition 2.1), there exists matrices L,Q s.t. ĀK = A −∑N
i=1BiKi = QLQ−1 with ∥L∥ ≤ 1 − γ̄, and ∥Q∥ · ∥Q−1∥ ≤ κ̄ . Therefore using the sub-

multiplicativity of the norm we obtain for every l = 0, · · · , t,

∥Āl
K∥ = ∥(QLQ−1)l∥ = ∥QLlQ−1∥ ≤ ∥Q∥ · ∥Q−1∥ · ∥L∥l ≤ κ̄(1− γ̄)l . (20)

2Note here that our powers of κ are slightly different because we stick to the definition of (κ, γ)-strong
stability introduced in Cohen et al. (2018) rather than the one later used in Agarwal et al. (2019) which is slightly
different, this is without any loss of generality.
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Therefore, we can bound the norm of the state transfer matrix in (19) as follows:

∥Ψ̄h
t,l(Mt−h:t)∥ ≤ ∥Āl

K∥1l≤h +

h∑
k=0

∥Āk
K∥ ·

N∑
i=1

∥Bi∥ · ∥M [l−k−1]
i,t−k ∥ · 1l−k∈[1,H]

≤ κ̄(1− γ̄)l · 1l≤h + κ̄τ

N∑
i=1

∥Bi∥
h∑

k=0

(1− γ̄)k(1− γ̄)l−k−11l−k∈[1,H]

≤ κ̄(1− γ̄)l · 1l≤H +Hκ̄τ

(
N∑
i=1

∥Bi∥

)
(1− γ̄)l−1 , (21)

where the second inequality stems from using strong stability (see (20)) and the assumed
bound ∥M [p]

i,t ∥ ≤ τ(1− γ̄)p for p ∈ {0, · · · , H − 1}. As for the last inequality, observe after simplifi-
cation that the summand does not depend on the index k of the sum apart from the indicator function
and there are at most H terms in the sum (since l −H ≤ k ≤ l − 1 as l − k ∈ {1, · · · , H}) .

D.4 STATE, ACTION AND DIFFERENCE OF STATE AND ACTION BOUNDS

The goal of the next proposition is to control the norms of states, actions and differences of states
and actions. Note that we pay particular attention to the problem constants involved to elucidate the
dependence of our bounds on the number of agents N and the magnitude of the control inputs of
all the agents. The result is a more refined version of (Agarwal et al., 2019, Lemma 5.5) which is
adapted to our multi-agent control setting when each agent executes a (DAC-i) policy.
Proposition D.3. Let Assumption 4 hold. Let the perturbation sequence {wt} in (LDS) satisfy
Assumption 2. Let Mi,t be a sequence s.t. for any time step t, for p ∈ {0, · · · , H − 1}, ∥M [p]

i,t ∥ ≤
τ(1 − γ̄)p for some τ > 0 . Let K = (K1, · · · ,KN ),K = (K∗

1 , · · · ,K∗
N ) be s.t. K and K∗ are

two (κ̄, γ̄)-strongly stable matrices. Then the following holds:

(i) State under (DAC-i): For every t ≥ H + 1,

∥xKt (M0:t−1)∥ ≤ κ̄

γ̄
·
W (1 + τH

∑N
i=1 ∥Bi∥)

1− κ̄(1− γ̄)H+1
. (22)

(ii) Ideal state under (DAC-i): For every t ≥ H + 1,

∥yKt (Mt−1−H:t−1)∥ ≤ κ̄

γ̄
W

(
1 + τH

N∑
i=1

∥Bi∥

)
. (23)

(iii) Linear controller state: For every t ≥ 0, ∥xK∗

t (0)∥ ≤ κ̄
γ̄W .

(iv) Action under (DAC-i): For every t ≥ H + 1,

∥ui,Kt (M0:t)∥ ≤ κ̄2

γ̄
·
W (1 + τH

∑N
i=1 ∥Bi∥)

1− κ̄(1− γ̄)H+1
+
τ

γ̄
W . (24)

(v) Ideal action under (DAC-i): For every t ≥ H + 1,

∥vi,Kt (Mt−1−H:t)∥ ≤ κ̄2

γ̄
W

(
1 + τH

N∑
i=1

∥Bi∥

)
+
τ

γ̄
W . (25)

(vi) State vs. ideal state comparison: For every t ≥ H + 1,

∥xKt (M0:t−1)− yKt (Mt−1−H:t−1)∥ ≤ (1− γ̄)H
κ̄2

γ̄
·
W (1 + τH

∑N
i=1 ∥Bi∥)

1− κ̄(1− γ̄)H+1
. (26)

(vii) Action vs ideal action comparison: For every t ≥ H + 1,

∥ui,Kt (M0:t)− vi,Kt (Mt−1−H:t)∥ ≤ (1− γ̄)H
κ̄3

γ̄
·
W (1 + τH

∑N
i=1 ∥Bi∥)

1− κ̄(1− γ̄)H+1
. (27)
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(viii) Moreover, given all the above bounds, if H + 1 ≥ ln(2κ̄)
γ̄ (where κ̄ ≥ 1 without loss of

generality), then we have the following simultaneous bounds:

max
t≥H+1

{
∥xKt (M0:t−1)∥, ∥yKt (Mt−1−H:t−1)∥, ∥xK

∗

t (0)∥
}
≤ D , (28)

max
t≥H+1

{
∥ui,Kt (M0:t)∥, ∥vi,Kt (Mt−1−H:t)∥

}
≤ D , (29)

max
t≥H+1

{
∥xKt (M0:t−1)− yKt (Mt−1−H:t−1)∥, ∥ui,Kt (M0:t)− vi,Kt (Mt−1−H:t)∥

}
≤ (1− γ̄)HD ,

(30)

where the constant D is defined as follows as a function of the problem parameters:

D :=
6κ̄3

γ̄
W

(
1 + κ̄2H

N∑
i=1

∥Bi∥

)
. (31)

Note in particular that D = O(N) where the notation O(·) here hides all other constants which are
independent of the number N of agents .

Proof. We prove each one of the statements of the proposition separately.

Proof of Claim (i). Using Proposition D.1-(ii) at time step t− 1 with h = H , we have

xKt (M0:t−1) = ĀH+1
K xt−1−H(M0:t−2−H) +

2H∑
l=0

Ψ̄H
t−1,l(Mt−1−h:t−1)wt−1−l . (32)

It follows from using the boundedness of the perturbation sequence {wt} by W , the (κ̄, γ̄)-strong
stability of the matrix K (see Eq. (20)) that

∥xKt (M0:t−1)∥ ≤ κ̄(1− γ̄)H+1∥xt−1−H(M0:t−2−H)∥+W

2H∑
l=0

∥Ψ̄H
t−1,l(Mt−1−h:t−1)∥ . (33)

Now invoking Lemma D.2 at time t− 1 with h = H yields for every l ≤ 2H, t ≥ 1:

∥Ψ̄h
t−1,l(Mt−1−h:t−1)∥ ≤ κ̄(1− γ̄)l · 1l≤H + κ̄τH

(
N∑
i=1

∥Bi∥

)
(1− γ̄)l−1 . (34)

As a consequence, we have by summing these bounds over l = 0, · · · , 2H ,

2H∑
l=0

∥Ψ̄h
t−1,l(Mt−1−h:t−1)∥ ≤ κ̄

H∑
l=0

(1−γ̄)l+κ̄τH
N∑
i=1

∥Bi∥
2H∑
l=1

(1−γ̄)l−1 ≤ κ̄

γ̄

(
1 + τH

N∑
i=1

∥Bi∥

)
.

Therefore we obtain

∥xKt (M0:t−1)∥ ≤ κ̄(1− γ̄)H+1∥xt−1−H(M0:t−2−H)∥+ κ̄

γ̄
W

(
1 + τH

N∑
i=1

∥Bi∥

)
. (35)

Unrolling the recursion results in the desired state norm bound:

∥xKt (M0:t−1)∥ ≤ κ̄

γ̄
·
W (1 + τH

∑N
i=1 ∥Bi∥)

1− κ̄(1− γ̄)H+1
. (36)

Proof of Claim (ii). Recall that yKt (Mt−1−H:t−1) is the ideal system state that would have been
reached if each agent i played the non-stationary policy Mi,t−1−H:t−1 from time step t− 1−H to
t− 1 assuming that the state at time t− 1−H is zero. Therefore, similarly to (32) it follows that

yKt (Mt−1−H:t−1) =

2H∑
l=0

Ψ̄H
t−1,l(Mt−1−h:t−1)wt−1−l . (37)
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Using similar steps as for the proof of (i) results in the following desired bound:

∥yKt (Mt−1−H:t−1)∥ ≤ κ̄

γ̄
W

(
1 + τH

N∑
i=1

∥Bi∥

)
. (38)

Proof of Claim (iii). Observe that for any time step t ≥ 1, the state induced by linear controllers
K∗ = (K∗

1 , · · · ,K∗
N ) is given by

xK
∗

t (0) =

t−1∑
l=0

Āl
K∗wt−1−l . (39)

As a consequence, using (κ̄, γ̄)-strongly stability ofK∗ together with boundedness of the perturbation
sequence {wt} and the sum of the geometric series by 1/γ̄, we have for every time step t ≥ 1:

∥xK
∗

t (0)∥ ≤ κ̄

γ̄
W , (40)

and this concludes the proof.

Proof of Claim (iv). Note first that action ui,Ki

t (Mi,0:t) is computed using (DAC-i) policy as follows:

ui,Kt (M0:t) = −Kix
K
t (M0:t−1) +

H∑
p=1

M
[p−1]
i,t wt−p . (41)

Using the (κ̄, γ̄)-strong stability of K (and without loss of generality ∥Ki∥ ≤ κ̄) and the bound
assumption on Mi,t together with the state bound already established in item (i), we obtain

∥ui,Kt (M0:t)∥ ≤ κ̄∥xKt (M0:t−1)∥+W
τ

γ̄
≤ κ̄2

γ̄
·
W (1 + τH

∑N
i=1 ∥Bi∥)

1− κ̄(1− γ̄)H+1
+W

τ

γ̄
. (42)

Proof of Claim (v). By definition of the ideal action vi,Kt (Mt−1−H:t) given the ideal
state yKt (Mt−1−H:t−1), we have:

vi,Kt (Mt−1−H:t) = −Kiy
K
t (Mt−1−H:t−1) +

H∑
p=1

M
[p−1]
i,t wt−p . (43)

Therefore we can bound the ideal action as follows similarly to the proof of item (iv) using the ideal
state bound already established in item (ii) to obtain

∥vi,Kt (Mt−1−H:t)∥ ≤ κ̄∥yKt (Mt−1−H:t−1)∥+W
τ

γ̄
≤ κ̄2

γ̄
W

(
1 + τH

N∑
i=1

∥Bi∥

)
+W

τ

γ̄
. (44)

Proof of Claim (vi). It follows from combining the state evolution expressions (32) and (37) that

∥xKt (M0:t−1)− yKt (Mt−1−H:t−1)∥ = ∥ĀH+1
K xt−1−H(M0:t−2−H)∥ (45)

≤ κ̄(1− γ̄)H∥xt−1−H(M0:t−2−H)∥ . (46)

Plugging in again the state bound (item (i)-(22)) in the above inequality yields the desired inequality:

∥xKt (M0:t−1)− yKt (Mt−1−H:t−1)∥ ≤ (1− γ̄)H
κ̄2

γ̄
·
W (1 + τH

∑N
i=1 ∥Bi∥)

1− κ̄(1− γ̄)H+1
. (47)

Proof of Claim (vii). Using the definitions of the actions ui,Kt (M0:t) and vi,Kt (Mt−1−H:t) in
(41)-(43), we immediately have:

∥ui,Kt (M0:t)− vi,Kt (Mt−1−H:t)∥ = ∥Ki(y
K
t (Mt−1−H:t−1)− xKt (M0:t−1))∥

≤ κ̄∥yKt (Mt−1−H:t−1)− xKt (M0:t−1)∥

≤ (1− γ̄)H
κ̄3

γ̄
·
W (1 + τH

∑N
i=1 ∥Bi∥)

1− κ̄(1− γ̄)H+1
, (48)
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where the last inequality stems from using the inequality established in item (vii)-(47).

Proof of Claim (viii). Set τ = 2κ2. If H + 1 ≥ ln(2κ̄)
γ̄ , then κ̄(1− γ̄)H+1 ≤ 1

2 . Using this bound
and the fact that κ̄ ≥ 1 without loss of generality (replace κ̄ by max{1, κ̄} otherwise), it is easy to
see that we obtain the desired bounds with the same constant D by taking the maximum of all the
bounds appearing in the inequalities of Proposition D.3 .

E PROOF OF THEOREM 3.2

Here, we give the proof of Theorem 3.5, which we restate here:
Theorem 3.2 (Individual Regret in Setting 1, Independent Learning). Let Assumptions 1, 2
and 3 hold. Suppose there exists U > 0 s.t. for all t ≥ 0, j ∈ [N ], ∥ujt∥ ≤ U . If agent i ∈ [N ]
runs Algorithm 1 under Setting 1 with (DAC-i) policy on perturbation sequence {w̃t} and step size
η = Θ(1/(GW̃

√
T )), where W̃ =W + (N − 1)U(maxj ∥Bj∥), and with H ≥ log(κiT )/γi, then

for any T ≥ H + 1, we have RegH+1:T
i (Ai, {u−i

t },Πlin
i ) = Õ(U2N2

√
T )3.

Remark E.1. The notation Õ in Theorem 3.2 hides polynomial factors in γ−1
i , κi, ∥Bi∥, G, d and

logarithmic factors in T .

Proof. Under Assumptions 1, 2 and 3, we apply Agarwal et al. (2019, Theorem 5.1) for each
agent i ∈ [N ]. It remains to ensure that the considered perturbation sequence {w̃t} in (5) also
satisfies the boundedness condition of Assumption 2 using the boundedness of control inputs by U as
follows:

∥w̃t∥ =
∥∥∥∑

j ̸=i
Bju

j
t + wt

∥∥∥ ≤ ∥wt∥+
∑

j ̸=i
∥Bj∥ · ∥ujt∥ ≤W +(N − 1)U(max

j
∥Bj∥) , (49)

where the last inequality follows from using boundedness of the control inputs of all the agents
together with the bounded disturbances assumption (Assumption 2).

Selecting a step size η = Θ(1/(GW̃
√
T )), where W̃ = W + (N − 1)U(maxj ∥Bj∥), and a

(per-agent) memory length H ≥ log(κiT )/γi, we obtain the desired regret for any T ≥ H + 1,

RegH+1:T
i (Ai, {u−i

t },Πlin
i ) = Õ(U2N2

√
T ) . (50)

This concludes the proof.

F PROOF OF THEOREM 3.4

This section is devoted to developing the proof of Theorem 3.4, which we restate here:
Theorem 3.4 (Individual Regret in Setting 2). Let Assumptions 1, 2, 4 hold. Then if agent i ∈ [N ]
runs Algorithm 1 under Setting 2 with a (DAC-i) policy on perturbation sequence {wt}, step size η =

Θ(1/N
√
T ), and with H ≥ log(2κ̄N2

√
T )/γ̄, and when all other agents use a (DAC-i) policy with

perturbation sequence (wt), then for any T ≥ H + 1: RegH+1:T
i (Ai, {u−i

t },ΠDAC
i ) = Õ(N

√
T ).

Remark F.1. The notation Õ(·) in Theorem 3.4 hides polynomial factors in
W, γ̄−1, κ̄,maxj ∥Bj∥, G, d, and only polylogarithmic factors in T and N .

The proof of the result is based on the regret decomposition that we outline in Section F.1. We start
by making the following remark regarding the “burn-in” regret:

Remark F.2. Under Assumption 1-(ii), the ‘burn-in’ regret Reg1:Hi (Ai, {u−i
t },ΠDAC

i ) can be
bounded by 2HβD2 which only scales polylogarithmically in T and can scale with N2 in the
worst case. This worst-case dependence can be offset by considering a sufficiently large T . If the cost
function is uniformly bounded by a constant C, then the bound becomes 2HC, independently of N .

We now proceed to develop the main overview of the proof:

3For readability, here and throughout, we use Õ to hide polynomial factors in natural problem parameters
and (poly)logarithmic factors in T and N . We state the exact dependencies in the proofs of each result.
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F.1 REGRET DECOMPOSITION AND PROOF OVERVIEW

Define the regret from time step H to T as follows:

RegH:T
i (Ai,A−i,Π

DAC
i ) :=

T∑
t=H

cit(xt, u
i
t)− min

Mi,⋆∈Mi

T∑
t=H

cit(x
Ki
t (Mi,⋆,M−i,t), u

i,Ki

t (Mi,⋆,M−i,t)) .

(51)
In the rest of this proof we use the shorthand notation RegH:T

i for RegH:T
i (Ai,A−i,Π

i,DAC) . First,
it follows from Lemma J.2 that:

RegTi ≤ Reg0:H
i + RegH+1:T

i . (52)

Then we decompose the regret from time step H + 1 to T as follows:

RegH+1:T
i =

T∑
t=H+1

cit(xt, u
i
t)− min

Mi,⋆∈Mi

T∑
t=H+1

cit(x
Ki
t (Mi,⋆,M−i,t), u

i,Ki

t (Mi,⋆,M−i,t)) (53)

=

T∑
t=H+1

(cit(xt, u
i
t)− lit(Mi,t−H−1:t))︸ ︷︷ ︸

Counterfactual state and action deviation error

(54)

+

T∑
t=H+1

lit(Mi,t−H−1:t)− min
Mi,⋆∈Mi

T∑
t=H+1

lit(Mi,⋆)︸ ︷︷ ︸
Online gradient descent with memory regret

(55)

+ min
Mi,⋆∈Mi

T∑
t=H+1

lit(Mi,⋆)− min
Mi,⋆∈Mi

T∑
t=H+1

cit(x
Ki
t (Mi,⋆,M−i,t), u

i,Ki

t (Mi,⋆,M−i,t))︸ ︷︷ ︸
Counterfactual state and action deviation optimality error

.

(56)

We conclude the proof of Theorem 3.4 by collecting the upper bounds of each one of the terms
established in sections F.2 (see (62) with the choiceH ≥ logN2

√
T

γ̄ ) and F.3 (see (63) and (67)) below.
In conclusion, we obtain

RegH+1:T
i = Õ(N

√
T ) , (57)

where Õ hides polylogarithmic factors in N and polynomial factors in all other problem parameters
but N . Note that we pick H ≥ logN2

√
T

γ̄ + log 2κ̄
γ̄ = log 2κ̄N2

√
T

γ̄ by combining the two conditions
on the horizon length obtained in section F.2 and in Proposition D.3-(viii).

F.2 COUNTERFACTUAL STATE AND ACTION DEVIATION ERROR

In this section, we upper bound the first and last error terms in the regret decomposition in (53),
namely the error terms due to the difference between the realized incurred costs and the costs
corresponding to the counterfactual states and actions.

For t ≥ H + 1, each term in the first error sum term can be upper bounded as follows:

|cit(xt, uit)− lit(Mi,t−H−1:t)|
= |cit(xKt (M0:t−1), u

i,K
t (M0:t))− cit(y

K
t (Mt−1−H:t−1), v

i,K
t (Mt−1−H:t))|

≤ GD(∥xKt (M0:t−1)− yKt (Mt−1−H:t−1)∥+ ∥ui,Kt (M0:t)− vi,Kt (Mt−1−H:t)∥)
≤ 2GD2(1− γ̄)H , (58)

where the first inequality stems from using Assumption 1-(ii) together with Proposition D.3 and the
second inequality follows from using Proposition D.3-(viii), Eq. (30). Note that the constant D is
defined in (31).
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Summing up the above inequality for H + 1 ≤ t ≤ T , we obtain
T∑

t=H+1

(cit(xt, u
i
t)− lit(Mi,t−H−1:t)) ≤ 2GD2(T −H)(1− γ̄)H . (59)

The last counterfactual error term in the regret decomposition in (53) can be upper bounded the exact
same way as in (59). Indeed pick a policy parameterization

M̃i,⋆ ∈ argmin
M̃i,⋆∈Mi

T∑
t=H+1

cit(x
Ki
t (Mi,⋆,M−i,t), u

i,Ki

t (Mi,⋆,M−i,t)) . (60)

Then we can write

min
Mi,⋆∈Mi

T∑
t=H+1

lit(Mi,⋆)− min
Mi,⋆∈Mi

T∑
t=H+1

cit(x
Ki
t (Mi,⋆,M−i,t), u

i,Ki

t (Mi,⋆,M−i,t))

= min
Mi,⋆∈Mi

T∑
t=H+1

lit(Mi,⋆)−
T∑

t=H+1

cit(x
Ki
t (M̃i,⋆,M−i,t), u

i,Ki

t (M̃i,⋆,M−i,t))

≤
T∑

t=H+1

(lit(M̃i,⋆)− cit(x
Ki
t (M̃i,⋆,M−i,t), u

i,Ki

t (Mi,⋆,M−i,t))) , (61)

and the last sum is of the exact same form as the one we upper bounded in (59). Observe that
Assumption 1-(ii) together with Proposition D.3 can be used again upon noticing that the results of
Proposition D.3 are also valid when fixing player i’s matrix to be M̃i,⋆ ∈ Mi, it suffices to replace
Mi,t−1−H:t by the constant matrix M̃i,⋆ everywhere in the proof of Proposition D.3 and using the
fact that M̃i,⋆ ∈ Mi, the proof remains unchanged.

In conclusion of this section, we have shown that

T∑
t=H+1

(cit(xt, u
i
t)− lit(Mi,t−H−1:t))

+ min
Mi,⋆∈Mi

T∑
t=H+1

lit(Mi,⋆)− min
Mi,⋆∈Mi

T∑
t=H+1

cit(x
Ki
t (Mi,⋆,M−i,t), u

i,Ki

t (Mi,⋆,M−i,t))

≤ 4GD2(T −H)(1− γ̄)H . (62)

Now, note from the definition of D in (31) that D = O(N) . Therefore, the above error term scales
in T and N as O(N2T (1 − γ̄)H) . Choosing H ≥ logN2

√
T

γ̄ guarantees that the error term is of

the order Õ(
√
T ), where Õ hides polylogarithmic factors in N and polynomial factors in all other

problem parameters but N .

F.3 ONLINE GRADIENT DESCENT WITH MEMORY REGRET BOUND

Applying Theorem J.1 of Appendix J.1 in Anava et al. (2015) gives:
T∑

t=H+1

lit(Mi,t−H−1:t)− min
Mi,⋆∈Mi

T∑
t=H+1

lit(Mi,⋆) ≤
D2

0

η
+ (G2

0 + LH2G0)ηT . (63)

It remains to check assumptions 1 to 3 of Theorem J.1 and specify the values of the diameter
bound D0, the coordinate-wise Lipschitz constant L and the gradient bound constant G0.

As for the diameter boundedness, we can setD0 = 4
√
2κ̄2/γ̄ . This is because for anyM1,M2 ∈ Mi

(for any i ∈ [N ]), we have

∥M1 −M2∥ ≤
√
2

(
H∑

p=1

∥M [p−1]
1 ∥+ ∥M [p−1]

2 ∥

)
≤ 4

√
2

H∑
p=1

κ̄2(1− γ̄)p ≤ 4
√
2κ̄2/γ̄ . (64)
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Coordinatewise loss lipschitzness and gradient loss boundedness are respectively established in
subsections F.3.1 (Lemma F.3) and F.3.2 (Lemma F.4) below.

Now in order to set the stepsize in the regret bound (63) above, we focus on optimizing the dependence
on the time horizon T as well as the total number N of agents. Observe now from Lemma F.3 and
Lemma (F.4) together with the definition of D in (31) that

L = O(D) = O(N), G0 = O(D) = O(N) , (65)
where the big O(·) notation hides problem parameters that are independent of N . Hence the regret
bound in (63) is of the order

O
(
1

η
+N2ηT

)
, (66)

where again the big O(·) notation hides problem parameters that are independent of N . Therefore
we set η = Θ(1/(N

√
T )) and the final online gradient descent regret bound we obtain scales as

O(N
√
T ) , (67)

which concludes the proof. Note here that we have optimized the stepsize to obtain the best
dependence on both the time horizon T and notably the number N of agents. In particular, using the
standard optimal upper bound giving the smallest regret bound (without focusing on any parameter in
particular) would result in a worse dependence on the number of agents.

F.3.1 COORDINATE-WISE LOSS LIPSCHITZNESS

Lemma F.3 (Coordinate-wise loss lipschitzness). For any agent i ∈ [N ],

let (Mi,t−1−H , · · · ,Mi,t−k, · · · ,Mi,t) and (Mi,t−1−H , · · · , M̃i,t−k, · · · ,Mi,t) be two pol-
icy parameter sequences for agent i differing only in time step t− k for k ∈ 0, · · · , H with Mi,t−k

replaced by M̃i,t−k. Suppose that the policy parameters of other agents but i are given by the same
sequence M−i,t−1−H:t (i.e. the same for both joint policies, the difference is only in player i’s
policy). Then we have for every t ≥ H + 1,

|lit(Mi,t−1−H , · · · ,Mi,t−k, · · · ,Mi,t)− lit(Mi,t−1−H , · · · , M̃i,t−k, · · · ,Mi,t)|

≤ L

H∑
p=1

∥M [p]
i,t−k − M̃

[p]
i,t−k∥ , (68)

where L = 2GDWκ̄2 max
j=1,··· ,N

∥Bj∥ and G,D are respectively defined in Assumption 1-(ii) and (31).

Proof. The proof follows a similar approach to that of (Agarwal et al., 2019, Lemma 5.6). However,
we provide a complete proof of this result since our multi-agent setting is different and induces a
different state evolution given that all the agents run DAC-i policies.

We introduce a few convenient notation for the rest of this proof. Define for every t ≥ H ,

yKt := yKt (Mt−1−H , · · · ,Mt−k, · · · ,Mt−1) ,

ỹKt := yKt (Mt−1−H , · · · , M̃t−k, · · · ,Mt−1) ,

vi,Kt := vi,Kt (Mt−1−H:t) = −Kiy
K
t +

H∑
p=1

M
[p−1]
i,t wt−p ,

ṽi,Kt := vi,Kt (Mt−1−H , · · · , M̃t−k, · · · ,Mt)

= −Kiỹ
K
t +

H∑
p=1

(M̃
[p−1]
i,t −M

[p−1]
i,t )wt−p1k=0 +

H∑
p=1

M
[p−1]
i,t wt−p . (69)

Using this notation, we have
|lit(Mi,t−1−H , · · · ,Mi,t−k, · · · ,Mi,t)−Mi,t−1−H , · · · , M̃i,t−k, · · · ,Mi,t|
= |cit(yKt , v

i,K
t )− cit(ỹ

K
t , ṽ

i,K
t )|

≤ |cit(yKt , v
i,K
t )− cit(ỹ

K
t , v

i,K
t )|+ |cit(ỹKt , v

i,K
t )− cit(ỹ

K
t , ṽ

i,K
t )|

≤ GD(∥yKt − ỹKt ∥+ ∥vi,Kt − ṽi,Kt ∥) , (70)
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where the last step uses Assumption 1-(ii).

Recall that we can write the counterfactual states yKt , ỹ
K
t using the transition matrix (see (37)):

yKt :=

2H∑
l=0

Ψ̄H
t−1,l(Mt−1−H:t−1)wt−1−l , (71)

ỹKt :=

2H∑
l=0

Ψ̄H
t−1,l(Mt−1−H , · · · , M̃t−k, · · · ,Mt−1)wt−1−l . (72)

Note for clarification that in the notation above M̃t−k is identical to Mt−k except for its i-th matrix
element, i.e. M̃j,t−k =Mj,t−k for every j ̸= i. Therefore, using the definition of the state transfer
matrix in (12) the difference of counterfactual states can be expressed as follows:

yKt − ỹKt =

2H∑
l=0

Āk
KBi(M

[l−k−1]
i,t−k − M̃

[l−k−1]
i,t−k )1l−k∈[1,H]wt−l . (73)

We can now bound the difference of counterfactual states using (κ̄, γ̄)-strong stability and bounded-
ness of the disturbance sequence by W :

∥yKt − ỹKt ∥ ≤Wκ̄(1− γ̄)k · ∥Bi∥
H∑

p=1

∥M [p−1]
i,t−k − M̃

[p−1]
i,t−k ∥ , (74)

where the bound uses a re-indexation of the sum in (73) with p = l − k . As for the difference of
counterfactual actions, it stems from (69) that:

ṽi,Kt − vi,Kt = Ki(y
K
t − ỹKt )1k∈[1:H] +

H∑
p=1

(M̃
[p−1]
i,t −M

[p−1]
i,t )wt−p1k=0 . (75)

As a consequence, we have

∥ṽi,Kt − vi,Kt ∥ ≤ ∥Ki∥ · ∥yKt − ỹKt ∥1k∈[1:H] +W

H∑
p=1

∥M̃ [p−1]
i,t −M

[p−1]
i,t ∥1k=0 (76)

≤Wκ̄2 · max
j=1,··· ,N

∥Bj∥
H∑

p=1

∥M [p−1]
i,t−k − M̃

[p−1]
i,t−k ∥ , (77)

where the last inequality stems from using the bound (74) together with the simplifying assumption
that κ̄2 maxj=1,··· ,N ∥Bj∥ ≥ 1 (without any loss of generality) .

Combining (70) with the bounds (74) and (76) yields the desired inequality and concludes the proof:

|lit(Mi,t−1−H , · · · ,Mi,t−k, · · · ,Mi,t)−Mi,t−1−H , · · · , M̃i,t−k, · · · ,Mi,t|

≤ 2GDWκ̄2 max
j=1,··· ,N

∥Bj∥
H∑

p=1

∥M [p]
i,t−k − M̃

[p]
i,t−k∥ . (78)

F.3.2 GRADIENT LOSS BOUNDEDNESS

Lemma F.4. Let M = (Mi,M−i) be s.t. ∥M [p]
i ∥ ≤ τ(1 − γ̄)p for p ∈ {0, · · · , H − 1} and for

every i ∈ [N ] . Then we have for any i ∈ [N ],

∥∇Mi
lit(Mi)∥F ≤ GD

√
HdW

(
1 +

2κ̄2 maxj=1,··· ,N ∥Bj∥
γ̄

)
, (79)

where G,D are respectively defined in Assumption 1-(ii) and (31) whereas d is the dimension of the
state vector.

Proof. The proof is similar to that of (Agarwal et al., 2019, Lemma 5.7) and is therefore omitted.
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G PROOF OF THEOREM 3.5

Here, we develop the proof of Theorem 3.5, restated here:
Theorem 3.5. Under the setting of Theorem 3.4, replace gradient boundedness in Assumption 1 -(ii)
by Assumption 5. Set instead η = Θ(1/

√
T ) and H ≥ log(2κ̄N

√
T )/γ̄. Then for any T ≥ H + 1:

RegH+1:T
i (Ai, {u−i

t },ΠDAC
i ) = Õ(

√
T ).

Proof. The proof of this refined result follows the same lines as the proof of Theorem 3.4. We
indicate here the required modifications to establish the result of Theorem 3.5 using the uniform
Lipschitz cost assumption 5 instead of gradient boundedness in Assumption 1 -(ii).

Recall the regret decomposition in (53) in Section F.1. We adapt the bounds in F.2 and F.3 to our new
assumption.

• Counterfactual state and action deviation error. For this term, it suffices to observe that under
the uniform Lipschitz cost assumption 5, we can replace GD in (58) by the uniform Lipschitz
constant L̄ (which is supposed to be independent of N ). The rest of the proof is unchanged and
the resulting counterfactual state-action deviation error is of the order:

O(2L̄D(1− γ̄)H) , (80)

where we recall that D is defined in (31) and D = O(N) .

• Online gradient descent with memory regret bound. We recall here from (63) that this regret
term is bounded by

D2
0

η
+ (G2

0 + LH2G0)ηT . (81)

It suffices to reevaluate the coordinate-wise Lipschitzness constant L and the gradient bound G0

made explicit in Lemma F.3 and Lemma F.4 respectively. We now make the two following
observations regarding these two constants and their dependence on the number N of agents:

(i) Again using Assumption 5, we can replace GD by L̄ in (70) in the proof of Lemma F.3, the
rest of the proof is unchanged. The result is that the coordinate-wise Lipschitz constant L
of Lemma F.3 becomes L = 2L̄Wκ̄2 maxj=1,··· ,N ∥Bj∥ and therefore independent of the
number of agents.

(ii) Similarly, the constant GD in the gradient bound of Lemma F.4 can be replaced by L̄
(which is independent of N ), resulting in a gradient bound which is independent of the
number of agents.

Combining the above insights, it suffices to choose H ≥ log(2κ̄N
√
T )/γ̄ in (80) and η = Θ(1/

√
T )

in (81) to obtain the desired result for T ≥ H + 1:

RegH+1:T
i (Ai,A−i,Π

i,DAC) = Õ
(√

T
)
, (82)

where Õ(·) hides polynomial factors inW, γ̄−1, κ̄,maxj ∥Bj∥, G, d and only polylogarithmic factors
in T and N . This concludes the proof.

H PROOFS OF REGRET LOWER BOUNDS

In this section, we develop the proof of Theorem 3.3, which we restate here:
Theorem 3.3. For any agent i ∈ [N ], there exists an instance of (LDS) and cost functions {cit} such
that, for any algorithm Ai and sequence {u−i

t }, and any T ≥ 1: RegTi (Ai, {u−i
t },Πlin

i ) = Ω(
√
T ).

H.1 PROOF OF THEOREM 3.3

Fix agent i ∈ [N ]. To prove the theorem, we specify an LDS and a (randomized) sequence of cost
functions {cit}, and we will prove that the lower bound holds in expectation. By the probabilistic
method, this implies the existence of a deterministic sequence of cost functions where the lower bound
holds with probability 1. We begin by specifying the LDS instance and cost function constructions:
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Construction of LDS instance. We specify a scalar-valued instance of (LDS), where all
A,Bj , wt ∈ R. Specifically, we use the following settings which implies a state evolution of

A = 0

Bi =
1
2

Bj = 0 for all j ̸= i ∈ [N ]

wt = 0 for all t ∈ [T ]

x0 ∈ (0, 1]

=⇒ xt+1 =
1

2
uit for all t ≥ 0. (83)

In other words, due to the construction, the state xt is driven only by the control of the i’th agent.
Observe also that for the scalar LDS (0, 1/2) as specified in (83), we have by Definition 2.1 that a
linear controller K ∈ R is (κ, γ)-strongly stable when |K| ≤ κ and |K/2| ≤ 1− γ, for γ ∈ (0, 1).

Construction of Agent i cost functions. We now construct a hard sequence of randomized cost
functions for agent i, which are roughly inspired by lower bound constructions in (adversarial) online
linear optimization settings (see e.g., Arora et al. (2012, Section 4)). Specifically, for all times t ≥ 0
and x, u ∈ R, let cit be given by

cit(x, u) =

〈(
u

1− u

)
,

(
bt
1/2

)〉
= u

(
bt − 1

2

)
+ 1

2 (84)

for all x, u ∈ R, where each bt is an independent Bern(1/2) random variable (i.e., each bt = 0 with
probability half and bt = 1 with probability half).

Under the LDS of (83) and cost functions of (84), in show a expected lower bound on the regret of
agent i, we establish bounds on (i) the expected cost of agent i, and (ii) the expected counterfactual
cost of the best fixed linear controller in hindsight.

Expected cost of agent i. Under the cost functions of (84), it is straightforward to compute the
total expected cost of agent i:
Proposition H.1. Let {uit} be the sequence of controls of agent i using any algorithm and with
respect to the cost sequence {cit} from (84). Let {xt} be the resulting state evolution as in (83). Then
over the randomness of {bt},

E
[ T∑

t=0

cit(xt, u
i
t)
]

=
T

2
. (85)

Proof. For any fixed t ≥ 0, and any x, u ∈ R, observe under the randomness of bt that

E
[
cit(x, u)

]
= E

[
u(bt − 1

2 ) +
1
2

]
=

1

2
. (86)

Then by linearity of expectation we have E[
∑T

t=1 c
i
t(xt, u

i
t)] =

T
2 .

Expected cost of comparator. Let Ki ⊆ R be the set of strongly stable linear controllers. For a
fixed K ∈ Ki, let (by slight abuse of notation) x̃Kt denote the counterfactual state evolution on the
LDS in (83) using the fixed linear controller with (counterfactual) control sequence ũi,Kt = Kx̃Kt at
all times t ≥ 0. Then for each k ∈ K, let Φ(k) be the random variable

Φ(K) :=

T∑
t=1

cit(x̃
K
t , ũ

i,K
t ) =

T∑
t=1

(
Kx̃Kt

(
bt − 1

2

)
+ 1

2

)
. (87)

Using a fixed linear controller K, and under the assumption that x0 ∈ (0, 1] observe from (83) that
the counterfactual state evolution of x̃Kt can be written as

x̃Kt = 1
2Kx̃

K
t−1 =

(
1
2K)tx0 .

It follows that

Φ(K) :=

T∑
t=1

(Kt+1

2t
· x0
(
bt −

1

2

)
+

1

2

)
.
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Letting K+ = Ki ∩ [0, 1] ⊂ Ki, observe that (with probability 1)

min
K∈Ki

Φ(K) ≤ min
K∈K+

Φ(K) ≤ Φ(0) =

T∑
t=1

1

2
=

T

2
. (88)

Moreover, for K ∈ [0, 1] and x0 ∈ (0, 1], and using the fact that bt ∈ {0, 1} by definition, observe
that we can bound (with probability 1)∣∣∣Kt+1

2t
· x0(bt − 1

2 ) +
1

2

∣∣∣ ≤ 1 (89)

for all t ∈ [T ]. Finally, for x0 ∈ (0, 1], observe that the image of Φ over K+ is non-singleton.

Tail bounds on cost of comparator. It remains to derive an upper bound on the expected cost of
the optimal comparator of the form E[minK∈K Φ(K)] ≤ T

2 − Ω(
√
T ). For this, we will establish

under the randomness of {bt} that the random variable minK∈K+
Φ(K) is small with sufficiently

large probability. Fix K and define

ψt(bt,K) =
Kt+1

2t
· x0(bt − 1

2 ) +
1

2
.

It follows that we can write

Φ(K) =

T∑
t=1

ψt(bt,K) ,

which by (89) means Φ(K) is the sum of T independent and bounded random variables.

We now leverage the following lower bound on the tail of a sum of bounded random variables:

Lemma H.2 (Zhang & Zhou (2020), Corollary 2). Let Z = Z1 + · · ·+ZT such that E[Zt] = 0 and
|Zt| ≤ C for all t ∈ [T ] and some absolute constant C > 0. Then there exist absolute constants
0 < a < 1 and p > 0 such that

Pr
(
Z ≤ −a ·

√
T
)

≥ p .

By centering ψ′
t = ψt(bt,K)− 1

2 , we have E[ψ′
t] = 0 and each |ψ′

t| bounded (which follows from
expression (89)). Then applying Lemma H.2 to the sum

∑T
t=1 ψ

′
t, we conclude that there exist

absolute constants a, p > 0 such that

Pr
(
Φ(K) ≤ T

2
− a ·

√
T
)

≥ p . (90)

Moreover, as ϕ(K) ≤ T
2 − a ·

√
T =⇒ minK∈K+ Φ(K) ≤ T

2 − a ·
√
T , we further have

Pr
(

min
K∈K+

Φ(K) ≤ T

2
− a ·

√
T
)

≥ Pr
(
Φ(K) ≤ T

2
− a ·

√
T
)

≥ p . (91)

Finally, since by expression (88) we have minK∈K Φ(K) ≤ T
2 with probability 1, it follows that

E
[
min
K∈K

Φ(K)
]

≤ E
[

min
K∈K+

Φ(K)
]

≤ −pa
√
T +

T

2
(92)

Combining expressions (85) and (92), we conclude that over the randomness of {bt}

E
[ T∑

t=1

cit(xt, u
i
t) − min

k∈K
Φ(K)

]
≥ T

2
−
(
pa

√
T +

T

2

)
= pa

√
T .

Thus in expectation over the sequence {bt}, RegiT is at least Ω(
√
T ), which implies that for some

realization of {bt}, the same lower bound holds.
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H.2 LOWER BOUND AGAINST DAC POLICIES

In this section, we extend the regret lower bound against linear policies from Theorem 3.3 to also
hold for the DAC comparator class. Note that as the class of DAC policies contains the class of linear
policies, a regret lower bound against linear policies does not immediately imply a lower bound
against DAC policies. However, by slightly modifying the hard LDS construction from (83), and
under the assumption that the linear controller component of the DAC policy is chosen adversarially,
then a similar lower bound can be established following the proof of Theorem 3.3. Formally:

Theorem H.3. Fix i ∈ [N ], and let Πi,DAC denote the set of DAC policies for agent i. Then there
exists an instance of (LDS) and cost functions {cit} such that, for any algorithm Ai and control
sequence {u−i

t }, and any T ≥ 1, when the linear DAC component Ki is chosen adversarially:

RegiT (Ai, {u−i
t },ΠDAC

i ) = Ω
(√

T
)
.

Proof. Similar to the proof of Theorem 3.3, we specify a scaler-value instance of (LDS). Now we
use settings with corresponding state evolution as follows:

A = 0

Bi = 1

Bj = 0 for all j ̸= i ∈ [N ]

wt = 1 for all t ∈ [T ]

x0 = 0

=⇒ xt+1 = uit + 1 for all t ≥ 0. (93)

We use the same construction of costs {cit} from expression (84) in the proof of Theorem 3.3. By
Proposition H.1, this implies

E
[ T∑

t=0

cit(xt, u
i
t)
]
=
T

2
.

Next, we control the expected (counterfactual) cost of the optimal comparator policy. For this, let
M+ denote the subset of DAC parameters in Mi such that M [p]

i =M
[h]
i for all p, h ∈ [H]. In other

words, for a DAC policy parameter in M+, all H parameter values are equal. We denote such a
policy in M+ by a scalar M ∈ R. As clearly M+ ⊂ Mi, it follows that

min
M∈Mi

T∑
t=1

cit(x̃
M
t , ũ

i,M
t ) ≤ min

M∈M+

T∑
t=1

cit(x̃
M
t , ũ

i,M
t )

where (by slight abuse of notation) x̃Mt and ũi,Mt denote counterfactual state and control sequences
under a fixed comparator policy parameter M . Thus for the purposes of a regret lower bound, it
suffices to derive an upper bound on the optimal comparator cost with respect to the class M+.

For this, using similar notation as in the proof of Theorem 3.3, for M ∈ M+, define Φ(M) as

Φ(M) =

T∑
t=1

cit(x̃
M
t , ũ

i,M
t ) .

Under an adversarial choice of linear controller Ki = 0, and using the LDS settings of (93), it follows
by definition of DAC policies in M+ that

ũi,Mt = Kxt−1 +

H∑
p=1

M [p−1]wt−p = HM . (94)

Then using the definition of cit from expression (84), we have

Φ(M) =

T∑
t=1

cit(x̃
M
t , ũ

i,M
t ) =

T∑
t=1

HM(bt − 1
2 ) +

1
2 .

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Then clearly Φ(0) = T
2 , and thus also

min
M∈M+

Φ(M) ≤ Φ(0) =
T

2

Now using the fact that, under the randomness of {bt}, for each M ∈ M Φ(M) is the sum of T ,
independent random variables bounded by H ≥ 1, we apply the tail bound of Lemma H.2 (as in the
proof of Theorem 3.3) to find

Pr
(
Φ(M) ≤ T

2
− a

√
T
)

≥ p

for absolute constants a, p > 0. Then following identical calculations as in expressions (91) and (92),
we conclude that

E
[ T∑

t=1

cit(xt, u
i
t)− min

M∈M+

Φ(M)
]

≥ pa
√
T ,

which by the probabilistic method implies the lower bound of the theorem statement.

I PROOF OF THEOREM 4.1

We first recall the theorem:

Theorem 4.1. Let Assumptions 1, 2, 4, 6 and 7 hold. Then if each agent i ∈ [N ] runs Algorithm 1
for T steps with constant stepsize η = 1/L (where L is the smoothness constant in Lemma I.5), then

1

T

T∑
t=1

(
EQGAP(t)(Mt)

)2
= O

(
ℓ1(M1)− cinf

T
+

1

T

T∑
t=1

∆ct +
1

T

T∑
t=1

∥wt+1 − wt∥

)
, (8)

where ∆ct := max∥x∥,∥u∥≤D{ct+1(x, u) − ct(x, u)} for every t, the O(·) notation only hides
polynomial dependence in the problem parameters N,H,W, κ̄, γ̄−1,maxi ∥Bi∥ and D depends
polynomially on the same constants. All the constants are made explicit in the appendix.

Outline of the proof. The proof of Theorem 4.1 can be divided into three main steps that are recorded
in the following three propositions:

1. Proposition I.1 upperbounds the sum of equilibrium gaps by the sum of policy parameter
deviations across time and players.

2. Proposition I.2 upperbounds the latter policy parameter deviations by the sum of loss deviations
along time.

3. Finally, Proposition I.3 upperbounds the sum of loss deviations by the initial distance to the
infimal cost value, the cost function variability and the sum of disturbance variations.

The proof of Theorem 4.1 follows from combining Proposition I.1 with Propositions I.2 and I.3 by
chaining them. The rest of this section I is devoted to proving each one of Propositions I.1, I.3 and I.3
separately.

Proposition I.1. Let Assumption 1 hold. Then for every time horizon T ≥ 1,

T∑
t=1

(
EQGAP(t)(M (t))

)2
≤ CM

T∑
t=1

N∑
i=1

∥Mi,t+1 −Mi,t∥2 , (95)

where CM :=
∑N

i=1

(
diam(Mi)

η +GD
)2

and G,D are the constants in Assumption 1 .

Proposition I.2. Let Assumptions 1, 2 and 7 hold. Then running Algorithm 1 for T steps with step
size η = 1/L where L is the smoothness constant in Lemma I.5 yields:

T∑
t=1

N∑
i=1

∥Mi,t+1 −Mi,t∥2 ≤ η

T∑
t=1

lt(Mt)− lt(Mt+1) . (96)
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Proposition I.3. Let Assumptions 2, 4 hold. For every T ≥ 1,

T∑
t=1

ℓt(Mt)− ℓt(Mt+1) = O

(
ℓ1(M1)− cinf +

T∑
t=1

∆ct +

T∑
t=1

∥wt+1 − wt∥

)
, (97)

where ∆ct := max∥x∥,∥u∥≤D{ct+1(x, u) − ct(x, u)} for every t, the O(·) notation only hides
polynomial dependence in the problem parameters N,H,W, κ̄, γ̄−1,maxi ∥Bi∥ and D depends
polynomially on the same constants.

I.1 PROOF OF PROPOSITION I.1

First, recall the following notations of the best response and equilibrium gap for every i ∈ [N ], t ≥ 1:

BR(t)
i (M−i,t) := max

Mi∈Mi

ℓit(Mt)− ℓit(Mi,M−i,t) (98)

and EQGAP(t)(Mt) := max
i∈[N ]

BR(t)
i (M−i,t) . (99)

Observe in particular that BR(t)
i (M−i,t) ≥ 0 (useMi =Mi,t) .Using the definition of the equilibrium

gap, it immediately follows that

T∑
t=1

EQGAP(t)(Mt)
2 =

T∑
t=1

(
max
i∈[N ]

BR(t)
i (M−i,t)

)2

≤
T∑

t=1

(
N∑
i=1

BR(t)
i (M−i,t)

)2

. (100)

We now relate the best response quantities to the deviation of DAC policy parameters via the following
proposition whose proof is deferred to section I.4.

Proposition I.4. Let Assumption 1 hold. Then for every i ∈ [N ],Mi ∈ Mi, t ≥ 1, we have

ℓit(Mi,M−i,t)− ℓit(Mt) ≥ −
(

diam(Mi)

η
+GD

)
∥Mi,t+1 −Mi,t∥ , (101)

where diam(Mi) = maxM,M ′∈Mi ∥M ′ −M∥ and G,D are the constants in Assumption 1 .

Invoking Proposition I.4 gives the following inequality

0 ≤ BR(t)
i (M−i,t) ≤

(
diam(Mi)

η
+GD

)
∥Mi,t+1 −Mi,t∥ . (102)

Summing up this inequality across all the N players yields:

0 ≤
N∑
i=1

BR(t)
i (M−i,t) ≤

N∑
i=1

(
diam(Mi)

η
+GD

)
∥Mi,t+1 −Mi,t∥ . (103)

Using now the Cauchy-Schwarz inequality on the squared sum of best responses gives(
N∑
i=1

BR(t)
i (M−i,t)

)2

≤
N∑
i=1

(
diam(Mi)

η
+GD

)2

·
N∑
i=1

∥Mi,t+1 −Mi,t∥2 . (104)

Finally, we obtain the desired inequality by summing up the above inequality over the time steps
t = 1, · · · , T and using (100),

T∑
t=1

EQGAP(t)(Mt)
2 ≤ CM

T∑
t=1

N∑
i=1

∥Mi,t+1 −Mi,t∥2 , (105)

where CM =
∑N

i=1

(
diam(Mi)

η +GD
)2

.
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I.2 PROOF OF PROPOSITION I.2

The proof of Proposition I.2 follows from using the smoothness of the potential function together
with the update rule of the multi-agent gradient perturbation controller algorithm.
Lemma I.5 (Cai et al. (2024), Lemma B.6). Under Assumptions 2 and 7, the loss function lt is
L-smooth where L is a constant depending on H,W, ζ, d, κ.

Using the smoothness of the loss function lt (see Lemma I.5) which plays the role of a (time-varying)
potential function, we have

ℓt(Mt+1) ≤ ℓt(Mt) + ⟨∇M ℓt(Mt),Mt+1 −Mt⟩+
L

2
∥Mt+1 −Mt∥2 . (106)

Define now the product set M :=
∏N

i=1 Mi which is the space of joint policy parameters. Observe
that for any M = (M1, · · · ,MN ) ∈ M, we have

ΠM(M) := (ΠM1
(M1), · · · ,ΠMN

(MN )) . (107)

Given the potential structure of the game, observe in addition that

∇M ℓt(Mt) =
[
∇iℓ

i
t(M

t)
]
i=1,··· ,N , (108)

ℓit = ℓt , (109)
and Mt = [Mi,t]i=1,··· ,N , (110)

where we recall that ∇iℓ
i
t denotes the gradient of ℓit w.r.t. its variable Mi . As a consequence, the

update rules of all the players in Algorithm 1 can be compactly written as follows:

Mt+1 = ΠM(Mt − η∇M lt(Mt)) , (111)

where Mt+1 = [Mi,t+1]i=1,··· ,N . Using the characterization of the projection operator, we have:

∀M ∈ M, ⟨M −Mt+1,Mt − η∇M lt(Mt)−Mt+1⟩ ≤ 0 . (112)

Setting M =Mt and rearranging the inequality gives:

⟨∇M ℓt(Mt),Mt+1 −Mt⟩ ≤ −1

η
∥Mt+1 −Mt∥2 . (113)

It follows from injecting (113) into (106) that

ℓt(Mt+1) ≤ ℓt(Mt) +

(
L

2
− 1

η

) N∑
i=1

∥Mi,t+1 −Mi,t∥2 . (114)

Setting η = 1/L, rearranging and summing up the above inequality yields the desired result, namely
for all t ≥ 1,

T∑
t=1

N∑
i=1

∥Mi,t+1 −Mi,t∥2 ≤ 2η

T∑
t=1

ℓt(Mt)− ℓt(Mt+1) . (115)

I.3 PROOF OF PROPOSITION I.3

First, we decompose the sum of difference of losses as follows:
T∑

t=1

ℓt(Mt)− ℓt(Mt+1) =

T∑
t=1

ℓt(Mt)− ℓt+1(Mt+1) +

T∑
t=1

ℓt+1(Mt+1)− ℓt(Mt+1)

= ℓ1(M1)− ℓT+1(Mt+1) +

T∑
t=1

ℓt+1(Mt+1)− ℓt(Mt+1)

≤ ℓ1(M1)− cinf +

T∑
t=1

ℓt+1(Mt+1)− ℓt(Mt+1) , (116)
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where the second identity follows from simplifying the telescoping sum and the last inequality uses
our uniform lower bound assumption on the cost function.

Now we control each term of the last sum above. Recall that for any M ∈
∏N

i=1 Mi ,

ℓt(M) := ct(y
K
t (M), vi,Ki

t (Mi)) , (117)

where K := (Ki,K−i) and yKt (M), vi,Ki

t (Mi) are the counterfactual state and action induced by
the (DAC-i) policy with the matrix K and the policy parameters M as previously defined.

We start with the following decomposition:

ℓt+1(Mt+1)−ℓt(Mt+1) = ct+1(y
K
t+1(Mt+1)), v

i,Ki

t+1 (Mi,t+1))−ct(yKt+1(Mt+1)), v
i,Ki

t+1 (Mi,t+1))

+ ct(y
K
t+1(Mt+1)), v

i,Ki

t+1 (Mi,t+1))− ct(y
K
t (Mt+1)), v

i,Ki

t (Mi,t+1)) . (118)

For the first term, we have

ct+1(y
K
t+1(Mt+1)), v

i,Ki

t+1 (Mi,t+1))−ct(yKt+1(Mt+1)), v
i,Ki

t+1 (Mi,t+1)) ≤ max
∥x∥,∥u∥≤D

ct+1(x, u)−ct(x, u) .

(119)
For the second term, we use Assumption 1 to write

ct(y
K
t+1(Mt+1), v

i,Ki

t+1 (Mi,t+1))− ct(y
K
t (Mt+1), v

i,Ki

t (Mi,t+1))

≤ GD · (∥yKt+1(Mt+1)− yKt (Mt+1)∥+ ∥vi,Ki

t+1 (Mi,t+1)− vi,Ki

t (Mi,t+1)∥) . (120)

Define the following convenient notations for the counterfactual state and control differences for the
rest of this proof:

∆y
t+1 := yKt+1(Mt+1)− yKt (Mt+1) ,

∆v
t+1 := vi,Ki

t+1 (Mi,t+1)− vi,Ki

t (Mi,t+1) . (121)

Using these notations together with (120) and (119) in (116), it follows that:
T∑

t=1

ℓt(Mt)−ℓt(Mt+1) ≤ ℓ1(M1)−cinf+

T∑
t=1

max
∥x∥,∥u∥≤D

ct+1(x, u)−ct(x, u)+GD
T∑

t=1

(∥∆y
t+1∥+∥∆v

t+1∥) .

(122)

It remains to bound
∑T

t=1 ∥∆
y
t+1∥ + ∥∆v

t+1∥ to conclude the proof of Proposition I.3. We upper
bound each one of the terms separately starting with the first one (

∑T
t=1 ∥∆

y
t+1∥) which will be

useful for bounding the second one (
∑T

t=1 ∥∆v
t+1∥).

Bound of
∑T

t=1 ∥∆
y
t+1∥. We split the sum into two sums by isolating the first burn-in period of time

length 2H + 1 for T ≥ 2H + 1,
T∑

t=1

∥∆y
t+1∥ =

2H∑
t=1

∥∆y
t+1∥+

T∑
t=2H+1

∥∆y
t+1∥ . (123)

The first sum can be bounded as follows using the boundedness of the counterfactual states by D,
2H∑
t=1

∥∆y
t+1∥ ≤ 2HD . (124)

The second sum requires a special treatment using the expression of the evolution of the counterfactual
state involving the state transfer matrix which gives:

∆y
t+1 =

2H∑
l=0

Ψ̄H
t+1,l(Mt+1) ξt−l , ξt−l := wt+1−l − wt−l , (125)

Ψ̄H
t+1,l(Mt+1) := Āl

K1l≤H +

H∑
k=0

Āk
K

N∑
i=1

BiM
[l−k−1]
i,t+1−k1l−k∈[1,H] , (126)
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where the last transfer matrix was previously introduced in (10) and the first identity follows from
using Proposition D.1. For t ≥ 2H + 1, we have

2H∑
l=0

Ψ̄H
t+1,l(Mt+1) ξt−l =

H∑
l=0

Āl
Kξt−l +

2H∑
l=0

H∑
k=0

Āk
K

N∑
i=1

BiM
[l−k−1]
i,t+1−k1l−k∈[1,H]ξt−l (127)

=

H∑
l=0

Āl
Kξt−l +

2H∑
l=0

l∑
p=1

Āl−p
K

N∑
i=1

BiM
[p−1]
i,t+1−kξt−l , (128)

where the last identity follows from a change of index p = l− k and the fact that p ∈ [1 : H], k ≥ 0 .

Using now (κ̄, γ̄)-strong stability together with the bound on matrices M [p]
i,t+1−k specified by the

projection sets Mi (see Algorithm 1), we obtain
T∑

t=2H+1

∥∆y
t+1∥ ≤

T∑
t=2H+1

H∑
l=0

κ̄(1− γ̄)l∥ξt−l∥+
T∑

t=2H+1

2H∑
l=0

l∑
p=1

κ̄(1− γ̄)l−p
N∑
i=1

∥Bi∥2κ̄2(1− γ̄)p∥ξt−l∥

≤
T∑

t=2H+1

H∑
l=0

κ̄(1− γ̄)l∥ξt−l∥+

(
2κ̄3

N∑
i=1

∥Bi∥

)
T∑

t=2H+1

2H∑
l=0

l(1− γ̄)l∥ξt−l∥

≤
T∑

t=2H+1

H∑
l=0

κ̄(1− γ̄)l∥ξt−l∥+

(
2κ̄3

N∑
i=1

∥Bi∥

)
(2H + 1)

T∑
t=2H+1

2H∑
l=0

(1− γ̄)l∥ξt−l∥

=

(
κ̄+ 2(2H + 1)κ̄3

N∑
i=1

∥Bi∥

)
T∑

t=2H+1

H∑
l=0

(1− γ̄)l∥ξt−l∥

=

(
κ̄+ 2(2H + 1)κ̄3

N∑
i=1

∥Bi∥

)
T∑

s=H+1

H∑
l=0

(1− γ̄)l∥ξs∥

≤
κ̄+ 2(2H + 1)κ̄3

∑N
i=1 ∥Bi∥

γ̄

T∑
s=H+1

∥ξs∥ , (129)

where the last equality follows from re-indexing the sum (s = t− l) and using 2H + 1 ≤ t ≤ T and
0 ≤ l ≤ H . In conclusion, we obtain by combining (129) and (124) that

T∑
t=1

∥∆y
t+1∥ ≤ 2HD +

κ̄+ 2(2H + 1)κ̄3
∑N

i=1 ∥Bi∥
γ̄

T∑
s=H+1

∥ws+1 − ws∥ . (130)

Bound of
∑T

t=1 ∥∆v
t+1∥. For this term, we use the definition of the counterfactual state to obtain for

every t ≥ H:

∥∆v
t+1∥ =

∥∥∥∥∥Ki∆
y
t+1 +

H∑
p=1

M
[p−1]
i,t+1 (wt+1−p − wt−p)

∥∥∥∥∥
≤ κ̄∥∆y

t+1∥+
H∑

p=1

κ̄(1− γ̄)p∥wt+1−p − wt−p∥ . (131)

Therefore summing up these inequalities for 2H + 1 ≤ t ≤ T yields:
T∑

t=2H+1

∥∆v
t+1∥ ≤ κ̄

T∑
t=2H+1

∥∆y
t+1∥+ κ̄

T∑
t=2H+1

H∑
p=1

(1− γ̄)p∥wt+1−p − wt−p∥

= κ̄

T∑
t=2H+1

∥∆y
t+1∥+ κ̄

T−1∑
s=H+1

H∑
p=1

(1− γ̄)p∥ws+1 − ws∥

≤ κ̄

T∑
t=2H+1

∥∆y
t+1∥+

κ̄

γ̄

T−1∑
s=H+1

∥ws+1 − ws∥ . (132)
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Similarly to (124), using boundedness of the counterfactual actions, we get

2H∑
t=1

∥∆v
t+1∥ ≤ 2HD . (133)

Combining (133) with (132) and (129), we obtain

T∑
t=1

∥∆v
t+1∥ ≤ 2HD +

(
κ̄2 + 2(2H + 1)κ̄4

∑N
i=1 ∥Bi∥

γ̄
+
κ̄

γ̄

)
T∑

s=H+1

∥ws+1 − ws∥ . (134)

Finally to conclude the proof of Proposition I.3, we inject (134) and (130) into (122) to obtain the
desired result:

T∑
t=1

lt(Mt)− lt(Mt+1) ≤ l1(M1)− cinf +

T∑
t=1

max
∥x∥,∥u∥≤D

ct+1(x, u)− ct(x, u)

+GD

(
4HD +

κ̄+ 2κ̄2 + 4(2H + 1)κ̄4
∑N

i=1 ∥Bi∥
γ̄

)
T∑

s=H+1

∥ws+1 − ws∥ . (135)

This concludes the proof of Proposition I.3. We have shown that

T∑
t=1

lt(Mt)− lt(Mt+1) = O

(
l1(M1)− cinf +

T∑
t=1

∆ct +

T∑
t=1

∥wt+1 − wt∥

)
, (136)

where ∆ct := max∥x∥,∥u∥≤D{ct+1(x, u) − ct(x, u)} for every t and the O(·) notation only hides
polynomial dependence in the problem parameters N,H,W, κ̄, γ̄−1,maxi ∥Bi∥ where D also de-
pends polynomially on the same constants.

I.4 PROOF OF PROPOSITION I.4

The proof proceeds in several steps as follows:

(i) Convexity. Using convexity of the loss function lit w.r.t. Mi (see Lemma 3.1), we have for every
player i ∈ [N ] and every time step t ≥ 1,

ℓit(Mi,M−i,t)− ℓit(Mt) ≥ ⟨∇iℓ
i
t(Mt),Mi −Mi,t⟩

= ⟨∇iℓ
i
t(Mt),Mi −Mi,t+1⟩+ ⟨∇iℓ

i
t(Mt),Mi,t+1 −Mi,t⟩ . (137)

(ii) Lower-bound of the first inner product in (137). Recall now the gradient update rule of
Algorithm 1:

Mi,t+1 = ProjMi

(
Mi,t − η∇iℓ

i
t(Mt)

)
. (138)

Using the characterization of the projection yields:

∀Mi ∈ Mi, ⟨Mi −Mi,t+1,Mi,t −Mi,t+1 − η∇iℓ
i
t(Mt)⟩ ≤ 0 . (139)

Rearranging this inequality and using the Cauchy-Schwarz inequality, we obtain:

⟨Mi −Mi,t+1,∇iℓ
i
t(Mt)⟩ ≥

1

η
⟨Mi −Mi,t+1,Mi,t −Mi,t+1⟩

≥ −1

η
∥Mi −Mi,t+1∥ · ∥Mi,t −Mi,t+1∥

≥ −diam(Mi)

η
∥Mi,t −Mi,t+1∥ , (140)

where diam(Mi) := maxM,M ′∈Mi
∥M ′ −M∥ .

(iii) Lower-bound of the second inner product in (137). Using again the Cauchy-Schwarz inequality
gives

⟨∇iℓ
i
t(Mt),Mi,t+1 −Mi,t⟩ ≥ −∥∇iℓ

i
t(Mt)∥ · ∥Mi,t+1 −Mi,t∥ . (141)
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Then, using the boundedness of the gradients following from Assumption 1, there exists a constant
GD > 0 (independent of t and i) s.t. ∥∇il

i
t(Mt)∥ ≤ GD . Therefore, we obtain

⟨∇iℓ
i
t(Mt),Mi,t+1 −Mi,t⟩ ≥ −GD∥Mi,t+1 −Mi,t∥ . (142)

(iv) Combining all the steps. Using (140) and (142) in (137), we have for all i ∈ [N ],Mi ∈ Mi,
and t ≥ 1

ℓit(Mi,M−i,t)− ℓit(Mt) ≥ −
(

diam(Mi)

η
+GD

)
∥Mi,t+1 −Mi,t∥ , (143)

where diam(Mi) := maxM,M ′∈Mi
∥M ′ −M∥ and G,D are the constants defined in Assumption 1.

This concludes the proof of Proposition I.4.

I.5 PROOF OF LEMMA 3.1

Recall that the loss function ℓit is defined for every Mi ∈ Mi by

ℓit(Mi) = cit(y
i,Ki

t (Mi), v
i,Ki

t (Mi)) , (144)

where the counterfactual idealized state yi,Ki

t (Mi) and action vi,Ki

t (Mi) are defined in section D.1.

By Assumption 1, the loss function cit is convex w.r.t. both its variables. It suffices to show
that yi,Ki

t (Mi) and vi,Ki

t (Mi) are both affine in Mi = M
[1:H]
i to obtain the desired result as the

composition of a convex function and an affine function is also convex. This is clearly the case
given the state evolution unfolding using the transfer matrix, see section D.2, (9)-(10) for the transfer
matrices which are linear in the policy parameter Mi of agent i and (37)-(43) for the unrolled
expressions of yi,Ki

t (Mi) and vi,Ki

t (Mi). Note that this result holds in both cases where other agents
but i use either arbitrary control inputs or DAC policies throughout time.

J TOOLS FROM ONLINE CONVEX OPTIMIZATION

J.1 ONLINE CONVEX OPTIMIZATION WITH MEMORY

Algorithm 2 Online Gradient Descent with Memory
1: Input: step size η, loss functions {ℓt}Tt=1.
2: Initialize x0, . . . , xH−1 ∈ K arbitrarily.
3: for t = H . . . T do
4: Play xt ∈ K, suffer loss ℓt(xt−H , . . . , xt).
5: Set xt+1 = ΠK

(
xt − η∇ℓt(xt, . . . , xt)

)
.

6: end for

Theorem J.1 (Anava et al. (2015)). Let {ℓt}Tt=1 be a sequence of loss functions where ℓt : XH+1 →
R for each t ∈ [T ]. Moreover, suppose the following hold:

1. (Coordinate-wise Lipschitzness): There exists L > 0 s.t. for any x1, . . . , xH , x̃j ∈ X ,∣∣ℓt(x1, . . . , xj , . . . , xH)− ℓt(x1, . . . , x̃j , . . . , xH)
∣∣ ≤ L∥xj − x̃j∥ .

2. (Bounded gradients) There existsG0 > 0 s.t. for all x ∈ X and t ∈ [T ], ∥∇ft(x, . . . , x)∥ ≤ G0.

3. (Bounded diameter) There exists D0 > 0 s.t. for all x, y ∈ X , ∥x− y∥ ≤ D0.

Then running Algorithm 2 for T iterations with any positive stepsize η yields:
T∑

t=H

ℓt(xt−H , . . . , xt)−min
x∈X

T∑
t=H

ℓt(x, . . . , x) ≤ D2
0

η
+ (G2

0 + LH2G0)ηT . (145)

Running Algorithm 2 for T iterations with stepsize η := D0/
√
G0(G0 + LH2)T guarantees:

T∑
t=H

ℓt(xt−H , . . . , xt)−min
x∈X

T∑
t=H

ℓt(x, . . . , x) ≤ 3D0

√
G0(G0 + LH2)T .
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We provide a few remarks regarding this result and its use in our work:

• This result has been used in single-agent online control.
• Note that we are using here the notations D0, G0 to avoid confusion with the constant D defined

in (31) and G as introduced in Assumption 1-(ii).
• The specification of the constants G0, L and the stepsize η in our setting will be important to

elucidate the dependence of our final regret bound on the number N of agents involved in our
multi-agent setting.

J.2 TIME REGRET DECOMPOSITION

Lemma J.2. For every agent i ∈ [N ], every horizon H ≥ 1 and every time T ≥ H , we have:

RegT
i (Ai, {u−i

t },Πi) ≤ Reg0:H−1
i (Ai, {u−i

t },Πi) + RegH:T
i (Ai, {u−i

t },Πi) , (146)

where we recall that RegH:T
i (Ai, {u−i

t },Πi) is defined in (51) and {u−i
t } is an arbitrary sequence.

Proof. From the definition of the regret of agent i, we can write

RegTi (Ai, {u−i
t },Πi) =

T∑
t=0

cit(xt, u
i
t)− min

πi∈Πi

T∑
t=0

cit(x
πi

t , u
πi

t )

=

H−1∑
t=0

cit(xt, u
i
t) +

T∑
t=H

cit(xt, u
i
t)− min

πi∈Πi

T∑
t=0

cit(x
πi

t , u
πi

t ) . (147)

Now observe that

min
πi∈Πi

T∑
t=0

cit(x
πi

t , u
πi

t ) ≥ min
πi∈Πi

H−1∑
t=0

cit(x
πi

t , u
πi

t ) + min
πi∈Πi

T∑
t=H

cit(x
πi

t , u
πi

t ) . (148)

The desired result follows from combining (147) and (148).
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K SIMULATIONS

K.1 SETTING

We consider a 2-dimensional (d = 2) LDS with N = 3 agents and scalar control inputs (ki = 1 for
i ∈ {1, 2, 3}) with:

A =

[
0.95 0.1
0 0.9

]
, B1 = B3 =

[
1
0

]
, B2 =

[
0
1

]
, x0 =

[
6
6

]
. (149)

Each agent i ∈ {1, 2, 3} has their quadratic cost function cit(x, u
i) = x⊤Qix+ ri(u

i)2 where:

Qi =

[
1 + 0.8i 0

0 1 + 0.4(N − 1− i)

]
, ri = 0.1(1 + 0.4i) , ui ∈ R . (150)

The cost functions reflect different distances to the origin goal state (0, 0), see figures 1, 2, 3 below
(bottom right subplots).

We test Algorithm 1 with three different kinds of disturbances wt ∈ R2:

(1) Constant disturbance: wt = 0.7 (see Fig. 1),
(2) Sinusoidal disturbance: wt,1 = sin(0.1t), wt,2 = sin(0.1t) where wt,1, wt,2 are the coordi-

nates of wt (see Fig. 2),
(3) Independent and identically distributed Gaussian: wt ∼ N (0, σ2) with σ = 0.5 (see Fig. 3).

For the hyperparameters of Algorithm 1, we set T = 500 for the time horizon, η = 10−4 for the step
size, H = 5 for the memory parameter and DAC policy parameters are initialized with zero values.
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Figure 1: Illustration of the performance of Algorithm 1 on a simple multi-agent LDS with constant
disturbance sequence. ‘IL’ stands for Independent Learning (see Information Setting 1, ‘ACL’ for
Aggregated Control Learning (see Information Setting 2), ‘start’ refers to the initial state x0, ‘end’ to
the state at the last time step for t = T .
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Figure 2: Illustration of the performance of Algorithm 1 on a simple multi-agent LDS with sinusoidal
disturbance sequence. ‘IL’ stands for Independent Learning (see Information Setting 1, ‘ACL’ for
Aggregated Control Learning (see Information Setting 2), ‘start’ refers to the initial state x0, ‘end’ to
the state at the last time step for t = T .
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Figure 3: Illustration of the performance of Algorithm 1 on a simple multi-agent LDS with Gaussian
disturbance sequence. ‘IL’ stands for Independent Learning (see Information Setting 1, ‘ACL’ for
Aggregated Control Learning (see Information Setting 2), ‘start’ refers to the initial state x0, ‘end’ to
the state at the last time step for t = T .
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K.2 COMMENTS

We make a few remarks on the results of the simulations (see Figs. 1, 2, 3 above):

• Starting from the initial state x0 (see bottom right subplots in all the figures), the state
evolves quickly towards the goal origin state minimizing the costs by strong stability of the
controllers. In particular, this quick phase corresponds to an application of higher control
inputs by all agents in all three disturbance scenarios (see Figs. 1 to 3, top right subplots).
Then the control inputs have a similar shape to the disturbances themselves to stabilize the
system (almost constant in the first case, sinusoidal in the second and random Gaussian in
the third case).

• Remark that in all figures (bottom left subplots), per-agent time-average costs vanish over
time as expected. This corroborates our theoretical guarantees regarding the behavior of
Algorithm 1 and our individual regret guarantees.

• It can be seen in all the figures that there is a slight advantage to the ACL setting (which
can infer the disturbance values) compared to the independent learning setting in our simple
simulation setting. Compare for instance the dotted per-agent time-average cost curves to
the plain ones in bottom left subplots of all three figures.

• We can also observe from all the state trajectories (bottom right subplots) that Algorithm 1
in the ACL setting is more stable than in the IL setting. For instance, in the sinusoidal case
(see Fig. 2, bottom right subplot), there are less oscillations and their magnitude is smaller
in the ACL setting as expected from our theory. In particular, the state trajectory converges
to a neighborhood of the goal state defined by the amplitude of the disturbance sequence.
The same observation can be made in the case of the Gaussian noise disturbance where
the state trajectory in the ACL setting concentrates more around the origin than in the IL
setting as expected. The region of concentration is controlled by the standard deviation of
the Gaussian noise disturbance sequence.

43


	Introduction
	Our Contributions
	Related Work

	Problem Formulation: Multi-Agent Online Control
	Online setting and feedback models
	Regret framework for multi-agent online control

	Individual Regret Guarantees
	Information setting 1: Independent learning
	Information setting 2: Aggregated control learning

	Equilibrium Tracking in the Common Interest Setting
	Conclusion and Future Work
	Extended Related Work Discussion
	Examples
	Description
	About Adversarial Disturbances

	Further Discussion of Assumptions
	Assumption 2
	Assumption 3
	Assumption 4

	Preparatory Results for the Main Proofs
	Notation: counterfactual and idealized states and actions
	State evolution
	Transfer matrix bound
	State, action and difference of state and action bounds

	Proof of Theorem 3.2
	Proof of Theorem 3.4
	Regret decomposition and proof overview
	Counterfactual state and action deviation error
	Online gradient descent with memory regret bound
	Coordinate-wise loss lipschitzness
	Gradient loss boundedness


	Proof of Theorem 3.5
	Proofs of Regret Lower Bounds
	Proof of Theorem 3.3
	Lower Bound Against DAC Policies

	Proof of Theorem 4.1
	Proof of Proposition I.1
	Proof of Proposition I.2
	Proof of Proposition I.3
	Proof of Proposition I.4
	Proof of Lemma 3.1

	Tools from Online Convex Optimization
	Online convex optimization with memory
	Time regret decomposition

	Simulations
	Setting
	Comments


