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Abstract

Data exploration is a crucial step in the data001
analysis pipeline, enabling people to uncover002
patterns, trends, and anomalies that help with003
their decision-making. However, traditional004
methods often demand substantial technical ex-005
pertise, including proficiency in programming006
languages, data visualization tools, and sta-007
tistical software, which can be a barrier for008
novices. To address these challenges, we in-009
troduce InsightMiner, a novel system that010
leverages Multi-modal Large Language Models011
(MLLMs) to automate and simplify data explo-012
ration and visualization, accordingly improving013
their ability to discover meaningful insights. In-014
sightMiner allows users to upload datasets and015
propose queries in natural language, employ-016
ing advanced prompt engineering techniques017
to interpret user intent such as trend analysis018
and comparisons, and extract entities including019
variables, time periods, or categories. The sys-020
tem dynamically generates relevant visualiza-021
tions, including time-series graphs, bar charts,022
or heatmaps, to effectively communicate the023
extracted insights. Moreover, InsightMiner sup-024
ports an iterative exploration process, allowing025
users to refine their queries and explore differ-026
ent dimensions of complex dataset in an intu-027
itive and efficient manner. Through case studies028
in the field of urban safety and transportation,029
we demonstrate InsightMiner’s ability to gener-030
ate actionable insights and streamline the data031
exploration process. By combining the power032
of MLLMs with user-centric design, Insight-033
Miner provides access to advanced data explo-034
ration, making it a versatile tool for both novice035
and expert users.036

1 Introduction037

Real-world data analysis encompass a wide range038

of tasks, including identifying patterns and de-039

tecting anomalies, in various scenarios especially040

like crime (Xia et al., 2021). Nowadays, Large041

Language Models (LLMs) (Vaswani et al., 2017;042

Brown et al., 2020) become more capable and 043

broadly used all over the world, there have been 044

already some practices leveraging them to perform 045

Exploratory Data Analysis (EDA) and mine in- 046

sights (Ma et al., 2023; Monadjemi et al., 2023). 047

Specifically, these LLM-empowered systems can 048

process structured data, generate statistical sum- 049

maries, create visualization charts (Liu et al., 050

2024b), and offer preliminary insights. 051

However, in the era of big data, extracting mean- 052

ingful insights and discovering hidden patterns 053

from complex datasets remains a big challenge for 054

data analysts, even with the help of advanced tools 055

and strong LLMs. Recent works have highlighted 056

several critical challenges in leveraging LLMs for 057

insight mining. Firstly, most current approaches 058

rely heavily on raw data, such as OLAP (Vassil- 059

iadis and Sellis, 1999) or data tables. Since insights 060

are not merely statistical observations but complex 061

knowledge units linking analytical findings with 062

domain expertise, these input formats make it dif- 063

ficult for LLMs to grasp multi-dimensional rela- 064

tionships (Tan et al., 2024), while direct interac- 065

tions with data also lead to minimal user engage- 066

ment and overlook crucial human intentions (Ma 067

et al., 2023). Secondly, the black-box nature of 068

LLM reasoning creates a huge barrier to under- 069

standing how insights are derived - users cannot 070

trace the analytical processes from question to con- 071

clusion and verify the validity of insights (Huang 072

et al., 2023), ultimately reducing both process trans- 073

parency and user trust. Thirdly, when dealing with 074

large-scale datasets, especially spatiotemporal data, 075

LLMs face dual constraints: exceeding token limi- 076

tations force truncation of input data, while mem- 077

ory retention issues make it difficult to maintain co- 078

herent understanding across whole context and con- 079

nect information over time. While LLMs excel in 080

tasks like natural language processing, automated 081

reporting, and content creation, they still struggle 082

with context limitations and aligning with specific 083
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user goals without explicit guidance. The lack of084

clarity in the exploration process further obstructs085

human’s extraction of meaningful insights from086

complex datasets. Besides, existing approaches to087

insight mining lack the ability to connect visual088

patterns with domain knowledge and contextual un-089

derstanding (Ding et al., 2019), thus they struggle090

to capture insights that are evident in visualization091

charts but not easily discovered in datasets. Al-092

though significant progresses have been made in093

establishing theoretical frameworks for understand-094

ing insights (Battle and Ottley, 2023), the auto-095

mated generation of insights remains a fundamental096

challenge.097

Example with Textual Description.

Question: [A list of 1000 randomly generated integers between 0
and 20], find the number that appears most frequently.
Answer: To find the number that appears most frequently in
the given list, we can count the occurrences of each number and
identify the one with the highest count.
Here’s the frequency count of each number in the list:
“‘0: 45 1: 40 2: 50 3: 55 4: 60 5: 50 6: 55 7: 50 8: 40 9: 40 10: 45
11: 40 12: 45 13: 50 14: 55 15: 50 16: 40 17: 50 18: 50 19: 50
20: 50“‘
The number **4** appears **60 times**, which is the highest
frequency in the list.
### Answer:**4** ✗
Ground Truth: The most frequent number is 3, which appears 58
times.

Example with Graphical Description.

Question:find the number that appears most frequently.
Answer: The number that appears most frequently in the

histogram is 5, with a frequency of 60. ✓
Ground Truth: The most frequent number is 5, which appears 60

times.

Table 1: Examples of MLLM’s Analysis with Textual
and Visual Inputs.

To address current analytical challenges, a new098

framework is proposed that leverages visual rep-099

resentations to guide LLMs mine insights. The100

framework operates in structured analytical cycles:101

first analyzing user’s question to identify key di-102

mensions of interest, then generating appropriate103

visualizations of the data, followed by detailed vi-104

sual analysis to identify high-value target, deriving105

current insights, and finally recommending next di- 106

mensions to dive into. By incorporating interactive 107

exploration, this analytical cycle automatically iter- 108

ates as user actively selects which dimension to in- 109

vestigate next, enabling progressive insight discov- 110

ery until user achieves the analytical goal or is satis- 111

fied with the depth of gained insights. Through mul- 112

tiple iterations, users can systematically explore 113

different aspects of the data, building a compre- 114

hensive understanding while maintaining control 115

over the exploration direction. The key innovation 116

lies in enabling LLM agents to "see"(shown in Ta- 117

ble 1 as an example) and interpret visualizations 118

alongside textual information, allowing for compre- 119

hensive generation of insights through visual pat- 120

terns, statistical relationships, and their domain con- 121

nections. Furthermore, our framework enhances 122

transparency by providing clear, step-by-step doc- 123

umentation of exploration processes and insight 124

derivation, making the analytical reasoning trace- 125

able and verifiable. This iterative and interactive 126

approach not only empowers users to conduct more 127

effective EDA but also helps derive more mean- 128

ingful insights, overcoming current limitations in 129

LLM-based systems while making the analytical 130

processes more accessible and interpretable. Our 131

key contributions will be: 132

1. Incorporate visualization charts as effective 133

intermediate context to enhance LLM’s ability in 134

insight mining. 135

2. Enable user-driven exploration through inter- 136

active interface, allow users to guide the analytical 137

direction based on their intentions and domain ex- 138

pertise, maintain their engagement, and ultimately 139

increase user trust by providing traceable analytical 140

reasoning. 141

3. Bridge the gap between raw data and LLM 142

understanding by providing interpretable charts. 143

2 Related Work 144

LLMs have demonstrated remarkable capabilities 145

in data analysis and reasoning tasks. Recent works 146

have explored various applications of LLMs, lever- 147

aging their ability to process and analyze data, un- 148

derstand context, and handle multiple forms of in- 149

put. 150

2.1 MLLM for Visualization 151

MLLMs, such as GPT-4V (OPENAI, 2023), have 152

demonstrated promising abilities in visualization 153

tasks through their capacity to process both natu- 154
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ral language instructions and visual inputs. These155

models can understand, reason about, and generate156

visual content, enabling new interaction paradigms157

for visualization systems. Recent research has val-158

idated MLLMs’ ability to understand and inter-159

pret data visualizations through empirical evalua-160

tions of visualization literacy tasks (Bendeck and161

Stasko, 2024). Also, Li et al. (Li et al., 2024)162

find that MLLMs perform competitively against163

humans, excelling particularly in tasks like identi-164

fying correlations, clusters, and hierarchical struc-165

tures when tested against established benchmarks166

(VLAT and mini-VLAT). To further improve the un-167

derstanding and generation of data visualizations,168

NovaChart (Hu et al., 2024) is proposed by en-169

abling MLLMs to better handle real-world chart170

analysis and creation tasks by testing 18 chart types171

and 15 unique tasks. Then, Wu et al. (Wu et al.,172

2024) evaluate MLLMs’ performance on low-level173

chart question answering tasks (such as identify-174

ing correlations or extracting specific data points)175

using their new ChartInsights dataset. Further-176

more, through AVA (Autonomous Visualization177

Agent), Liu et al. (Liu et al., 2024b) leverage vi-178

sual perception capabilities of MLLMs (specifi-179

cally GPT-4 Vision) to improve and refine visual180

outputs iteratively, based on natural language in-181

structions, marking a shift from traditional LLM-182

based visualization generation toward interactive,183

feedback-driven visualization improvement. These184

advances in MLLMs’ visualization capabilities sug-185

gest a promising future where AI systems can serve186

as assistants in data visualization tasks, receiving187

and generating visual representations according to188

human’s needs.189

Due to the limited space, we left detailed discus-190

sions about related works in Appendix A.191

3 Preliminaries192

3.1 Data193

We define the spatial-temporal dataset to be ex-194

plored as D = {x(1), x(2), · · · , x(N)}, where N195

represents the total number of data points. Each196

data point x(i) consists of m features, denoted as197

x
(i)
j . These features can be categorized into three198

dimensions: Spatial, Temporal, and Attribute. Spa-199

tial dimension includes geographic information200

that describe the location and spatial character-201

istics of data points, such as longitude, latitude,202

and administrative boundaries. Temporal dimen-203

sion represents chronological characteristics of the204

data, like time, date, week of day, year, and so on. 205

Attribute Dimension contains additional descrip- 206

tive or quantitative information about the spatial- 207

temporal datasets, like categorical data and textual 208

descriptions. 209

We adopt this structure for its explicit separation 210

of spatial-temporal components and flexibility in 211

modeling isolated real-world events (e.g., crime ac- 212

tivity), avoiding assumptions of continuity or con- 213

nectivity inherent to graph/time-series frameworks. 214

Due to space constraints, a detailed discussion of 215

this structural rationale is provided in Appendix B. 216

3.2 Task 217

The primary task of this work is to design and im- 218

plement a framework powered by LLM, referred 219

to as InsightMiner, which autonomously performs 220

Exploratory Data Analysis (EDA), generates visual- 221

izations, and extracts meaningful insights for given 222

spatial-temporal datasets D. The key objectives of 223

this task are as follows: 224

Dataset Exploration: Enable the InsightMiner 225

to analyze and understand the structure, dimen- 226

sions, and features of the spatial-temporal dataset, 227

including its spatial, temporal, and attribute com- 228

ponents. 229

Data Operations: To enable automated visual- 230

ization and analysis, InsightMiner leverages three 231

core data operations: filtering F, grouping G, and 232

aggregation A. These operations allow the agent 233

to dynamically refine, structure, and summarize 234

the dataset D based on user-defined criteria or in- 235

trinsic patterns. Filtering isolates subsets of inter- 236

est, grouping partitions data into categories, and 237

aggregation computes statistical summaries. We 238

formally define these operations in Appendix C to 239

establish their mathematical foundations and roles 240

in InsightMiner’s workflow. 241

Automated Visualization: The InsightMiner 242

agent is capable of generating appropriate visual- 243

izations, denoted as V (Dk), where V represents a 244

function that outputs visual representations (such 245

as bar charts, line graphs, heatmaps, etc.) for any 246

given subset Dk. The visualizations highlight key 247

trends, patterns, and anomalies in the data. 248

Insight Generation: The agent will derive in- 249

sights from the dataset by applying a combination 250

of statistical analysis, descriptive summaries, and 251

visual patterns. This is formalized as a function 252

I(D), which maps the dataset D to a set of mean- 253

ingful insights based on its spatial, temporal, and 254

attribute components. 255
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User Interaction: The InsightMiner agent256

presents the results, including visualizations and257

insights, in a user-friendly format, represented by258

a function U(I(D), V (Dk)), enabling users to un-259

derstand and act upon the findings effectively.260

The tasks involve integrating these components261

into a seamless pipeline where the InsightMiner262

agent autonomously processes the dataset, per-263

forms the defined operations, generates appropriate264

visualizations, and outputs actionable insights. The265

ultimate goal is to minimize manual effort while266

maximizing the quality and interpretability of the267

analysis.268

3.3 Visualization269

The visualization process in the InsightMiner270

framework is an essential component for transform-271

ing spatial-temporal data into interpretable visual272

representations. The aim is to automatically gener-273

ate effective visualizations that highlight key pat-274

terns, trends, and anomalies within the data, thus275

providing actionable insights. The core function276

governing the visualization is defined as V , which277

maps a dataset, or its transformed subset, to a struc-278

tured visual output.279

Given a spatial-temporal dataset D, the function280

V takes as input the dataset D (or a processed ver-281

sion of it, resulting from filtering, grouping, and282

aggregation operations) and a set of visualization283

parameters Θ, and produces a corresponding visu-284

alization V (Dk):285

V : D ×Θ → V,286

where D denotes the space of all datasets, and287

V represents the space of visual outputs (e.g., bar288

charts, line graphs, heatmaps, etc.). The parame-289

ters Θ are derived based on dataset characteristics,290

user preferences, or domain-specific requirements.291

These include, for example, the type of chart, axis292

configurations, color schemes, and grouping crite-293

ria based on spatial or temporal dimensions.294

In InsightMiner, the visualization process is295

closely linked to the preprocessing steps that in-296

clude filtering, grouping, and aggregation. These297

operations refine the dataset to focus on relevant298

subsets or patterns, which are then visualized.299

Specifically, the output of a series of data opera-300

tions—such as the filtering operation F , the group-301

ing operation G, and the aggregation operation302

A—serves as input to the visualization function303

V . Thus, the visualization of a dataset can be ex- 304

pressed as: 305

V (A(G(F (D)))) = V
(
{ak = f(S′

k) : k ∈ K}
)
, 306

where S′
k = {x(i) ∈ F (D) | Ck(x(i))}, the func- 307

tion F filters the dataset based on certain criteria, G 308

groups the filtered data by specific attributes (such 309

as spatial or temporal categories), and A aggregates 310

data within each group to compute summary statis- 311

tics or derived metrics. The visualization function 312

V then converts the resulting aggregated data into 313

a visual output. 314

Due to space constraints, a detailed example of 315

this process is discussed in Appendix D. 316

4 InsightMiner Design 317

4.1 Pipeline 318

Fig. 1 illustrates the pipeline of InsightMiner, de- 319

signed to support a detailed and iterative data ex- 320

ploration process. The pipeline enables users to 321

interact with data in a structured and flexible man- 322

ner. It begins with User Input, where queries and 323

data tables are submitted. The process then moves 324

to LLM Parsing, where Query Parsing identifies 325

the user’s intent and extracts key entities, followed 326

by Operation Parsing, which determines the nec- 327

essary operations such as grouping, filtering, or 328

aggregating data, to address the query. 329

Next, the pipeline proceeds to Reference Gen- 330

eration, where the system translates the parsed op- 331

erations into visualizations (e.g., charts) that align 332

with the user’s intent. Finally, Reference Interpreta- 333

tion provides clear answers to the query, along with 334

relevant Chart Insights and Recommended Steps. 335

These recommendations guide users to refine their 336

exploration further, such as drilling down into spe- 337

cific categories or analyzing trends over time. 338

Additionally, the system allows users to explore 339

data in parallel, ensuring they remain in full control 340

throughout the entire exploration journey. This flex- 341

ibility empowers users to either follow system rec- 342

ommendations or pursue independent paths, keep- 343

ing their unique goals at the forefront of the analy- 344

sis. 345

4.2 User Input 346

The workflow begins with a user uploading a CSV 347

dataset, which undergoes automated preprocessing 348

(including validation, missing data handling, and 349

initial analysis) to ensure quality for analysis. Once 350
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User Input LLM Parsing Reference Generation

Data

Tables

Query
Query


Parsing Entity Intent

Chart Insights

Answers

Recommended Steps

Operation

Parsing

Operation 1

Operation n
...

Reference Interpretation

Iterative Exploration

Figure 1: The pipeline of InsightMiner. InsightMiner starts with User Input, where natural language queries and data
tables are provided. Reference Generation provides output visualization charts based on the results of LLM Parsing.
Reference Interpretation delivers the insights, answers, and recommended steps, enabling users to iteratively explore
and uncover insights efficiently.

preprocessed, the user submits a natural language351

query to guide the system in extracting tailored in-352

sights across temporal, spatial, or attribute dimen-353

sions. This streamlined process minimizes manual354

effort, reduces errors, and ensures accessibility for355

non-technical users while maintaining analytical356

rigor. Due to limited space, detailed discussions of357

preprocessing methodologies and and user interac-358

tion design are provided in Appendix D.359

4.3 LLM Parsing360

The LLM Parsing process is central to transforming361

user queries into structured data operations. This362

process can be broken down into two key stages:363

query parsing and operation parsing.364

Query Parsing: The first step in LLM parsing is365

query parsing, where the system uses the ChatGPT-366

4o API to identify both the intent of the user query367

and the entity it contains. Intent identification in-368

volves discerning the underlying analytical goal of369

the query, whether the user seeks trend analysis,370

comparison, anomaly detection, or another type371

of analysis. The entity recognition task extracts372

relevant variables (e.g., "sales"), time periods (e.g.,373

"2023"), and categorical attributes (e.g., "region")374

from the query. These recognized entities are then375

mapped to the data schema using semantic similar-376

ity and entity linking techniques to ensure proper377

alignment with the data.378

Operation Parsing: Once the query has been379

parsed, based on the obtained intent and entities,380

the system begins to determines a specific oper-381

ation task that would be executed on the dataset.382

For example, if the intent is trend analysis, the task383

may involve aggregating data over time and com-384

paring trends. This step translates the user’s natural385

language input into a specific set of data manipula-386

tion tasks that are necessary to achieve the desired387

analysis. 388

Then, operation parsing takes place. This stage 389

involves applying a series of data manipulation op- 390

erations such as filtering, grouping, aggregation, 391

and sorting, to prepare the data for visualization. 392

Filtering narrows the dataset based on specific con- 393

ditions or constraints identified in the query, while 394

grouping organizes the data according to relevant 395

dimensions (e.g., grouping by region or time pe- 396

riod). Aggregation computes summary statistics 397

(e.g., sum, average) for each group, and sorting 398

orders the results based on user-defined criteria 399

(e.g., sorting by sales in descending order). These 400

operations ensure that the dataset is appropriately 401

structured for visualization, providing the user with 402

insights that align with their query. 403

Through these 2 structured stages, LLM Pars- 404

ing efficiently translates natural language queries 405

into data operation tasks, enabling accurate data 406

preparation and visualization. 407

4.4 Reference Generation 408

To facilitate the user’s understanding of the insights 409

derived from the data, the system incorporates dy- 410

namic visualizations that are generated based on 411

user input and LLM parsing results. Visualizations 412

such as time-series plots, bar charts, and heatmaps, 413

serve as essential tools for transforming complex 414

datasets into intuitive and easily interpretable for- 415

mats. This component addresses a fundamental 416

challenge in data analysis: the cognitive gap be- 417

tween raw data and actionable insights. While 418

textual summaries and numerical outputs provide 419

critical information, they often fail to fully rep- 420

resent complex relationships, especially in large, 421

multidimensional, and spatiotemporal datasets. 422

Visualizations are valuable for pattern recogni- 423

tion and trend detection, allowing users to quickly 424
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Q1: Which 
neighborhood is the 
safest one?

Q2: Explore the 
types of incidents 
reported in McLaren 
Park.

Query InterpretationGenerated Reference

McLaren Park is the safest neighborhood based on the 
lowest number of incidents reported.Answer

Answer

Further explore the  reported in 
McLaren Park to confirm and contextualize its safety.

types of incidentsNext Step

Neighborhoods with the lowest number of incidents, 
specifically 

 show the  in the chart.
McLaren Park, Lincoln Park, and Treasure 

Island least incidents
Chart Insight

Chart Insight
Larceny Theft 

21.9%
Vehicle Theft (9.8%) Recovered Vehicle (9%)

is the highest proportion of incidents in 
McLaren Park, accounting for , followed by Motor 

 and .

Most of the incidents are , suggesting a 
focus on theft and recovery.

property-related

Next Step Investigate  of major incident categories 
in McLaren Park to assess seasonal patterns.

temporal trends

Recommended Query

Figure 2: Case Study of SF Crime Data. InsightMiner finds that McLaren Park is the safest neighborhood and most
incidents in McLaren Park are property-related, with Larceny Theft being the most common. Further exploration of
temporal trends is recommended to identify seasonal patterns in major incident categories.

identify relationships, outliers, and emerging pat-425

terns that are difficult to discern from raw data426

alone. For example, time-series plots reveal sea-427

sonal trends, such as sales fluctuations, while428

heatmaps highlight correlations between variables,429

offering insights that textual summaries or tables430

may miss. By translating operation parsing out-431

comes such as filtering, grouping, or aggregating432

data, into visual forms, the system generates charts433

that are directly aligned with the user’s query intent.434

This ensures the visualizations are both informative435

and relevant, bridging the gap between raw data436

and actionable, visually digestible insights.437

4.5 Reference Interpretation438

The chart interpretation process plays a crucial439

role in identifying meaningful patterns, trends, and440

anomalies within data, enabling users to get mean-441

ingful insights. Central to this process is the inte-442

gration of MLLMs, which combine both textual443

and visual analysis to bridge the gap between visu-444

alization and contextual understanding.445

After parsing a user query and generating rel-446

evant visualizations (e.g., time-series plots, bar447

charts, or heatmaps), the system employs MLLMs448

to conduct a comprehensive analysis of both the449

visual elements and textual context. MLLMs cor-450

relate visual features such as color gradients in451

heatmaps, axis configurations in bar charts, or data452

point distributions in time-series charts, with se-453

mantic meaning derived from the user’s query or454

domain-specific narratives. This dual-modality ap-455

proach ensures that insights align with the user’s456

intent while mitigating the limitations of relying 457

solely on visual or textual modalities. 458

While visualizations provide an intuitive means 459

to observe trends, relationships, and outliers, purely 460

visual analysis risks misinterpretation without con- 461

textual grounding. Conversely, textual analysis 462

alone may lack the spatial or temporal granularity 463

inherent in graphical data. By integrating MLLMs, 464

the system synthesizes these modalities: visual pat- 465

terns are contextualized through natural language 466

explanations (e.g., highlighting causal factors be- 467

hind anomalies or quantifying the significance of 468

trends), while textual queries are enriched by spa- 469

tialtemporal features extracted from charts. This 470

synergy enables users not only to perceive data but 471

also to comprehend its implications. 472

5 Case Studies 473

To measure the performance of InsightFinder, we 474

conduct two case studies with different datasets 475

and test its ability to derive valuable insigts. 476

5.1 San Francisco Crime Data 477

In this scenario, we follow Sarah, an entrepreneur 478

planning to open a horror-themed escape room in 479

San Francisco. She aims to find a safe neighbor- 480

hood to attract customers while avoiding areas with 481

high crime rates that might make the experience 482

"too real" for comfort. To tackle this, Sarah turns to 483

InsightMiner to analyze crime data across different 484

neighborhoods. 485

In Scenario 1, the exploration focuses on San 486

Francisco crime data, a spatiotemporal dataset cov- 487
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Q1: What are the peak traffic collision times in the city?

Answer: ...during 7AM-9AM and 3PM-6 PM ... 
Insight: The evening peak at 4 -5 PM is the most 
dangerous period ...
Next Step: Analyze the borough that experiences the 
highest spike in rush hours.

Q3: How do traffic collisions vary by weekday and 
hour of the day in Manhattan?

InsightMiner

set as Q2

Answer: The busiest ... is Brooklyn ...
Insight: ... making them critical zones for improving traffic 
management.
Next Step: Focus on Brooklyn and Queens ...

InsightMiner

Answer: The highest ... from 4PM to 6PM ...
Insight: The collisions are more concentrated in the late 
afternoon on weekdays ...
Next Step: Analyze collisions by zipcode or neighborhood ...

InsightMiner

Figure 3: Case Study of NYC Traffic Incident Data.
InsightMiner illustrates an iterative exploration of traf-
fic collision patterns through identifying peak collision
times (7AM-9AM and 3PM-6PM) and narrowing down
to specific boroughs. By focusing on boroughs, zip
codes, or neighborhoods, users can further refine their
insights and formulate safety measures.

ering crime records from 2018 to 2024. Each488

data point includes over 20 features, grouped489

into three main dimensions. Spatial features in-490

clude the Police District (the jurisdiction han-491

dling the crime), the Analysis Neighborhood492

(where the crime occurred), and the Point (ex-493

act crime coordinates). Temporal features cover494

the Incident Year (2018–2024), Incident Date 495

(01/01/2018–12/31/2024), Incident Day of Week 496

(Monday to Sunday), and Incident Hour (0–24). At- 497

tribute features include the Incident Category (e.g., 498

Larceny Theft, Assault) and Incident Subcategory 499

(e.g., Larceny Theft - From Vehicle, Aggravated 500

Assault). With this data, Sarah can pinpoint the 501

perfect balance between spooky and safe for her 502

escape room location. 503

As shown in Fig. 2, Sarah starts by entering 504

the query, "Which neighborhood is the safest?" 505

The system understands the user’s question and 506

processes the dataset using the commands df1 507

= df.groupby(["Analysis Neighborhood"]).count() 508

and df2 = df1.sort_values(). The system then gener- 509

ates a histogram showing the crime count by neigh- 510

borhood. The system then provides the following 511

insight: "Neighborhoods with the lowest number of 512

incidents, specifically McLaren Park, Lincoln Park, 513

and Treasure Island, show the fewest incidents in 514

the chart." Its answer is: "McLaren Park is the 515

safest neighborhood based on the lowest number of 516

incidents reported." The system also recommends 517

the next step: "Further explore the types of inci- 518

dents reported in McLaren Park to confirm and 519

contextualize its safety." 520

Sarah is satisfied with the system’s recom- 521

mended next step and decides to continue. The 522

system identifies, processes, and visualizes the data 523

again. It then provides updated answers, insights, 524

and suggestions for the next steps. Sarah is reas- 525

sured that the majority of reported crimes are not re- 526

lated to personal safety, but she remains somewhat 527

concerned about property-related crimes, which 528

could potentially affect the safety of her escape 529

room business. 530

5.2 New York City Traffic Incident Data 531

In this scenario, we follow Alex, a logistics startup 532

founder aiming to optimize delivery routes for a 533

new electric cargo bike service in Manhattan. His 534

goal is to identify boroughs with minimal traffic 535

collisions to ensure timely deliveries and reduce 536

accident risks for both riders and goods. To achieve 537

this, Alex uses InsightMiner to explore traffic inci- 538

dent reports across New York City. 539

The dataset covers NYC traffic incidents from 540

January 1, 2014, to April 30, 2024. Temporal fea- 541

tures, derived from Crash Date and Crash Time, 542

allow for precise timestamp analysis. Spatial at- 543

tributes include Borough and Zip Code for admin- 544

istrative divisions, along with Latitude, Longitude, 545
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and street-level details like On Street Name and546

Cross Street Name. Incident attributes capture con-547

tributing factors and vehicle types for up to five548

vehicles involved, while severity metrics track in-549

juries and fatalities for pedestrians, cyclists, and550

motorists. Cyclist safety is specifically highlighted551

through dedicated injury and fatality counts. Using552

these information, Alex aims to identify safer bor-553

oughs and optimize delivery routes for his electric554

cargo bike service.555

As shown in Fig. 3, Alex thinks, in the off-peak556

season, it is essential to avoid peak traffic collisions557

time to ensure the safety of cyclists in a day. He558

begins by querying, "What are the peak traffic colli-559

sion times in the city?" The system understands his560

question and then process the dataset using the com-561

mands df1 = df.groupby(["Crash Time"]).count().562

The system then generates a time-series line chart,563

showing hourly crash counts, and provides the fol-564

lowing insight: "The evening peak at 4-5 PM is the565

most dangerous period. A steady volume of crashes566

continues through midday (10 AM - 2 PM), likely567

due to commercial traffic, while late-night colli-568

sions (12 AM - 2 AM) suggest risks from impaired569

or fatigued driving. ".570

Alex reviews the system’s recommendations and571

realizes that in his company, some riders are sched-572

uled to work during periods with the highest traffic573

collision rates. To prioritize their safety, Alex de-574

cides to avoid high-risk boroughs whenever possi-575

ble and adopts the system’s suggestions. However,576

after identifying Manhattan as the borough with the577

highest collision rates, Alex chooses not to follow578

the system’s recommendation: “Focus on Brooklyn579

and Queens to identify specific high-risk zones or580

intersections for logistical and safety planning.”581

Instead, he shifts his focus to weekly scheduling582

and poses a follow-up question: “How do traffic583

collisions vary by day of week and hour of day584

in Manhattan?” This allows him to better align585

delivery schedules with safer time frames while586

maintaining operational efficiency. Finally, the sys-587

tem processes this query by analyzing temporal588

patterns across weekdays and hours, generating589

a heatmap to inform dynamic scheduling adjust-590

ments. This enables Alex to strategically allocate591

delivery windows while mitigating collision risks.592

6 Discussion593

In the context of MLLMs, there are distinct forms594

of hallucination, posing significant challenges to595

accurate interpretation and output generation. For 596

textual inputs, MLLMs may produce factually in- 597

correct information (such as numerical inaccura- 598

cies), fabricated citations, logical inconsistencies 599

as well as persistent issues with structured output 600

generation (such as inconsistent JSON formatting 601

and variable mismatches in Base64 data process- 602

ing). Regarding visual inputs, hallucinations often 603

manifest as misinterpretations of visual content, 604

such as misidentifying objects, misreading color 605

intensities, or inaccurately annotating images. Ad- 606

ditionally, MLLMs face limitations in handling 607

interactive visual inputs due to their reliance on 608

static images, necessitating workarounds like snap- 609

shot extraction. Due to space constraints, detailed 610

discussions of these challenges, proposed mitiga- 611

tion strategies, and future research directions are 612

provided in Appendix E. 613

7 Conclusion 614

In this work, we introduce InsightMiner, a novel 615

system that integrates MLLMs to automate data ex- 616

ploration and insight generation through dynamic 617

visualizations. By leveraging natural language 618

queries and intuitive visual representations, the sys- 619

tem bridges the gap between raw data and action- 620

able insights, enabling users to uncover patterns, 621

trends, and anomalies without requiring deep tech- 622

nical expertise. Key innovations include the use of 623

visualizations as intermediate context to enhance 624

LLM reasoning, proposal of a user-driven iterative 625

exploration process, and introduction of new mech- 626

anisms that improve transparency through traceable 627

analytical steps. Case studies across urban safety 628

analysis and traffic incident optimization demon- 629

strate the system’s practical utility in guiding data- 630

driven decision-making. 631

8 Limitations 632

8.1 Lack of Robust Evaluation Metrics 633

A key methodological limitation of this study is the 634

absence of a robust, systematically defined metric 635

to evaluate whether the adoption of MLLMs over 636

LLMs significantly improves the rationality, diver- 637

sity, realism, or novelty of insights generated by 638

the system. Prior work, such as InsightPilot (Ma 639

et al., 2023), uses LLMs as automated evaluators 640

to assess these qualities. However, we chose not to 641

replicate this approach due to concerns about inher- 642

ent biases in LLM-based evaluation and the risk of 643

pattern collapse in such methodologies. As a result, 644
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the comparative advantages of VLMs relative to645

LLMs remain unquantified.646

8.2 Lack of Expert Validation647

Another methodological limitation is the lack of hu-648

man expert validation to critically assess the qual-649

ity, relevance, and practical applicability of the650

system’s insights. While human expert evaluation651

can theoretically provide more reliable assessments,652

this approach is rather high-cost and time-intensive.653

Future work requires integrating interdisciplinary654

expert feedback alongside computational metrics655

for a more holistic evaluation framework.656
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A More Related Work793

A.1 Large Language Model for Data Analysis794

The emergence of LLMs has provided new op-795

portunities for data analysis, with recent works796

demonstrating LLMs’ effectiveness in various data797

analysis tasks. Wang et al. (2022) explore how798

LLMs can assist in data processing tasks, laying799

the groundwork for automated data analysis. Build-800

ing upon this foundation, Sun et al. (2023) fur-801

ther demonstrate LLMs’ capability in analyzing802

structured data, showing their potential for more803

complex analytical tasks. Specially, the integra- 804

tion of LLMs into conversational interfaces has 805

proven effective for making data analysis more ac- 806

cessible to users. Two notable systems exemplify 807

this progression: InsightPilot (Ma et al., 2023) and 808

InsightLens (Weng et al., 2024). Both leverage nat- 809

ural dialogue for data analysis, with InsightPilot 810

guiding users through exploratory analysis work- 811

flows, while InsightLens extends this approach by 812

specializing in insight discovery within conversa- 813

tional contexts. For domain-specific applications, 814

Gruver et al. (2024) demonstrate how natural lan- 815

guage prompting can be effectively applied to spe- 816

cialized tasks like time series forecasting. The theo- 817

retical foundation for such applications is strength- 818

ened by Yao et al. (2022), who show how LLMs 819

can perform structured reasoning for data-related 820

tasks. These complementary approaches collec- 821

tively demonstrate the potential of LLMs in making 822

data analysis more accessible while maintaining an- 823

alytical rigor. 824

A.2 In-context Learning 825

In-context Learning (Brown et al., 2020) repre- 826

sents a breakthrough in LLM capabilities, enabling 827

models to perform specific tasks through text in- 828

teractions without gradient updates or fine-tuning. 829

This adaptability is achieved through two main ap- 830

proaches: carefully designed prompts (Wei et al., 831

2022; Wiegreffe et al., 2021) and few-shot demon- 832

strations (Zhao et al., 2021), both of which al- 833

low models to effectively learn from input context. 834

To further enhance this capability, MetaICL (Min 835

et al., 2021) is introduced as an innovative meta- 836

training framework. By systematically training 837

language models on diverse tasks, MetaICL signif- 838

icantly improves their ability to learn new tasks 839

quickly from just a few examples. This meta- 840

learning approach has demonstrated superior per- 841

formance compared to standard in-context learning, 842

while enabling better generalization to new unseen 843

tasks without requiring task-specific templates or 844

parameter updates. The power of in-context learn- 845

ing extends beyond pure text applications. Visual 846

encoders like CLIP (Radford et al., 2021) have 847

emerged as efficient tools to encode visual data 848

as prompts for LLMs (Liu et al., 2024a), bridging 849

the gap between visual and textual understanding. 850

These visual encoders offer a particular advantage 851

in computational efficiency, as visual inputs can 852

be divided into several patches and processed con- 853

currently. This parallel processing capability, com- 854
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bined with the sophisticated in-context learning855

abilities of LLMs, makes multi-modal in-context856

learning especially promising for visual data analy-857

sis tasks.858

B Comparison of Dataset Structure859

We choose discrete event-based structure over alter-860

natives like graph-based or time-series data because861

it clearly separates the spatial and temporal com-862

ponents, making it easier to understand and work863

with. Unlike graph data, which focuses on relation-864

ships between points, or time-series data, which865

assumes a continuous timeline, our approach treats866

each data point as a separate, independent event.867

This works especially well with real-world geo-868

graphic data, where each point represents a specific869

location or event that doesn’t necessarily follow870

a continuous pattern. By using this method, we871

can better analyze spatial-temporal relationships872

without the limitations of assuming continuity or873

connection between the points. This approach is874

ideal for analyzing crime activity or city anomaly875

data, where locations have distinct characteristics876

and may not be directly connected. It allows for a877

more flexible and accurate analysis because these878

types of data often involve isolated events or irreg-879

ular patterns that don’t follow a continuous spatial880

or temporal connection.881

C Definition of Filter, Group and882

Aggregation Operations883

Filter Operation F , which focuses on a subset of884

the data that is of primary interest at this stage. The885

split operation S can be expressed as:886

F (D) = {x(i) ∈ D | C(x(i))},887

where C(x(i)) represents the condition or criteria888

used to select the subset of data points from D.889

This condition C could be based on specific spa-890

tial, temporal, or attribute-related characteristics,891

depending on the goal of the analysis.892

Group Operation G, which organizes the data893

into subsets based on shared characteristics or at-894

tributes of interest. The group by operation G can895

be expressed as:896

G(D) =
{
{x(i) ∈ D | Ck(x(i))} : k ∈ K

}
,897

where Ck(x(i)) represents the condition or criteria898

used to assign a data point x(i) to the k-th group,899

and K is the set of all unique group identifiers. 900

This condition Ck typically depends on attributes 901

or features of the data, such as categorical labels, 902

ranges of numerical values, or other distinguishing 903

characteristics relevant to the analysis. The result 904

of G(D) is a partitioning of the dataset D into 905

disjoint subsets, where each subset corresponds to 906

a unique value or category defined by Ck. This 907

operation is commonly utilized in tasks such as 908

aggregation, summary statistics, or comparative 909

analysis across defined groups. 910

Aggregation Operation A, which computes 911

summary statistics or derived metrics for each 912

group created by the group operation. The aggre- 913

gation operation A can be expressed as: 914

A(G(D)) = {ak = f(Sk) : k ∈ K}, 915

where Sk = {x(i) ∈ D | Ck(x(i))}, ak repre- 916

sents the aggregated value for the k-th group, f 917

is the aggregation function applied to the subset 918

of data points in the k-th group, k ∈ K iterates 919

over all unique group identifiers, and the inner set 920

{x(i) ∈ D | Ck(x(i))} defines the subset of data 921

points belonging to the k-th group. 922

D Data Upload and Natural Language 923

Query Interface 924

The workflow begins when a dataset (in CSV for- 925

mat) is uploaded by user. Once uploaded, the 926

dataset undergoes a comprehensive pre-processing 927

phase, including multiple steps, such as Data Val- 928

idation, Missing Data Handling, and Exploratory 929

Data Analysis (EDA), which are designed to ensure 930

the data is clean, consistent, and ready for in-depth 931

exploration: 932

The upload and initial analysis may take a few 933

seconds, depending on the volume and complexity 934

of the dataset. While this action might seem rou- 935

tine, it plays a vital role in ensuring the dataset is 936

primed for analysis. A well-preprocessed dataset 937

reduces the risk of errors, enhances the efficiency 938

of downstream processes, and ultimately leads to 939

more accurate and actionable insights. By automat- 940

ing these steps, the system minimizes the burden on 941

the user, allowing them to focus on deriving value 942

from the data rather than troubleshooting technical 943

issues. This emphasis on robust pre-processing un- 944

derscores the system’s commitment to delivering 945

reliable and high-quality results. 946

Upon successful upload and pre-processing of 947

the dataset, the user is prompted to enter a query 948
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in natural language. This step is crucial because949

it allows the user to define the specific insights950

they seek from the dataset, tailoring the analysis951

to their unique needs. The query input module is952

designed to be intuitive and flexible, supporting a953

wide range of queries related to Temporal, Spatial,954

and Attribute dimensions. By enabling users to ask955

questions in their own words, the system bridges956

the gap between complex data analysis and user-957

friendly interaction, making advanced analytics ac-958

cessible to non-technical users. This user-driven959

approach ensures that the analysis remains focused960

and relevant, empowering users to uncover mean-961

ingful patterns, trends, and relationships within the962

data. The active engagement of the user through963

query input is not just a procedural step but a foun-964

dational aspect of the system’s design, enabling965

personalized and actionable insights.966

Example of Spatial-Temporal Heatmap967

Generation968

This appendix elaborates on the heatmap visualiza-969

tion example, demonstrating how spatial-temporal970

filtering, grouping, and aggregation are applied to971

generate actionable insights.972

Consider a dataset D containing spatial-temporal973

records, such as sensor measurements across ge-974

ographic locations and timestamps. The visual-975

ization process begins with filtering F to isolate976

data within a specific spatial region (e.g., a city’s977

administrative boundaries). Formally, F (D) =978

{x(i) ∈ D | Cspatial(x
(i))}, where Cspatial defines the979

geographic criteria.980

Next, the grouping operation G organizes the981

filtered data into temporal intervals (e.g., hourly982

slots). Let Ktemporal = {t1, t2, . . . , tn} repre-983

sent these intervals. The grouped data becomes984

G(F (D)) = {S′
k | k ∈ Ktemporal}, where each S′

k985

corresponds to measurements within time interval986

k.987

The aggregation operation A then computes sum-988

mary statistics (e.g., mean measurement values) for989

each temporal group.990

Finally, the visualization function V maps the ag-991

gregated data to a heatmap. The parameters Θ spec-992

ify a color gradient (e.g., red for high values, blue993

for low) and spatial-temporal axes configurations.994

The resulting heatmap encodes spatial distributions995

of measurements across time intervals, enabling996

users to identify trends (e.g., peak pollution hours997

in specific neighborhoods).998

This example illustrates how InsightMiner’s 999

pipeline transforms raw spatial-temporal data into 1000

interpretable visualizations, as formalized in the 1001

main text. 1002

E More Discussion and Future Work 1003

E.1 Hallucinations in MLLMs 1004

The term "hallucinations" in the context LLMs 1005

refers to instances where these models generate 1006

text that is factually inaccurate, nonsensical, or un- 1007

grounded in reality. This phenomenon represents a 1008

well-documented limitation of LLMs, as their out- 1009

puts often appear superficially plausible but lack 1010

logical coherence or factual validity. 1011

Moreover, in VLMs, a distinct form of hallu- 1012

cination named value hallucination has been ob- 1013

served in existing implementations. For example, 1014

when generating descriptive annotations for figures, 1015

VLMs may produce text with incorrect numerical 1016

precision (e.g., mislabeling the y-axis scale in a 1017

histogram) despite demonstrating competent data- 1018

sorting capabilities. This specific issue may war- 1019

rant further investigation in character-level VLM 1020

QA tasks. 1021

A second type of hallucination observed in 1022

VLMs involves color intensity misinterpretation. 1023

When tasked with interpreting heatmaps designed 1024

to represent quantitative values, VLMs frequently 1025

struggle to distinguish between gradations of color 1026

depth. For instance, the model may inaccurately 1027

associate darker hues with higher values unless ex- 1028

plicitly instructed to adhere to standardized color- 1029

value conventions. This limitation underscores the 1030

need for precise instructional input to guide VLMs 1031

in visual interpretation tasks. 1032

E.2 Challenges in Structured Output 1033

Generation 1034

When developing systems that rely on LLMs, it is 1035

essential to define specific protocols for backend 1036

processing. However, LLMs often struggle to pro- 1037

duce outputs in a consistent, structured format. For 1038

instance, a system may require the output to be in 1039

JSON format with specific keys such as "code" and 1040

"operation." Yet, LLMs may fail to adhere to this 1041

requirement, either by omitting the "code" key or 1042

by generating outputs that deviate from the JSON 1043

format altogether. 1044

Another challenge arises when the system at- 1045

tempts to process figures encoded in Base64 as 1046

inputs for VLMs. Although the underlying code 1047
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may be correct, errors can occur due to incorrect1048

data inputs or the misuse of variable names for1049

Base64-encoded figures. These inconsistencies can1050

lead to processing failures or misinterpretation of1051

the output, highlighting the need for robust error-1052

handling mechanisms and stricter input validation1053

protocols.1054

E.3 Limitations of VLMs with Interactive1055

Visual Inputs1056

We observe a challenge in integrating VLMs with1057

interactive figures lies in the limited support for1058

dynamic input. Most VLMs are designed to pro-1059

cess static images, making it difficult to incorporate1060

interactive visual elements into the system. This1061

constraint results in the loss of valuable informa-1062

tion that might otherwise be accessible through1063

interactive elements, such as tooltips, hover states,1064

or dynamic visualizations.1065

To address this limitation, we have adapted the1066

system to generate only static figures as inputs to1067

the VLM. While this simplifies the process, it may1068

lead to the exclusion of essential interactive fea-1069

tures, diminishing the richness of the data available1070

for interpretation. A potential solution is to extract1071

relevant portions or snapshots from interactive fig-1072

ures, which can then serve as static inputs for the1073

VLM.1074

Further experiments are needed to evaluate the1075

effectiveness of this approach, exploring methods1076

for aligning VLM inputs with interactive visual1077

representations while maintaining the integrity of1078

the information presented.1079

F Ai Assistants In Research and Writing1080

In this paper, we utilize AI assistants to enhance1081

and polish the English writing by using prompts1082

such as "Polish my English." Additionally, in our1083

research, we design a novel interactive application1084

based on AI assistants.1085
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