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Abstract

The paper introduces SceMQA, a novel bench-001
mark for scientific multimodal question an-002
swering at the college entrance level. It ad-003
dresses a critical educational phase often over-004
looked in existing benchmarks, spanning high005
school to pre-college levels. SceMQA fo-006
cuses on core science subjects including Math-007
ematics, Physics, Chemistry, and Biology. It008
features a blend of multiple-choice and free-009
response formats, ensuring a comprehensive010
evaluation of AI models’ abilities. Additionally,011
our benchmark provides specific knowledge012
points for each problem and detailed explana-013
tions for each answer. SceMQA also uniquely014
presents problems with identical contexts but015
varied questions to facilitate a more thorough016
and accurate assessment of reasoning capabili-017
ties. In the experiment, we evaluate both open-018
source and close-source state-of-the-art Mul-019
timodal Large Language Models (MLLMs),020
across various experimental settings. The re-021
sults show that further research and develop-022
ment are needed in developing more capable023
MLLM, as highlighted by only 50% to 60%024
accuracy achieved by the strongest models.025

1 Introduction026

In recent years, the evolution of large language027

models (LLMs) has marked a significant milestone028

in artificial intelligence. Initially, these models ex-029

celled in diverse natural language processing tasks030

(Brown et al., 2020; Ouyang et al., 2022; Touvron031

et al., 2023a,b; OpenAI, 2023; Google, 2023), but032

their utility has since increasingly expanded, trans-033

forming them into incredible agents for various034

downstream tasks such as reasoning and planning035

(Li et al., 2023; Wu et al., 2023b; Park et al., 2023;036

Guo et al.). Notably, LLMs have shown proficiency037

in tasks that typically pose significant challenges038

to even highly skilled humans, such as tackling039

intricate mathematical problems (Lu et al., 2023;040
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Figure 1: The comparison between SceMQA and other
existing benchmarks. Y-axis is the percentage of prob-
lems that have detailed solution explanations. Most
problems (over 90%) in SceMQA has detailed expla-
nations to solutions except for some straightforward
problems. More comparison can be found in Table 1.

Romera-Paredes et al., 2023) and accelerating sci- 041

entific discoveries (Birhane et al., 2023). This evo- 042

lution demonstrates the versatility of LLMs and 043

their potential to revolutionize areas traditionally 044

dominated by human expertise. 045

Alongside, the rapid development of vision- 046

based LLMs has garnered considerable attention 047

within the AI community, especially with the re- 048

lease of platforms like OpenAI’s GPT4-V (OpenAI, 049

2023) and Google’s Gemini Ultra (Google, 2023). 050

These models have demonstrated exceptional abili- 051

ties in tasks requiring advanced reasoning and plan- 052

ning, often surpassing existing benchmarks and ap- 053

proaching human-level performance. This progress 054

has spurred researchers to create more sophisti- 055

cated and challenging benchmarks for Multimodal 056

LLMs (MLLMs), one of the most representative is 057

the science domain, which is a long-standing focus 058

for humans. For example, the MathVista bench- 059

mark (Lu et al., 2023), comprising 6,141 problems, 060

demands a high level of visual understanding and 061
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mathematical reasoning. Additionally, the Mas-062

sive Multi-discipline Multimodal Understanding063

and Reasoning Benchmark (MMMU) (Yue et al.,064

2023a) poses college-level multimodal reasoning065

challenges. Currently, even the most advanced066

models achieve only about 50% accuracy on these067

benchmarks. The importance of such benchmarks068

lies in their role as vital tools for assessing and069

pushing the boundaries of AI capabilities. By pre-070

senting AI models with tasks that mimic complex,071

real-world scenarios, benchmarks provide a clear072

measure of progress and highlight areas for future073

development.074

However, in the science domain, a critical ob-075

servation in multimodal reasoning benchmarks is076

the disparity in the levels of difficulty. Prior bench-077

marks like ScienceQA (Lu et al., 2022) primar-078

ily focused on elementary and middle-school lev-079

els, while MMMU leaps to a college-level chal-080

lenge. This leaves a significant educational phase081

in human learning – the high school, or college082

entrance level – relatively unaddressed. In fact,083

learning progressively in difficulty levels is not084

only important for humans, but also can facilitate085

AI systems including LLMs via curriculum learn-086

ing (Bengio et al., 2009) and progressive training087

(Xu et al., 2023; Mitra et al., 2023). Therefore,088

we fill this gap by introducing a novel benchmark089

named Science college entrance level Multimodal090

Question Answering (SceMQA), designed for this091

critical educational stage, with four key subjects:092

Mathematics, Physics, Chemistry, and Biology.093

Apart from the difficulty level, our benchmark094

also has a detailed annotation granularity. Firstly,095

most problems (over 90%) in SceMQA has de-096

tailed explanations to solutions except for some097

straightforward problems. Besides, each problem098

is associated with a specific knowledge component,099

facilitating detailed knowledge tracing for models.100

Moreover, SceMQA uniquely features problems101

with the same context but different questions. This102

design is informed by prior research indicating that103

without diverse question types for each narrative104

context, models might resort to learning shallow105

heuristics or patterns rather than developing a deep,106

semantic understanding (Patel et al., 2021; Yang107

et al., 2022). This approach ensures a more com-108

prehensive and precise evaluation of reasoning ca-109

pabilities. In Figure 1, we compare the difficulty110

level, annotation granularity, and covered modality111

among existing benchmarks.112

2 Related Work 113

Multimodal Question Answering Multimodal 114

Question Answering (QA) has been a focal area 115

in AI research. The Visual Question Answering 116

(VQA) benchmark (Antol et al., 2015), established 117

in 2015, pioneered free-form, open-ended visual 118

QA, necessitating intricate image comprehension 119

and reasoning. ChartQA (Masry et al., 2022) em- 120

phasized complex reasoning about charts, merging 121

visual and logical thought processes. VisIT-Bench 122

(Bitton et al., 2023) tested vision-language mod- 123

els across real-world tasks, ranging from simple 124

recognition to advanced creative generation. 125

Multimodal LLMs In addition to notable mod- 126

els like GPT4-V and Google Gemini, various open- 127

source Multimodal LLMs (MLLMs) have emerged. 128

MiniGPT-4 (Zhu et al., 2023) improved vision- 129

language understanding by syncing a visual en- 130

coder with a language LLM. LLaVAR (Zhang 131

et al., 2023b) combined OCR with text-only GPT- 132

4 for enhanced visual instruction tuning in text- 133

rich image contexts. mPLUG-Owl (Ye et al., 134

2023) proposed a modular framework for equip- 135

ping LLMs with multimodal capabilities, focus- 136

ing on image-text alignment. InstructBLIP (Dai 137

et al., 2023) excelled in vision-language instruc- 138

tion tuning, demonstrating remarkable zero-shot 139

performance in diverse tasks. For a more detailed 140

summary of related studies, please refer to these 141

surveys (Wu et al., 2023a; Yin et al., 2023). 142

Science Question Answering Various bench- 143

marks have been developed for specific scien- 144

tific subjects, including MATH (Hendrycks et al., 145

2021b), MathVista (Lu et al., 2023), chemistry 146

(Guo et al., 2023), etc. More comprehensive sci- 147

ence QA benchmarks like ScienceQA (Lu et al., 148

2022), C-EVAL (Huang et al., 2023), AGIEVAL 149

(Zhong et al., 2023), MMMU (Yue et al., 2023a), 150

and SciBench (Wang et al., 2023b) have recently 151

been introduced, providing a broader scope of as- 152

sessment. 153

3 Our Benchmark SceMQA 154

Our benchmark is designed to bridge a significant 155

gap in existing multimodal benchmarks, which typ- 156

ically span from elementary to college levels, and 157

overlook the crucial high school/college entrance 158

stages. This educational phase is crucial in the 159

human learning process. Although existing bench- 160

marks (Zhong et al., 2023; Zhang et al., 2023a) 161
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Problem Format # Problems Per Subject Problem Modality Solution Explanation* Difficulty Level

MMLU MC 279 T No College
SciBench FR 232 T Yes College
ScienceQA MC 816 T+I Yes Primary
MathVista MC + FR - T+I No Unspecified
MMMU MC + FR 385 T+I No College
SceMQA (Ours) MC + FR 261 T+I Yes College Entrance

Table 1: A comparative overview of various benchmarks. The first column indicates the problem types inside the
benchmark, with “MC” representing multiple choice and “FR” indicating free-response formats. The second column
shows the average number of problems per subject. The third column describes the problem modality, where “I”
stands for image-based and “T” for text-based problems. (*) The fourth column categorizes benchmarks based on
whether over 90% of problems are annotated with solutions explanations. The final column presents the difficulty
level. All superior and unique features of our benchmark are highlighted.

incorporate problems at this level, they predomi-162

nantly feature text-only questions. A comparative163

analysis of our dataset against existing benchmarks164

is detailed in Table 1. Although our benchmark165

appears smaller in total problem count, it focuses166

specifically on the science domain, offering a sub-167

stantial average number of problems per subject.168

Furthermore, it excels in quality, as evidenced by169

the high proportion of problems accompanied by170

detailed explanations. The collection and annota-171

tion protocol is located in Section A.4. Example172

problems in our benchmark are shown in the Ap-173

pendix (Figure 5).174

Multiple
Choice

Free
Response

Total Questions 845 200
Unique Images 632 118
Max Question Length 1816 1906
Max Answer Length 1124 2614
Average Question Length 452 410
Average Answer Length 297 330

Table 2: SceMQA Statistics.

SceMQA has in total 1,045 problems, with an175

average of 261 problems per subject. Details can176

be found in Table 2. This set of problems ensures a177

thorough evaluation across all included subjects.178

4 Experimental Examination of SceMQA179

In this section, we evaluate the state-of-the-art180

MLLMs on SceMQA by firstly reporting their an-181

swer accuracy across various settings. Additionally,182

we conduct a detailed error analysis (Section A.1)183

and show an accuracy distribution across knowl-184

edge categories (Section A.2) in the Appendix,185

which provide significant insights to identify the186

current MLLMs’ limitations and demonstrate the187

value of our benchmark in exploring them. We188

will move those important experiments to the main 189

body of our paper when we have more space upon 190

paper acceptance. 191

4.1 Experimental Settings 192

We choose InstructBLIP (Dai et al., 2023), 193

MiniGPT4 (Zhu et al., 2023) and LLaVa (Liu 194

et al., 2023a) as the open-source MLLM solvers 195

for SceMQA. As for close-sourced models, we fo- 196

cus on three of the most representative MLLMs 197

currently available: Google Bard, Gemini Pro and 198

GPT4-V. Furthermore, we test GPT4-V and Gem- 199

ini Pro under three distinct settings: zero-shot, few- 200

shot, and text-only. In the zero-shot setting, the 201

models are provided with the problem without any 202

prior examples. The few-shot setting involves giv- 203

ing the models a small number of example prob- 204

lems and solutions to “learn” from, before attempt- 205

ing the new problems. We use hand-crafted text- 206

only problems as examples since it is not flexible 207

to insert multiple images in one API call. The text- 208

only setting is a unique approach under zero-shot 209

where only the textual content of the problem is 210

provided to the model, without any images. All the 211

prompts in our experiments, along with detailed 212

descriptions of each setting, will be available for 213

public view after the paper is accepted. 214

For the evaluation metric, we have chosen to use 215

exact-match-based accuracy, which is consistent 216

with several prior studies (Lu et al., 2023; Yue et al., 217

2023a) in this domain. This metric is particularly 218

suitable for our benchmark as both the multiple- 219

choice and free-response problems have definitive, 220

singular correct answers. In the multiple-choice for- 221

mat, this involves selecting the correct option out 222

of the presented choices. For the free-response for- 223

mat, it requires generating an accurate and precise 224

answer, be it a numerical value, a yes/no response, 225

or a specific term for fill-in-the-blank questions. 226
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Open-sourced models

Model
Multiple Choice Free Response

Math Physics Chemistry Biology Overall Math Physics Chemistry Biology Overall

InstructBLIP-7B 16.98 21.86 20.30 22.75 20.48 6.00 6.00 0.00 38.00 12.50

InstructBLIP-13B 19.34 19.53 17.33 28.91 21.31 8.00 12.00 4.00 30.00 13.50

MiniGPT4-7B 18.87 20.93 25.25 22.75 21.90 4.00 0.00 2.00 20.00 6.50

MiniGPT4-13B 27.39 20.93 27.23 35.55 27.74 2.00 4.00 8.00 14.00 7.00

LLaVA1.5-7B 25.94 25.12 21.78 36.97 27.50 10.00 4.00 2.00 26.00 10.50

LLaVA1.5-13B 31.13 28.37 26.24 38.86 31.19 12.00 4.00 4.00 32.00 13.00

Close-sourced models

Model Setting
Multiple Choice Free Response

Math Physics Chemistry Biology Overall Math Physics Chemistry Biology Overall
Google Bard Text-only 43.40 40.93 24.75 54.88 41.31 14.00 12.00 22.00 34.00 20.50

Gemini Pro
Text-only 21.70 19.53 32.51 46.51 30.06 8.00 6.00 8.00 38.00 15.00
Few-shot 36.79 30.23 37.44 48.84 38.34 18.00 12.00 12.00 36.00 19.50
Zero-shot 37.26 30.70 42.36 54.42 41.18 20.00 12.00 18.00 36.00 21.50

GPT4-V
Text-only 35.38 47.91 58.13 63.72 51.24 12.00 24.00 28.00 22.00 21.50
Few-shot 54.72 53.95 58.62 67.44 58.70 30.00 24.00 30.00 48.00 33.00
Zero-shot 55.19 55.81 60.10 72.09 60.83 36.00 24.00 36.00 48.00 36.00

Table 3: Accuracy of examining GPT4-V and Gemini Pro across different settings on Multiple Choice and Free
Response problems in SceMQA.

Empirically we use rule-based answer exaction for227

multiple choice questions, and GPT4 as evaluators228

for free response questions.229

4.2 Accuracy for Solving SceMQA230

The performance of examined MLLMs on231

SceMQA is presented in Table 3. Foremost, in all232

evaluated scenarios, the zero-shot GPT4-V consis-233

tently outperforms other models. Despite this, the234

challenge posed by the benchmark remains signifi-235

cant for even the most advanced MLLMs, including236

GPT4-V and Google Gemini. This parity shows237

the challenging nature of our benchmark and the238

necessity for further improving MLLMs’ reasoning239

capabilities. It can be also observed that the per-240

formance of open-sourced models are significantly241

inferior to close-sourced ones. We have looked into242

the error cases and found that the both instruction-243

following and reasoning abilities of open-sourced244

models are not very satisfactory, leaving a huge245

room for improvement.246

Additionally, in the few-shot setting, we noticed247

an intriguing trend: it underperforms the zero-shot248

setting. We hypothesize that the few-shot examples,249

while providing guidance on scientific reasoning,250

do not enhance the models’ ability to interpret sci-251

entific images. This could inadvertently lead the252

models to prioritize logical reasoning over critical253

image interpretation. Also, we can see a signifi-254

cantly lower performance in the text-only setting.255

This highlights the indispensability of visual infor- 256

mation in solving the problems in our benchmark. 257

Another notable finding is the variation in per- 258

formance across different subjects. The models 259

perform better in Chemistry and Biology compared 260

to Math and Physics. We infer that this is because 261

Math and Physics often require precise calculations 262

for correct answers, while Chemistry and Biology 263

tend to focus more on conceptual understanding. 264

This pattern suggests that the integration of external 265

computational tools, such as calculators or Python 266

programs, might be beneficial in improving perfor- 267

mance on our benchmark, particularly in subjects 268

with extensive calculations like Math and Physics. 269

5 Conclusion 270

In this paper, we introduced SceMQA, a novel mul- 271

timodal question answering dataset tailored for the 272

college entrance level, including key scientific sub- 273

jects: mathematics, physics, chemistry, and biol- 274

ogy. A standout feature of SceMQA is its high 275

annotation granularity, with over 90% problems ac- 276

companied by detailed explanations and associated 277

with specific knowledge points. We conduct exten- 278

sive experiments including accuracy comparison, 279

error analysis, and category accuracy distribution, 280

employing state-of-the-art MLLMs and highlight- 281

ing the opportunities and obstacles for multimodal 282

AI models in scientific reasoning. 283
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Limitation284

Model Comparison Our SceMQA is evaluated285

on a small number of state-of-the-art MLLMs due286

to limited computational resources. We plan to eval-287

uate a wider range of models in the future. We will288

include both open-source models, such as Qwen-289

VL (Bai et al., 2023) and CogVLM (Wang et al.,290

2023a), and closed-source ones like Claude. This291

comprehensive comparison will provide deeper in-292

sights into the capabilities and limitations of those293

AI models in multimodal scientific reasoning.294

Data Scope We will enhance both the depth and295

breadth of our dataset. In terms of depth, we plan296

to incorporate more diverse problems within each297

scientific subject. This will involve adding more298

complex and varied question types. As for breadth,299

we aim to extend the range of subjects covered by300

our dataset beyond the traditional sciences, includ-301

ing more disciplines that are encountered in the302

human cognitive process.303
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A Appendix 563

A.1 Error Analysis 564

To delve deeper into the shortcomings of state-of- 565

the-art MLLMs, we conducted a comprehensive 566

error analysis. We randomly selected 150 instances 567

of errors made by GPT4-V on the SceMQA dataset 568

and enlisted two human experts for a detailed ex- 569

amination. These experts categorized each error 570

into one of six categories: Image Perceptual Errors, 571

Reasoning Errors, Lack of Knowledge, Rejection to 572

Answer, Annotation Error, and Answer Extraction 573

Error. The inter-rater reliability, assessed using the 574

Kappa agreement score, was found to be greater 575

than 0.5, indicating a moderate level of agreement 576

between the annotators. We then averaged their an- 577

notations to determine the proportion of each error 578

type, as depicted in Figure 2. The top-3 error types 579

are shown in Figure 3 and analyzed below: 580

Reasoning Error The most prevalent error type 581

is categorized under Reasoning Error. It occurs 582

when the model correctly processes image-based 583

information but fails to construct an accurate rea- 584

soning chain to arrive at the correct answer. Com- 585

mon mistakes include omitting necessary steps or 586

making incorrect calculations. And we find these 587

errors evenly spread in four subjects in SceMQA, 588

underscoring the need for further development in 589
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Reasoning Error

GPT4-V: The graph shows the points 
where the second derivative $f''$ equals 
zero are at $x = a$ and $x = d$. An 
inflection point on the graph of $f$ occurs 
where $f''$ changes sign, which happens at 
these zeroes of the second derivative. The 
answer is C.

Error Reason: An inflection point occurs where f'' changes sign. Not all 
zeros of f'' will change its sign.

Problem: Shown is a graph of $f''$, the second derivative of function 
$f$. The curve is given by the equation $f'' = (x - a)^2 (x - d)$. The 
graph of $f$ has inflection points at which values of $x$?
A. b only    B. c only     C. a and d     D. a and c     E. d only

Image Perception Error

GPT4-V: The amplitude is the height from the center line of the wave to its 
peak. Observing the waves in the image, wave B appears to have the 
greatest amplitude, followed by wave A, and then wave C having the least 
amplitude. Therefore, the correct ranking of the waves by their amplitudes 
is: B > A > C. The answer is B.

Error Reason: Waves A and 
B have the same height and 
higher than C. GPT4-V 
determines that B has the 
greatest amplitude.

Problem: The preceding diagram represents a photograph of three transverse 
waves, each of which is moving to the right in the same material as the 
others. Which of the following ranks the waves by their amplitudes?

A. A = B > C    B. B > C > A    C. A > C > B    D. A = B = C

Lack of Knowledge

GPT4-V: The answer is B. The chloroacetic acid buffer because it is the 
strongest acid.

Error Reason: The 
buffer capacity only 
depends on the 
number of moles 
present.

A student prepares three buffer solutions. Each solution is 1.0 M in one of the acids in the table 
and 1.0 M in its corresponding sodium salt. Which of the solutions has the greatest buffer 
capacity with respect to added NaOH and why?
A. The benzoic acid buffer because it is the strongest acid.
B. The chloroacetic acid buffer because it is the strongest acid. 
C. The formic acid buffer because it donate both of its hydrogen atoms.  D. All are the same.

Figure 3: Example of errors made by GPT4-V on SceMQA.

Math Physics Chemistry Biology
Subjects

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

ScienceQA (Primary Level)
SceMQA (College Entrance)
MMMU (College Level)

Figure 4: Comparison of GPT-4 performance across dif-
ferent benchmarks, illustrating the accuracy percentages
achieved by GPT-4 in different subjects.

the reasoning abilities of MLLMs. Drawing on590

insights from studies on LLMs, approaches such as591

prompting engineering (Wei et al., 2022) or super-592

vised fine-tuning (Yu et al., 2023; Yue et al., 2023b)593

might prove beneficial.594

Image Perception Error This occurs when the595

model misinterprets visual information—such as596

incorrectly reading numbers or coordinates, or fail-597

ing to differentiate between points in a geometric598

diagram. This type of error happens more often599

in the math subject because many math problems600

require precise diagram or table perception, which601

suggests that the image perception capabilities of602

current MLLMs require significant enhancement603

for precision and interpretation. Incorporation of604

external tools like OCR, as suggested in studies605

like (Liu et al., 2023b), could potentially improve606

the model’s understanding of visual content.607

Lack of Knowledge This type of error arises608

when the model fails to correctly identify or ap-609

ply relevant knowledge concepts, such as misusing610

formulas or misinterpreting theorems. These er-611

rors occur more in physics, chemistry and biology,612

which are indicative of gaps in the model’s learned613

knowledge base, suggesting that enriching the train- 614

ing datasets of foundation models with diverse and 615

domain-specific knowledge is essential to enhance 616

their expertise in those domains. 617

Rejection to Answer and Annotation Error In- 618

terestingly, a smaller portion of errors were catego- 619

rized as Rejection to Answer and Annotation Error. 620

Rejection to Answer occurs when the model refuses 621

to provide an answer, possibly due to uncertainty 622

or inability to comprehend the query. Annotation 623

Error, on the other hand, arises from inaccuracies 624

or inconsistencies in the dataset’s annotations, lead- 625

ing to confusion for the model. These categories 626

highlight the importance of robust dataset design 627

and also the need for models to handle ambiguous 628

or complex instructions and questions effectively. 629

Through this detailed error analysis, we have 630

identified specific patterns and weaknesses of 631

MLLMs’ performance on scientific problems. 632

These findings provide valuable insights and di- 633

rections for future research aimed at enhancing the 634

capabilities of MLLMs. Addressing these identi- 635

fied issues could lead to significant improvements 636

in the application of MLLMs in educational and 637

research contexts, particularly in the domain of 638

science. 639

A.2 Accuracy across Knowledge Points 640

In SceMQA, each problem is associated with a spe- 641

cific knowledge point. The individual accuracy on 642

those knowledge points can be found in Figure 7 643

and 8. We can observe that the model generally 644

performs better in chemistry and biology than in 645

math and physics. Also, the worst-performed cat- 646

egories of knowledge points are generally related 647

to image understanding (e.g., limits and continuity, 648

optics) or calculation (e.g., one-variable data analy- 649

sis, integration), which indicate the weaknesses of 650

current MLLMs to some extent. 651
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Multiple Choice Question: The graph of f for −1 ≤ 𝑥 ≤ 3 consists of two semicircles, as 

shown above. What is the value of $\int_{-1}^{3} f(x) , dx$ ? 

Options:

A: 0 B. $\pi$ 
C. $2\pi$         D. $4\pi$

Knowledge Point: Math - Integration
Explanation: A: $\int_{-1}^{3} f(x) , dx = \int_{-1}^{1} f(x) , dx + \int_{1}^{3} f(x) , dx = \frac{1}{2} \pi 
(1)^2 - \frac{1}{2} \pi (1)^2 = 0$

                                               

Mathematics

Free Response Question: The acetyl ion has a formula of 𝐶2𝐻3𝑂−and two possible Lewis’s 
electron-dot diagram representations: Using formal charge, determine which (left or right) 
structure is the most likely correct structure. (Answer is a single word)

Knowledge Point: Chemistry - Bonding and Phases
Answer & Explanation: Left.  

For this Formal charge calculation, the H atoms
are left out as they are identically bonded/drawn 
in both structures. As oxygen is more elect
-ronegative than carbon, an oxygen atom 
is more likely to have the negative formal charge than a carbon atom. The left-hand structure 
is most likely correct.

Chemistry 

Multiple Choice Question: In the laboratory, a 0.5-kg cart collides with a fixed wall, as shown in the preceding 

diagram. The collision is recorded with a video camera that takes 20 frames per second. A student analyzes the 

video, placing a dot at the center of mass of the cart in each frame. The analysis is shown above. Which of the 

following best estimates the change in the cart’s momentum during the collision? 

Options:

A. 27 N·s   B. 13 N·s

C. 1.3 N·s   D. 2.7 N·s

Knowledge Point: Physics - Kinematics

Explanation Initially, the cart‘s mass is 0.5 kg and speed is 4 m/s, so the cart’s momentum is mv = 2 N·s… The 

cart's momentum change is (2 N·s) + (something less than 2 N·s); the only possible answer is 2.7 N·s.

Physics

Free Response Question: The figure above shows the flow of energy in a community. What percent of the 

energy taken in by producers ends up in carnivores? Express your answer as a percent to the nearest tenth. 

(Final Answer is a value)

Knowledge Point: Biology - Ecology

Answer & Explanation: 1.6. 

The energy taken in by producers is 20,950 kcal

and that taken in by carnivores is 328 kcal. The 

fraction of carnivores obtained from producers is:

328/20950 = 0.0157.

Converted to a percent: 0.0157 × 100 = 1.6%.

Biology

Figure 5: Example problems in SceMQA, which contains four scientific subjects - math, physics, chemistry and
biology in two formats - multiple choice and free response.

A.3 Features of SceMQA652

To evaluate the difficulty of the problems in our653

benchmark, we utilize GPT-4 to respond to the654

questions within our dataset, as well as those from655

both a primary level and a college level benchmark.656

Figure 4 demonstrates the moderate difficulty level657

of our benchmark, positioning between the existing658

benchmark on primary and college levels. The ex-659

ample problems in SceMQA are located in Figure660

5, with the following features:661

Science Subjects Focusing on the core science662

subjects such as mathematics, physics, biology, and663

chemistry, our benchmark aligns with both existing664

text-only benchmarks, such as SciBench (Wang665

et al., 2023b), and major human exams like the666

GaoKao (i.e., Chinese national college entrance667

exam). To effectively address these problems, AI668

models must demonstrate a robust understanding669

of images, tables, and diagrams, coupled with deep670

domain knowledge to recall necessary formulae,671

theorems, and other elements for advanced reason-672

ing. This presents a suitable challenge for current673

AI systems, testing their limits in areas typically674

reserved for advanced human cognition.675

Solution Explanation We have meticulously an-676

notated every problem in SceMQA. Almost all solu-677

tions (> 90%) are accompanied by detailed, human-678

verified explanations except for some straightfor-679

ward solutions, as shown in Figure 5. These expla-680

nations are useful for identifying errors in model681

predictions and could also be instrumental in fu-682

ture supervised fine-tuning (SFT) (Ho et al., 2022;683

Hsieh et al., 2023) and few-shot prompting method-684

ologies (Wei et al., 2022). 685

Identified Knowledge Category Additionally, 686

each problem is associated with specific knowl- 687

edge components within its subject, also shown 688

in Figure 5. The availability of these components 689

aids in building a knowledge state for the evaluated 690

models, facilitating knowledge tracing and under- 691

standing the depth of the model’s capabilities. 692

Question Variation Furthermore, our bench- 693

mark features a variety of questions based on the 694

same image and context, as shown in Figure 6. 695

Solving such kind of question sets has been demon- 696

strated to be challenging for AI models (Liang and 697

Zhang, 2021), where they usually fail to detect sub- 698

tle differences among various questions related to 699

the same context (Patel et al., 2021). This one- 700

context multiple-questions setting can not only test 701

the depth of understanding and reasoning capabil- 702

ities of these AI models (Patel et al., 2021; Yang 703

et al., 2022) but also have the potential to support 704

advancements in Socratic learning (Shridhar et al., 705

2022) and interpretable reasoning (Zhang et al., 706

2021). 707

A.4 Data Collection Protocol 708

The data for SceMQA was meticulously sourced 709

from publicly available online materials tailored 710

for college entrance level tests in four key subjects: 711

math (including calculus and statistics), biology, 712

physics, and chemistry. In selecting these ques- 713

tions, our team of annotators strictly adhered to the 714

licensing regulations of the source websites, ensur- 715

ing no copyrighted material was included. This 716
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Context: Let $g(t) = \int_{0}^{t} f(x) , dx$ 

and consider the graph of $f$ shown in 

the image. 

Question 1: Evaluate $ g(6) $.

Question 2:  At what value(s) of t does 

g have a minimum value?

Question 3: How long is the interval 

where g concave down?

Math - Applications of Derivatives – Free Response

Answer 1: \answer{7} $g(6) = \int_{0}^{6} f(x) , dx = \int_{0}^{2} (4 - 4x) , dx + \

int_{2}^{3} (2x - 8) , dx + \int_{3}^{5} (4x - 14) , dx + \int_{5}^{6} 6 , dx = 0 + (-3) + 4 + 

6 = 7.$

Answer 2: \answer{3.5}  At $t = \frac{7}{2}$, $g$ has a minimum value. Because 

$g(0) = 0$, $g\left(\frac{7}{2}\right) = -\frac{7}{2}$.

Answer 3: \answer{2} Since $g'(t) = f(t)$ is decreasing only on $(0, 2)$, you see that 

$g''(x) < 0$ on this interval. Therefore, $g$ is concave down only on $(0, 2)$.

Figure 6: SceMQA contains multiple questions under
the same context.

adherence to legal and ethical standards was a pri-717

ority throughout the data collection process.718

For the curation of SceMQA, we specify its in-719

tended use to ensure compatibility with the origi-720

nal access conditions. The dataset is designed for721

academic research and educational technology de-722

velopment. It is not intended for commercial use or723

outside of research contexts, especially considering724

that the data is derived from educational resources725

accessed for research purposes. This specification726

helps maintain ethical standards and respects the727

original access conditions of the sourced materi-728

als. We also asked annotators to carefully check729

whether the data that was collected contained any730

personal identifier or offensive content and remove731

them if necessary.732

Each problem within our dataset contains one733

image that is essential for solving the correspond-734

ing question, aligning with the multimodal nature735

of SceMQA. The problems are presented in two736

formats: multiple-choice and free-response. The737

multiple-choice questions offer 4 to 5 options, de-738

noted by uppercase letters, a format consistent with739

other established benchmarks. Following previous740

studies (Hendrycks et al., 2021a; Lewkowycz et al.,741

2022), we transform all mathematical expressions742

into latex codes, making them easy to process for743

LLMs, as shown in Figure 5 and 6.744

The free-response section includes calculation-745

based problems where answers are numerical val-746

ues. This format is particularly advantageous for747

evaluation purposes, as the correctness of model-748

generated answers can be straightforwardly deter-749

mined by checking the final numerical value. This750

approach is in line with other benchmarks like751

GSM8k, SciBench, and MMMU. Besides calcu-752

lations, our benchmark diversifies with other free-753

response types like Yes-or-No and fill-in-the-blank 754

questions. These formats not only broaden the 755

range of question types but also maintain ease of 756

evaluation through exact matching. Given these 757

characteristics, accuracy will be the primary metric 758

for assessing performance on our benchmark. 759

In terms of data features, each problem was thor- 760

oughly reviewed by annotators to ensure it aligned 761

with the intended high school and pre-college dif- 762

ficulty level. Moreover, every problem is accom- 763

panied by a clear explanation of the answer and is 764

tagged with the main knowledge point from prede- 765

fined knowledge sets. These annotations and cate- 766

gorizations have been verified by domain experts, 767

ensuring that each problem accurately reflects the 768

intended educational content and difficulty. 769
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Figure 7: Accuracy distribution of GPT4-V on the knowledge points of SceMQA.
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Figure 8: Accuracy distribution of Google Gemini on the knowledge points of SceMQA.
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