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Abstract

Machine learning has demonstrated remarkable
prediction accuracy over i.i.d data, but the accu-
racy often drops when tested with data from an-
other distribution. In this paper, we aim to offer
another view of this problem in a perspective as-
suming the reason behind this accuracy drop is
the reliance of models on the features that are not
aligned well with how a data annotator considers
similar across these two datasets. We refer to these
features as misaligned features. We extend the con-
ventional generalization error bound to a new one
for this setup with the knowledge of how the mis-
aligned features are associated with the label. Our
analysis offers a set of techniques for this problem,
and these techniques are naturally linked to many
previous methods in robust machine learning lit-
erature. We also compared the empirical strength
of these methods demonstrated the performance
when these previous techniques are combined, with
implementation available here.

1 INTRODUCTION

Machine learning, especially deep neural networks, has
demonstrated remarkable empirical successes over various
applications. The models even occasionally achieved results
beyond human-level performances over benchmark datasets
[e.g., He et al., 2015]. However, whether it is desired for a
model to outsmart human on benchmarks remains an open
discussion in recent years: indeed, a model can create more
application opportunities when it surpasses human-level
performances, but the community also notices that the per-
formance gain is sometimes due to model’s exploitation of
the features meaningless to a human, which may lead to
unexpected performance drops when the models are tested
with other datasets in practice that a human considers similar

to the benchmark [Christian, 2020].

One of the most famous examples of the model’s exploita-
tion of non-human-aligned features is probably the usage of
snow background in “husky vs. wolf” image classification
[Ribeiro et al., 2016]. Briefly, when the model is trained
to classify “husky vs wolf,” it notices that wolf images
usually have a snow background and learns to use the back-
ground features. This example is only one of many similar
discussions concerning that the models are using features
considered futile by humans [e.g., Wang et al., 2019a, Sun
et al., 2019], and, sometimes, the features used are not even
perceptible to a human [Geirhos et al., 2019, Ilyas et al.,
2019, Wang et al., 2020, Hermann and Kornblith, 2020].
The usage of these features might lead to a misalignment be-
tween the human and the models’ understanding of the data,
leading to a potential performance drop when the models
are applied to other data that a human considers similar.

We illustrate this challenge with a toy example in Figure 1,
where the model is trained on the source domain data to
classify triangle vs. circle and tested on the target domain
data with a different marginal distribution. However, the
color coincides with the shape on the source domain. As a
result, the model might learn either the shape function or
the color one. The color function will not classify the target
domain data correctly while the shape function can, but the
empirical risk minimizer (ERM) cannot differentiate them
and might learn either one, leading to potentially degraded
performances during the test. As one might expect, whether
shape or color is considered human-aligned is subjective
depending on the task or the data and, in general, irrele-
vant to the statistical nature of the problem. Therefore, our
remaining analysis will depend on such knowledge.

In this paper, we aim to formalize the above challenge to
study the learning of human-aligned models. In particular,
we derive a new generalization error bound when a model
is trained on one distribution but tested on another one that
human consider similar. As discussed previously, one poten-
tial challenge for this scenario is that the model may learn to
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color labeling function, this function will
not predict the shape correctly over target
domain data, even though its predictions
coincide with the one of the shape labeling
function in this distribution

shape labeling function, this function will
predict the shape correctly over target
domain data.
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Figure 1: An illustration of the main problem focused in this paper.

use some features, which we refer to as misaligned features,
that a human considers irrelevant. Corresponding to this
challenge, our analysis will be built upon the knowledge of
how misaligned features are associated with the label.

2 RELATED WORK

There is a recent proliferation of methods aiming to learn
robust models by enforcing the models to disregard certain
features. We consider these works direct precedents of our
discussion because these features are usually defined when
comparing the model’s performances to a human’s. For ex-
ample, the texture or background of images is probably the
most discussed misaligned features for image classification.
We briefly discuss these works in two main strategies.

Data Augmentation With the knowledge of the mis-
aligned features, the most effective solution is probably
to augment the data by perturbing these misaligned features.
Some recent examples of the perturbations used to train ro-
bust models include style transfer of images [Geirhos et al.,
2019], naturalistic augmentation (color distortion, noise, and
blur) of images [Hermann and Kornblith, 2020], other natu-
ralistic augmentations (texture, rotation, contrast) of images
[Wang et al., 2022], interpolation of images [Hendrycks
et al., 2019a], syntactic transformations of sentences [Ma-
habadi et al., 2020], and across data domain [Shankar et al.,
2018, Huang et al., 2020, Lee et al., 2021, Huang et al.,
2022].

Further, as recent studies suggest that one reason for the
adversarial vulnerability [Szegedy et al., 2013, Goodfellow
et al., 2015] is the existence of imperceptible features corre-
lated with the label [Ilyas et al., 2019, Wang et al., 2020],
improving adversarial robustness may also be about coun-
tering the model’s tendency toward learning these features.
Currently, one of the most widely accepted methods to im-
prove adversarial robustness is to augment the data along
the training process to maximize the training loss by perturb-
ing these features within predefined robustness constraints
(e.g., within ℓp norm ball) [Madry et al., 2018]. While this
augmentation strategy is widely referred to as adversarial
training, for the convenience of our discussion, we refer to it

as the worst-case data augmentation, following the naming
conventions of [Fawzi et al., 2016].

Regularizing Hypothesis Space Another thread is to in-
troduce inductive bias (i.e., to regularize the hypothesis
space) to force the model to discard misaligned features.
To achieve this goal, one usually needs to first construct a
side component to inform the main model about the mis-
aligned features, and then to regularize the main model
according to the side component. The construction of this
side component usually relies on prior knowledge of what
the misaligned features are. Then, methods can be built
accordingly to counter the features such as the texture of
images [Wang et al., 2019b, Bahng et al., 2019], the lo-
cal patch of images [Wang et al., 2019a], label-associated
keywords [He et al., 2019], label-associated text fragments
[Mahabadi et al., 2020], and general easy-to-learn patterns
of data [Nam et al., 2020].

In a broader scope, following the argument that one of the
main challenges of domain adaptation is to counter the
model’s tendency in learning domain-specific features [e.g.,
Ganin et al., 2016, Li et al., 2018], some methods contribut-
ing to domain adaption may have also progressed along
the line of our interest. The most famous example is proba-
bly the domain adversarial neural network (DANN) [Ganin
et al., 2016]. Inspired by the theory of domain adaptation
[Ben-David et al., 2010], DANN trains the cross-domain
generalizable neural network with the help of a side com-
ponent specializing in classifying samples’ domains. The
subtle difference between this work and the ones mentioned
previously is that this side component is not constructed
with a special inductive bias but built as a simple network
learning to classify domains with auxiliary annotations (do-
main IDs). DANN also inspires a family of methods forcing
the model to learn auxiliary-annotation-invariant representa-
tions with a side component such as [Ghifary et al., 2016,
Rozantsev et al., 2018, Motiian et al., 2017, Li et al., 2018,
Carlucci et al., 2018].

Relation to Previous Works The above methods solve
the same human-aligned learning problems with two differ-
ent perspectives, but we notice the same central theme of



forcing the models to not learn something according to the
prior knowledge of the data or the task. Although this cen-
tral theme has been noticed by prior works such as [Wang
et al., 2019b, Bahng et al., 2019, Mahabadi et al., 2020],
we notice a lack of formal analysis from a task-agnostic
viewpoint. Therefore, we continue to investigate whether
we can contribute a principled understanding of this central
theme, which serves as a connection of these methods and,
potentially, a guideline for developing future methods. Also,
we notice that many works along the domain adaptation
development have rigorous statistical analysis [Ben-David
et al., 2007, 2010, Mansour et al., 2009, Germain et al., 2016,
Zhang et al., 2019, Dhouib et al., 2020], and these analy-
ses mostly focus on the alignment of the distributions. Our
study will complement these works by investigating through
the perspective of misaligned features. The advantages and
limitations of our perspective will also be discussed.

3 GENERALIZATION UNDERSTANDING
OF HUMAN-ALIGNED ROBUST
MODELS

Roadmap We study the generalization error bound of
human-aligned robust model in this section. We will first set
up the problem of studying the generalization of the model
across two distributions, whose difference mainly lies in
the fact that one distribution has another labelling function
(namely, the misaligned labelling function) in addition to
the one that is shared across both of these distributions (A2).
Then, to help quantify the error bound, we need to define
the active set (features used by the function) (A(f,x) in
(3)), the difference between the two functions (d(θ, f,x) in
(4)), and an additional term to quantify whether the model
learns the function if the model can map the sample cor-
rectly (r(θ,A(f,x)) in (5)). With these terms defined, we
will show a formal result on the generalization error bound,
which depends on how many training samples are predicted
correctly when the model learns the mis-aligned samples in
addition to the standard terms.

3.1 NOTATIONS & BACKGROUND

We consider a binary classification problem from feature
space X ∈ Rp to label space Y ∈ {0, 1}. The distribution
over X is denoted as P. A labeling function f : X → Y is a
function that maps the feature x to its label y. A hypothesis
or model θ : X → Y is also a function that maps the
feature to the label. The difference in naming is only because
we want to differentiate whether the function is a natural
property of the space or distribution (thus called a labeling
function) or a function to estimate (thus called a hypothesis
or model). The hypothesis space is denoted as Θ. We use
dom to denote the domain (input space) of a function, thus
dom(θ) = X .

This work studies the generalization error across two distri-
butions, namely source and target distribution, denoted as
Ps and Pt, respectively. We are only interested when these
two distributions are, considered by a human, similar but
different: being similar means there exists a human-aligned
labeling function, fh, that maps any x ∈ X to its label (thus
the label y := fh(x)); being different means there exists
a misaligned labeling function, fm, that for any x ∼ Ps,
fm(x) = fh(x). This “similar but different” property will
be reiterated as an assumption (A2) later. We use (x, y) to
denote a sample, and use (X,Y)P to denote a finite dataset
if the features are from P (see detailed process from A2).
We use ϵP(θ) to denote the expected risk of θ over distri-
bution P, and use ·̂ to denote the estimation of the term ·
(e.g., the empirical risk is ϵ̂P(θ̂)). We use l(·, ·) to denote a
generic loss function.

For a dataset (X,Y)P, if we train a model with

θ̂ = argmin
θ∈Θ

∑
(x,y)∈(X,Y)P

l(θ(x), y), (1)

previous generalization study suggests that we can expect
the error rate to be bounded as

ϵP(θ̂) ≤ ϵ̂P(θ̂) + ϕ(|Θ|, n, δ), (2)

where ϵP(θ̂) and ϵ̂P(θ̂) respectively are

ϵP(θ̂) = Ex∼P|θ̂(x)− y| = Ex∼P|θ̂(x)− fh(x)|

and

ϵ̂P(θ̂) =
1

n

∑
(x,y)∈(X,Y)P

|θ̂(x)− y|,

and ϕ(|Θ|, n, δ) is a function of hypothesis space |Θ|, num-
ber of samples n, and the probability when the bound holds
δ. This paper expands the discussion with this generic form
that can relate to several discussions, each with its own
assumptions. We refer to these assumptions as A1.

A1: basic assumptions needed to derived (2), for example,

– when A1 is “Θ is finite, l(·, ·) is a zero-
one loss, samples are i.i.d”, ϕ(|Θ|, n, δ) =√

(log(|Θ|) + log(1/δ))/2n

– when A1 is “samples are i.i.d”, ϕ(|Θ|, n, δ) =
2R(L)+

√
(log 1/δ)/2n, where R(L) stands for

Rademacher complexity and L = {lθ | θ ∈ Θ},
where lθ is the loss function corresponding to θ.

For more information, we refer interested readers to
relevant textbooks such as [Bousquet et al., 2003] for
formal and intuitive discussions.

3.2 GENERALIZATION ERROR BOUND OF
HUMAN-ALIGNED ROBUST MODELS

Formally, we state the challenge of our human-aligned ro-
bust learning problem as the assumption:



A2: Existence of Misaligned Features: For any x ∈ X ,
y := fh(x). We also have a fm that is different from
fh, and for x ∼ Ps, fh(x) = fm(x).

Thus, the existence of fm is a key challenge for the small
empirical risk over Ps to be generalized to Pt, because θ
that learns either fh or fm will lead to small source error,
but only θ that learns fh will lead to small target error. Note
that fm may not exist for an arbitrary Ps. In other words,
A2 can be interpreted to ensure the a property of Ps so that
fm, while being different from fh, exists for any x ∼ Ps.

In this problem, fm and fh are not the same despite
fm(x) = fh(x) for any x ∼ Ps, and we focus on the
case where the differences lie in the features they use. To
describe this difference, we introduce the notation A(·, ·),
which denotes a set parametrized by the labeling function
and the sample, to describe the active set of features used
by the labeling function. By active set, we refer to the mini-
mum set of features that a labeling function requires to map
a sample to its label. Formally, we define

A(f,x) = {i|ẑi = xi}, where,
ẑ = argmin

z∈dom(f),f(z)=f(x)

|{i|zi = xi}|, (3)

and | · | measures the cardinality. Intuitively, A(f,x) indexes
the features f uses to predict x. Although fm(x) = fh(x),
A(fm,x) and A(fh,x) can be different. A(fm,x) is the
misaligned features following our definition.

Further, we define a function difference given a sample as

d(θ, f,x) = max
z∈dom(f):zA(f,x)=xA(f,x)

|θ(z)− f(z)|, (4)

where xA(f,x) denotes the features of x indexed by A(f,x).
In other words, the distance describes: given a sample x,
the maximum disagreement of the two functions θ and f
for all the other data z ∈ X with a constraint that the fea-
tures indexed by A(f,x) are the same as those of x. Notice
that this difference is not symmetric, as the active set is
determined by the second function. By definition, we have
d(θ, f,x) ≥ |θ(x)− f(x)|.

Also, please notice that when we use expressions such as
zA(f,x) = xA(f,x), we imply that A(f,x) is the same in
both LHS and RHS. Under this premise of the notation,
whether (3) has a unique solution or not will not affect our
main conclusion.

In addition, one may notice the connection between A(f,x)
and the minimum sufficient explanation discussed previ-
ously [e.g., Camburu et al., 2020, Yoon et al., 2019, Carter
et al., 2019, Ribeiro et al., 2018]. While A(f,x) is concep-
tually the same as the minimum set of features for a model
to predict, we define it mathematically different.

To continue, we introduce the following assumption:

A3: Realized Hypothesis: Given a large enough hypoth-
esis space Θ, for any sample (x, y), for any θ ∈ Θ,
which is not a constant mapping, if θ(x) = y, then
d(θ, fh,x)d(θ, fm,x) = 0

Intuitively, A3 assumes θ at least learns one labeling func-
tion for the sample x if θ can map the x correctly.

Finally, to describe how θ depends on the active set of f ,
we introduce the term

r(θ,A(f,x)) = max
zA(f,x)∈dom(f)A(f,x)

|θ(z)− y|, (5)

where zA(f,x) ∈ dom(f)A(f,x) denotes that the features
of z indexed by A(f,x) are searched in the input space
dom(f). Notice that r(θ,A(f,x)) = 1 alone does not mean
θ depends on the active set of f ; it only means so when we
also have θ(x) = y (see the formal discussion in Lemma ??).
In other words, r(θ,A(f,x)) = 1 alone may not have an
intuitive meaning, but given θ(x) = y, r(θ,A(f,x)) = 1
intuitively means θ learns f .

With all above, we can extend the conventional generaliza-
tion error bound with a new term as follows:

Theorem 3.1. With Assumptions A1-A3, l(·, ·) is a zero-one
loss, with probability as least 1− δ, we have

ϵPt
(θ) ≤ ϵ̂Ps

(θ) + c(θ) + ϕ(|Θ|, n, δ) (6)

where

c(θ) =
1

n

∑
(x,y)∈(X,Y)Ps

I[θ(x) = y]r(θ,A(fm,x)).

I[·] is a function that returns 1 if the condition · holds and
0 otherwise. As θ may learn fm, ϵ̂Ps(θ) is not representa-
tive of ϵPt

(θ); thus, we introduce c(θ) to account for the
discrepancy. Intuitively, c(θ) quantifies the samples that are
correctly predicted, but only because the θ learns fm for
that sample. c(θ) depends on the knowledge of fm.

We name Theorem 3.1 the curse of universal approximation
to highlight the fact that the existence of fm is not always
obvious, but the models can usually learn it nonetheless
[Wang et al., 2020] . Even in a well-curated dataset that
does not seemingly have misaligned features, modern mod-
els might still use some features not understood by human.
This argument may also align with recent discussions sug-
gesting that reducing the model complexity can improve
cross-domain generalization [Chuang et al., 2020].

3.3 IN COMPARISON TO THE VIEW OF DOMAIN
ADAPTATION

We continue to compare Theorem 3.1 with understandings
of domain adaptation. Conveniently, several domain adapta-
tion analyses [Ben-David et al., 2007, 2010, Mansour et al.,



2009, Germain et al., 2016, Zhang et al., 2019, Dhouib et al.,
2020] can be sketched in the following form:

ϵPt
(θ) ≤ ϵ̂Ps

(θ) +DΘ(Ps,Pt) + λ+ ϕ′(|Θ|, n, δ) (7)

where DΘ(Ps,Pt) quantifies the differences between the
two distributions; λ describes the nature of the problem and
usually involves non-estimable terms about the problem.

For example, Ben-David et al. [2010] formalized the dif-
ference as Θ-divergence, and described the corresponding
empirical term as (with Θ∆Θ denoting the set of disagree-
ment between two hypotheses in Θ):

DΘ(Ps,Pt) =1− min
θ∈Θ∆Θ

(
1

n

∑
x:θ(x)=0

I[x ∈ (X,Y)Ps
]

+
1

n

∑
x:θ(x)=1

I[x ∈ (X,Y)Pt ]).

(8)

Also, Ben-David et al. [2010] formalized λ = ϵPt(θ
⋆) +

ϵPs
(θ⋆), where θ⋆ = argminθ∈Θ ϵPt

(θ) + ϵPs
(θ),

In our discussion, as we assume the fh applies to any x ∈ X
(according to A2), λ = 0 as long as the hypothesis space
is large enough. Therefore, the comparison mainly lies in
comparing c(θ) and DΘ(Ps,Pt).

To compare them, we need an extra assumption:

A4: Sufficiency of Training Samples for the two finite
datasets in the study, i.e., (X,Y)Ps

and (X,Y)Pt
,

for any x ∈ (X,Y)Pt
, there exists one or many z ∈

(X,Y)Ps
such that

x ∈ {x′|x′ ∈ X and x′
A(fh,z)

= zA(fh,z)} (9)

A4 intuitively means the finite training dataset needs to
be diverse enough to describe the concept that needs to
be learned. For example, imagine building a classifier to
classify mammals vs. fishes from the distribution of photos
to that of sketches, we cannot expect the classifier to do
anything good on dolphins if dolphins only appear in the
test sketch dataset. A4 intuitively regulates that if dolphins
will appear in the test sketch dataset, they must also appear
in the training dataset.

Now, in comparison to [Ben-David et al., 2010], we have

Theorem 3.2. With Assumptions A2-A4, and if 1− fh ∈ Θ,
we have

c(θ) ≤DΘ(Ps,Pt)

+
1

n

∑
(x,y)∈(X,Y)Pt

I[θ(x) = y]r(θ,A(fm,x))

(10)

where

c(θ) =
1

n

∑
(x,y)∈(X,Y)Ps

I[θ(x) = y]r(θ,A(fm,x))

and DΘ(Ps,Pt) is defined as in (8).

q(θ) := 1
n

∑
(x,y)∈(X,Y)Pt

I[θ(x) = y]r(θ,A(fm,x)),
which intuitively means that if θ learns fm, how many sam-
ples θ can coincidentally predict correctly over the finite
target set used to estimate DΘ(Ps,Pt). For sanity check,
if we replace (X,Y)Pt

with (X,Y)Ps
, DΘ(Ps,Pt) will

be evaluated at 0 as it cannot differentiate two identical
datasets, and q(θ) will be the same as c(θ). On the other
hand, if no samples from (X,Y)Pt

can be mapped correctly
with fm (coincidentally), q(θ) = 0 and c(θ) will be a lower
bound of DΘ(Ps,Pt).

The value of Theorem 3.2 lies in the fact that for an arbitrary
target dataset (X,Y)Pt

, no samples out of which can be
predicted correctly by learning fm (a situation likely to
occur for arbitrary datasets since fm is unlikely to be shared
across the source dataset and any arbitrary target dataset),
c(θ) will always be a lower bound of DΘ(Ps,Pt).

Further, when Assumption A4 does not hold, we are unable
to derive a clear relationship between c(θ) and DΘ(Ps,Pt).
The difference is mainly raised as a matter of fact that, in-
tuitively, we are only interested in the problems that are
“solvable” (A4, i.e., hypothesis that used to reduce the test
error in target distribution can be learned from the finite
training samples) but “hard to solve” (A2, i.e., another label-
ing function, namely fm, exists for features sampled from
the source distribution only), while DΘ(Ps,Pt) estimates
the divergence of two arbitrary distributions.

3.4 ESTIMATION OF THE DISCREPANCY

The estimation of c(θ) mainly involves two challenges: the
requirement of the knowledge of fm and the computational
cost to search over the entire space X .

The first challenge is unavoidable by definition because
the human-aligned learning has to be built upon the prior
knowledge of what labeling function a human considers
similar (what fh is) or its opposite (what fm is). Fortunately,
as discussed in Section 2, the methods are usually developed
with prior knowledge of what the misaligned features are,
suggesting that we may often directly have the knowledge.

The second challenge is about the computational cost to
search, and the community has several techniques to help
reduce the burden. For example, the search can be termi-
nated once r(θ,A(fm,x)) is evaluated as 1 (i.e., once we
find a perturbation of misaligned features that alters the pre-
diction). This procedure is similar to how adversarial attack
[Goodfellow et al., 2015] is used to evaluate the robustness
of models. To further reduce the computational cost, one can
also generate out-of-domain data by perturbing misaligned
features beforehand and use these fixed data to test models.
Using fixed data to evaluate might not be as accurate as us-
ing a search process, but sometimes, it can be good enough



to reveal some interesting properties of the models [Jo and
Bengio, 2017, Geirhos et al., 2019, Wang et al., 2020].

4 METHODS TO LEARN
HUMAN-ALIGNED ROBUST MODELS

We continue to study how our analytical results above can
lead to practical methods to learn human-aligned robust
models. We first show that our discussion can naturally
connect to existing methods for robust machine learning
discussed in Section 2.

Theorem 3.1 suggests that training a human-aligned robust
model amounts to training for small c(θ) and small empiri-
cal error (i.e., ϵ̂Ps(θ)).

4.1 WORST-CASE TRAINING

To simplify the notation, we define Q(x) := {xA(fm,x) ∈
dom(fm)A(fm,x)}. We can consider the upper bound of
c(θ)

c(θ) ≤ 1

n

∑
(x,y)∈(X,Y)

r(θ,A(fm,x))

=
1

n

∑
(x,y)∈(X,Y)

max
z∈Q(x)

|θ(z)− y|,
(11)

which intuitively means that instead of c(θ) that studies only
the correct predictions because θ learns fm, now we study
any predictions because θ learns fm.

Further, as

|θ(x)− y| ≤ max
z∈Q(x)

|θ(z)− y|,

a model with minimum (11) naturally means the model will
have a minimum empirical loss. Therefore, we can train for
a small (11), which likely leads to the model with a small
empirical loss. Therefore, after we replace |θ(x)− y| with a
generic loss term ℓ(θ(x), y), we can directly train a model
with

min
θ∈Θ

1

n

∑
(x,y)∈(X,Y)

max
z∈Q(x)

ℓ(θ(z), y) (12)

to get a model with small c(θ) and small empirical error.

The above method is to augment the data by perturbing the
misaligned features to maximize the training loss and solve
the optimization problem with the augmented data. This
method is the worst-case data augmentation method [Fawzi
et al., 2016] we discussed previously, and is also closely con-
nected to one of the most widely accepted methods for the
adversarial robust problem, namely the adversarial training
[Madry et al., 2018].

While the above result shows that a method for learning
human-aligned robust models is in mathematical connec-
tion to the worst-case data augmentation, in practice, a gen-
eral application of this method will require some additional
assumptions. The detailed discussions of these are in the
appendix.

We continue from the RHS of (11) to discuss another re-
formulation by reweighting sample losses for optimization,
which leads to:

1

n

∑
(x,y)∈(X,Y)

max
z∈Q(x)

λ(z)|θ(z)− y| (13)

The conditions (assumptions) that we need for c(θ) ≤ the
LHS of (13) is discussed in the appendix. Now, we will
continue with

c(θ) ≤ 1

n

∑
(x,y)∈(X,Y)

max
z∈Q(x)

λ(z)|θ(z)− y| (14)

When (14) holds, replacing |θ(z) − y| with a generic loss
ℓ(θ(z), y) and minimizing it is another direction of learn-
ing robust models, which corresponds to distributionally
robust optimization (DRO) [Ben-Tal et al., 2013, Duchi
et al., 2021].

Further, depends on implementations of λ(x), DRO has
been implemented with different concrete solutions, some-
times with structural assumptions [Hu et al., 2018], such
as

• Adversarially reweighted learning (ARL) [Lahoti et al.,
2020] uses another model ϕ : X × Y → [0, 1] to
identify samples with misaligned features that cause
high losses of model θ and defines

λ(x) = 1 + |(X,Y)| · ϕ (x)∑
(x,y)∈(X,Y) ϕ (x)

• Learning from failures (LFF) [Nam et al., 2020] also
trains another model ϕ by amplifying its early-stage
predictions and defines

λ(x) =
ℓ (ϕ(x), y)

ℓ (ϕ(x), y) + ℓ (θ(x), y)
(15)

• Group DRO [Sagawa* et al., 2020] assumes the avail-
ability of the structural partition of the samples, and
defines the weight of samples at partition g as

λ(x) =
exp (ℓ (θ(x), y)))∑

(z,y)∈(X,Y)g
exp (ℓ (θ(z), y)))

, (16)

if (x, y) ∈ (X,Y)g, samples of partition g

These discussions are expanded in the appendix.



4.2 REGULARIZING THE HYPOTHESIS SPACE

Connecting our theory to the other main thread is little bit
tricky, as we need to extend the model to an encoder/de-
coder structure, where we use eθ and dθ to denote them
respectively. Thus, by definition of classification models,
we have θ(x) = dθ(eθ(x)). Further, we define f ′

m as the
equivalent of fm with the only difference is that f ′

m operates
on the representations eθ(x). With the setup, optimizing the
empirical loss and c(θ) leads to (details in the appendix):

min
dθ,eθ

1

n

∑
(x,y)∈(X,Y)

ℓ(dθ(eθ(x)), y)− ℓ(f ′
m(eθ(x)), y),

(17)

which is highly related to methods used to learn auxiliary-
annotation-invariant representations, and the most popular
example of these methods is probably DANN [Ganin et al.,
2016].

Then, the question left is how to get f ′
m. We can design a

specific architecture given the prior knowledge of the data,
then f ′

m can be directly estimated through

min
f ′
m

1

n

∑
(x,y)∈(X,Y)

ℓ(f ′
m(eθ(x)), y), (18)

which connects to several methods in Section 2, such as
[Wang et al., 2019a, Bahng et al., 2019]. Alternatively, we
can estimate f ′

m with additional annotations (e.g., domain
ids, batch ids etc), then we can estimate the model by (with
t denoting the additional annotation)

min
f ′
m

1

n

∑
(x,t)∈(X,T)

ℓ(f ′
m(eθ(x)), t), (19)

which connects to methods in domain adaptation literature
such as [Ganin et al., 2016, Li et al., 2018].

4.3 A NEW HEURISTIC: WORST-CASE
TRAINING WITH REGULARIZED
HYPOTHESIS SPACE

Our analysis showed that optimizing for small c(θ) naturally
connects to one of the two mainstream families of methods
used to train robust models in the literature, which naturally
inspires us to invent a new method by combining these two
directions. The intuition behind this design rationale is to
incorporate the empirical strength of each of these methods
together by directly combining the major components of
these methods.

Therefore, we introduce a new heuristic that combines the
worst-case training (11) and the regularization method (17)
and (19), for which, whether the samples are originally
from (X,Y) or generated along the training will serve as
the additional annotation t.

Algorithm 1: worst-case training with regularized hy-
pothesis space
Result: θI

Input: total iterations I , (X,Y);
initialize θ(0), i = 1;
while i ≤ I do

for sample (x, y) do
assign additional label tx = 0 for x;
sample z ∈ Q(x) that maximizes ℓ(θ(x), y);
assign additional label tz = 1 for z;
update f ′

m with (19);
update θ with (17);
update θ with z with the equivalence of (17) as
mindθ,eθ ℓ(dθ(eθ(z)), y)− ℓ(f ′

m(eθ(z)), y),
end

end

In particular, our heuristic is illustrated with Algorithm 1. In
practice, we will also introduce a hyperparamter to balance
the two losses in (17).

5 EXPERIMENTS

We presented the theory supporting experiments in Ap-
pendix, and discuss performance competing results here.

To test the performance of our new heuristic, we compare
our methods on a fairly recent and strong baseline. In partic-
ular, we follow the setup of a direct precedent of our work
[Bahng et al., 2019] to compare the models for a nine super-
class ImageNet classification [Ilyas et al., 2019] with class-
balanced strategies. Also, we follow [Bahng et al., 2019]
to report standard accuracy, weighted accuracy, a scenario
where samples with unusual texture are weighted more, and
accuracy over ImageNet-A [Hendrycks et al., 2019b], a col-
lection of failure cases for most ImageNet trained models.
Additionally, we also report the performance over ImageNet-
Sketch [Wang et al., 2019a], an independently collected
ImageNet test set with only sketch images.

We test our method with the pipeline made available by
[Bahng et al., 2019], and we compare with the vanilla
network, and several methods that are designed to reduce
the texture bias: including StylisedIN (SN) [Geirhos et al.,
2019], LearnedMixin (LM) [Clark et al., 2019], RUBi [Ca-
dene et al., 2019], and ReBias [Bahng et al., 2019], several
other baselines proved effective in learning robust models,
such as Mix-up [Zhang et al., 2017], Cutout [DeVries and
Taylor, 2017], AugMix Hendrycks et al. [2019a], In addition,
we compared our worst-case training (WT), regularization
(Reg), and the introduced heuristic (WR). For our methods,
we follow the observations in [Wang et al., 2020] suggesting
the relationship between frequency-based perturbation and
the model’s performance, and design the augmentation of
frequency-based perturbation with different radii.



Vanilla SN LM RUBi ReBias Mixup Cutout AugMix WT Reg WR
Standard Acc. 90.80 88.40 67.90 90.50 91.90 92.50 91.20 92.90 92.50 93.10 93.30
Weighted Acc. 88.80 86.60 65.90 88.60 90.50 91.20 90.30 91.70 91.30 92.20 92.00
ImageNet-A 24.90 24.60 18.80 27.70 29.60 29.10 27.30 31.50 28.50 30.00 29.60

ImageNet-Sketch 41.10 40.50 36.80 42.30 41.80 40.60 38.70 41.40 43.00 42.50 43.20
average 61.40 60.03 47.35 62.28 63.45 63.35 61.88 64.38 63.83 64.45 64.53

Table 1: Results comparison on nine super-class ImageNet classification.

We report the results in Table 1. Our results suggest that,
while the augmentation method we used is much simpler
than the ones used in AugMix, our empirical results are
fairly strong in comparison. With simple perturbation in-
spired from [Wang et al., 2020], our new heuristic outper-
forms other methods in average on these four test scenarios.

6 DISCUSSION

Before we conclude, we would like to devote a section to
discuss several topics more broadly related to this paper.

Human-aligned machine learning may not be solvable in
general without prior knowledge. Following our notations
in this paper, for any two functions f1 and f2, it is human,
instead of any statistical properties, that decides whether
fh = f1 or fh = f2. This remark is a restatement of our
motivating example in Figure 1. Our proposed method for-
goes the requirement of prior knowledge and is validated
empirically on certain benchmark datasets.

Do all the model’s understandings of the data have to
be aligned with a human’s? Probably no. As we have dis-
cussed in the preceding sections, we agree that there are
also scenarios where it is beneficial for models’ perception
to outperform a human’s. For example, we may expect the
models to outperform the human vision system when ap-
plied to make a scientific discovery at a molecule level. This
paper investigates these questions for the scenarios where
the alignment is essential.

In practice, there is probably more than one source of
misaligned features. We aim to contribute a principled un-
derstanding of the problem, starting with its basic form. The
extension of our analysis to multiple sources of misaligned
features is considered a future direction.

Differences between overfitting and non-human-aligned
A critical difference is that overfitting can typically be ob-
served empirically with a split of train and test datasets,
while learning the misaligned features is usually not ob-
served because the misaligned features can be true across
the train and test data split.

Other related works There is also a proliferation of works
that aim to improve the robustness of machine learning meth-
ods from a data perspective, such as the methods developed
to counter spurious correlations [Vigen, 2015], confound-

ing factors [McDonald, 2014], or dataset bias [Torralba and
Efros, 2011]. We believe how our analysis is statistically
connected to these topics is also an interesting future direc-
tion. Further, there is also an active line of research aiming to
align the human and models’ perception of data by studying
how humans process the images [Kubilius et al., 2019, Mar-
blestone et al., 2016, Nayebi and Ganguli, 2017, Lindsay
and Miller, 2018, Li et al., 2019, Dapello et al., 2020].

In addition, discussion of how human annotation will help
the models to generalize in non-trivial test scenarios has also
been explored. For example, [Ross et al., 2017] built expert
annotation into the model to regularize the explanation of
the models to counter the model’s tendency in learning mis-
aligned features. The study has been extended with multiple
follow-ups to introduce human-annotation into the interpre-
tation of the models [Schramowski et al., 2020, Teso and
Kersting, 2019, Lertvittayakumjorn et al., 2020], and shows
that the human’s knowledge will help model’s learning the
concepts that can generalize in non-i.i.d scenarios.

7 CONCLUSION

In this paper, we built upon the importance of learning
human-aligned model and studied the generalization prop-
erties of a model for the goal of the alignment between the
human and the model. We extended the widely-accepted
generalization error bound with an additional term for the
differences between the human and the model, and this new
term relies on how the misaligned features are associated
with the label. Optimizing for small empirical loss and small
this term will lead to a model that is better aligned to humans.
Thus, our analysis naturally offers a set of methods to this
problem. Interestingly, these methods are closely connected
to the established methods in multiple topics regarding ro-
bust machine learning. Finally, by noticing our analysis
can link to two mainstream families of methods of learning
robust models, we propose a new heuristic of combining
them. In a fairly advanced experiment, we demonstrate the
empirical strength of our new method.
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