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ABSTRACT

Recent advancements in 3D reconstruction methods and vision-language models
have propelled the development of multi-modal 3D scene understanding, which
has vital applications in robotics, autonomous driving, and virtual/augmented re-
ality. However, current multi-modal scene understanding approaches have naively
embedded semantic representations into 3D reconstruction methods without strik-
ing a balance between visual and language modalities, which leads to unsatisfying
semantic rasterization of translucent or reflective objects, as well as over-fitting
on color modality. To alleviate these limitations, we propose a solution that ad-
equately handles the distinct visual and semantic modalities, i.e., a 3D vision-
language Gaussian splatting model for scene understanding, to put emphasis on
the representation learning of language modality. We propose a novel cross-modal
rasterizer, using modality fusion along with a smoothed semantic indicator for
enhancing semantic rasterization. We also employ a camera-view blending tech-
nique to improve semantic consistency between existing and synthesized views,
thereby effectively mitigating over-fitting. Extensive experiments demonstrate
that our method achieves state-of-the-art performance in open-vocabulary seman-
tic segmentation, surpassing existing methods by a significant margin.

1 INTRODUCTION
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Figure 1: Comparison of prior semantic 3DGS work and
our novel method. We apply cross-modal rasterization
and camera-view-based regularization for better explo-
ration of semantic features.

The advancement of 3D reconstruction
methods, such as neural radiance fields
(NeRF) (Mildenhall et al., 2020) and
3D Gaussian splatting (3DGS) (Kerbl
et al., 2023), has enabled the effec-
tive acquisition of 3D color representa-
tions, facilitating high-fidelity and real-
time rendering from novel viewpoints.
Moreover, vision-language models like
CLIP (Radford et al., 2021) and LSeg
(Li et al., 2022) have been bridging the
gap between color images and seman-
tic features in 2D space. Given an in-
put image, these models can generate a
dense 2D language map, i.e., assigning
semantically-rich language embeddings
to each pixel (e.g., a pixel depicting a person’s face can be assigned a language embedding de-
scribing said face). Building on these developments, multi-modal 3D scene understanding—which
aims to learn effective 3D semantic representations from multi-view images and their corresponding
camera poses—has made significant progress in recent years. This area of research has a wide range
of applications across various practical domains, including robotic manipulation (Shorinwa et al.,
2024), autonomous driving (Gu et al., 2024), and VR/AR (Guerroudji et al., 2024).

∗This work was done during Qucheng Peng’s internship at United Imaging Intelligence, Boston, MA, USA.
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Recent methods (Engelmann et al., 2024; Qin et al., 2024; Shi et al., 2024; Zhou et al., 2024b; Yu
et al., 2024a) in multi-modal 3D scene understanding have adopted the paradigm of embedding se-
mantic representations into 3D representation for joint reconstruction training, and utilizing semantic
knowledge distilled from off-the-shelf vision-language models to guide the training process. For ex-
ample, OpenNeRF (Engelmann et al., 2024) integrates MipNeRF (Barron et al., 2021) method with
OpenSeg model (Ghiasi et al., 2022), and LangSplat (Qin et al., 2024) employs both 3DGS (Kerbl
et al., 2023) method and CLIP (Radford et al., 2021) model. These solutions rely on 2D supervision
to learn a multi-modal (color and semantic) 3D scene representation, i.e., projecting the learned 3D
representation back to 2D views for comparison with the input observations (input color images and
corresponding 2D language maps inferred by aforementioned vision-language models).

However, we argue that these methods have naively embedded semantic representations into 3D
reconstruction methods like 3DGS—originally designed for color information—failing to strike a
balance between visual and language modalities. For example, they are directly applying the color
rasterization function—meant to project 3D RGB information to 2D—to the new language modality,
ignoring that this function relies on a color opacity attribute that does not translate to semantic
information. Prior art also tends to ignore the unequal complexity and distribution of color and
semantic modalities, and the risk of over-fitting the color information to the detriment of the 3D
semantic representations. While the same objects may exhibit different colors from various views,
their semantic information remains constant. Conversely, different objects can share similar colors,
but it is less desirable for their semantic representations to appear identical. Thus, training color
representations may negatively impact the training of 3D semantic representations.

Given these limitations, our intuition is to strike a balance between visual and language modalities,
rather than simply embedding language features into RGB-based 3D reconstruction. Therefore, we
propose a novel framework named 3D vision-language Gaussian splatting, as shown in Fig. 1. On
one hand, we propose a novel cross-modal rasterizer that prioritizes the rendering of language fea-
tures. We integrate semantic features with meaningful information from the color domain through
modality fusion, prior to rasterization, to facilitate the robust learning of semantic information. Be-
sides, we introduce a language-specific parameter that enables the meaningful blending of language
features from different Gaussians. This methodology yields a more accurate representation of se-
mantic information, especially for translucent or reflective objects, such as glass and stainless steel,
where the usage of color opacity may lead to misinterpretation. On the other hand, we also propose
a novel camera-view blending augmentation scheme specific to the semantic modality, i.e., blending
information across views to synthesize new training samples. This process regularizes the language
modality through enhancing semantic consistency between the existing and novel views, leading to
more robust 3D semantic representations.

All in all, our 3D vision-language Gaussian splatting can be summarized into the following contri-
butions:
• We propose a cross-modal rasterizer that places greater emphasis on language features. Modality

fusion occurs prior to rasterization, accompanied by a learnable and independent semantic indica-
tor parameter for the α-blending of language features, enabling a more accurate representation of
translucent or reflective objects.

• We define a camera-view blending technique for the regularization of semantic representations
during training, augmenting the input 2D language maps through a cross-modal view, i.e., lever-
aging the semantic-consistency prior to alleviate over-fitting on the color modality.

• Extensive experiments on benchmark datasets demonstrate that our approach achieves state-of-
the-art performance in open-vocabulary semantic segmentation tasks, outperforming existing
methods by a significant margin.

2 RELATED WORK

3D Neural Representations. Recent advancements in 3D scene representation have made signifi-
cant progress, particularly with neural radiance fields (NeRF) (Mildenhall et al., 2020), which excel
in novel view synthesis. However, NeRF’s reliance on a neural network for implicit scene repre-
sentation can result in prolonged training and rendering times. Methods like Instant-NGP (Müller
et al., 2022) speed up these processes through hash encoding, while approaches such as 3D Gaussian
splatting (3DGS) (Kerbl et al., 2023) use explicit neural representations for better alignment with
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GPU computations via differential tile rasterization. Additionally, MipNeRF (Barron et al., 2021)
and Mip-Splatting (Yu et al., 2024b) address aliasing issues, whereas DS-NeRF (Deng et al., 2022)
and DG-Splatting (Chung et al., 2024) focus on sparse view reconstructions. In this paper, we utilize
3D Gaussian Splatting for 3D neural representations.

Visual Foundation Models. Visual foundation models include both pure vision models, crucial
for semantic segmentation and feature extraction, and vision-language models that connect images
with natural language. Among pure vision models, the Segment Anything Model (SAM) (Kirillov
et al., 2023) excels in zero-shot transfer, generating multi-scale segmentation masks. DINO (Caron
et al., 2021) and DINOv2 (Oquab et al., 2024), trained in a self-supervised manner, deliver fine-
grained features for various downstream tasks. In vision-language models, CLIP (Radford et al.,
2021) utilizes contrastive learning to align visual and textual features, while LSeg (Li et al., 2022)
enhances this by incorporating spatial regularization for refined predictions. APE (Shen et al., 2024)
functions as a universal perception model for diverse multimodal tasks. In this paper, we employ
SAM and CLIP to extract ground-truth features for baseline comparisons, ensuring a fair evaluation.

Multi-modal 3D Scene Understanding. Existing methods for scene understanding learn multi-
modal 3D representations from posed images, enabling rendering from novel viewpoints for tasks
like open-vocabulary semantic segmentation. For NeRF-based approaches, LERF (Kerr et al., 2023)
optimizes a language field alongside NeRF, using positions and physical scales to generate CLIP
vectors. OpenNeRF (Engelmann et al., 2024) introduces a mechanism for obtaining novel camera
poses, enhancing feature extraction. Among 3DGS-based methods, LangSplat (Qin et al., 2024)
adopts a two-stage strategy for semantic feature acquisition, while GS-Grouping (Ye et al., 2024)
extends Gaussian splatting for joint reconstruction and segmentation. Additionally, GOI (Qu et al.,
2024) employs hyperplane division to select features for improved alignment. Moreover, HUGS
Zhou et al. (2024a) enables holistic 3D scene understanding by integrating 2D semantics and flow
with 3D tracking, effectively lifting them into the 3D space.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

According to the vanilla Gaussian splatting (3DGS) paradigm applied to RGB image rendering
(Kerbl et al., 2023), a scene is represented by a set of 3D Gaussians G = {gi}Ni=1, where N denotes
their number. Each Gaussian is defined as gi = {µi,Σi, oi, ci}, i.e., by its mean position µi ∈ R3,
covariance matrix Σi ∈ R3×3, opacity oi ∈ R, and color properties ci ∈ Rdc (e.g., with dc = 3 for
RGB parameterization). Images are rasterized by splatting Gaussians through each pixel v into the
scene and α-blending the Gaussian contributions to the color C(v), as:

C(v) =

N∑
i=1

cioiP i
i−1∏
j=1

(1− ojP j) with P i = e−
1
2 (v−µ̂i)(Σ̂i)−1(v−µ̂i), (1)

where µ̂i and Σ̂i are the 3D-to-2D projections of µi and Σi. This scene representation is learned
from a training set T r = {(Ir1 ,W r

1 ), (I
r
2 ,W

r
2 ), . . .} consisting of several pairs of RGB images I of

the target scene and the corresponding camera poses W .

Gaussian splatting models have been expanded to incorporate language-embedding information
densely describing the scene (Qin et al., 2024; Zhou et al., 2024b; Qu et al., 2024) by adding a
language feature vector f i ∈ Rdh (with dh feature size) to each 3D Gaussian and similarly rasteriz-
ing this modality. I.e., a 2D semantic embedding F at pixel v can be expressed as:

F (v) =

N∑
i=1

f ioiP i
i−1∏
j=1

(1− ojP j). (2)

Even though the two modalities have widely different properties (e.g., translucence only applies to
the visual modality and not the semantic one), previous methods have been directly applying the
color rasterization process to the language features without any adaption, i.e., only replacing ci (Eq.
1) by f i (Eq. 2). In this paper, we propose to adapt the usual rasterization scheme to better fit the
language-feature modality.
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Figure 2: Overview of our proposed framework. A) We propose a novel multi-modal Gaussian
splatting model; B) we enrich the input images and poses for the model to better fit the semantic
information. Besides our introduction of a novel semantic indicator parameter l, our additional
contributions are: C) a semantic-aware cross-modal rasterization module; and D) a camera view
blending augmentation scheme for training regularization.

To train these semantically-enriched 3DGS models, the standard procedure consists of first gener-
ating the set of 2D language-feature maps H corresponding to the input images I . Off-the-shelf
pure vision models like SAM (Kirillov et al., 2023) and vision-language models like CLIP (Rad-
ford et al., 2021) are typically used, along with an auto-encoder-based Zhai et al. (2018) dimension
reduction as in Qin et al. (2024). Once the data is prepared, the 3D Gaussians can be iteratively
optimized by minimizing the distance between its rasterized 2D semantic embeddings (c.f . Eq. 2)
and the ground-truth 2D semantic embeddings:

L = E(I,W )∈T rEv∈ILsem(F
W (v), HW (v)), (3)

where L is the overall optimization objective. Besides, FW and HW are the predicted and ground-
truth 2D language maps rendered using camera pose W corresponding to image I (for ease of
readability, we drop the superscript W in subsequent equations), and Lsem is a distance function for
2D semantic maps (e.g., L1 distance).

The resulting 3D Gaussian language representation can be leveraged for open-vocabulary seman-
tic queries. For example, given a query language vector τ , a pixel-wise 2D relevancy score map
corresponding to view W can be computed as (Radford et al., 2021):

p(τ |v) = exp(
F (v) · φ(τ)

∥F (v)∥∥φ(τ)∥
)/

∑
s∈T

exp(
F (v) · φ(s)

∥F (v)∥∥φ(s)∥
), (4)

where φ is the text encoder from the vision-language model. Such a relevancy map can be leveraged,
e.g., for open-vocabulary 2D localization (i.e., by measuring the argmax response to the query) or
semantic segmentation (i.e., by thresholding the resulting relevancy map).

3.2 SEMANTIC-AWARE RASTERIZATION

Existing multi-modal rasterization methods (Qin et al., 2024; Zhou et al., 2024b; Zuo et al., 2024)
have largely drawn from color-based 3DGS (Kerbl et al., 2023). These rasterizers approach the
rendering of 3D semantic information in a manner akin to RGB rendering (see Sec. 3.1), resulting
in an insufficient focus on semantic-specific design. To address this gap, we propose a novel cross-
modal rasterizer that emphasizes semantic-specific design, as illustrated in Fig. 2A and Fig. 2C.

A first noticeable shortcoming is the insufficient integration and exchange between 3D semantic and
color features. While these modalities have distinct properties, they offer correlated and complemen-
tary information about the scene, with knowledge from one informing the other. Current models fail
to leverage this synergy, resulting in inadequate guidance for learning semantic representations from
the richer color modality.

To address this shortcoming, we propose integrating 3D semantic and color features prior to ras-
terization, rather than treating them independently (Qin et al., 2024; Qu et al., 2024), which facili-
tates effective knowledge fusion and exchange between modalities. This intuitive improvement to
multi-modal 3DGS has surprisingly been ignored in prior work. We decide to correct this oversight
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Figure 3: Empirical differences between color opacity and proposed smoothed semantic indicator.
On the left, we visualize the difference li − oi in Gaussians modeling the ramen scene. While their
color opacity may vary significantly, most Gaussians need their semantic features to be rasterized
with minimal blending (c.f . red regions in the difference maps, i.e., where li ≫ oi), except for
Gaussians representing intangible lighting effects (c.f . glares on the bottle, bowl, table, etc.). On the
right, we further plot the density distribution of li−oi in Gaussians for the ramen scene, indicating
the different distributions of these two control parameters.

by applying the well-established self-attention mechanism for modality fusion before rasterization,
thereby enhancing its effectiveness. We can derive the 3D modality-fused features ui ∈ Rdc+df for
our multi-modal rasterizer as:

ui = ci ⊕ f i + ψout(softmax(
ψQ(c

i ⊕ f i)ψ⊤
K(ci ⊕ f i)√

dh
)ψV (c

i ⊕ f i)), (5)

where dh represents the number of heads. Moreover, ψQ, ψK , ψV : Rdc+df 7→ Rdc+df × Rdh and
ψout : Rdc+df × Rdh 7→ Rdc+df are single-layer linear networks.

Another salient shortcoming is the simplistic adoption of α-blending-based RGB splatting (Eq. 1)
to rasterize language embeddings, only substituting the 3D color features c with 3D semantic repre-
sentations f (Eq. 2). In other words, previous works use the opacity attribute of Gaussians to render
not only RGB images but also language maps, c.f . Eq. 2 (either optimizing the opacities values over
the two modalities (Shi et al., 2024; Zhou et al., 2024b), or applying frozen opacity values from
the RGB-only pre-training during semantic rasterization (Qin et al., 2024)). We argue that this ap-
proach fails to recognize that in phenomena involving semi-opaque media (e.g., glass, water) and
complex light transport effects (e.g., direction-dependent scattering and glare), color opacity cannot
be effectively translated to the semantic modality. In most cases, when Gaussians represent tangi-
ble elements of the scene (e.g., the surface or volume of an object), their semantic features should
be splatted to 2D without any reduction in opacity. Conversely, intangible Gaussians (e.g., those
simulating lighting effects like optical glares) should be excluded from semantic rasterization by
enforcing their α-blending weight close to zero.

To address this problem, we propose a novel α-blending strategy specifically designed for explor-
ing semantic information. We introduce a new learnable attribute for our multi-modal Gaussians: a
smoothed semantic indicator li ∈ [0, 1], which is applied to the rasterization of language embed-
dings, effectively replacing the color opacity parameter for this modality:

U(v) =

N∑
i=1

ui1:dc
oiP i

i−1∏
j=1

(1− ojP j)︸ ︷︷ ︸
color modality (channels 1 to dc)

⊕
N∑
i=1

uidc+1:dc+df
liP i

i−1∏
j=1

(1− ljP j)︸ ︷︷ ︸
language modality (channels dc+1 to dc+df )

. (6)

Note that these two processes are conducted simultaneously in the rasterizer. By disentangling the
semantic rasterization from the opacity-based control and letting the overall model learns an inde-
pendent per-Gaussian semantic indicator, we allow the model to better fit the semantic information
of the scene. This is highlighted in Fig. 3, which shows how much the distribution of semantic
indicator values differs from the color opacity after optimization. This is especially notable for
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Figure 4: Qualitative semantic segmentation comparisons on the ramen scene (LERF dataset).

RGB LEGaussians LangSplat GOI Ours Ground Truth

'knife' 'toaster''vessel''pots' 'ottolenghi' 'desk'

Figure 5: Qualitative semantic segmentation comparisons on the kitchen scene (LERF dataset).

semi-transparent or reflective objects (e.g., glass and pot in depicted scene), exhibiting low opacity
but high semantic-indicator values (c.f . li − oi close to 1).

After rasterization, the resulting pixel information U(v) can be further decomposed as:

U(v) = C(v)⊕ F (v), (7)

where C(v) and F (v) are the RGB color and 2D language embeddings at pixel v respectively.

Based on the above, we formulate the loss function to optimize the overall scene representation as
follows, ∀(I,W ) ∈ T r:

Lraster(W ) = Ev∈I

[
LMSE

(
CW (v), I(v)

)
+ LMSE

(
FW (v), HW (v)

)]
, (8)

where LMSE represents the mean squared error (MSE) criterion.

3.3 SEMANTIC-AWARE CAMERA VIEW BLENDING

While the novel cross-modal rasterization process proposed in Sec. 3.2 facilitates the efficient learn-
ing of joint color and semantic representations, this multi-modal approach may be suboptimal for
applications focused exclusively on semantic information—such as open-vocabulary semantic seg-
mentation tasks—due to the adverse effect from richer color modality. On the one hand, though
the same object may exhibit different colors from various viewpoints, its semantic information re-
mains consistent. On the other hand, different objects might share similar colors, which can lead to
undesirable identical semantic representations. Therefore, it is crucial to incorporate regularization
methods that enhance semantic consistency across diverse views, thereby mitigating the overfitting
on semantic representations.

To this end, we propose a regularization technique called camera view blending (shown in Fig. 2B),
designed specifically to augment the semantic modality by leveraging multi-modal information.
Inspired by mix-up augmentation Zhang et al. (2018), our approach involves blending two ground-
truth 2D language maps to create new ones, while providing semi-consistent corresponding camera
poses through advanced 6DOF pose interpolation. For two randomly selected samples (I1,W1) and
(I2,W2) from the training set T r, where W1 ̸=W2, we first utilize the camera poses W1 and W2 to
synthesize a novel camera pose that incorporates both rotation and translation components.

Expressing the input rotations with quaternions q1 and q2, we apply spherical linear interpolation
(Slerp) (Shoemake, 1985). Define θ = arccos q1·q2

∥q1∥∥q2∥ and let the interpolation ratio k be randomly
sampled from Beta(0.2, 0.2). The quaternion for the novel camera view qb is then given by:

qb =


k
q1
∥q1∥

· cos θ

| cos θ|
+ (1− k)

q2
∥q2∥

if | cos θ| > 0.995

q1 sin(θ − kθ)

∥q1∥ sin θ
· cos θ

| cos θ|
+
q2 sin(kθ)

∥q2∥ sin θ
if | cos θ| ≤ 0.995.

(9)

6



Published as a conference paper at ICLR 2025

When the two quaternions are nearly aligned in direction (| cos θ| > 0.995), we use linear interpola-
tion (Lerp) for improved efficiency. If they are not aligned (| cos θ| ≤ 0.995), Slerp is applied.

For the translation component, we use linear interpolation to synthesize the focal center of the novel
view. Given the camera centers t1 and t2 in the world coordinate system, corresponding to W1 and
W2 respectively, the new center is determined with the same interpolation ratio k:

tb = kt1 + (1− k)t2. (10)

With the blended quaternion qb and camera center tb, we empirically derive the novel camera view
Wb, which can be used to render the associated 2D semantic embeddings from the Gaussian model.
Our goal is to enhance the semantic consistency across existing views and their associated synthe-
sized views, thereby regularizing the training of 3D semantic representations. Thus, the camera view
blending loss Lb for semantics with identical interpolation ratio k is:

Lb = SSIM(I1, I2)Ev∈I1LMSE(F
Wb(v), HWb(v)) with HWb = kHW1 + (1− k)HW2 . (11)

Here FWb(v) denotes the rendered 2D semantic embeddings based on Wb using the rasterizer de-
scribed in Section 3.2, while HW1(v) and HW2(v) represent the ground truth 2D semantic features
for W1 and W2 respectively. When the two images differ significantly, regularization may be coun-
terproductive. To address this, we utilize the Structural Similarity Index Measure (SSIM) between
I1 and I2 as a weighting factor. By enforcing similarity between HWb(v) and FWb(v), we enhance
the semantic consistency of the 3D representations, thereby mitigating the overfitting issue.

By combining the rasterization loss (Eq. 8) and the camera view blending loss (Eq. 11) according to
a trade-off hyper-parameter λ, the overall objective is represented as:

Loverall = E(I1,W1),(I2,W2)∈T r [Lraster(W1) + Lraster(W2) + λLb(W1,W2)]. (12)

4 EXPERIMENTS

4.1 SETTINGS

Datasets. We employ 3 datasets for our evaluation on open-vocabulary semantic tasks. (1) LERF
dataset (Kerr et al., 2023), captured using the Polycam application on an iPhone, comprises complex,
in-the-wild scenes and is specifically tailored for 3D object localization tasks. We report the mean
Intersection over Union (mIoU) results, alongside localization accuracy results in accordance with
(Qin et al., 2024) (2) 3D-OVS dataset (Liu et al., 2023) consists of a diverse collection of long-tail
objects in various poses and backgrounds. This dataset is specifically developed for open-vocabulary
3D semantic segmentation and includes a complete list of categories. Following (Qin et al., 2024;
Zuo et al., 2024), the mIoU metric is applied for this dataset. (3) Mip-NeRF 360 dataset (Barron
et al., 2022) contains 9 scenes, each composed of a complex central object or area and a detailed
background. Following Qu et al. (2024), we provide some evaluations on this dataset in annex.

Implementation. To extract ground-truth semantic features from each image, we utilize the SAM
ViT-H model (Kirillov et al., 2023) alongside the OpenCLIP ViT-B/16 model (Radford et al., 2021).
The 3D Gaussians for each scene are initialized using sparse point clouds derived from Structure
from Motion. For modality fusion, we set dc and df to 3, while dh is set to 4. During rasterization,
smoothed semantic indicator is initialized in the same manner as color opacity. For each iteration,
two camera views and their associated images are selected, and 3D Gaussians are trained for 15,000
iterations. Moreover, the parameter λ in Equation 12 is configured to 1.2. The implementation of
semantic opacity is done in CUDA and C++, while the other components are in PyTorch. All ex-
periments are conducted on Nvidia A100 GPUs. For each scene, our model is trained for 15,000
iterations using an Adam optimizer (Kingma, 2014), and the learning rates of different components
are shown in the appendix. After convergence, the model is applied to the localization and segmen-
tation tasks according to the procedure described in Sec. 3.1.

4.2 RESULTS

Baselines. For a fair comparison, we select the latest works on open-vocabulary 3D scene under-
standing: Feature-3DGS (Zhou et al., 2024b), LEGaussians (Shi et al., 2024), LangSplat (Qin
et al., 2024), GS-Grouping (Ye et al., 2024), GOI (Qu et al., 2024), and FMGS (Zuo et al., 2024),
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all of which are based on 3DGS (Kerbl et al., 2023), and employ the same segmentation and vision-
language models mentioned in Sec. 4.1 to extract ground truth language features. It is important to
note that FMGS (Zuo et al., 2024) does not report mIoU results on the LERF dataset and is also not
open-sourced, so its mIoU results are not listed.

Quantitative Evaluation. Tab. 1 and Tab. 2 present the mIoU and localization accuracy results
on the LERF dataset, respectively. Tab. 3 displays the mIoU results on the 3D-OVS dataset. Our
proposed method achieves state-of-the-art performance across all scenes, notably outperforming the
second best method LangSplat (Qin et al., 2024) by 10.6 in mIoU on the LERF dataset. Further
experiments on other datasets are listed in the appendix.

Qualitative Evaluation. To facilitate qualitative comparisons, we contrast our method with several
baseline approaches, including LEGaussian (Shi et al., 2024), LangSplat (Qin et al., 2024), and GOI
(Qu et al., 2024). Fig. 4 and Fig. 5 illustrate semantic segmentation results on LERF data, while Fig.
6 presents the localization results on the same dataset. For the localization task, the black bounding
boxes with dotted lines represent the ground truth ranges, while the red dots indicate predictions
from various methods. Besides, segmentation comparisons on the 3D-OVS dataset are displayed in
Fig. 7 and Fig. 8. It is clear that our proposed method outperforms the other approaches and is closer
to the ground-truth, particularly in reflective and translucent areas. Additional results are displayed
in the appendix.

4.3 ABLATION STUDIES

Ablation on cross-modal rasterizer. Tab. 4.A presents an ablation study on the data-fusion of the
rasterizer. In addition to no fusion like LEGaussians (Shi et al., 2024), we also incorporate single-
layer MLP and cross-attention for modality Fusion to enhance semantic features for comparison.
The results indicate that self-attention modality fusion is the most effective method. Besides, single-
layer MLP and cross-attention modality fusion do not demonstrate any advantage over the no fusion
condition. In Tab. 4.B, we highlight the benefits of our proposed smoothed semantic indicator.
We compare it to previous methods for rasterizing semantic embeddings, specifically by applying
the color opacity oi to the language modality (Qin et al., 2024; Zhou et al., 2024b; Zuo et al.,
2024). The results indicate that using a separate attribute for rasterizing language embeddings is
clearly advantageous. However, this new attribute cannot be naively fixed, e.g., to 1 or 0.5 for all
Gaussians. Its values should be learned by the model through 2D supervision, which is why we
introduce a learnable indicator for the α-blending of language modality.

Ablation on camera-view blending. We also present an ablation of different camera-view blending
strategies in Tab. 5, which includes three variants: Rotation that associates to the operation in Eq. 9,
Translation that corresponds to the operation in Eq. 10 , and SSIM that weighs Eq. 11. Our proposed
method corresponds to the last row of the table. The results indicate that both Slerp-based rotation
blending and Lerp-based translation blending contribute to performance improvements. Moreover,
the regularization provided by SSIM is essential for controlling the extent of blending.

In Tab. 4.C, we present an ablation study on the interpolation ratio k. In addition to fixed values
of 0.5, 0.75, and 1.0, we also include experiments based on Even Distribution (U(0, 1)), Gaussian
Distribution (N(0, 1)), and our Beta Distribution (Beta(0.2, 0.2)). The results demonstrate that a
balanced ratio is crucial for acquiring better representations, and that slight disturbances can be
beneficial as well.

Table 1: mIoU results on the LERF dataset.
Method Venue ramen teatime figurines kitchen avg.

Feature-3DGS CVPR’24 43.7 58.8 40.5 39.6 45.7
LEGaussians CVPR’24 46.0 60.3 40.8 39.4 46.9

LangSplat CVPR’24 51.2 65.1 44.7 44.5 51.4
GS-Grouping ECCV’24 45.5 60.9 40.0 38.7 46.3

GOI ACMMM’24 52.6 63.7 44.5 41.4 50.6
Ours 61.4 73.5 58.1 54.8 62.0
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Table 2: Localization accuracy (%) on the LERF dataset.
Method Venue ramen teatime figurines kitchen avg.

Feature-3DGS CVPR’24 69.8 77.2 73.4 87.6 77.0
LEGaussians CVPR’24 67.5 75.6 75.2 90.3 77.2

LangSplat CVPR’24 73.2 88.1 80.4 95.5 84.3
GS-Grouping ECCV’24 68.6 75.0 74.3 88.2 76.5

GOI ACMMM’24 75.5 88.6 82.9 90.4 84.4
FMGS IJCV’24 90.0 89.7 93.8 92.6 91.5
Ours 92.5 95.8 97.1 98.6 96.0

Table 3: mIoU results on the 3D-OVS dataset.
Method Venue bed bench room sofa lawn avg.

Feature-3DGS CVPR’24 83.5 90.7 84.7 86.9 93.4 87.8
LEGaussians CVPR’24 84.9 91.1 86.0 87.8 92.5 88.5

LangSplat CVPR’24 92.5 94.2 94.1 90.0 96.1 93.4
GS-Grouping ECCV’24 83.0 91.5 85.9 87.3 90.6 87.7

GOI ACMMM’24 89.4 92.8 91.3 85.6 94.1 90.6
FMGS IJCV’24 80.6 84.5 87.9 90.8 92.6 87.3
Ours 96.8 97.3 97.7 95.5 97.9 97.1
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Figure 6: Localization comparisons on LERF. Black dotted-line bounding boxes represent the
ground-truth targets, and red dots indicate the predictions (considered correct if within a GT box).

RGB LEGaussians LangSplat GOI Ours Ground Truth

'doll' 'egg tart''cat''wall' 'mini car' 'grape'

Figure 7: Qualitative semantic segmentation comparisons on the bench scene (3D-OVS dataset).

RGB LEGaussians LangSplat GOI Ours Ground Truth

'Switch controller' 'Pikachu''Gundam''card' 'sofa' 'Xbox controller'

Figure 8: Qualitative semantic segmentation comparisons on the sofa scene (3D-OVS dataset).
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Table 4: Ablation results of various contributions on the LERF dataset, in terms of mIoU.
Method ramen teatime figurines kitchen avg.

(A
)

Fu
si

on
m

od
ul

e No Fusion 57.8 69.6 54.2 51.5 58.3
Single-layer MLP Fusion 55.9 68.2 53.0 49.9 56.8
Cross-attention Modality Fusion 57.3 70.7 54.6 52.0 58.7
Self-attention Modality Fusion (Ours) 61.4 73.5 58.1 54.8 62.0

(B
)

In
di

ca
to

r
va

lu
e

Fixed to 0.5 52.2 70.9 50.6 50.8 56.1
Fixed to 1.0 50.3 67.7 47.1 48.5 53.4
Using Color Opacity 55.9 71.0 54.2 51.3 58.1
Smoothed Semantic Indicator (Ours) 61.4 73.5 58.1 54.8 62.0

(C
)

In
te

rp
ol

at
io

n
ra

tio
sa

m
pl

in
g Fixed to 0.5 58.8 72.6 56.4 52.5 60.1

Fixed to 0.75 56.3 71.0 50.5 51.7 57.4
Fixed to 1.0 55.2 68.3 48.5 51.0 55.8
Even Distribution 58.3 71.1 55.4 51.2 59.0
Gaussian Distribution 57.5 71.3 53.9 50.7 58.4
Beta Distribution (Ours) 61.4 73.5 58.1 54.8 62.0

Table 5: Ablation results of Camera View Blending on the LERF dataset, in terms of mIoU.
Rotation Translation SSIM ramen teatime figurines kitchen avg.

× × × 55.4 68.2 48.8 50.9 55.8
× ✓ × 56.6 69.5 49.7 51.5 56.8
× ✓ ✓ 58.3 70.9 51.1 52.4 58.2
✓ × × 55.7 69.3 49.6 51.7 56.6
✓ × ✓ 57.9 70.2 52.3 52.1 58.1
✓ ✓ × 59.6 71.8 53.4 53.2 59.5
✓ ✓ ✓ 61.4 73.5 58.1 54.8 62.0

4.4 EFFICIENCY ANALYSIS

Table 6: Efficiency analysis on LERF’s ramen.

Method Training
Time ↓ FPS ↑ # of

Gaussians ↓
LangSplat 96min 40 86k
GS-Grouping 130min 76 107k
GOI 73min 42 92k
Ours 65min 79 80k

Finally, we demonstrate that, despite the new
parameter l added to the Gaussians, our con-
tributions actually benefit the efficiency of the
resulting scene representation, i.e., in terms of
convergence speed and rendering time. As
shown in Tab. 6, our model outperforms the
other four baselines in efficiency. We attribute
this performance to our cooperative training
over augmented view/pose batches, and to the
increased ability of the Gaussians to accurately
fit both target modalities.

5 CONCLUSION

In this work, we propose 3D visual-language Gaussian splatting for semantic scene understanding,
addressing the neglect of language information in current 3DGS approaches. We propose a novel
cross-modal rasterizer that performs modality fusion followed by language-specific rasterization,
utilizing a smoothed semantic indicator to disable irrelevant Gaussians, e.g., for scenes with com-
plex light transport (reflections, translucence, etc.). Moreover, our camera-view blending technique
effectively mitigates over-fitting, ensuring semantic consistency across both existing and synthesized
viewpoints. Comprehensive experiments validate the effectiveness of our framework, demonstrating
significant improvements in open-vocabulary semantic segmentation compared to prior art. Future
research will explore further modalities that could enrich the scene representation (e.g., semantic
features from mixtures of foundation models), as well as extending this work to dynamic scenes.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Jaeyoung Chung, Jeongtaek Oh, and Kyoung Mu Lee. Depth-regularized optimization for 3d gaus-
sian splatting in few-shot images. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 811–820, 2024.

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-supervised nerf: Fewer views
and faster training for free. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12882–12891, 2022.

Francis Engelmann, Fabian Manhardt, Michael Niemeyer, Keisuke Tateno, and Federico Tombari.
Opennerf: Open set 3d neural scene segmentation with pixel-wise features and rendered novel
views. In The Twelfth International Conference on Learning Representations, 2024.

Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Scaling open-vocabulary image segmentation
with image-level labels. In European Conference on Computer Vision, pp. 540–557. Springer,
2022.

Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya
Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, et al. Conceptgraphs:
Open-vocabulary 3d scene graphs for perception and planning. In 2024 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 5021–5028. IEEE, 2024.

Mohamed Amine Guerroudji, Kahina Amara, Mohamed Lichouri, Nadia Zenati, and Mostefa Mas-
moudi. A 3d visualization-based augmented reality application for brain tumor segmentation.
Computer Animation and Virtual Worlds, 35(1):e2223, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Lan-
guage embedded radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 19729–19739, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

11



Published as a conference paper at ICLR 2025

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and Rene Ranftl. Language-driven
semantic segmentation. In International Conference on Learning Representations, 2022.

Kunhao Liu, Fangneng Zhan, Jiahui Zhang, Muyu Xu, Yingchen Yu, Abdulmotaleb El Saddik,
Christian Theobalt, Eric Xing, and Shijian Lu. Weakly supervised 3d open-vocabulary segmen-
tation. Advances in Neural Information Processing Systems, 36:53433–53456, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Computer
Vision–ECCV 2020, pp. 405–421, 2020.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1–15,
2022.
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A APPENDIX

A.1 FURTHER IMPLEMENTATION DETAILS

We complement the implementation details shared in Subsection 4.1: our solution is based on the
official implementations of 3DGS Kerbl et al. (2023) and LangSplat Qin et al. (2024) made publicly
available by their respective authors (c.f . links provided in their papers). Specifically, we edit the
LangSplat’s 3DGS model to add our novel smoothed indicator, as well as the CUDA rasterization
function for joint rendering of color and semantic modalities w.r.t. their respective opacity/indicator
control. As explained in the main paper, we also adapt the optimization script for joint learning over
both modalities and for integrating the proposed view-blending augmentation, applied to pairs of
batched input samples at every iteration. The learning rates applied to the different 3DGS attributes
are provided in Tab. 7.

Table 7: Learning rates applied to the parameters of the Gaussians.
Components Learning Rates
position 1.6× 10−4

scale 5.0× 10−3

rotation 1.0× 10−3

color features 5.0× 10−3

color opacity 5.0× 10−2

semantic features 5.0× 10−3

semantic indicator 5.0× 10−2

For a larger version of Sub-figs. 2.C-D representing our fusion module and augmentation module
respectively, we refer the readers to Fig. 9.

In the ablation on cross-modal rasterizer (Sec. 4.3), the cross-attention fusion tested in Tab. 4.A is
performed by using f i as query and ci as both key and value, whereas the adopted self-attention
performs cross-modality fusion by using ci ⊕ f i as query, key, and value.
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Figure 9: Larger version of Sub-figs. 2.C-D describing our fusion and augmentation modules.

Table 8: mIoU results on the Mip-NeRF 360 dataset.
Method Venue garden bonsai kitchen room avg.

Feature-3DGS CVPR’24 45.1 46.2 46.8 17.5 38.9
LEGaussians CVPR’24 48.5 50.4 49.3 55.7 51.0

LangSplat CVPR’24 50.1 59.1 50.0 62.6 55.5
GS-Grouping ECCV’24 42.0 43.1 42.2 49.1 44.1

GOI ACMMM’24 85.0 91.5 84.3 85.0 86.5
Ours 89.2 93.7 87.6 88.8 89.8

A.2 EVALUATION ON ADDITIONAL MIP-NERF 360 DATASET

A.2.1 QUANTITATIVE RESULTS.

Building on the work of GOI (Qu et al., 2024), we also utilize the Mip-NeRF 360 dataset (Barron
et al., 2022) for our evaluation. In this context, we employ APE (Shen et al., 2024) as the frozen
backbone to extract ground truth 2D features. The results, presented in Tab. 8, clearly demonstrate
the effectiveness of our proposed method, highlighting its ability to improve overall performance on
this dataset.

A.2.2 QUALITATIVE RESULTS.

In Fig. 10 and Fig. 11, we present qualitative comparisons on the Mip-NeRF 360 dataset (Barron
et al., 2022). The results demonstrate that our proposed method significantly outperforms the com-
peting approaches.

RGB LEGaussians LangSplat GOI Ours Ground Truth

'bicycle' 'tree''table cloth' 'keyboard'

Figure 10: Qualitative semantic segmentation comparisons on the bonsai scene of Mip-NeRF 360.

RGB LEGaussians LangSplat GOI Ours Ground Truth

'glass' 'book' 'wooden floor''desk' 'carpet'

Figure 11: Qualitative semantic segmentation comparisons on the room scene of Mip-NeRF 360.

A.3 ADDITIONAL ABLATION STUDIES

A.3.1 HIGH-LEVEL ABLATION OF PROPOSED CONTRIBUTIONS.

We first provide some high-level ablation studies Tab. 9 and Tab. 10, highlighting the impact of each
of our key contributions, i.e., our proposed modality fusion (“ modal. fus.”), semantic indicator (“

14



Published as a conference paper at ICLR 2025

Table 9: Ablation results of three key contributions on the LERF dataset, in terms of mIoU.
modal. fus. sem. indic. view blend. ramen teatime figurines kitchen avg.

× × × 53.3 66.9 46.3 45.3 53.0
× × ✓ 54.7 68.5 47.7 45.8 54.2
× ✓ × 55.4 67.2 47.8 48.9 54.8
✓ × × 54.8 67.5 48.2 48.6 54.8
× ✓ ✓ 57.8 69.6 54.2 51.5 58.3
✓ × ✓ 55.9 71.0 54.2 51.3 58.1
✓ ✓ × 55.4 68.2 48.8 50.9 55.8
✓ ✓ ✓ 61.4 73.5 58.1 54.8 62.0

Table 10: Ablation results of three key contributions on the 3D-OVS dataset, in terms of mIoU.
modal. fus. sem. indic. view blend. bed bench room sofa lawn avg.

× × × 92.7 94.3 94.1 90.5 96.0 93.5
× × ✓ 93.0 94.6 94.9 91.6 96.1 94.0
× ✓ × 93.6 95.1 95.0 92.2 96.0 94.4
✓ × × 93.9 95.2 95.3 91.8 96.2 94.5
× ✓ ✓ 94.5 95.6 95.3 93.0 96.5 95.0
✓ × ✓ 94.7 95.2 95.0 92.7 96.4 94.8
✓ ✓ × 92.9 94.6 95.2 91.5 96.1 94.1
✓ ✓ ✓ 96.8 97.3 97.7 95.5 97.9 97.1

Table 11: Ablation results of modality fusion on the 3D-OVS dataset.
Method bed bench room sofa lawn avg.

No Fusion 94.5 95.6 95.3 93.0 96.5 95.0
Single-layer MLP Fusion 93.1 94.7 94.4 91.7 96.0 94.1

Cross-attention Modality Fusion 94.7 95.9 95.6 93.2 96.6 95.2
Self-attention Modality Fusion (Ours) 96.8 97.3 97.7 95.5 97.9 97.1

Table 12: Ablation results of smoothed semantic indicator on the 3D-OVS dataset.
Method bed bench room sofa lawn avg.

Fixed to 0.5 93.4 94.9 95.1 92.0 95.4 94.2
Fixed to 1.0 91.5 92.8 90.9 87.6 92.8 91.1

Using Color Opacity 94.7 95.2 95.0 92.7 96.4 94.8
Smoothed Semantic Indicator (Ours) 96.8 97.3 97.7 95.5 97.9 97.1

sem. indic.”), and camera-view blending (“view blend.”) . The results demonstrate that all three
components are crucial in improving the overall performance.

A.3.2 ABLATION OF MODALITY FUSION

Table 11 presents an ablation study of modality fusion using the OVS-3D dataset. The results
indicate that self-attention modality fusion is the most effective method.

A.3.3 ABLATION OF SEMANTIC INDICATOR

Tab. 12 compares our proposed Smoothed Semantic Indicator against three alternatives: Fixed Value
at 0.5, Fixed Value at 1, and Using Color Opacity on the 3D-OVS dataset. The results demonstrate
that fixed values greatly under-perform compared to shared opacity derived from color rendering.
Moreover, the learnable Smoothed Semantic Indicator surpasses the use of color opacity signifi-
cantly. Thus, utilizing a learnable semantic indicator for semantic rasterization proves beneficial for
the open-vocabulary segmentation task.
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Table 13: Comparison between data-augmentation strategies, over downstream open-vocabulary
semantic segmentation (mIoU) on LERF scenes. Note that the original training sets contain between
124 and 297 images per scene. For the offline augmentation using 3DGS-rendered images and off-
the-shelf open-vocabulary models (SAM/CLIP), 120 novel views are added, with their viewpoints
sampled via interpolation.

Method ramen teatime figurines kitchen avg.
w/o data augmentation 53.3 66.9 46.3 45.3 53.0
w/ data from 3DGS & SAM/CLIP 55.2 68.1 49.5 48.2 55.3
w/ view blending 61.4 73.5 58.1 54.8 62.0

Table 14: Ablation results of camera view blending on the 3D-OVS dataset.
Rotation Translation SSIM bed bench room sofa lawn avg.

× × × 92.9 94.6 95.2 91.5 96.1 94.1
× ✓ × 93.5 94.9 95.5 92.2 96.2 94.5
× ✓ ✓ 94.8 95.2 96.3 93.5 96.4 95.2
✓ × × 94.0 94.8 95.7 92.3 96.3 94.6
✓ × ✓ 95.1 95.4 96.2 93.0 96.2 95.2
✓ ✓ × 96.2 96.8 96.7 94.6 96.4 96.1
✓ ✓ ✓ 96.8 97.3 97.7 95.5 97.9 97.1

Table 15: Ablation results of interpolation ratio sampling on the 3D-OVS dataset.
Method bed bench room sofa lawn avg.

Fixed to 0.5 95.8 95.9 95.6 93.7 96.5 95.5
Fixed to 0.75 94.1 95.2 95.0 92.5 95.4 94.4
Fixed to 1.0 93.4 94.0 94.4 90.8 95.2 93.6

Even Distribution 94.6 95.1 94.8 93.2 96.1 94.8
Gaussian Distribution 94.0 94.5 94.2 92.9 96.0 94.3

Beta Distribution (Ours) 96.8 97.3 97.7 95.5 97.9 97.1

Table 16: Ablation results of the parameters of Beta distribution on LERF data, in terms of mIoU.
Method ramen teatime figurines kitchen avg.
Beta(0.1, 0.1) 59.7 72.2 57.3 54.4 60.9
Beta(0.2, 0.2) 61.4 73.5 58.1 54.8 62.0
Beta(0.3, 0.3) 60.7 72.8 57.1 54.2 61.2
Beta(0.4, 0.4) 59.6 72.0 56.8 54.1 60.6

A.3.4 ABLATION OF CAMERA VIEW BLENDING

We first provide further justifications for our view-blending augmentation technique. Instead of our
mix-up strategy, one could apply the selected off-the-shelf language-feature extractor (e.g., CLIP)
to generate new pseudo-ground-truth data. This could be done either:

• online, i.e., using the model’s predicted color image as input to the language-feature ex-
tractor in order to generate the target language map to evaluate the one rendered by the
model.

• offline, i.e., using a pre-trained color-only 3DGS model of the scene to generate novel
views, pass these views to the feature extractor, and use all the resulting data to train the
language-embedded representation.

However, the computational cost of running the selected language-feature extractor (CLIP) is too
heavy for online usage, and the offline strategy also comes with several downsides.

First, one of our contributions is the joint CUDA-based rasterization function, which enables the fast
rendering of both modalities (color and language). While most prior works Qin et al. (2024) train
their model in two phases (a first phase to train a color-only 3DGS model, then a second phase to
extend it with language information), we leverage our custom rasterizer to efficiently optimize our
vision-language model in a single training phase (see Table 8 highlighting our training and rendering
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Table 17: Ablation results on different levels of disentanglement between the per-modality Gaussian
parameters, evaluated on the downstream open-vocabulary semantic-segmentation task on LERF.

Parameters shared across modalities Segmentation accuracy (mIoU)
position covariance opacity/indic. features ramen teatime figurines kitchen avg.

✓ ✓ ✓ × 55.9 71.0 54.2 51.3 58.1
(ours) ✓ ✓ × × 61.4 73.5 58.1 54.8 62.0

✓ × × × 47.8 65.6 42.3 40.9 49.2
× × × × 41.4 60.7 39.2 38.8 45.0

efficiency). The downside of this faster training is that, unlike prior solutions, we do not have access
to a pre-trained 3DGS model of the target scene. Adding a pre-training phase for the color-only
model would be a significant computational overhead. Second, the aforementioned strategy (i.e.,
rendering additional views using a pre-trained 3DGS) only adds a fixed/limited number of images to
the training set (c.f . offline rendering before the training starts), whereas our augmentation scheme
provides new randomized language maps at every training iteration (c.f . online augmentation).

We quantitatively compared the suggested offline augmentation strategy to ours in a new experi-
ment shared in Tab. 13, which confirms that our augmentation technique does indeed result in a
more robust representation w.r.t. downstream semantic tasks. Note that in future work, it would
be interesting to investigate how both strategies could be optimally interleaved (e.g., by pretraining
our model with mix-up augmentation; then, after some iterations, augmenting the training data with
3DGS/CLIP-rendered pairs).

Additionally, we present an ablation study of various camera view blending strategies in Tab. 14
using the 3D-OVS dataset, which includes three variants: Rotation, Translation, and SSIM. Our
proposed method is represented in the last row of the table. The results indicate that both Slerp-
based rotation blending and Lerp-based translation blending enhance performance. Furthermore,
the regularization provided by SSIM is crucial for managing the extent of blending.

In Tab. 15, we further present an ablation study on the interpolation ratio used within the camera
view blending scheme, performed on 3D-OVS data. Alongside fixed values of 0.5, 0.75, and 1.0,
we also include experiments utilizing Even Distribution (U(0, 1)), Gaussian Distribution (N(0, 1)),
and our Beta Distribution (Beta(0.2, 0.2)). The results indicate that a balanced ratio is essential for
achieving better representations, and that minor disturbances can also yield beneficial effects.

We also change the parameter of the Beta distribution in the blending loss Lb on the LERF dataset,
and the results are exhibited in Tab. 16, showing our selection is reasonable. It is important to keep
a relatively balanced ratio while introducing some disturbances.

A.3.5 ABLATION ON DISENTANGLEMENT LEVEL BETWEEN THE TWO MODALITIES

The main reason why prior 3DGS-based or NeRF-based language-embedded scene representations
subordinate the semantic modality to the visual one is that the 2D semantic maps are too sparse to
regress the underlying 3D scene geometry from them. The visual/shading information provided by
the corresponding color images is required for the 3D representation to properly converge. More-
over, for some downstream tasks such as 3D editing, it is necessary to maintain the same underlying
geometry across modalities. For these reasons, we decided to keep all spatial properties of the 3D
Gaussians (i.e., mean position and covariance) common to the two modalities, and to disentangle
only the modality-specific parameters (color features vs. language features, opacity vs. semantic
indicator).

We substantiate the above with an additional experiment, shared in Tab. 17. We evaluate multiple
variations of our solution over the open-vocabulary semantic segmentation task, with different levels
of disentanglement between the represented modalities: (1) a model similar to prior work, with only
the feature vectors specific to each modality; (2) our proposed solution, introducing per-modality
opacity/indicator; (3) a model further introducing per-modality covariance matrices; (4) a model
with completely separate Gaussians for each modality (similar to training a semantic-only 3DGS
model for the segmentation task). As expected, the semantic-only model (4) fails to effectively learn
the underlying 3D information and converges poorly, impacting the downstream results on unseen
views. Our solution performs the best out of the four.
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RGB LEGaussians LangSplat GOI Ours Ground Truth

'glass' 'cookie bag''sheep''napkin' 'plate' 'bear nose'

Figure 12: Qualitative semantic segmentation comparisons on the teatime scene from LERF.
RGB LEGaussians LangSplat GOI Ours Ground Truth

'Pikachu bag' 'camera''spatula''door handle' 'cat statue' 'waldo'

Figure 13: Qualitative semantic segmentation comparisons on the figurines scene from LERF.
RGB LEGaussians LangSplat GOI Ours Ground Truth

'baseball' 'rabbit''chicken''basket' 'wall' 'dinosaur'

Figure 14: Qualitative semantic segmentation comparisons on the room scene (3D-OVS dataset).
RGB LEGaussians LangSplat GOI Ours Ground Truth

'headphone' 'hand soap''hat''apple' 'lawn' 'stapler'

Figure 15: Qualitative semantic segmentation comparisons on the lawn scene (3D-OVS dataset).

A.4 ADDITIONAL QUALITATIVE RESULTS

A.4.1 RESULTS ON LERF DATA

Fig. 12 and Fig. 13 present additional semantic segmentation results on the LERF dataset, while
Fig. 16 displays further localization results for the same dataset. Our proposed method clearly
outperforms other approaches, particularly in reflective and translucent areas, where it more closely
aligns with the ground truth.

A.4.2 RESULTS ON 3D-OVS DATA

We present additional segmentation comparisons on the 3D-OVS dataset in Fig. 14 and Fig. 15.
Our proposed method demonstrates superior performance compared to other approaches, showing
greater alignment with the ground truth.

A.4.3 IMPACT OF SEMANTIC-INDICATOR CONTRIBUTION ON RELEVANCY MAPS

In Fig. 17, we share the relevancy maps (represented as heatmaps) corresponding to various open-
vocabulary prompts, comparing the results for color/semantic 3DGS models incorporating our novel
smoothed semantic (last row) versus baseline models re-using the color opacity during rasterization
of semantic data (mid row). The results clearly demonstrate the effectiveness of the semantic in-
dicator in uncovering semantic information, particularly in translucent and reflective objects. This
enhanced capability allows for a more nuanced understanding of the scene, highlighting how the
proposed method improves the semantic representations.
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Figure 16: Additional qualitative examples of object localization in the LERF dataset.

Figure 17: Qualitative impact of the proposed additional semantic indicator on 2D relevancy maps
w.r.t. various open-vocabulary prompts.

A.4.4 IMPACT OF CAMERA-VIEW BLENDING ON COLOR/LANGUAGE DISENTANGLEMENT

In Figs. 18 and 19, we demonstrate how camera-view blending helps alleviate over-fitting. Fig. 18
shows examples of multiple objects sharing the same colors. For example, in the first scene, the
scissors and spatula share the same color, leading part of the scissors to be misclassified as spatula
when camera-view blending is not applied. Similarly, in the second scene, the pot and table share
the same wooden texture, causing part of the pot to be misidentified as table by the model without
camera-view blending.

Fig. 19 shows examples of objects composed of multiple colors/textures. In the first example, the
camera and the spatula are composed of parts with different colors, and some of these parts end up
misclassified by the model without camera-view blending. The same can be observed in the second
example: the bike is composed of parts with varied appearances, and the model optimized without
our augmentation misses many of them; whereas the model optimized with correctly identifies the
whole object. The proposed technique enhances semantic consistency across diverse views through
regularization.
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RGB image w/ View Blendingw/o View Blending Ground Truth

ladle spatula refrigerator pot

dry flower flowertable pot ground

Figure 18: Examples of multiple objects sharing similar colors/textures (e.g., scissors and spatula in
example #1, pot and table in example #2).

RGB image w/ View Blendingw/o View Blending Ground Truth

spatula cat statue camera waldo

bike bonsai tree table cloth

Figure 19: Examples of objects composed of multiple colors/textures (e.g., multi-part camera and
spatula in example #1, bike in example #2).

A.5 ADDITIONAL QUANTITATIVE RESULTS

A.5.1 EXTENDED RESULTS ON 3D-OVS SCENES

In the main manuscript, we considered the five main scenes of the 3D-OVS dataset, following the
protocol adopted in LangSplat Qin et al. (2024). To match other experimental protocols, such as
FMGS’ one which include the additional table scene, we extend our evaluation to additional 3D-
OVS scenes, for a total of seven, i.e., adding results for table and snacks scenes. The results
shared in Tab. 18 confirm the effectiveness of our solution in terms of open-vocabulary semantic
segmentation.

Table 18: Evaluation on 3D-OVS dataset extended to additional scenes.
Method Venue bed bench room sofa lawn table snacks avg.

Feature-3DGS CVPR’24 83.5 90.7 84.7 86.9 93.4 92.4 88.6 88.6
LEGaussians CVPR’24 84.9 91.1 86.0 87.8 92.5 93.6 87.5 89.1

LangSplat CVPR’24 92.5 94.2 94.1 90.0 96.1 95.9 92.3 93.6
GS-Grouping ECCV’24 83.0 91.5 85.9 87.3 90.6 94.2 88.7 88.8

GOI ACMMM’24 89.4 92.8 91.3 85.6 94.1 95.6 89.3 91.1
FMGS IJCV’24 80.6 84.5 87.9 90.8 92.6 97.2 83.0 88.2
Ours 96.8 97.3 97.7 95.5 97.9 98.5 94.7 97.0
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A.5.2 EXTENDED EFFICIENCY ANALYSIS AND IMAGE QUALITY EVALUATION

We complement the Tab. 6 from the main paper, adding results on other LERF scenes. As shown
in Tabs. 19-22, our proposed method consistently outperforms others in terms of the training time,
FPS, number of Gaussians, and storage size.

Furthermore, we extend these experiments to measure the quality of the color images synthesized
by the trained Gaussian splatting models. The goal is to verify that, while this work focuses on
semantic accuracy, our solution does not sacrifice visual precision too much. PSNR and SSIM
results in Tab. 23 actually show that our model remains competitive on the visual modality, showing
the effectiveness of our modality balance. Moreover, comparing to the results from color-only 3DGS
(same as LangSplat as this method fixes all 3DGS parameters after its pre-training), we observe that
semantic learning does not have an obvious impact on color-modality metrics (i.e., image quality).

Table 19: Efficiency and image-quality analysis on LERF’s ramen.
Method Training Time ↓ FPS ↑ Gaussians # ↓ Storage Size ↓ PSNR ↑
LangSplat 96min 40 86k 180MB 28.5
GS-Grouping 130min 76 107k 230MB 29.2
GOI 73min 42 92k 198MB 29.0
Ours 65min 79 80k 175MB 29.2

Table 20: Efficiency and image-quality analysis on LERF’s teatime.
Method Training Time ↓ FPS ↑ Gaussians # ↓ Storage Size ↓ PSNR ↑
LangSplat 102min 42 152k 433MB 32.6
GS-Grouping 135min 75 187k 506MB 32.1
GOI 79min 44 170k 467MB 32.3
Ours 67min 78 144k 425MB 32.5

Table 21: Efficiency and image-quality analysis on LERF’s figurines.
Method Training Time ↓ FPS ↑ Gaussians # ↓ Storage Size ↓ PSNR ↑
LangSplat 121min 38 94k 190MB 27.9
GS-Grouping 130min 65 116k 245MB 26.5
GOI 104min 39 92k 222MB 27.7
Ours 89min 67 86k 187MB 27.9

A.5.3 PER-CATEGORY EVALUATION OF SEMANTIC INDICATOR CONTRIBUTION

In the following, we expand on our justification for introducing the semantic indicator l provided
in Sec. 3.2, especially Fig. 3. There, we highlight how re-using the opacity o (optimized w.r.t.
the color modality) to rasterize language maps—i.e., entangling visual properties and 2D language
projections—can harm the semantic accuracy for objects with complex visual properties, such as
translucent or highly-reflective objects. Here, we provide further empirical evidence for disentan-
gling the rasterization properties of the two modalities, especially for translucent/reflective object
categories. In Tab. 24 through Tab. 28, we present the mIoU results for each ground-truth category,
highlighting objects considered translucent or reflective (e.g., glass, metal bottle, etc.). We observe
how the introduction of the semantic indicator specially benefits these categories.

In other words: as shown in Fig. 3, translucent and reflective objects are mostly represented by 3D
Gaussians with low opacity values (in order to model their complex light transport). Using these low
opacity values to rasterize the language features cause unwanted artifacts. This is alleviated by our
semantic indicator. Our model correctly learns higher indicator values for Gaussians representing the
above-mentioned object categories (e.g., see large l− o results for the translucent glass or reflective
bottle/cup in Fig. 3). The improvement on downstream semantic tasks, e.g., open-vocabulary se-
mantic segmentation, is thus especially large for these categories. E.g., the segmentation of glass
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Table 22: Efficiency and image-quality analysis on LERF’s kitchen.
Method Training Time ↓ FPS ↑ Gaussians # ↓ Storage Size ↓ PSNR ↑
LangSplat 105min 43 142k 406MB 32.4
GS-Grouping 141min 77 177k 455MB 32.3
GOI 86min 45 162k 429MB 31.9
Ours 80min 78 135k 398MB 32.3

Table 23: Evaluation of color-image rendering quality on the LERF dataset.

Method ramen teatime figurines kitchen avg.
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LangSplat (3DGS) 28.5 0.87 32.6 0.83 27.9 0.76 32.4 0.85 30.4 0.83
GS-Grouping 29.2 0.85 32.1 0.82 26.5 0.74 32.3 0.84 30.0 0.81

GOI 29.0 0.83 32.3 0.83 27.7 0.77 31.9 0.82 30.2 0.81
Ours 29.2 0.86 32.5 0.83 27.9 0.76 32.3 0.86 30.5 0.83

is improved by 14.5% and sake cup by 14.3%, whereas the segmentation of non-translucent/non-
reflective is improved by 3.6% on average, c.f . Tab. 24.
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