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Abstract

Data exploration is a crucial step in the data
analysis pipeline, enabling people to uncover
patterns, trends, and anomalies that help with
their decision-making. However, traditional
methods often demand substantial technical ex-
pertise, including proficiency in programming
languages, data visualization tools, and sta-
tistical software, which can be a barrier for
novices. To address these challenges, we in-
troduce InsightMiner, a novel system that
leverages Multi-modal Large Language Models
(MLLMs) to automate and simplify data explo-
ration and visualization, accordingly improving
their ability to discover meaningful insights. In-
sightMiner allows users to upload datasets and
propose queries in natural language, employ-
ing advanced prompt engineering techniques
to interpret user intent such as trend analysis
and comparisons, and extract entities including
variables, time periods, or categories. The sys-
tem dynamically generates relevant visualiza-
tions, including time-series graphs, bar charts,
or heatmaps, to effectively communicate the
extracted insights. Moreover, InsightMiner sup-
ports an iterative exploration process, allowing
users to refine their queries and explore differ-
ent dimensions of complex dataset in an intu-
itive and efficient manner. Through case studies
in the field of urban safety and transportation,
we demonstrate InsightMiner’s ability to gener-
ate actionable insights and streamline the data
exploration process. By combining the power
of MLLMs with user-centric design, Insight-
Miner provides access to advanced data explo-
ration, making it a versatile tool for both novice
and expert users.

1 Introduction

Real-world data analysis encompass a wide range
of tasks, including identifying patterns and de-
tecting anomalies, in various scenarios especially
like crime (Xia et al., 2021). Nowadays, Large
Language Models (LLMs) (Vaswani et al., 2017;

Brown et al., 2020) become more capable and
broadly used all over the world, there have been
already some practices leveraging them to perform
Exploratory Data Analysis (EDA) and mine in-
sights (Ma et al., 2023; Monadjemi et al., 2023).
Specifically, these LLM-empowered systems can
process structured data, generate statistical sum-
maries, create visualization charts (Liu et al.,
2024b), and offer preliminary insights.

However, in the era of big data, extracting mean-
ingful insights and discovering hidden patterns
from complex datasets remains a big challenge for
data analysts, even with the help of advanced tools
and strong LL.Ms. Recent works have highlighted
several critical challenges in leveraging LLLMs for
insight mining. Firstly, most current approaches
rely heavily on raw data, such as OLAP (Vassil-
iadis and Sellis, 1999) or data tables. Since insights
are not merely statistical observations but complex
knowledge units linking analytical findings with
domain expertise, these input formats make it dif-
ficult for LLMs to grasp multi-dimensional rela-
tionships (Tan et al., 2024), while direct interac-
tions with data also lead to minimal user engage-
ment and overlook crucial human intentions (Ma
et al., 2023). Secondly, the black-box nature of
LLM reasoning creates a huge barrier to under-
standing how insights are derived - users cannot
trace the analytical processes from question to con-
clusion and verify the validity of insights (Huang
et al., 2023), ultimately reducing both process trans-
parency and user trust. Thirdly, when dealing with
large-scale datasets, especially spatiotemporal data,
LLMs face dual constraints: exceeding token limi-
tations force truncation of input data, while mem-
ory retention issues make it difficult to maintain co-
herent understanding across whole context and con-
nect information over time. While LLMs excel in
tasks like natural language processing, automated
reporting, and content creation, they still struggle
with context limitations and aligning with specific



user goals without explicit guidance. The lack of
clarity in the exploration process further obstructs
human’s extraction of meaningful insights from
complex datasets. Besides, existing approaches to
insight mining lack the ability to connect visual
patterns with domain knowledge and contextual un-
derstanding (Ding et al., 2019), thus they struggle
to capture insights that are evident in visualization
charts but not easily discovered in datasets. Al-
though significant progresses have been made in
establishing theoretical frameworks for understand-
ing insights (Battle and Ottley, 2023), the auto-
mated generation of insights remains a fundamental
challenge.

Example with Textual Description.

Question: [A list of 1000 randomly generated integers between 0
and 20], find the number that appears most frequently.

Answer: To find the number that appears most frequently in
the given list, we can count the occurrences of each number and
identify the one with the highest count.

Here’s the frequency count of each number in the list:

“*0: 45 1: 40 2: 50 3: 55 4: 60 5: 50 6: 55 7: 50 8: 40 9: 40 10: 45
11: 40 12: 45 13: 50 14: 55 15: 50 16: 40 17: 50 18: 50 19: 50
20: 50

The number **4** appears **60 times**, which is the highest
frequency in the list.

##H# Answer: ¥4k X

Ground Truth: The most frequent number is 3, which appears 58
times.

Example with Graphical Description.

Histogram of Random Numbers (0-20)
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Question:find the number that appears most frequently.
Answer: The number that appears most frequently in the
histogram is 5, with a frequency of 60. v/

Ground Truth: The most frequent number is 5, which appears 60
times.

Table 1: Examples of MLLM’s Analysis with Textual
and Visual Inputs.

To address current analytical challenges, a new
framework is proposed that leverages visual rep-
resentations to guide LLMs mine insights. The
framework operates in structured analytical cycles:
first analyzing user’s question to identify key di-
mensions of interest, then generating appropriate
visualizations of the data, followed by detailed vi-
sual analysis to identify high-value target, deriving

current insights, and finally recommending next di-
mensions to dive into. By incorporating interactive
exploration, this analytical cycle automatically iter-
ates as user actively selects which dimension to in-
vestigate next, enabling progressive insight discov-
ery until user achieves the analytical goal or is satis-
fied with the depth of gained insights. Through mul-
tiple iterations, users can systematically explore
different aspects of the data, building a compre-
hensive understanding while maintaining control
over the exploration direction. The key innovation
lies in enabling LLLM agents to "see"(shown in Ta-
ble 1 as an example) and interpret visualizations
alongside textual information, allowing for compre-
hensive generation of insights through visual pat-
terns, statistical relationships, and their domain con-
nections. Furthermore, our framework enhances
transparency by providing clear, step-by-step doc-
umentation of exploration processes and insight
derivation, making the analytical reasoning trace-
able and verifiable. This iterative and interactive
approach not only empowers users to conduct more
effective EDA but also helps derive more mean-
ingful insights, overcoming current limitations in
LLM-based systems while making the analytical
processes more accessible and interpretable. Our
key contributions will be:

1. Incorporate visualization charts as effective
intermediate context to enhance LL.M’s ability in
insight mining.

2. Enable user-driven exploration through inter-
active interface, allow users to guide the analytical
direction based on their intentions and domain ex-
pertise, maintain their engagement, and ultimately
increase user trust by providing traceable analytical
reasoning.

3. Bridge the gap between raw data and LLM
understanding by providing interpretable charts.

2 Related Work

LLMs have demonstrated remarkable capabilities
in data analysis and reasoning tasks. Recent works
have explored various applications of LLMs, lever-
aging their ability to process and analyze data, un-
derstand context, and handle multiple forms of in-
put.

2.1 MLLM for Visualization

MLLMs, such as GPT-4V (OPENALI, 2023), have
demonstrated promising abilities in visualization
tasks through their capacity to process both natu-



ral language instructions and visual inputs. These
models can understand, reason about, and generate
visual content, enabling new interaction paradigms
for visualization systems. Recent research has val-
idated MLLMs’ ability to understand and inter-
pret data visualizations through empirical evalua-
tions of visualization literacy tasks (Bendeck and
Stasko, 2024). Also, Li et al. (Li et al., 2024)
find that MLLMs perform competitively against
humans, excelling particularly in tasks like identi-
fying correlations, clusters, and hierarchical struc-
tures when tested against established benchmarks
(VLAT and mini-VLAT). To further improve the un-
derstanding and generation of data visualizations,
NovaChart (Hu et al., 2024) is proposed by en-
abling MLLMs to better handle real-world chart
analysis and creation tasks by testing 18 chart types
and 15 unique tasks. Then, Wu et al. (Wu et al.,
2024) evaluate MLLMs’ performance on low-level
chart question answering tasks (such as identify-
ing correlations or extracting specific data points)
using their new Chartlnsights dataset. Further-
more, through AVA (Autonomous Visualization
Agent), Liu et al. (Liu et al., 2024b) leverage vi-
sual perception capabilities of MLLMs (specifi-
cally GPT-4 Vision) to improve and refine visual
outputs iteratively, based on natural language in-
structions, marking a shift from traditional LLM-
based visualization generation toward interactive,
feedback-driven visualization improvement. These
advances in MLLMSs’ visualization capabilities sug-
gest a promising future where Al systems can serve
as assistants in data visualization tasks, receiving
and generating visual representations according to
human’s needs.

Due to the limited space, we left detailed discus-
sions about related works in Appendix A.

3 Preliminaries

3.1 Data

We define the spatial-temporal dataset to be ex-
plored as D = {x(l),x(2), e ,:r(N)}, where N
represents the total number of data points. Each
data point 2@ consists of m features, denoted as
xg-z). These features can be categorized into three
dimensions: Spatial, Temporal, and Attribute. Spa-
tial dimension includes geographic information
that describe the location and spatial character-
istics of data points, such as longitude, latitude,
and administrative boundaries. Temporal dimen-
sion represents chronological characteristics of the

data, like time, date, week of day, year, and so on.
Attribute Dimension contains additional descrip-
tive or quantitative information about the spatial-
temporal datasets, like categorical data and textual
descriptions.

We adopt this structure for its explicit separation
of spatial-temporal components and flexibility in
modeling isolated real-world events (e.g., crime ac-
tivity), avoiding assumptions of continuity or con-
nectivity inherent to graph/time-series frameworks.
Due to space constraints, a detailed discussion of
this structural rationale is provided in Appendix B.

3.2 Task

The primary task of this work is to design and im-
plement a framework powered by LLM, referred
to as InsightMiner, which autonomously performs
Exploratory Data Analysis (EDA), generates visual-
izations, and extracts meaningful insights for given
spatial-temporal datasets D. The key objectives of
this task are as follows:

Dataset Exploration: Enable the InsightMiner
to analyze and understand the structure, dimen-
sions, and features of the spatial-temporal dataset,
including its spatial, temporal, and attribute com-
ponents.

Data Operations: To enable automated visual-
ization and analysis, InsightMiner leverages three
core data operations: filtering F, grouping G, and
aggregation A. These operations allow the agent
to dynamically refine, structure, and summarize
the dataset D based on user-defined criteria or in-
trinsic patterns. Filtering isolates subsets of inter-
est, grouping partitions data into categories, and
aggregation computes statistical summaries. We
formally define these operations in Appendix C to
establish their mathematical foundations and roles
in InsightMiner’s workflow.

Automated Visualization: The InsightMiner
agent is capable of generating appropriate visual-
izations, denoted as V' (Dy,), where V represents a
function that outputs visual representations (such
as bar charts, line graphs, heatmaps, etc.) for any
given subset Dy. The visualizations highlight key
trends, patterns, and anomalies in the data.

Insight Generation: The agent will derive in-
sights from the dataset by applying a combination
of statistical analysis, descriptive summaries, and
visual patterns. This is formalized as a function
Z(D), which maps the dataset D to a set of mean-
ingful insights based on its spatial, temporal, and
attribute components.



User Interaction: The InsightMiner agent
presents the results, including visualizations and
insights, in a user-friendly format, represented by
a function U(Z (D), V(Dy,)), enabling users to un-
derstand and act upon the findings effectively.

The tasks involve integrating these components
into a seamless pipeline where the InsightMiner
agent autonomously processes the dataset, per-
forms the defined operations, generates appropriate
visualizations, and outputs actionable insights. The
ultimate goal is to minimize manual effort while
maximizing the quality and interpretability of the
analysis.

3.3 Visualization

The visualization process in the InsightMiner
framework is an essential component for transform-
ing spatial-temporal data into interpretable visual
representations. The aim is to automatically gener-
ate effective visualizations that highlight key pat-
terns, trends, and anomalies within the data, thus
providing actionable insights. The core function
governing the visualization is defined as V', which
maps a dataset, or its transformed subset, to a struc-
tured visual output.

Given a spatial-temporal dataset D, the function
V takes as input the dataset D (or a processed ver-
sion of it, resulting from filtering, grouping, and
aggregation operations) and a set of visualization
parameters O, and produces a corresponding visu-
alization V' (Dy,):

V:Dx0 =Y,

where D denotes the space of all datasets, and
V represents the space of visual outputs (e.g., bar
charts, line graphs, heatmaps, etc.). The parame-
ters © are derived based on dataset characteristics,
user preferences, or domain-specific requirements.
These include, for example, the type of chart, axis
configurations, color schemes, and grouping crite-
ria based on spatial or temporal dimensions.

In InsightMiner, the visualization process is
closely linked to the preprocessing steps that in-
clude filtering, grouping, and aggregation. These
operations refine the dataset to focus on relevant
subsets or patterns, which are then visualized.
Specifically, the output of a series of data opera-
tions—such as the filtering operation F, the group-
ing operation (G, and the aggregation operation
A—serves as input to the visualization function

V. Thus, the visualization of a dataset can be ex-
pressed as:

V(AG(F(D))) =V ({ax = f(Sp) - k € K},

where S = {2V € F(D)|Ck(z")}, the func-
tion F filters the dataset based on certain criteria, G
groups the filtered data by specific attributes (such
as spatial or temporal categories), and A aggregates
data within each group to compute summary statis-
tics or derived metrics. The visualization function
V' then converts the resulting aggregated data into
a visual output.

Due to space constraints, a detailed example of
this process is discussed in Appendix D.

4 InsightMiner Design

4.1 Pipeline

Fig. 1 illustrates the pipeline of InsightMiner, de-
signed to support a detailed and iterative data ex-
ploration process. The pipeline enables users to
interact with data in a structured and flexible man-
ner. It begins with User Input, where queries and
data tables are submitted. The process then moves
to LLM Parsing, where Query Parsing identifies
the user’s intent and extracts key entities, followed
by Operation Parsing, which determines the nec-
essary operations such as grouping, filtering, or
aggregating data, to address the query.

Next, the pipeline proceeds to Reference Gen-
eration, where the system translates the parsed op-
erations into visualizations (e.g., charts) that align
with the user’s intent. Finally, Reference Interpreta-
tion provides clear answers to the query, along with
relevant Chart Insights and Recommended Steps.
These recommendations guide users to refine their
exploration further, such as drilling down into spe-
cific categories or analyzing trends over time.

Additionally, the system allows users to explore
data in parallel, ensuring they remain in full control
throughout the entire exploration journey. This flex-
ibility empowers users to either follow system rec-
ommendations or pursue independent paths, keep-
ing their unique goals at the forefront of the analy-
sis.

4.2 User Input

The workflow begins with a user uploading a CSV
dataset, which undergoes automated preprocessing
(including validation, missing data handling, and
initial analysis) to ensure quality for analysis. Once
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Figure 1: The pipeline of InsightMiner. InsightMiner starts with User Input, where natural language queries and data
tables are provided. Reference Generation provides output visualization charts based on the results of LLM Parsing.
Reference Interpretation delivers the insights, answers, and recommended steps, enabling users to iteratively explore

and uncover insights efficiently.

preprocessed, the user submits a natural language
query to guide the system in extracting tailored in-
sights across temporal, spatial, or attribute dimen-
sions. This streamlined process minimizes manual
effort, reduces errors, and ensures accessibility for
non-technical users while maintaining analytical
rigor. Due to limited space, detailed discussions of
preprocessing methodologies and and user interac-
tion design are provided in Appendix D.

4.3 LLM Parsing

The LLM Parsing process is central to transforming
user queries into structured data operations. This
process can be broken down into two key stages:
query parsing and operation parsing.

Query Parsing: The first step in LLM parsing is
query parsing, where the system uses the ChatGPT-
40 API to identify both the intent of the user query
and the entity it contains. Intent identification in-
volves discerning the underlying analytical goal of
the query, whether the user seeks trend analysis,
comparison, anomaly detection, or another type
of analysis. The entity recognition task extracts
relevant variables (e.g., "sales"), time periods (e.g.,
"2023"), and categorical attributes (e.g., "region")
from the query. These recognized entities are then
mapped to the data schema using semantic similar-
ity and entity linking techniques to ensure proper
alignment with the data.

Operation Parsing: Once the query has been
parsed, based on the obtained intent and entities,
the system begins to determines a specific oper-
ation task that would be executed on the dataset.
For example, if the intent is trend analysis, the task
may involve aggregating data over time and com-
paring trends. This step translates the user’s natural
language input into a specific set of data manipula-
tion tasks that are necessary to achieve the desired

analysis.

Then, operation parsing takes place. This stage
involves applying a series of data manipulation op-
erations such as filtering, grouping, aggregation,
and sorting, to prepare the data for visualization.
Filtering narrows the dataset based on specific con-
ditions or constraints identified in the query, while
grouping organizes the data according to relevant
dimensions (e.g., grouping by region or time pe-
riod). Aggregation computes summary statistics
(e.g., sum, average) for each group, and sorting
orders the results based on user-defined criteria
(e.g., sorting by sales in descending order). These
operations ensure that the dataset is appropriately
structured for visualization, providing the user with
insights that align with their query.

Through these 2 structured stages, LLM Pars-
ing efficiently translates natural language queries
into data operation tasks, enabling accurate data
preparation and visualization.

4.4 Reference Generation

To facilitate the user’s understanding of the insights
derived from the data, the system incorporates dy-
namic visualizations that are generated based on
user input and LL.M parsing results. Visualizations
such as time-series plots, bar charts, and heatmaps,
serve as essential tools for transforming complex
datasets into intuitive and easily interpretable for-
mats. This component addresses a fundamental
challenge in data analysis: the cognitive gap be-
tween raw data and actionable insights. While
textual summaries and numerical outputs provide
critical information, they often fail to fully rep-
resent complex relationships, especially in large,
multidimensional, and spatiotemporal datasets.
Visualizations are valuable for pattern recogni-
tion and trend detection, allowing users to quickly
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is the safest neighborhood based on the
lowest number of incidents reported.

Neighborhoods with the lowest number of incidents,
specifically McLaren Park, Lincoln Park, and Treasure
Island show the least incidents in the chart.

Further explore the types of incidents reported in

Next Step McLaren Park to confirm and contextualize its safety.
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Larceny Theft is the highest proportion of incidents in
McLaren Park, accounting for 21.9%, followed by Motor
Vehicle Theft (9.8%) and Recovered Vehicle (9%).

Investigate temporal trends of major incident categories
in McLaren Park to assess seasonal patterns.

Figure 2: Case Study of SF Crime Data. InsightMiner finds that McLaren Park is the safest neighborhood and most
incidents in McLaren Park are property-related, with Larceny Theft being the most common. Further exploration of
temporal trends is recommended to identify seasonal patterns in major incident categories.

identify relationships, outliers, and emerging pat-
terns that are difficult to discern from raw data
alone. For example, time-series plots reveal sea-
sonal trends, such as sales fluctuations, while
heatmaps highlight correlations between variables,
offering insights that textual summaries or tables
may miss. By translating operation parsing out-
comes such as filtering, grouping, or aggregating
data, into visual forms, the system generates charts
that are directly aligned with the user’s query intent.
This ensures the visualizations are both informative
and relevant, bridging the gap between raw data
and actionable, visually digestible insights.

4.5 Reference Interpretation

The chart interpretation process plays a crucial
role in identifying meaningful patterns, trends, and
anomalies within data, enabling users to get mean-
ingful insights. Central to this process is the inte-
gration of MLLMs, which combine both textual
and visual analysis to bridge the gap between visu-
alization and contextual understanding.

After parsing a user query and generating rel-
evant visualizations (e.g., time-series plots, bar
charts, or heatmaps), the system employs MLLMs
to conduct a comprehensive analysis of both the
visual elements and textual context. MLLMs cor-
relate visual features such as color gradients in
heatmaps, axis configurations in bar charts, or data
point distributions in time-series charts, with se-
mantic meaning derived from the user’s query or
domain-specific narratives. This dual-modality ap-
proach ensures that insights align with the user’s

intent while mitigating the limitations of relying
solely on visual or textual modalities.

While visualizations provide an intuitive means
to observe trends, relationships, and outliers, purely
visual analysis risks misinterpretation without con-
textual grounding. Conversely, textual analysis
alone may lack the spatial or temporal granularity
inherent in graphical data. By integrating MLLMs,
the system synthesizes these modalities: visual pat-
terns are contextualized through natural language
explanations (e.g., highlighting causal factors be-
hind anomalies or quantifying the significance of
trends), while textual queries are enriched by spa-
tialtemporal features extracted from charts. This
synergy enables users not only to perceive data but
also to comprehend its implications.

5 Case Studies

To measure the performance of InsightFinder, we
conduct two case studies with different datasets
and test its ability to derive valuable insigts.

5.1 San Francisco Crime Data

In this scenario, we follow Sarah, an entrepreneur
planning to open a horror-themed escape room in
San Francisco. She aims to find a safe neighbor-
hood to attract customers while avoiding areas with
high crime rates that might make the experience
"too real" for comfort. To tackle this, Sarah turns to
InsightMiner to analyze crime data across different
neighborhoods.

In Scenario 1, the exploration focuses on San
Francisco crime data, a spatiotemporal dataset cov-
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Figure 3: Case Study of NYC Traffic Incident Data.
InsightMiner illustrates an iterative exploration of traf-
fic collision patterns through identifying peak collision
times (7TAM-9AM and 3PM-6PM) and narrowing down
to specific boroughs. By focusing on boroughs, zip
codes, or neighborhoods, users can further refine their
insights and formulate safety measures.

ering crime records from 2018 to 2024. Each
data point includes over 20 features, grouped
into three main dimensions. Spatial features in-
clude the Police District (the jurisdiction han-
dling the crime), the Analysis Neighborhood
(where the crime occurred), and the Point (ex-
act crime coordinates). Temporal features cover

the Incident Year (2018-2024), Incident Date
(01/01/2018-12/31/2024), Incident Day of Week
(Monday to Sunday), and Incident Hour (0-24). At-
tribute features include the Incident Category (e.g.,
Larceny Theft, Assault) and Incident Subcategory
(e.g., Larceny Theft - From Vehicle, Aggravated
Assault). With this data, Sarah can pinpoint the
perfect balance between spooky and safe for her
escape room location.

As shown in Fig. 2, Sarah starts by entering
the query, "Which neighborhood is the safest?"
The system understands the user’s question and
processes the dataset using the commands dfl
= df.groupby([ "Analysis Neighborhood"]).count()
and df2 = dfl.sort_values(). The system then gener-
ates a histogram showing the crime count by neigh-
borhood. The system then provides the following
insight: "Neighborhoods with the lowest number of
incidents, specifically McLaren Park, Lincoln Park,
and Treasure Island, show the fewest incidents in
the chart." Its answer is: "McLaren Park is the
safest neighborhood based on the lowest number of
incidents reported.” The system also recommends
the next step: "Further explore the types of inci-
dents reported in McLaren Park to confirm and
contextualize its safety."

Sarah is satisfied with the system’s recom-
mended next step and decides to continue. The
system identifies, processes, and visualizes the data
again. It then provides updated answers, insights,
and suggestions for the next steps. Sarah is reas-
sured that the majority of reported crimes are not re-
lated to personal safety, but she remains somewhat
concerned about property-related crimes, which
could potentially affect the safety of her escape
room business.

5.2 New York City Traffic Incident Data

In this scenario, we follow Alex, a logistics startup
founder aiming to optimize delivery routes for a
new electric cargo bike service in Manhattan. His
goal is to identify boroughs with minimal traffic
collisions to ensure timely deliveries and reduce
accident risks for both riders and goods. To achieve
this, Alex uses InsightMiner to explore traffic inci-
dent reports across New York City.

The dataset covers NYC traffic incidents from
January 1, 2014, to April 30, 2024. Temporal fea-
tures, derived from Crash Date and Crash Time,
allow for precise timestamp analysis. Spatial at-
tributes include Borough and Zip Code for admin-
istrative divisions, along with Latitude, Longitude,



and street-level details like On Street Name and
Cross Street Name. Incident attributes capture con-
tributing factors and vehicle types for up to five
vehicles involved, while severity metrics track in-
juries and fatalities for pedestrians, cyclists, and
motorists. Cyclist safety is specifically highlighted
through dedicated injury and fatality counts. Using
these information, Alex aims to identify safer bor-
oughs and optimize delivery routes for his electric
cargo bike service.

As shown in Fig. 3, Alex thinks, in the off-peak
season, it is essential to avoid peak traffic collisions
time to ensure the safety of cyclists in a day. He
begins by querying, "What are the peak traffic colli-
sion times in the city?" The system understands his
question and then process the dataset using the com-
mands df1 = df.groupby(["Crash Time"]).count().
The system then generates a time-series line chart,
showing hourly crash counts, and provides the fol-
lowing insight: "The evening peak at 4-5 PM is the
most dangerous period. A steady volume of crashes
continues through midday (10 AM - 2 PM), likely
due to commercial traffic, while late-night colli-
sions (12 AM - 2 AM) suggest risks from impaired
or fatigued driving. ".

Alex reviews the system’s recommendations and
realizes that in his company, some riders are sched-
uled to work during periods with the highest traffic
collision rates. To prioritize their safety, Alex de-
cides to avoid high-risk boroughs whenever possi-
ble and adopts the system’s suggestions. However,
after identifying Manhattan as the borough with the
highest collision rates, Alex chooses not to follow
the system’s recommendation: “Focus on Brooklyn
and Queens to identify specific high-risk zones or
intersections for logistical and safety planning.”

Instead, he shifts his focus to weekly scheduling
and poses a follow-up question: “How do traffic
collisions vary by day of week and hour of day
in Manhattan?” This allows him to better align
delivery schedules with safer time frames while
maintaining operational efficiency. Finally, the sys-
tem processes this query by analyzing temporal
patterns across weekdays and hours, generating
a heatmap to inform dynamic scheduling adjust-
ments. This enables Alex to strategically allocate
delivery windows while mitigating collision risks.

6 Discussion

In the context of MLLMs, there are distinct forms
of hallucination, posing significant challenges to

accurate interpretation and output generation. For
textual inputs, MLLMs may produce factually in-
correct information (such as numerical inaccura-
cies), fabricated citations, logical inconsistencies
as well as persistent issues with structured output
generation (such as inconsistent JSON formatting
and variable mismatches in Base64 data process-
ing). Regarding visual inputs, hallucinations often
manifest as misinterpretations of visual content,
such as misidentifying objects, misreading color
intensities, or inaccurately annotating images. Ad-
ditionally, MLLMs face limitations in handling
interactive visual inputs due to their reliance on
static images, necessitating workarounds like snap-
shot extraction. Due to space constraints, detailed
discussions of these challenges, proposed mitiga-
tion strategies, and future research directions are
provided in Appendix E.

7 Conclusion

In this work, we introduce InsightMiner, a novel
system that integrates MLLMs to automate data ex-
ploration and insight generation through dynamic
visualizations. By leveraging natural language
queries and intuitive visual representations, the sys-
tem bridges the gap between raw data and action-
able insights, enabling users to uncover patterns,
trends, and anomalies without requiring deep tech-
nical expertise. Key innovations include the use of
visualizations as intermediate context to enhance
LLM reasoning, proposal of a user-driven iterative
exploration process, and introduction of new mech-
anisms that improve transparency through traceable
analytical steps. Case studies across urban safety
analysis and traffic incident optimization demon-
strate the system’s practical utility in guiding data-
driven decision-making.

8 Limitations

8.1 Lack of Robust Evaluation Metrics

A key methodological limitation of this study is the
absence of a robust, systematically defined metric
to evaluate whether the adoption of MLLMs over
LLMs significantly improves the rationality, diver-
sity, realism, or novelty of insights generated by
the system. Prior work, such as InsightPilot (Ma
et al., 2023), uses LLMs as automated evaluators
to assess these qualities. However, we chose not to
replicate this approach due to concerns about inher-
ent biases in LLM-based evaluation and the risk of
pattern collapse in such methodologies. As a result,



the comparative advantages of VLMs relative to
LLMs remain unquantified.

8.2 Lack of Expert Validation

Another methodological limitation is the lack of hu-
man expert validation to critically assess the qual-
ity, relevance, and practical applicability of the
system’s insights. While human expert evaluation
can theoretically provide more reliable assessments,
this approach is rather high-cost and time-intensive.
Future work requires integrating interdisciplinary
expert feedback alongside computational metrics
for a more holistic evaluation framework.
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A More Related Work
A.1 Large Language Model for Data Analysis

The emergence of LLMs has provided new op-
portunities for data analysis, with recent works
demonstrating LLMs’ effectiveness in various data
analysis tasks. Wang et al. (2022) explore how
LLMs can assist in data processing tasks, laying
the groundwork for automated data analysis. Build-
ing upon this foundation, Sun et al. (2023) fur-
ther demonstrate LLMs’ capability in analyzing
structured data, showing their potential for more
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complex analytical tasks. Specially, the integra-
tion of LLMs into conversational interfaces has
proven effective for making data analysis more ac-
cessible to users. Two notable systems exemplify
this progression: InsightPilot (Ma et al., 2023) and
InsightLens (Weng et al., 2024). Both leverage nat-
ural dialogue for data analysis, with InsightPilot
guiding users through exploratory analysis work-
flows, while InsightLens extends this approach by
specializing in insight discovery within conversa-
tional contexts. For domain-specific applications,
Gruver et al. (2024) demonstrate how natural lan-
guage prompting can be effectively applied to spe-
cialized tasks like time series forecasting. The theo-
retical foundation for such applications is strength-
ened by Yao et al. (2022), who show how LLMs
can perform structured reasoning for data-related
tasks. These complementary approaches collec-
tively demonstrate the potential of LLMs in making
data analysis more accessible while maintaining an-
alytical rigor.

A.2 In-context Learning

In-context Learning (Brown et al., 2020) repre-
sents a breakthrough in LLM capabilities, enabling
models to perform specific tasks through text in-
teractions without gradient updates or fine-tuning.
This adaptability is achieved through two main ap-
proaches: carefully designed prompts (Wei et al.,
2022; Wiegreffe et al., 2021) and few-shot demon-
strations (Zhao et al., 2021), both of which al-
low models to effectively learn from input context.
To further enhance this capability, MetalCL (Min
et al., 2021) is introduced as an innovative meta-
training framework. By systematically training
language models on diverse tasks, MetalCL signif-
icantly improves their ability to learn new tasks
quickly from just a few examples. This meta-
learning approach has demonstrated superior per-
formance compared to standard in-context learning,
while enabling better generalization to new unseen
tasks without requiring task-specific templates or
parameter updates. The power of in-context learn-
ing extends beyond pure text applications. Visual
encoders like CLIP (Radford et al., 2021) have
emerged as efficient tools to encode visual data
as prompts for LLMs (Liu et al., 2024a), bridging
the gap between visual and textual understanding.
These visual encoders offer a particular advantage
in computational efficiency, as visual inputs can
be divided into several patches and processed con-
currently. This parallel processing capability, com-



bined with the sophisticated in-context learning
abilities of LLMs, makes multi-modal in-context
learning especially promising for visual data analy-
sis tasks.

B Comparison of Dataset Structure

We choose discrete event-based structure over alter-
natives like graph-based or time-series data because
it clearly separates the spatial and temporal com-
ponents, making it easier to understand and work
with. Unlike graph data, which focuses on relation-
ships between points, or time-series data, which
assumes a continuous timeline, our approach treats
each data point as a separate, independent event.
This works especially well with real-world geo-
graphic data, where each point represents a specific
location or event that doesn’t necessarily follow
a continuous pattern. By using this method, we
can better analyze spatial-temporal relationships
without the limitations of assuming continuity or
connection between the points. This approach is
ideal for analyzing crime activity or city anomaly
data, where locations have distinct characteristics
and may not be directly connected. It allows for a
more flexible and accurate analysis because these
types of data often involve isolated events or irreg-
ular patterns that don’t follow a continuous spatial
or temporal connection.

C Definition of Filter, Group and
Aggregation Operations

Filter Operation F', which focuses on a subset of
the data that is of primary interest at this stage. The
split operation S can be expressed as:

F(D) = {«" € D|C(z")},

where C(x(?)) represents the condition or criteria
used to select the subset of data points from D.
This condition C could be based on specific spa-
tial, temporal, or attribute-related characteristics,
depending on the goal of the analysis.

Group Operation GG, which organizes the data
into subsets based on shared characteristics or at-
tributes of interest. The group by operation G can
be expressed as:

G(D) = {{z'Y € D|Ck(z)} : k € K},

where Ck(a:(i)) represents the condition or criteria
used to assign a data point z(%) to the k-th group,
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and K is the set of all unique group identifiers.
This condition Cy, typically depends on attributes
or features of the data, such as categorical labels,
ranges of numerical values, or other distinguishing
characteristics relevant to the analysis. The result
of G(D) is a partitioning of the dataset D into
disjoint subsets, where each subset corresponds to
a unique value or category defined by C;. This
operation is commonly utilized in tasks such as
aggregation, summary statistics, or comparative
analysis across defined groups.

Aggregation Operation A, which computes
summary statistics or derived metrics for each
group created by the group operation. The aggre-
gation operation A can be expressed as:

A(G(D)) = {ar = f(Sk) : k € K},

where Sy = {2 € D|Cp(z™)}, a) repre-
sents the aggregated value for the k-th group, f
is the aggregation function applied to the subset
of data points in the k-th group, k € K iterates
over all unique group identifiers, and the inner set
{® € D|Cp(z™)} defines the subset of data
points belonging to the k-th group.

D Data Upload and Natural Language
Query Interface

The workflow begins when a dataset (in CSV for-
mat) is uploaded by user. Once uploaded, the
dataset undergoes a comprehensive pre-processing
phase, including multiple steps, such as Data Val-
idation, Missing Data Handling, and Exploratory
Data Analysis (EDA), which are designed to ensure
the data is clean, consistent, and ready for in-depth
exploration:

The upload and initial analysis may take a few
seconds, depending on the volume and complexity
of the dataset. While this action might seem rou-
tine, it plays a vital role in ensuring the dataset is
primed for analysis. A well-preprocessed dataset
reduces the risk of errors, enhances the efficiency
of downstream processes, and ultimately leads to
more accurate and actionable insights. By automat-
ing these steps, the system minimizes the burden on
the user, allowing them to focus on deriving value
from the data rather than troubleshooting technical
issues. This emphasis on robust pre-processing un-
derscores the system’s commitment to delivering
reliable and high-quality results.

Upon successful upload and pre-processing of
the dataset, the user is prompted to enter a query



in natural language. This step is crucial because
it allows the user to define the specific insights
they seek from the dataset, tailoring the analysis
to their unique needs. The query input module is
designed to be intuitive and flexible, supporting a
wide range of queries related to Temporal, Spatial,
and Attribute dimensions. By enabling users to ask
questions in their own words, the system bridges
the gap between complex data analysis and user-
friendly interaction, making advanced analytics ac-
cessible to non-technical users. This user-driven
approach ensures that the analysis remains focused
and relevant, empowering users to uncover mean-
ingful patterns, trends, and relationships within the
data. The active engagement of the user through
query input is not just a procedural step but a foun-
dational aspect of the system’s design, enabling
personalized and actionable insights.

Example of Spatial-Temporal Heatmap
Generation

This appendix elaborates on the heatmap visualiza-
tion example, demonstrating how spatial-temporal
filtering, grouping, and aggregation are applied to
generate actionable insights.

Consider a dataset D containing spatial-temporal
records, such as sensor measurements across ge-
ographic locations and timestamps. The visual-
ization process begins with filtering F' to isolate
data within a specific spatial region (e.g., a city’s
administrative boundaries). Formally, F'(D)
{20) € D| Cypatial ()}, where Cypariar defines the
geographic criteria.

Next, the grouping operation G organizes the
filtered data into temporal intervals (e.g., hourly
slots).  Let Kiempora = {t1,t2,...,tn} repre-
sent these intervals. The grouped data becomes
G(F(D)) = {S}, | k € Kiemporal }» Where each Sy,
corresponds to measurements within time interval
k.

The aggregation operation A then computes sum-
mary statistics (e.g., mean measurement values) for
each temporal group.

Finally, the visualization function V' maps the ag-
gregated data to a heatmap. The parameters © spec-
ify a color gradient (e.g., red for high values, blue
for low) and spatial-temporal axes configurations.
The resulting heatmap encodes spatial distributions
of measurements across time intervals, enabling
users to identify trends (e.g., peak pollution hours
in specific neighborhoods).
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This example illustrates how InsightMiner’s
pipeline transforms raw spatial-temporal data into
interpretable visualizations, as formalized in the
main text.

E More Discussion and Future Work

E.1 Hallucinations in MLLMs

The term "hallucinations" in the context LLMs
refers to instances where these models generate
text that is factually inaccurate, nonsensical, or un-
grounded in reality. This phenomenon represents a
well-documented limitation of LLLMs, as their out-
puts often appear superficially plausible but lack
logical coherence or factual validity.

Moreover, in VLMs, a distinct form of hallu-
cination named value hallucination has been ob-
served in existing implementations. For example,
when generating descriptive annotations for figures,
VLMs may produce text with incorrect numerical
precision (e.g., mislabeling the y-axis scale in a
histogram) despite demonstrating competent data-
sorting capabilities. This specific issue may war-
rant further investigation in character-level VLM
QA tasks.

A second type of hallucination observed in
VLMs involves color intensity misinterpretation.
When tasked with interpreting heatmaps designed
to represent quantitative values, VLMs frequently
struggle to distinguish between gradations of color
depth. For instance, the model may inaccurately
associate darker hues with higher values unless ex-
plicitly instructed to adhere to standardized color-
value conventions. This limitation underscores the
need for precise instructional input to guide VLMs
in visual interpretation tasks.

E.2 Challenges in Structured Output
Generation

When developing systems that rely on LLMs, it is
essential to define specific protocols for backend
processing. However, LLMs often struggle to pro-
duce outputs in a consistent, structured format. For
instance, a system may require the output to be in
JSON format with specific keys such as "code" and
"operation." Yet, LLMs may fail to adhere to this
requirement, either by omitting the "code" key or
by generating outputs that deviate from the JSON
format altogether.

Another challenge arises when the system at-
tempts to process figures encoded in Base64 as
inputs for VLMs. Although the underlying code



may be correct, errors can occur due to incorrect
data inputs or the misuse of variable names for
Base64-encoded figures. These inconsistencies can
lead to processing failures or misinterpretation of
the output, highlighting the need for robust error-
handling mechanisms and stricter input validation
protocols.

E.3 Limitations of VLMs with Interactive
Visual Inputs

We observe a challenge in integrating VLMs with
interactive figures lies in the limited support for
dynamic input. Most VLMs are designed to pro-
cess static images, making it difficult to incorporate
interactive visual elements into the system. This
constraint results in the loss of valuable informa-
tion that might otherwise be accessible through
interactive elements, such as tooltips, hover states,
or dynamic visualizations.

To address this limitation, we have adapted the
system to generate only static figures as inputs to
the VLM. While this simplifies the process, it may
lead to the exclusion of essential interactive fea-
tures, diminishing the richness of the data available
for interpretation. A potential solution is to extract
relevant portions or snapshots from interactive fig-
ures, which can then serve as static inputs for the
VLM.

Further experiments are needed to evaluate the
effectiveness of this approach, exploring methods
for aligning VLM inputs with interactive visual
representations while maintaining the integrity of
the information presented.

F Ai Assistants In Research and Writing

In this paper, we utilize Al assistants to enhance
and polish the English writing by using prompts
such as "Polish my English." Additionally, in our
research, we design a novel interactive application
based on Al assistants.
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