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Abstract

Boolean matrix factorization (BMF) is a combi-
natorial problem arising from a wide range of ap-
plications including recommendation system, col-
laborative filtering, and dimensionality reduction.
Currently, the noise model of existing BMF meth-
ods is often assumed to be homoscedastic; however,
in real world data scenarios, the deviations of ob-
served data from their true values are almost surely
diverse due to stochastic noises, making each data
point not equally suitable for fitting a model. In
this case, it is not ideal to treat all data points as
equally distributed. Motivated by such observa-
tions, we introduce a probabilistic BMF model
that recognizes the object- and feature-wise bias
distribution respectively, called bias aware BMF
(BABF). To the best of our knowledge, BABF is
the first approach for Boolean decomposition with
consideration of the feature-wise and object-wise
bias in binary data. We conducted experiments on
datasets with different levels of background noise,
bias level, and sizes of the signal patterns, to test
the effectiveness of our method in various scenar-
ios. We demonstrated that our model outperforms
the state-of-the-art factorization methods in both
accuracy and efficiency in recovering the original
datasets, and the inferred bias level is highly sig-
nificantly correlated with true existing bias in both
simulated and real world datasets.

1 INTRODUCTION

Boolean matrix is one type of data representation with bi-
nary entries that originates from a wide range of applications
including recommendation system, network analysis, collab-
orative filtering, and biological gene expression [Miettinen
and Neumann, 2020, Balasubramaniam et al., 2018, Ko-

Figure 1: BMF with homoscedastic noise model (A-C) and
bias aware BMF with column- and row-specific bias (D-H).
H illustrates a biased data case in purchase history data.

cayusufoglu et al., 2018, Zhao et al., 2020, Liang et al.,
2020]. The goal of Boolean matrix factorization(BMF)
is to discover hidden patterns from binary data, where it
finds a pair of low-rank binary matrices (X ∈ {0, 1}m×k,
Y ∈ {0, 1}k×n) (Figure 1A,B,C), whose Boolean product
approximates the original input matrix (A ∈ {0, 1}m×n),
i.e.,

A ∼ X ⊗ Y, Aij ∼ ∨kl=1Xil ∧ Ylj .

It has been known that under linear algebra, the input binary
matrix A can be of high rank, owing to the spike columns or
rows, which prevents the application of established methods
like SVD and PCA Wall et al. [2003]; while by applying
BMF, in the most optimal case, one can reduce the rank of
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the original matrix to its log level Monson et al. [1995]. Such
low-rank decomposition can capture the local dependency
between subsets of objects (row of A) and subsets of fea-
tures (column of A). Specifically, in each rank-1 submatrix
resulted from the decomposition into X,Y , i.e., X:l ⊗ Yl:,
it indicates a group of objects (i.e., nonzero entries in X:l)
sharing the same behavior on a set of features (i.e., nonzero
entries in Yl:). Here we denote the overall pattern matrix as
Z := X⊗Y . For the background error distribution, existing
BMF methods tend to assume homoscedastic error distri-
bution, or a universal flipping error with a flipping rate of
pf = p(Aij = 0|Zij = 1) = p(Aij = 1|Zij = 0). In other
words, the objective of BMF is to find the a decomposition
of A such that

A = (Z + E)mod 2 ; s.t.Z = X ⊗ Y, p(Eij = 1) = pf

where Z,E minimize a certain cost function τ(Z,A) =
|E| = |A ⊖ (X ⊗ Y )| (Figure 1A,B,C). Here, mod2 rep-
resents the modulo operation with a quotient of 2, and | · |
represents a certain norm measure defined by the cost func-
tion τ(·).

Unfortunately, the assumption of homoscedastic error distri-
bution is often violated when applied to complex real-world
data, where the individual objects or features may have its
specific bias pattern that result in heteroscedastic error dis-
tribution. Existing BMF methods fail to account for such
object- or feature-specific bias, which could severly impact
our ability to identify the true pattern Z, as the error matrix
E may display row- or column-specific bias [Wan et al.,
2020a]. Take the online transaction records data as an exam-
ple. The observed transaction records data from customers
(row) and items (column) are constituted by three compo-
nents: pattern, bias and flipping error (Figure 1D), meaning
that aside from stochastic error, to determine whether or
not a costumer would purchase a certain item, one should
not only look at the purchase pattern that he/she belongs
to (Figure 1E), but also his/her innate personal purchase
preferences and the popularity of the item (Figure 1G). For
example, a super-buyer, or someone with impulsive buying
habits, is very likely to make a purchase regardless of the
properties of the items; while a super-item, or a popular
item, is also likely to be purchased by users with different
characteristics (Figure 1B,H).

To mend the gap in binary data analysis, we propose BABF
(Bias Aware Boolean matrix Factorization), the first tool
to derive the latent binary pattern (Z), in the presence of
individual row-wise and column-wise bias (Figure 1D-H),
denoted as two real-valued probability vectors µ, ν, with
µi ∈ [0, 1]∀i ∈ {1, ...,m} and νj ∈ [0, 1]∀j ∈ {1, ..., n}.
These two vectors represent processes that are object- and
feature-specific, and are independent from the pattern gen-
eration process, or the homoscedastic background error. In
other words, they capture the individual bias generation
process that can’t be captured by the existing model.

In this work, our contribution is three-fold:

• BABF is the first method that considers a heteroscedas-
tic error model resulted from object- and feature-
specific bias, which is more suitable for modeling real
world data.

• BABF is a highly efficient algorithm in capturing the
low rank structures in binary matrix in the presence of
individual bias, and showed robust performance in de-
riving the true patterns across different data scenarios.

• As a byproduct of pattern discovery, BABF-derived
individual bias patterns are highly consistent with the
true bias pattern in simulated data and reasonable in
real world data, which may lead to practical interpreta-
tions depending on different application scenarios.

2 PROBLEM FORMULATION

In this section, we formally address our objective to derive
the latent Boolean patterns while considering the individual
row- and column-wise bias in a probabilistic framework.
We first introduce the notations used across this paper, then
report the existing probabilistic BMF framework in Ra-
vanbakhsh et al. [2016], Rukat et al. [2017], and then our
bias-aware BMF model, BABF1.

2.1 NOTATION

Matrix, vector and scalar values are denoted by uppercase
(A), bold lowercase (a) and lowercase (a) characters, re-
spectively. The upper-script represents the dimension of
the object (e.g. Am×n), while the lower-script indicates the
element indices (e.g. i-th row: Ai:, j-th column: A:j , and
ij-th element: Aij). | · | represents a certain type of norm
measure. Under Boolean arithmetic, the and, or, and not
operations are denoted by ∧, ∨, and ¬. Subsequently, the
Boolean element-wise sum and subtraction are defined as
X⊕Y = X∨Y and X⊖Y = (¬X∨Y )∧(X∨¬Y ). The
Boolean matrix product is defined as Z = X ⊗ Y , where
Zij = ∨kl=1Xik ∧ Ylj .

2.2 EXISTING HOMOSCEDASTIC BMF MODEL

Following Ravanbakhsh et al. [2016], Rukat et al. [2017],
each observed entry in a matrix A, i.e. Aij ∈ {0, 1}, is
assumed to be generated from the latent pattern Zij with a
homoscedastic error model with universal flipping probabil-
ity pf , where the likelihood function is defined as

p(Aij |Zij) =

{
1− pf , if Aij = Zij

pf , if Aij ̸= Zij

1code could be accessed at https://github.com/clwan/BABF



Figure 2: The factor graph representation of BMF and Bias-
aware BMF. Noted, figure A is adopted from Ravanbakhsh
et al. [2016]

p(A|Z) =
∏
i,j

p(Aij |Zij)

As Z = X ⊗ Y , individual Bernoulli prior is applied on
every element of X and Y , i.e.,

p(X) =
∏
i,l

p(Xij) p(Y ) =
∏
l,j

Yjl

Under this formulation, BMF is equivalent to a Maximum
A posterior (MAP) inference problem of X and Y that
maximizes the following overall likelihood function:

p(X,Y |A) ∝ p(X)p(Y )p(Z|X,Y )p(A|Z)

Following Ravanbakhsh et al. [2016], we assume iden-
tical Bernoulli prior on X,Y , represented by factor h,
e.g., h(Xil) = log(p(Xil)), h(Ylj) = log(p(Ylj)). Here,
p(Z|X,Y ) encodes the hard constraint that ensures the
equality of the Boolean product, i.e., Z = X ⊗ Y . By
introducing an auxiliary tensor W ∈ {0, 1}m×n×k, where
Wijl = Xil ∧ Ylj , Zij = ∨kl=1Wijl, this hard constraint is
dispersed onto each element in W , and can be reformulated
as an identity constraint as

p(Wijl|Xil, Ylj) = I(Wijl = Xil ∧ Ylj)

where for I, we have I(true) = 1 and I(false) = 0. Ob-
viously, if Wijl ̸= Xil ∧ Ylj , the factor f(Wijl, Xil, Ylj) =
log(p(Wijl|Xil, Ylj)) will be evaluated to be −∞. Finally,
factor g({Wijl},∀l ∈ {1, ..., k}) = log(p(Aij |Zij)) assess
the likelihood of observed variable Aij given the latent pat-
tern Zij . Overall, we have the factor graph representation
of the log-likelihood p(X,Y |A) (Figure 2A, adopted from
Ravanbakhsh et al. [2016]) as

log(p(X,Y |A)) =
∑
ij

h(Xij) +
∑
lj

h(Ylj)

+
∑
ijl

f(Wijl, Xil, Ylj) +
∑
ij

g({Wijl}l)

Owing to the NP-hard complexity of BMF [Stockmeyer,
1975, Gillis and Vavasis, 2018], it is intractable to infer the

MAP of the log-likelihood. Alternatively, focusing on the
marginal-MAP often yields good empirical success [Ravan-
bakhsh et al., 2016, Rukat et al., 2017], e.g.,

argmax
Xil

log(p(Xil|A)) =

argmax
Xil

∑
Xi′l′\Xil,Yl′j′

log(p(Xi′l′ , Yl′j′ |A))

Max-sum belief propagation and Gibbs sampling have been
reported to achieve good performance under such a strategy
[Ravanbakhsh et al., 2016, Rukat et al., 2017].

2.3 PROPOSED BIAS AWARE BMF MODEL

The probabilistic BMF model presented above provides a
good framework for us to account for the feature- and object-
wise bias. Compared with the homoscedastic setting, the
core advancement of our work is to consider the observed
data as generated from a process that is more realistic: aside
from stochastic error, or the homoscedastic error distribution
as in [Ravanbakhsh et al., 2016, Rukat et al., 2017], we
consider that the observed data is generated not only from
the latent pattern Z = X ⊗ Y , but also from independent
object/feature behavior process governed by a bias matrix
B ∈ {0, 1}m×n, where B is determined by a row- and
column-wise bias vector µ and ν in such way that

pBij
= p(Bij = 1) = µiνj

And the generation process of A is hence

A = B ⊕ ((Z + E)mod 2).

The new likelihood of each observations can be character-
ized in the following four scenarios:

p(Aij = 1|Zij = 0) = 1− (1− pf )(1− µiνj)

p(Aij = 0|Zij = 0) = (1− pf )(1− µiνj)

p(Aij = 1|Zij = 1) = 1− pf (1− µiνj)

p(Aij = 0|Zij = 1) = pf (1− µiνj)

The new posterior probability could then be written as

p(X,Y,µ,ν|A) =

p(X)p(Y )p(Z|X,Y )p(µ)p(ν)p(A|Z,µ,ν)

Factor graph representation of the new posterior is shown
in Figure 2B. Comparing to the existing probabilistic BMF
model introduced in 2.2, the new factor graph involves the
row- and column-wise bias vectors µ,ν. Given no prior
knowledge of the two variables, we assume a uniform prior
on µ,ν, thus factor b(µi), b(νj) evaluate to 0 in the graph.
And the likelihood factor g is also related to µ,ν in the
new formulation. In the next section, we introduce BABF
algorithm to derive the decomposition.



3 THE ALGORITHM OF BABF

While we assume A to be generated from two sources, la-
tent pattern Z and Bias B, these two sources themselves
can be considered as independent from each other. Such in-
dependence is also reflected on the factor graph (Figure 2B).
Though the likelihood factor g and the auxiliary variables
W are involved with both {X,Y } and {µ,ν}, the direct
message update of {X,Y } and {µ,ν} are independent with
each other. Conveniently, {X,Y,W} and {µ,ν,W} can be
considered as two individual systems to be treated sepa-
rately.

Algorithm 1: BABF, Bias Aware BMF
Inputs:A, k, pX , pY , pf , tall, tMF , tBI

BABF:
while t ≤ tall and not converged messages

µt+1,νt+1 ←Bias_infer(A,Xt, Y t, tBI )
Xt+1, Y t+1 ←
prob_BMF(A, k, pX , pY , pf ,µ

t+1,νt+1, tMF )
end

Bias_infer:
Z := X ⊗ Y
while t ≤ tBI and error_now < error_all

error_all := error_now

µt+1
i :=

∑
j∈{j0|Zij0

=0} Aijν
t
j∑

j∈{j0|Zij0
=0} νt

j
,∀i ∈ {1, ...,m}

νt+1
j :=

∑
i∈{i0|Zi0j=0} Aijµ

t
i∑

i∈{i0|Zi0j=0} µt
i

,∀j ∈ {1, ..., n}
error_now :=∑

(i,j)∈{(i0,j0)|Zi0j0
=0}(Aij − µiνj)

2

end

prob_BMF:
p(Aij |Zij)← calculate based on µ,ν.
Initialize Ψ0

ijl, Ψ̂
0
ijl, Φ

0
ijl, Φ̂

0
ijl, Γ

0
ijl, Γ̂

0
ijl,∀i, j, l

while t ≤ tMF and not converged messages
Φt+1

ijl := max(Γt
ijl + Ψ̂t

ijl, 0)−max(Ψt
ijl, 0)

Ψt+1
ijl := max(Γt

ijl + Φ̂t
ijl, 0)−max(Φt

ijl, 0)

Φ̂t+1
ijl := log(

1−pf

pf
) +

∑
j′ ̸=j Φ

t
ij′l

Ψ̂t+1
ijl := log(

1−pf

pf
) +

∑
i′ ̸=i Ψ

t
i′jl

Γt+1
ijl := min(log(p(Aij |1)

p(Aij |0) +∑
l′ ̸=l max(Γt

ijl′)),max(0,−maxl′ ̸=l Γ̂
t
ijl′))

Γ̂t+1
ijl := min(Φ̂t

ijl + Ψ̂t
ijl, Ψ̂

k
ijl, Φ̂

t
ijl)

end

Xil =

{
1, if log( 1−pf

pf
) +

∑
i Φ

t
ijl > 0

0, otherwise.

Ylj =

{
1, if log( 1−pf

pf
) +

∑
i Ψ

t
ijl > 0

0, otherwise.

Outputs: X,Y,µ,ν

Under this formulation, fitting pattern {X,Y } while given
B is an NP-hard problem as it can be regarded as traditional
BMF without the influence of B, i.e.,

A · (¬B) = ((Z + E)mod 2) · (¬B).

Or probabilistically, while given B, this problem could be
reduced to weighted graph maximum cut, which is also NP
hard Stockmeyer [1975], Gillis and Vavasis [2018]. Over-
all, we can claim bias-aware BMF is at least as hard as
traditional BMF. Therefore, it is also an NP hard problem.
To solve this problem, we still turn to find the marginal-
MAP, which corresponds to optimally estimating individual
variables, while the other variables are marginalized.

Here we introduce BABF in algorithm 1. BABF has two
core components, prob_BMF and Bias_infer, correspond-
ing to the derivations of {X,Y } and {µ,ν}. Other than
the input data A, BABF takes the pattern number param-
eters k, the Bernoulli prior of X,Y , filling error pf and
the maximum iterations for the overall algorithm as well as
core components (tall, tMF , tBI ) as input, and outputs the
decomposition X,Y and the bias vectors µ,ν.

3.1 PROB_BMF

When fixing bias vectors µ,ν, the only differences between
bias aware BMF and the existing BMF model introduced
in 2.2 is that each likelihood factor gij would evaluate to
different probability assignments by referencing µi,νj . Fol-
lowing Ravanbakhsh et al. [2016], we utilize the max-sum
belief propagation (BP) strategy to approximate the overall
likelihood in prob_BMF. Correspondingly, the message Γijl

that propagates the likelihood information to auxiliary vari-
able W would be different from Ravanbakhsh et al. [2016]
with individualized probabilities. We introduced detailed
derivations of the message passing process in the Bias aware
factor graph (Figure 2B) in the Appendix.

3.2 BIAS_INFER

The inference of the marginal-MAP of µ,ν is a non-trivial
task even with accurate pattern information Z, as for any
bias variable µi, any observation related to this variable is
related to a different νi, and vice versa. To circumvent this
computational challenge, we adopted two modifications. 1)
We only consider the observations that are not covered by
pattern Z for bias inference. We argue the pattern related ob-
servations have marginal contribution to the bias inference
and could be omitted. 2) Instead of deriving exact MAP, we
treat this as an optimization problem, where we could utilize
conventional loss functions to achieve the same objective
that optimize the difference between µ,ν and background
information. Inspired by Wan et al. [2020a], we apply a
modified mean square loss. Take µi as an example, the loss



Figure 3: Performance comparison on simulated data

function takes the form of

Ωi =
∑

j∈{j0|Zij0
=0}

νt
j(Aij − µt

i)
2

The most important benefit of this modified loss is that
it ensures each probability µi would be from the inter-
val [0,1], and it still considers the impact of νj on each
observation Aij . Moreover, it is with high computational
feasibility as the updated µt+1

i could be easily derived

as µt+1
i :=

∑
j∈{j0|Zij0

=0} Aijν
t
j∑

j∈{j0|Zij0
=0} νt

j
. And similarly, νt+1

j :=∑
i∈{i0|Zi0j=0} Aijµ

t
i∑

i∈{i0|Zi0j=0} µt
i

. Here, we implement this strategy in

Bias_infer. Empirically, it is robust for the bias inference
across different scenarios, which we will introduce in detail
in the Experiments section.

3.3 COMPLEXITY ANALYSIS

The computational cost of BABF depends on the core mod-
ules. For each iteration, prob_BMF will visit all variables in
{X,Y,W}, and the calculation of the message update is at
constant cost. Hence, the cost of prob_BMF is bounded by
the size of latent variables, i.e. O(mnk). The consideration
of mean square loss enables high computational feasibility
to update the bias, therefore, in each iteration of Bias_infer

the computation is linear with data size, i.e., O(mn). Over-
all, the computational cost of each iteration of BABF is
O(mnk).

4 EXPERIMENTS

We evaluate the performance of our bias aware model on
both synthetic and real world datasets. We first introduce
related methods for BMF and report the benchmark perfor-
mance across different simulated data scenarios. We then
highlight the practical use of BABF in our analysis of a
movielens and gene expression data.

4.1 RELATED WORK

In addition to the probabilistic methods introduced above
[Ravanbakhsh et al., 2016, Rukat et al., 2017], different
heuristic methods have been developed to solve the BMF
problem. Previously Wan et al. [2020a] systematically dis-
cussed the bias issue in BMF, but their focus is to explore
the identifiability of the patterns in the presence of bias in
the noise model. For the rest of the methods, none of them
considered the heteroscesdastic issue of the error distribu-
tion. Among these methods, ASSO represents a series of
work from Miettinen et al [Miettinen et al., 2008, Miettinen
and Vreeken, 2011, Karaev et al., 2015, Tatti and Miettinen,



Figure 4: BABF inferred bias is highly correlated with ground truth bias

2019]. ASSO first generates a pool of column bases from
row-wise correlation matrix, and iteratively searches for the
best column and row bases following a pre-defined cost
function. PANDA is another series of heuristic methods that
embed the cost function in the search of top_k core patterns
[Lucchese et al., 2010, 2013]. Formal Concept Analysis
also showed empirical success in BMF [Belohlavek and Tr-
necka, 2015, 2018, Belohlavek et al., 2019]. More recently,
Wan et al. [2020b] proposed a fast algorithm by formulating
submatrix pattern identification in a geometric perspective.
Kovacs et al. [2020] formulates BMF as an integer program
problem and utilizes column generation framework to search
for the best solutions. Here, we benchmark the performance
of BABF with MP [Ravanbakhsh et al., 2016], CG [Kovacs
et al., 2020], MEBF [Wan et al., 2020b], ASSO [Miettinen
et al., 2008] and PANDA [Lucchese et al., 2010] and be-
lieve that this set of methods represent the state-of-the-art
performance of BMF in different perspectives.

4.2 BENCHMARK ON SIMULATED DATA

We simulate an observed binary matrix A by the following
model:

A = B ⊕ ((Z + E)mod 2).

Here, B,Z,E represent the column-/row-wise bias matrix,
pattern matrix and error matrix respectively. Each entry in
B,E ∈ {0, 1}m×n is simulated to follow Bernoulli dis-
tribution with success probabilities p(Bij) ∝ µiνj and
p(Eij) = pf . The latent pattern matrix is generated by
Z = X ⊗ Y , where X ∈ {0, 1}m×k, Y ∈ {0, 1}k×n,
and entries in X,Y also follow Bernoulli distributions with
success probabilities p(Xil) = pX and p(Ylj) = pY . To
comprehensively evaluate the methods, we generate var-
ied data scenarios by considering different pattern numbers
(k ∈ {3, 4, 5}), and flipping error (pf ∈ {0, 0.05}). We
also use different levels of pX , pY to simulate pattern ma-
trices of different density levels, where low density has
pX = pY = 0.2 while high density has pX = pY = 0.4.
The bias level is controlled by µ,ν. In case of low bias,

we sample every µi, νj uniformly from [0.1, 0.8], which
yields a overall bias level of ¯pBij ∼ 0.2. For the high bias
case, µi, νj is sampled from [0.3, 0.9] that results an over-
all bias level of ¯pBij

∼ 0.36. Altogether, we simulated 24
data scenarios. For each scenario, we set m = n = 100 and
simulate 20 replicates.

4.2.1 Performance on reconstruction error

We report the benchmark results in Figure 3. We utilize
default setting of the benchmarking methods in our analysis.
As for BABF, we assume the prior of X,Y as Bernoulli
distribution with pX = pY = 0.5 and a flipping error of
pf = 0.01. The maximum iterations of tall, tBI , tMF are
set at 20, 5 and 50.

For each method, we compare their performance using re-
construction_error, i.e, |Ẑ − Z| as evaluation metric. Here,
| · | represents the L1 norm, and Ẑ denotes the derived
pattern matrix by each method. Lower reconstruction error
indicates a better performance. It is anticipated that heuristic
approaches like CG, MEBF, ASSO, PANDA would show
varied performances respect to different data scenarios as
different bias level would result in different impact on their
underlying heuristic assumptions. Probabilistic method MP
showed an overall stable performance but still struggles
with high bias level. As expected, BABF achieves the most
desirable performance with different bias levels, which high-
lights the importance to consider individual bias. Addition-
ally, BABF revealed its robustness towards different data
scenarios.

4.2.2 Evaluate inferred bias

We explore whether BABF could reliably recover the bias
levels µ,ν. Here, we denote BABF inferred row- and
column-wise bias as µ̂, ν̂. Since it is easy to find a scalar
value r, s.t., µi · νj = rµ̂i · 1

r ν̂j , we do not seek to di-
rectly compare the difference of values between µi, µ̂i,
or νj , ν̂j , but instead analyze the correlation between the



Figure 5: Performance comparison on simulated data with-
out individual bias

inferred bias and true bias for every input matrix A, i.e.,
corr(µ, µ̂), corr(ν, ν̂). We report the correlation results
across different data scenarios with pattern number (k = 4)
in Figure 4. Every scenario has 20 replications. Figure 4A,B
show the row- and column-wise bias across different data
scenarios. In most cases, BABF inferred bias achieved over
0.8 correlation with ground truth. Even in the worst case,
the correlation is as high as 0.4. To give a more intuitive
idea, we reveal the inferred bias and true bias of the first
input matrix from each scenario as an example in Figure
4C,D. The high correlation suggests desirable performance
of BABF to infer the individual bias associated with the
objects and the features.

4.2.3 Performance on data without bias

Next, we wish to test how BABF performs on data without
bias ( µi = νj = 0,∀i, j). In other words, we would like
to demonstrate that BABF works well in scenarios with
or without bias. In Figure 3, we report the reconstruction
error of the methods across 12 data scenarios all without
background bias. In general, BABF and MP showed reliable
performance. In some high density cases, BABF performs
slightly worse than MP, but the difference is only marginal.
Overall, BABF showed robust performance towards differ-
ent data scenarios.

Figure 6: Model selection of pattern number k

Table 1: Reconstruction error on different stopping criteria

tBI

tMF 10 25 50 100

5 56.1(242.0) 2.2(5.5) 2.2(5.5) 33.0(.6)
10 54.6(230.5) 2.2(5.5) 2.2(5.5) 2.2(5.5)
15 41.9(180.1) 57.6(241.0) 2.2(5.5) 2.2(5.5)

4.2.4 Selection of the pattern number

In our setting, the pattern number k is the most important
hyper-parameter that directly determines the number of vari-
ables in the factor graph. Under the probabilistic framework,
we could utilize different statistical metrics to select the
most optimal pattern numbers. Here we test three metrics, in-
cluding cross validation accuracy (CV), Akaike information
criterion (AIC) and Bayesian information criterion (BIC)
for the model selection of k. For CV, we use 90% of the
data for fitting and the rest 10% for testing [Kohavi et al.,
1995]. For AIC and BIC, we utilize the formulation in Sto-
ica and Selen [2004]. For all the methods, we evaluate the
metrics on k = {2, ..., 6} and select the best k following
their formulation. We tested above metrics across all 24 data
scenarios and report the pattern number selections results in
box plots (Figure 6). Here red dash marked the ground truth
of k. Overall, CV showed consistently accurate selection of
pattern number, with only marginal derivations for a small
number of cases. AIC and BIC are impacted by the size of
input data given a rather large number of variables in the
model. Particularly, BIC tends to select a small k for the
model.

4.2.5 Testing on the stopping criteria

The optimization scheme of our bias aware BMF alterna-
tively fits the bias and the pattern matrices: fitting pattern
while giving bias corresponds to the algorithm component
prob_BMF, and fitting bias while given pattern informa-
tion corresponds to the algorithm component Bias_infer. At
each iteration, we provide the option to set the maximum
number of runs per step for prob_BMF and Bias_infer
(corresponding to tMF and tBI in algorithm 1). In setting
the correct tMF and tBI , our goal is to find a rather "op-
timal" point that will not lead to premature overfitting of
pattern or bias before the final convergence. We checked 12



Figure 7: Goodness of fitting on the decomposition for real-world data

different combinations where tMF = 10, 25, 50, 100 and
tBI = 5, 10, 15. For every combination, the maximum steps
are set to 10000 to ensure convergence. We expect that tMF

in general needs to be higher than tBI as the factor graph of
prob_BMF is denser than Bias_infer. In table 1, we report
the mean(standard derivation) reconstruction error of one
scenario: high density, low bias, with noise and k = 3. As
expected, it is not always higher the better for tMF or tBI ;
instead, tMF and tBI need to be balanced to achieve small
reconstruction error. Similar results can be seen across dif-
ferent scenarios. In practice we set tMF = 50 and tBI = 10
as default.

4.3 ANALYSIS ON REAL-WORLD DATA

We tested the performance of BABF on three real world
datasets, movie lens data from Harper and Konstan [2015]
and two biological gene expression datasets, head and neck
cancer and melanoma single cell RNAseq (scRNA-seq) data
from Puram et al. [2017], Tirosh et al. [2016]. The choice of
the datasets as well as the pre-processing procedures follow
previous works [Rukat et al., 2017, Wan et al., 2020c]. In
movie lens data, we have 943 users that rated/not rated
1682 films. In head and neck, and melanoma data, we have
5902 cells that express/not express 7954 genes, and 4486
cells that express/not express 8210 genes, respectively. For
each dataset, we first identify the number of patterns k ∈
{2, 20} through cross validation, which yield 5 patterns in
movie lens, 3 patterns in melanoma and 6 patterns in head
and neck. BABF is then applied to retrieve X̂, Ŷ , µ̂ and ν̂
following the specific pattern number for each dataset. We
mainly focus on addressing two questions: 1. Would the
consideration of individual bias benefit our interpretation of
real world data? 2. Does the inferred bias carry any practical
meaning?

4.3.1 Data interpretation

Since the underlying true patterns of real world data is not
accessible, instead of comparing decomposed pattern Ẑ with
input matrix A, where A is constituted of not only the true

pattern matrix Z but also likely noise matrix E and bias ma-
trix B, we use a likelihood metric. Specifically, we evaluate
the goodness of model fitting as the overall likelihood, where
a larger likelihood indicating a better fitting of the data. We
compare the likelihood of BABF with the probabilistic BMF
method MP. Similar to Ravanbakhsh et al. [2016], Rukat
et al. [2017], we investigate the methods’ performance by
only keeping a certain percentage of the observations, called
observation level, while masking the rest of the observa-
tions. At every observation level, we replicate the analysis
for five times and report the mean log-likelihood value. We
report the likelihood results in Figure 7A,B,C. On all three
datasets, BABF showed higher overall likelihood compared
with MP, which suggests that the individual bias assumption
is more realistic for real-world data, that movie viewers or
cells could be vastly different from each other even in the
same pattern group, and such bias is independent with the
latent pattern. This advocates the necessity to consider the
individual bias in the BMF problem.

To further test the interpretability of the patterns, we exam-
ined how the patterns coincide with cell type labels in the
two expression datasets, and the movie genres in the movie-
lens dataset, using adjusted rand index, where a higher value
corresponds to a greater similarity [Rand, 1971]. Figure 7D
shows the peformance of BABF and MP on three datasets.
Though both BABF and MP perform poorly on movie lens
data, the decomposition from BABF showed higher similar-
ity with given labels in both biological data, which partially
revealed a better decomposition of BABF compared with
MP.

4.3.2 Practical meaning of inferred bias

The individual bias assumption allows BABF to outperform
or have comparable performance with the existing BMF
methods, whether such bias is present or not. Here, we want
to understand whether the inferred bias could reflect certain
practical meaning. Inspired by Wan et al. [2020a], in movie
lens data, we want to explore the inferred bias on individual
user with their taste on movie types. In our hypothesis, if
a user only focus on certain genres of movie, then their



Figure 8: Interpretation analysis on inferred bias

behavior could be majorly explained by pattern information
Z, while with less effect from B. Here we design the focus
index to quantify such effect. Specifically if a user watched a
movies in c categories, i.e., a = b1+ ...+bc, the focus index
of this user is calculated as focus_index :=

∑c
i=1(

bi
a )

2.
As anticipated, inferred bias is negatively correlated with
the focus index (Figure 8A, corr = −0.19, p = 3.67e −
6). This significant negative correlation revealed that the
inferred bias partially revealed certain taste of the movie
viewers.

In the case of gene expression, we focus on two groups of
genes, housekeeping genes and non-housekeeping genes
[Eisenberg and Levanon, 2013]. As the name revealed,
housekeeping genes are to maintain the basic activities of
the cells, that each cell, regardless of their cell types, will all
express these genes. On the other hand, non-housekeeping
genes will be the ones that reflect the cell-type specificity.
For example, T cells will express T cell marker genes like
CD3D,CD3E [Call et al., 2002, Wan et al., 2019]. Figure
8B,C are the density plot visualization of the inferred bias
on housekeeping and non-housekeeping genes. As expected,
housekeeping genes have a much bigger effect from bias as
their expression behavior is not related with any patterns. On
the other hand, since the non-housekeeping genes revealed
the specificity of the cell, its behavior is largely covered by
the latent pattern, such that we witness a small bias in µ̂ on
both datasets.

5 CONCLUSION

In this paper, we propose a bias aware model, BABF, which
is the first algorithm to derive Boolean matrix decomposition
in the presence of individual object- and feature-wise bias.
Compared with other methods, BABF is a highly efficient
approach, which not only results in good approximation
of the true binary pattern with low reconstruction error,
but also infers individual bias with high consistency with
ground truth. The bias inference from BABF could lead
to interesting interpretations depending on different data
scenarios.
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