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Abstract

In this paper, we proposed a dynamic contextual
newsvendor model that combines the significance of
feature information with a multi-period inventory con-
trol framework. To solve this model, we propose the
Contextual Value Iteration (CVI) algorithm and obtain
its convergence rate to the optimal solution as well
as sample complexity result. Our experimental results
demonstrate that our CVI is more efficient and practical
than value iteration for the vanilla Markovian Decision
Process (MDP).

1. Introduction
Inventory control plays a pivotal role in supply chain man-
agement. The newsvendor problem, a classic single-period
inventory control problem, has been a cornerstone in the
literature of operations research and management science
(Arrow et al. 1951, Scarf 1958, Karlin & Scarf 1959, Eppen
1979, Gallego 1993).

A significant extension of the single-period newsvendor
problem is the multi-period newsvendor problem, which ac-
counts for inventory control decisions over multiple periods.
This extension has been studied in various contexts such as
stochastic demands (Veinott 1965), perishable items (Nah-
mias 1975), and backlogged demands (Levi et al. 2006).

In today’s era of big data, decision-makers, or sellers, are
furnished with an extensive array of relevant information,
such as customer demographics, weather forecasts, seasonal-
ity factors, economic indicators, and past demands (McAfee
& Brynjolfsson 2013, Ban & Rudin 2019). This plethora
of information calls for an investigation into the incorpo-
ration of observed side information, or features, into the
decision-making process (Harrison & Zeevi 2011).
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While previous studies have delved into multi-period in-
ventory control and feature-based uncertainty reduction,
they have mostly considered these desirable properties sep-
arately. Specifically, some studies focus on multi-period
inventory control, neglecting the available features (Veinott
1965, Nahmias 1975, Levi et al. 2006), while others center
their attention on feature-based inventory models, concen-
trating solely on single-period inventory control (Agarwal
et al. 2011, Li et al. 2015, Cohen et al. 2016).

To better adapt to practical applications, this paper proposes
a dynamic contextual newsvendor model for a multi-period
inventory control problem with backlogged demands, which
incorporates observed side information, or features, into the
decision-making process. The model enables the seller to
consider the current inventory level and observed features
to determine the optimal order quantity for each time period.
This dynamic feature-based newsvendor model extends the
classic newsvendor problem, incorporating the observed
features into the decision-making process to make more in-
formed and efficient inventory control decisions (Gaur et al.
2005). In this work, we focus on the policy optimization
decision-making problem, aiming to find a policy (decision
rule) that minimizes the accumulated discounted cost by
providing an ordering decision for every feature value.

For this generalized problem formulation, we propose a
value iteration algorithm and prove that it converges to the
optimal solution at the rate O

(
𝛾𝐾 + 1

𝑛

)
(𝛾 ∈ (0, 1) is the dis-

count factor), which is exponentially fast with the number
of iterations 𝐾 and scales sublinearly with sample size 𝑛.
Compared with the value iteration algorithm for reinforce-
ment learning (Agarwal et al. 2022) which only uses state
and action samples to estimate state transition distribution,
we leverage the structure of the state transition as well as
the available samples of feature (contextual information) 𝑋𝑡
and demand 𝐷𝑡 to estimate the distribution of 𝑋𝑡 , 𝐷𝑡 , from
which we can obtain not only the transition distribution of
the inventory level (state) 𝑌𝑡 but also additional informa-
tion on the underlying dynamic process. As a result, the
sample approximation error in our convergence results from
estimating the joint distribution ℙ 𝑗𝑜𝑖𝑛𝑡 of 𝑋𝑡 , 𝐷𝑡 rather than
estimating the transition kernel of 𝑌𝑡 .



Dynamic Feature-based Newsvendor

2. Related Works
Alongside these developments, there is growing interest in
contextual Markov decision processes (CMDPs) and contex-
tual reinforcement learning (CRL) in recent years. CMDPs
extend the traditional MDP framework by incorporating
side information, or context, into the state space (Lazaric
2010, Abel et al. 2016). CRL can be approached using
either model-based or model-free methods, depending on
the availability of a model for the environment (Langford &
Strehl 2007, Tang & Singh 2010, Zhang et al. 2013, Silver
et al. 2014).

Returning to the main thread of our work, we bring new
advancements to the dynamic contextual newsvendor mod-
els and contextual reinforcement learning by introducing a
multi-period inventory control problem with backlogged de-
mands that incorporates observed features into the decision-
making process (Levi et al. 2018). Building on the exist-
ing body of work on contextual newsvendor problems and
CMDPs, our model provides a practical framework for un-
derstanding and solving such issues (Besbes & Zeevi 2015).

Notably, our work’s uniqueness lies in the problem for-
mulation that generalizes the inventory control problem in
several aspects. First, our model and analysis do not require
a specific form of the cost function 𝑞(𝑦) where 𝑦 denotes
inventory level, making our framework more versatile than
most newsvendor models (Gallego & Moon 1993). Sec-
ondly, the state transition rule in our model can be more
general, such as 𝑌𝑡+1 = 𝑔(𝑌𝑡 , 𝐴𝑡 , 𝐷𝑡 ) with a known transi-
tion mapping 𝑔. This transition rule is more informative
than those of MDPs, as it uses not only the state 𝑌𝑡 and the
action 𝐴𝑡 , but also the dynamic feature 𝑋𝑡 (Puterman 1994).

Moreover, for this generalized problem formulation, we pro-
posed a value iteration algorithm and proved its convergence
to the optimal solution at a rate that is exponentially fast
with the number of iterations and scales sublinearly with
the number of samples. We leveraged the structure of the
state transition and the available samples of feature (contex-
tual information) and demand to estimate the distribution
of these variables, providing additional information on the
underlying dynamic process. Consequently, the sample ap-
proximation error in our convergence results arises from
estimating the joint distribution of the feature and demand,
rather than the transition kernel of the state. This reflects
a significant improvement over the existing reinforcement
learning value iteration algorithm, which only uses state and
action samples to estimate the state transition distribution
(Agarwal et al. 2022).

Our problem and model differ from the traditional CMDP
framework in several key aspects. In our problem, the inven-
tory level 𝑌𝑡 and observed side information 𝑋𝑡 are used to
determine the optimal order quantity 𝐴𝑡 , whereas CMDPs

typically involve a context-dependent state space. More-
over, our contextual information 𝑋𝑡 varies with time point 𝑡,
which makes our framework more general and challenging
to learn, compared to CMDPs where all the time points
within a trajectory share the same contextual information
(Hallak et al. 2015). This distinction underscores the nov-
elty of our approach, as we provide a fresh framework for
understanding and solving dynamic contextual newsvendor
problems that incorporate backlogged demands.

The remainder of the paper is structured as follows. In
Section 3, we present a detailed problem formulation ofthe
feature-based newsvendor problem. Section 4 introduces
our proposed algorithm (CVI) to solve this feature-based
newsvendor problem. In Section 5, we offer an convergence
analysis of CVI algorithm. In Section 6, we validate our
theoretical results through a series of numerical experiments,
highlighting the effectiveness of our proposed algorithms in
various aspects. Finally, we conclude the paper in Section 7
with a summary of our contributions and potential directions
for future research.

3. Problem Setting
This work focuses on a dynamic, multi-period inventory con-
trol problem, often referred to as the multi-period newsven-
dor problem, with backlogged demands. This model not
only applies to inventory control but can also serve a variety
of applications such as capacity planning, supply chain man-
agement, and demand response in energy grids, underlining
its versatile utility.

In each time period, denoted by 𝑡, a seller is tasked with
deciding on a non-negative quantity 𝐴𝑡 ∈ A of inventory to
order. This decision is guided by the current inventory level
𝑌𝑡 ∈ Y and observed side information (also referred to as
feature) 𝑋𝑡 ∈ X ⊂ ℝ𝑑 . After the order quantity 𝐴𝑡 is set,
a random demand 𝐷𝑡 ∈ D is realized. For simplicity, we
consider finite sets A, Y , X , D. The inventory level then
transitions according to the rule 𝑌𝑡+1 = 𝑔(𝑌𝑡 , 𝐴𝑡 , 𝐷𝑡 ), where
𝑔 is a transition function. In traditional inventory control,
the transition function is typically given by 𝑔(𝑌𝑡 , 𝐴𝑡 , 𝐷𝑡 ) =
𝑌𝑡 + 𝐴𝑡 − 𝐷𝑡 (Puterman 1994), where the new inventory
level is the current level plus ordered inventory minus the
demand.

However, our model allows for a more general transition
function 𝑔. This expands the applicability of our problem
setting beyond conventional inventory control, accommodat-
ing contexts such as capacity planning where the transition
could consider factors like depreciation, supply chain man-
agement where transit delays might alter the function 𝑔, or
demand response in energy grids where the interaction of
supply, demand, and storage capacities can be modeled in a
complex fashion.
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Negative inventory levels in this model correspond to back-
logged demand, which is fulfilled when additional inventory
becomes available. We assume that the pairings (𝑋𝑡 , 𝐷𝑡 )𝑡
are independently and identically distributed according to
distribution ℙ.

We define 𝛾 ∈ (0, 1) as the discounting factor and denote
𝑐, ℎ, 𝑏 ≥ 0 as the unit costs of ordering, holding, and back-
logging items, respectively. The time-dependent cost, which
includes holding and shortage costs, is represented as 𝑞(𝑌𝑡 ),
where 𝑞 is the cost function. Many existing models require
a specific form of this cost function to develop effective
algorithms. Often, a piece-wise linear function is employed,
given by 𝑞(𝑦) = ℎmax(0,−𝑦)+𝑏max(0, 𝑦), where ℎ, 𝑏 ≥ 0
represent constants (Scarf 1958). However, our model does
not mandate specific forms of the cost function, thereby
offering increased flexibility and more comprehensive real-
world applications. This framework thus broadens the utility
and adaptability of our model, permitting it to cater to a mul-
titude of problem scenarios and settings.

The total expected cost to be minimized is

𝑉 𝑓 (𝑦) = 𝔼

{ ∞∑︁
𝑡=0

𝛾𝑡
(
𝑐𝐴𝑡 + 𝑞 [𝑔(𝑌𝑡 , 𝐴𝑡 , 𝐷𝑡 )]

)���𝑌0 = 𝑦

}
, (1)

where 𝐴𝑡 = 𝑓𝑡 (𝑌𝑡 , 𝑋𝑡 ).

Here the expectation is taken with respect to the randomness
for 𝐷𝑡 and possibly random action 𝐴𝑡 for 𝑡 = 0, . . . , 𝑇 − 1.
For simplicity, we consider the time-stationary policy, i.e.,
𝑓𝑡 ≡ 𝑓 for any 𝑡. By the convexity of the expectation with
respect to its input, we can assume that 𝑓 is a deterministic
transition function. Therefore, the problem above reduces
to the MDP problem

min
𝑓 :Y×X→A

𝔼

[
∞∑︁
𝑡=0
𝛾𝑡
(
𝑐𝑓 (𝑌𝑡 ,𝑋𝑡 )+𝑞 [𝑔(𝑌𝑡 , 𝑓 (𝑌𝑡 ,𝑋𝑡 ),𝐷𝑡)]

)]
. (2)

4. Algorithm
In this section, we propose Contextual Value Iteration (CVI)
algorithm (see Algorithm 1) to find the optimal value func-
tion 𝑉∗ (𝑦) := min 𝑓 𝑉 𝑓 (𝑦) for our proposed general dy-
namic contextual newsvendor model in Section 3. Com-
pared with value iteration for vanilla Markovian Decision
Process (MDP) which estimates the transition kernel of the
state 𝑦𝑡 without using contextual information 𝑥𝑡 , this CVI
algorithm averages over 𝑥𝑡 and estimates the conditional
distribution 𝑃(·|𝑥𝑡 ) of the demand 𝐷 which underlies the
transition kernel of 𝑦𝑡 .

The Contextual Value Iteration (CVI) Algorithm starts by
initializing the value function estimates 𝑉𝑘 (𝑦) for each state
𝑦 ∈ Y . It then obtains the data {𝑥𝑡 , 𝑑𝑡 }𝑇𝑡=1 ∼ (𝑋, 𝐷) and
estimates the conditional distribution ℙ(𝐷 |𝑋) using maxi-

Algorithm 1 Contextual Value Iteration (CVI) Algorithm

Initialize 𝑉0 (𝑦) = 0 for all 𝑦 ∈ Y .
Obtain data {𝑥𝑡 , 𝑑𝑡 }𝑇𝑡=1 ∼ (𝑋, 𝐷).
Estimate the conditional distribution ℙ(𝐷 |𝑋) using max-
imum likelihood estimation (MLE) from a distribution
family P , i.e., ℙ̂ := max𝑝∈P

∑𝑇
𝑡=1 ln 𝑝(𝑑𝑡 |𝑥𝑡 ).

for 𝑘 = 0, 1, . . . , 𝐾 − 1 do
for each 𝑦 ∈ Y do

𝑉 𝑘+1 (𝑦) =T̂ (𝑉 𝑘) (𝑦)

:=
1
𝑇

𝑇−1∑︁
𝑡=0

min
𝑎

𝔼𝐷∼ℙ̂( · |𝑥𝑡 )
{
𝑐𝑎+𝑞(𝑦, 𝑎, 𝐷)

+ 𝛾𝑉 𝑘 [𝑔(𝑦, 𝑎, 𝐷)]
��𝑥𝑡 }. (3)

end for
end for

mum likelihood estimation (MLE). This is performed over
a distribution family P .

The main iterative procedure is performed over 𝐾 iterations.
Within each iteration 𝑘 , the algorithm sweeps over each state
𝑦 ∈ Y and computes an updated value function 𝑉 𝑘+1 (𝑦) via
the Bellman optimality operator T (referenced as T̂ in the
algorithm to reflect the estimated transition probabilities).
This computation involves minimizing the action space and
taking an expectation over the estimated joint distribution
of the random variables 𝐷 and X.

The algorithm continues until the difference between con-
secutive value function estimates is less than a predefined
threshold 𝛿, ensuring that the algorithm ceases once the esti-
mates have adequately converged. After convergence, the
algorithm yields the optimal policy by mapping each state
to the action that minimizes the expected cost, incorporating
the value of subsequent states as computed by the final value
function.

5. Analysis
In this section, we analyze the convergence of Algorithm
1 and obtain its sample complexity. First, we will intro-
duce the following important notations for the convergence
analysis.

Given the data {𝑥𝑡 , 𝑑𝑡 }𝑛𝑡=1, denote ℙ̂1 as the empirical es-
timation of the true distribution ℙ1 of the feature 𝑋𝑡 , and
ℙ̂ as the MLE of the true conditional distribution ℙ(·|𝑥).
Denote M as the real environment where 𝑋𝑡 ∼ ℙ1 and
𝐷𝑡 ∼ ℙ(·|𝑋𝑡 ) and M̂ as the estimated environment where
𝑋𝑡 ∼ ℙ̂1 and 𝐷𝑡 ∼ ℙ̂(·|𝑋𝑡 ).

Under the estimated environment M̂, define the value func-
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tion as follows

�̂� 𝑓 (𝑦) :=𝔼𝑋𝑡∼ℙ̂1 ,𝐷𝑡∼ℙ̂( · |𝑋𝑡 ){ ∞∑︁
𝑡=0
𝛾𝑡
(
𝑐𝐴𝑡+𝑞 [𝑔(𝑌𝑡 , 𝑓 (𝑌𝑡 ,𝑋𝑡 ),𝐷𝑡 )]

)���𝑌0= 𝑦

}
. (4)

which is similar to the value function defined by eq. (1)
under the real environment M with the only difference in
the distribution of 𝑋𝑡 , 𝐷𝑡 . To facilitate the convergence
analysis, the Bellman operator T̂ defined by eq. (3) under
M̂ can be equivalenly written as follows.

T̂ (𝑉) (𝑦)=min
𝑓

𝔼(𝑋,𝐷)∼ℙ̂ 𝑗𝑜𝑖𝑛𝑡
{
𝑐 𝑓 (𝑦, 𝑋)

+𝑞
[
𝑔
(
𝑦, 𝑓 (𝑦,𝑋),𝐷

)]
+𝛾𝑉

[
𝑔
(
𝑦, 𝑓 (𝑦,𝑋),𝐷

)]}
(5)

where ℙ̂ 𝑗𝑜𝑖𝑛𝑡 (𝑥, 𝑑) := ℙ̂1 (𝑥)ℙ̂(𝑑 |𝑥) is the MLE of the joint
distribution of (𝑋, 𝐷). Similarly, under the real environment
M, we denote the optimal value function 𝑉∗ = inf 𝑓 𝑉 𝑓 (𝑦)
and define the Bellman operator T as follows.

T (𝑉) (𝑦) :=min
𝑓 ∈F

𝔼(𝑋,𝐷)∼ℙ 𝑗𝑜𝑖𝑛𝑡
{
𝑐 𝑓 (𝑦, 𝑋)

+𝑞
[
𝑔
(
𝑦, 𝑓 (𝑦,𝑋),𝐷

)]
+𝛾𝑉

[
𝑔
(
𝑦, 𝑓 (𝑦,𝑋),𝐷

)]}
(6)

where ℙ 𝑗𝑜𝑖𝑛𝑡 (𝑥, 𝑑) = ℙ1 (𝑥)ℙ(𝑑 |𝑥) is the true joint distribu-
tion of (𝑋, 𝐷).

We make the following assumption, which is widely used in
reinforcement learning.

Assumption 5.1. There exists constants 𝑎max, 𝑞max > 0
such that 0 ≤ 𝐴𝑡 ≤ 𝑎max, 0 ≤ 𝑞(𝑦) ≤ 𝑞max for all 𝑦 ∈ Y .

Then we obtain the following convergence result for Algo-
rithm 1.

Theorem 5.2. Under Assumption 5.1, the value function
𝑉𝐾 obtained by Algorithm 1 converges to the optimal value
function 𝑉∗ at the following rate with probability at least
1 − 𝛿 (𝛿 ∈ (0, 1)),

∥𝑉𝐾−𝑉∗∥∞ ≤ 2(𝑐𝑎max+𝑞max)
1 − 𝛾

(
𝛾𝐾+

log( |P 𝑗𝑜𝑖𝑛𝑡 |/𝛿)
𝑛(1 − 𝛾)

)
(7)

where |P 𝑗𝑜𝑖𝑛𝑡 | denotes the cardinality of P 𝑗𝑜𝑖𝑛𝑡 , the
candidate set of ℙ̂ 𝑗𝑜𝑖𝑛𝑡 . Consequently, for any 𝜖 >

0, we can achieve ∥𝑉𝐾 − 𝑉∗∥∞ ≤ 𝜖 using hyper-
parameters 𝐾 ≥ 1

ln(𝛾−1 ) ln
(

4(𝑐𝑎max+𝑞max )
𝜖 (1−𝛾)

)
and 𝑛 ≥

4(𝑐𝑎max+𝑞max )
𝜖 (1−𝛾)2 log( |P 𝑗𝑜𝑖𝑛𝑡 |/𝛿), which requires sample com-

plexity 𝑂
(
(1 − 𝛾)−3𝜖−1) .

Remark: The proof of Theorem 5.2 is in Appendix A.

The above convergence rate (7) consists of two terms. The
first term 2𝛾𝐾 (𝑐𝑎max+𝑞max )

1−𝛾 shows the exponential conver-
gence of value iteration to the optimal value function �̂�∗

under the estimated environment �̂�. The second term
2(𝑐𝑎max+𝑞max )
𝑛(1−𝛾)2 log( |P 𝑗𝑜𝑖𝑛𝑡 |/𝛿) results from the error in esti-

mating the joint distribution ℙ 𝑗𝑜𝑖𝑛𝑡 of (𝑋, 𝐷). Hence, the
distribution family ℙ 𝑗𝑜𝑖𝑛𝑡 should be selected such that on
one hand, it is representative enough so that the true solution
is close to ℙ 𝑗𝑜𝑖𝑛𝑡 . On the other hand, |P 𝑗𝑜𝑖𝑛𝑡 | should not be
to large to control the convergence rate (7).

An alternative way to solve the dynamic contextual newsven-
dor model in Section 3 is to formulate it as a vanilla MDP
with joint state (𝑌𝑡 , 𝑋𝑡 ), named as contextual-state MDP
(cMDP). In this MDP, the value iteration update becomes
𝑉 𝑘+1 (𝑦, 𝑥) = min𝑎 𝔼𝑌 ′∼ℙ̂𝑌 |𝑋𝑌𝐴 ( · |𝑥,𝑦,𝑎) ,𝑋′∼ℙ̂1

[𝑐𝑎 + 𝑞(𝑌 ′) +
𝛾𝑉 𝑘 (𝑌 ′, 𝑋 ′)] where ℙ̂𝑌 |𝑋𝑌𝐴 ∈ P𝑌 |𝑋𝑌𝐴 and ℙ̂1 ∈ P1 are ob-
tained using MLE. This update rule is similar to Algorithm
1 with the major difference that the value function 𝑉 𝑘 (𝑦) is
replaced with 𝑉 𝑘 (𝑦, 𝑥). Hence, the vanilla MDP requires to
compute 𝑉 𝑘 for each joint state (𝑦, 𝑥), which requires more
computation than Algorithm 1 given ℙ̂ 𝑗𝑜𝑖𝑛𝑡 . On the other
hand, we can obtain the same sample complexity result by
following the same proof logic. In addition, value iteration
for this vanilla MDP requires the joint state (𝑦, 𝑥) to have
finitely many values, while Algorithm 1 only requires 𝑦 to
have finitely many values. In a similar way, it can be proved
that the sample complexity of this value iteration algorithm
for MDP is almost the same as that in Theorem 5.2, with the
only difference that |P 𝑗𝑜𝑖𝑛𝑡 | is replaced by |P𝑌 |𝑋𝑌𝐴 | |P1 |.

For vanilla MDP with state 𝑌𝑡 , named as general MDP
(gMDP) (Puterman 1994), we can use the value iteration up-
date𝑉 𝑘+1 (𝑦) = min𝑎 𝔼𝑌 ′∼�̂�𝑌 |𝑌𝐴 ( · |𝑦,𝑎) [𝑐𝑎+𝑞(𝑌

′)+𝛾𝑉 𝑘 (𝑌 ′)]
where �̂�𝑌 |𝑌 𝐴 is the estimated transition kernel. The sam-
ple complexity is almost the same as that in Theorem 5.2,
with the only difference that |P 𝑗𝑜𝑖𝑛𝑡 | is replaced by |P𝑌 |𝑌 𝐴 |
where P𝑌 |𝑌 𝐴 is the function class to estimate the transition
kernel �̂�𝑌 |𝑌 𝐴.

6. Experiment
6.1. Experiment Setup

We adopt the experimental setup delineated in Zhu et al.
(2012), Zhang et al. (2021) for synthetic datasets generation.
Specifically, the feature-demand pair (𝑋, 𝐷) arises from the
high-dimensional quantile regression relation:

𝐷 = 1.7 ∗
[
sin

(
2⟨𝑋, 𝛽0⟩

)
+ 2 exp

(
− 16⟨𝑋, 𝛽0⟩2) + 1

) ]
+ 𝜖,

where 𝑋 ∼ N (0, Σ), with Σ𝑖, 𝑗 = (199/200) |𝑖− 𝑗 | , 𝑖, 𝑗 ∈
[𝑑] with dimensionality 𝑑 = 5000, 𝛽0 =

[200,−200, 199,−199, . . . , 1,−1, 0, . . . , 0] ∈ ℝ𝑑 , and
𝜖 ∼ N (0, 𝐼). The associated demand 𝐷 for each observed
feature is then rounded to the closest integer in the set {0, 1,
2, ..., 9}. The objective is to investigate the performance
of the system under different parameter settings. We
vary the holding cost parameter ℎ between 0.1 and 1, the
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backlogging cost parameter 𝑏 between 0.1 and 1, the
ordering cost parameter 𝑐 between 0 and 1, and the discount
factor parameter 𝛾 between 0.1 and 0.9. By exploring these
parameter ranges, we aim to gain insights into how different
cost factors and discounting impact the optimal inventory
control policy and overall system performance.

6.2. Baseline Models

For comparison, we utilized two baseline models: a gen-
eralized Markov Decision Process (gMDP)and a vanilla
contextual-state MDP formulation (cMDP).These models
served as benchmarks against our dynamic contextual MDP
approach, which was implemented with the value iteration
method and applied to a multi-period inventory control prob-
lem that accommodates backlogged demands.

6.3. Experimental Results

6.3.1. COMPUTATION TIME COMPARISON

Figure 1. Comparison of the value function convergence over time
for different models
We assessed the computational efficiency of the models by
measuring the convergence time to obtain an optimal policy.
Figure 1 illustrates the convergence comparison, demon-
strating that our CMDP model utilizing value iteration sur-
passes both the non-contextual and vanilla MDP models in
terms of convergence speed, thereby highlighting its com-
putational efficiency. Moreover, when compared with the
gMDP approach, our model, which incorporates the inven-
tory model, exhibits accelerated convergence. Furthermore,
in comparison with the cMDP approach, our model demon-
strates reduced computational complexity, as discussed in
Section 5, resulting in faster convergence.

6.3.2. CONVERGENCE RATE ANALYSIS

In addition to computation time, we also compare the con-
vergence rate in terms of iterations. The experimental results
in Figure 2 indicate that our proposed model has a faster
convergence rate compared to gMDP, which reveals the
advantage of incorporating contextual information in our
model. In addition, our model has comparable convergence

Figure 2. Comparison of maximum change of the value function
across iterations for different models

rate to cMDP. Note that Section 5 compares our model with
vanilla MDP, not cMDP.

6.3.3. POLICY CUSTOMIZATION

Figure 3. Optimal policies under varied contexts as generated by
our model

Our algorithm stands out from conventional models due to
its ability to leverage contextual information. Traditional
inventory management models typically ignore varying con-
texts and instead depend on a fixed policy across all sce-
narios. This lack of adaptability could potentially lead to
inefficient inventory decisions, such as stockouts or over-
stocking, and by extension, an increase in costs. Our algo-
rithm addresses these limitations by using context-specific
information, enabling the system to adapt to changing en-
vironmental conditions effectively and make more precise
policy recommendations.

As depicted in Figure 3, our algorithm generates policies
that are tailored to different contexts with different average
demand. The X-axis represents the initial inventory level,
while the Y-axis demonstrates the optimal order quantity
under different contexts represented by the colored lines.
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Let’s consider an illustrative example. Suppose we are deal-
ing with a product such as an umbrella, and the context
is the weather forecast. As we all know, the demand for
umbrellas would significantly vary depending upon whether
it’s a sunny or a rainy day. A rainy day, defined as context
𝑋15, would cause a shift in the demand distribution for um-
brellas, with an increased mean demand of 5.6 units. In
such a scenario, our algorithm would advise maintaining a
higher initial inventory level, thereby preparing for the surge
in demand. In contrast, on sunny days or in other weather
contexts with a lower demand for umbrellas, the algorithm
intelligently suggests maintaining a lower inventory level.
Such context-sensitive adjustments allow for efficient inven-
tory management and provide a hedge against unpredictable
demand fluctuations.

Overall, the ability to customize policies to fit specific con-
texts provides significant advantages in inventory manage-
ment. This contextual awareness of our algorithm offers a
dynamic solution that helps meet customer demand more
effectively while minimizing costs associated with unnec-
essary stockpile in scenarios of lower demand. This, in
essence, contributes towards building a more sustainable
and cost-efficient supply chain.

7. Conclusion
In our paper, we delved into the complex landscape of the
dynamic feature-based newsvendor problem within a multi-
period inventory control setting with backlogged demands.
Recognizing the importance of incorporating feature infor-
mation into a multi-stage decision-making process, we in-
troduced a versatile dynamic contextual newsvendor model.
In the face of the complex and dynamic nature of this model,
we developed the Contextual Value Iteration (CVI) algo-
rithm. Theoretical examination of this approach has not
only yielded insights into its convergence rate towards an
optimal solution but also allowed us to ascertain its sample
complexity. Furthermore, our experimental evaluations have
underscored the superior efficiency of our proposed CVI
when compared to the traditional value iteration employed
in the vanilla Markovian Decision Process (MDP). This per-
formance edge, combined with the robustness and flexibility
of the dynamic contextual newsvendor model, establishes
a compelling case for the use of our approach in practical
multi-period inventory control scenarios.

In the future, we will extend our dynamic contextual
newsvendor model to non-Markovian features, and to the
setting where there are two actions respectively with imme-
diate effect and delayed effect (Agarwal et al. 2020).
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A. Proof of Theorem 5.2
We will prove Theorem 5.2 in the following steps.

Step 1: Proving that 𝑉∗ = T (𝑉∗) and �̂�∗ = T̂ (�̂�∗)

For any policy 𝑓 , the Bellman equation of the value function 𝑉 𝑓 can be derived as follows.

𝑉 𝑓 (𝑦)
(𝑖)
=𝔼ℙ 𝑗𝑜𝑖𝑛𝑡

{ ∞∑︁
𝑡=0

𝛾𝑡
(
𝑐 𝑓 (𝑌𝑡 , 𝑋𝑡 ) + 𝑞 [𝑔(𝑌𝑡 , 𝑓 (𝑌𝑡 , 𝑋𝑡 ), 𝐷𝑡 )]

)���𝑌0 = 𝑦

}
=𝔼ℙ 𝑗𝑜𝑖𝑛𝑡

{
𝑐 𝑓 (𝑌0, 𝑋0) + 𝑞 [𝑔(𝑌0, 𝑓 (𝑌0, 𝑋0), 𝐷0)]

+ 𝛾
∞∑︁
𝑡=1

𝛾𝑡−1
(
𝑐 𝑓 (𝑌𝑡 , 𝑋𝑡 ) + 𝑞 [𝑔(𝑌𝑡 , 𝑓 (𝑦, 𝑋𝑡 ), 𝐷𝑡 )]

)���𝑌0 = 𝑦

}
=𝔼(𝑋,𝐷)∼ℙ 𝑗𝑜𝑖𝑛𝑡

[
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

]
+ 𝛾

∑︁
𝑦′∈Y

Pr(𝑌1 = 𝑦′ |𝑌0 = 𝑦)

𝔼ℙ 𝑗𝑜𝑖𝑛𝑡

{ ∞∑︁
𝑡=0

𝛾𝑡
(
𝑐 𝑓 (𝑌𝑡+1, 𝑋𝑡+1) + 𝑞 [𝑔(𝑌𝑡+1, 𝑓 (𝑌𝑡+1, 𝑋𝑡+1), 𝐷𝑡+1)]

)���𝑌1 = 𝑦′
}

(𝑖𝑖)
= 𝔼(𝑋,𝐷)∼ℙ 𝑗𝑜𝑖𝑛𝑡

[
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

]
+ 𝛾

∑︁
𝑦′∈Y

∑︁
𝑥,𝑑:𝑔 (𝑦, 𝑓 (𝑦,𝑥 ) ,𝑑)=𝑦′

ℙ 𝑗𝑜𝑖𝑛𝑡 (𝑥, 𝑑)𝑉 𝑓 (𝑦′)

=𝔼(𝑋,𝐷)∼ℙ 𝑗𝑜𝑖𝑛𝑡
[
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

]
+ 𝛾

∑︁
𝑥∈X ,𝑑∈D

ℙ 𝑗𝑜𝑖𝑛𝑡 (𝑥, 𝑑)𝑉 𝑓 [𝑔(𝑦, 𝑓 (𝑦, 𝑥), 𝑑)]

=𝔼(𝑋,𝐷)∼ℙ 𝑗𝑜𝑖𝑛𝑡
[
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)] + 𝛾𝑉 𝑓 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

]
(8)

where (i) uses eq. (1), (ii) uses Pr(𝑌1 = 𝑦′ |𝑌0 = 𝑦) = ∑
𝑥,𝑑:𝑔 (𝑦, 𝑓 (𝑦,𝑥 ) ,𝑑)=𝑦′ ℙ 𝑗𝑜𝑖𝑛𝑡 (𝑥, 𝑑). By taking infimum of the above

equality over 𝑓 ∈ F , we obtain that

𝑉∗ (𝑦) = inf
𝑓 ∈F

𝑉 𝑓 (𝑦)

= inf
𝑓 ∈F

𝔼(𝑋,𝐷)∼ℙ 𝑗𝑜𝑖𝑛𝑡
[
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)] + 𝛾𝑉 𝑓 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

]
= T (𝑉∗) (𝑦),

where the last step uses eq. (6).

Similarly, �̂�∗ = T̂ (�̂�∗) can be proved in the same way, with the only difference that the joint distribution of (𝑋, 𝐷) changes
from ℙ 𝑗𝑜𝑖𝑛𝑡 to ℙ̂ 𝑗𝑜𝑖𝑛𝑡 .

Step 2: Bounding ∥𝑉𝐾 − �̂�∗∥∞
For any 𝑦 ∈ Y and V functions 𝑉1, 𝑉2 : Y × X → A, we have���T̂ (𝑉1) (𝑦) − T̂ (𝑉2) (𝑦)

���
(𝑖)
=

��� inf
𝑓 ∈F

𝔼(𝑋,𝐷)∼ℙ̂ 𝑗𝑜𝑖𝑛𝑡
{
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)] + 𝛾𝑉1 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

}
− inf
𝑓 ∈F

𝔼(𝑋,𝐷)∼ℙ̂ 𝑗𝑜𝑖𝑛𝑡
{
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)] + 𝛾𝑉2 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

}���
≤ 𝛾∥𝑉1 −𝑉2∥∞,

where (i) uses the last step of eq. (5). Therefore, ∥𝑇 (𝑉1) − T̂ (𝑉2)∥∞ ≤ 𝛾∥𝑉1 − 𝑉2∥∞, i.e., T̂ is a 𝛾-contraction mapping.
Therefore, based on the Banach fixed-point theorem, the value iteration process (3) (i.e., 𝑉 𝑘+1 = T̂ (𝑉 𝑘)) converges
exponentially fast to the fixed point �̂�∗ of T , i.e.,

∥𝑉𝐾 − �̂�∗∥∞ ≤ 𝛾𝐾 ∥𝑉0 − �̂�∗∥∞ ≤ 2𝛾𝐾 (𝑐𝑎max + 𝑞max)
1 − 𝛾 , (9)
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where the second ≤ uses 𝑉0 = 0, �̂�∗ = inf 𝑓 ∈F �̂� 𝑓 , eq. (4) and Assumption 5.1.

Step 3: Bounding ∥�̂�∗ −𝑉∗∥∞
For any 𝑦 ∈ Y , we have

|�̂�∗ (𝑦) −𝑉∗ (𝑦) |
=|T̂ (�̂�∗) (𝑦) − T (𝑉∗) (𝑦) |

=

��� inf
𝑓 ∈F

𝔼(𝑋,𝐷)∼ℙ̂ 𝑗𝑜𝑖𝑛𝑡
{
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)] + 𝛾�̂�∗ [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

}
− inf
𝑓 ∈F

𝔼(𝑋,𝐷)∼ℙ 𝑗𝑜𝑖𝑛𝑡
{
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)] + 𝛾𝑉∗ [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

}���
≤ sup
𝑓 ∈F

���𝔼(𝑋,𝐷)∼ℙ̂ 𝑗𝑜𝑖𝑛𝑡
{
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)] + 𝛾�̂�∗ [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

}
− 𝔼(𝑋,𝐷)∼ℙ 𝑗𝑜𝑖𝑛𝑡

{
𝑐 𝑓 (𝑦, 𝑋) + 𝑞 [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)] + 𝛾𝑉∗ [𝑔(𝑦, 𝑓 (𝑦, 𝑋), 𝐷)]

}���
≤ sup
𝑓 ∈F

��� ∑︁
𝑋,𝐷

[ℙ̂ 𝑗𝑜𝑖𝑛𝑡 (𝑋, 𝐷) − ℙ 𝑗𝑜𝑖𝑛𝑡 (𝑋, 𝐷)]
[
𝑞(𝑦 + 𝑓 (𝑦, 𝑋) − 𝐷) + 𝛾

{
𝑉∗ (𝑦 + 𝑓 (𝑦, 𝑋) − 𝐷)

}]
+ 𝛾

∑︁
𝑋,𝐷

ℙ̂ 𝑗𝑜𝑖𝑛𝑡 (𝑋, 𝐷) [�̂�∗ (𝑦 + 𝑓 (𝑦, 𝑋) − 𝐷) −𝑉∗ (𝑦 + 𝑓 (𝑦, 𝑋) − 𝐷)]

+ 𝑐
∑︁
𝑋

[ℙ̂1 (𝑋) − ℙ1 (𝑋)] 𝑓 (𝑦, 𝑋)
���

Therefore, by taking maximum of the above inequality with respect to 𝑦 ∈ Y , we obtain that

∥�̂�∗ −𝑉∗∥∞ ≤
(
𝑞max +

𝛾(𝑐𝑎max + 𝑞max)
1 − 𝛾

)
∥ℙ̂ 𝑗𝑜𝑖𝑛𝑡 − ℙ 𝑗𝑜𝑖𝑛𝑡 ∥1 + 𝛾∥�̂�∗ −𝑉∗∥∞ + 𝑐𝑎max∥ℙ̂1 − ℙ1∥1

(𝑖)
≤ 𝛾∥�̂�∗ −𝑉∗∥∞ + 𝑐𝑎max + 𝑞max

1 − 𝛾 ·
√︂

2
𝑛

log( |P 𝑗𝑜𝑖𝑛𝑡 |/𝛿)

where (i) uses Theorem 21 of (Agarwal et al. 2020) and P 𝑗𝑜𝑖𝑛𝑡 denotes function class from which the MLE ℙ̂ 𝑗𝑜𝑖𝑛𝑡 is selected.
By rearranging the above inequality, we obtain that

∥�̂�∗ −𝑉∗∥∞ ≤ 2(𝑐𝑎max + 𝑞max)
𝑛(1 − 𝛾)2 log( |P 𝑗𝑜𝑖𝑛𝑡 |/𝛿). (10)

Step 4: Obtaining convergence results

By adding up eqs. (9) & (10), we prove eq. (7) as follows.

∥𝑉𝐾 −𝑉∗∥∞ ≤∥�̂�∗ −𝑉∗∥∞ + ∥𝑉𝐾 − �̂�∗∥∞

≤ 2𝛾𝐾 (𝑐𝑎max + 𝑞max)
1 − 𝛾 + 2(𝑐𝑎max + 𝑞max)

𝑛(1 − 𝛾)2 log( |P 𝑗𝑜𝑖𝑛𝑡 |/𝛿)

≤2(𝑐𝑎max + 𝑞max)
1 − 𝛾

(
𝛾𝐾 +

log( |P 𝑗𝑜𝑖𝑛𝑡 |/𝛿)
𝑛(1 − 𝛾)

)
When 𝐾 ≥ 1

ln(𝛾−1 ) ln
(

4(𝑐𝑎max+𝑞max )
𝜖 (1−𝛾)

)
= 𝑂

(
(1 − 𝛾)−1) and 𝑛 ≥ 4(𝑐𝑎max+𝑞max )

𝜖 (1−𝛾)2 log( |P 𝑗𝑜𝑖𝑛𝑡 |/𝛿) = 𝑂
(
(1 − 𝛾)−2𝜖−1) , the above

inequality yields that ∥𝑉𝐾 −𝑉∗∥∞ ≤ 𝜖 . The corresponding sample complexity is 𝐾𝑇 ≥ 𝑂
(
(1 − 𝛾)−3𝜖−1) .


