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ABSTRACT

In-Context Learning (ICL) and Instruction Tuning (IT) are two primary paradigms
of adopting Large Language Models (LLMs) to downstream applications. How-
ever, they are significantly different. In ICL, a set of demonstrations are provided
at inference time but the LLM’s parameters are not updated. In IT, a set of demon-
strations are used to tune LLM’s parameters in training time but no demonstrations
are used at inference time. Although a growing body of literature has explored ICL
and IT, studies on these topics have largely been conducted in isolation, leading to
a disconnect between these two paradigms. In this work, we explore the relation-
ship between ICL and IT by examining how the hidden states of LLMs change
in these two paradigms. Through carefully designed experiments conducted with
LLaMA-2 (7B and 13B), we find that ICL is implicit IT. In other words, ICL
changes an LLM’s hidden states as if the demonstrations were used to instruction-
ally tune the model. Furthermore, the convergence between ICL and IT is largely
contingent upon several factors related to the provided demonstrations. Overall,
this work offers a unique perspective to explore the connection between ICL and
IT and sheds light on understanding the behaviors of LLM.

1 INTRODUCTION

Large language models (LLMs), such as ChatGPT 1, GPT-4 (OpenAI, 2023), PaLM (Chowdhery
et al., 2022), and LLaMA-2 (Touvron et al., 2023), have significantly changed the paradigm of
natural language processing and hold great potential for artificial general intelligence (Bubeck et al.,
2023). In real-world applications, the success of deploying Large Language Models (LLMs) can
largely be attributed to the effectiveness of two primary learning paradigms: 1) In-Context Learning
(ICL) and 2) Instruction Tuning (IT). ICL, a paradigm introduced in the GPT-3 paper, involves
utilizing a set of demonstrations are provided at inference time to guide the model’s responses, but
the model’s parameters are not updated during this process. In contrast, IT refers to the process of
further training LLMs on input, output, along with instructions in a supervised fashion. IT has been
shown to be effective in enhancing an LLM’s generalizability on unseen tasks (Longpre et al., 2023)
and a viable strategy for LLM alignment (Taori et al., 2023; Zhou et al., 2023). Figure 1 illustrates
ICL and IT using sentiment analysis as an example.

A growing body of literature has examined the mechanisms of ICL and IT, such as identifying the
conditions under which ICL emerges in LLMs (Liu et al., 2021; Lu et al., 2021; Su et al., 2022;
Wang et al., 2023; Chan et al., 2022; Xie et al., 2021), and determining how to design data and tasks
for effective instruction tuning to enhance the zero-shot generalizability of LLMs (Longpre et al.,
2023). However, while ICL and IT are two primary methods for enhancing the capabilities of LLMs,
studies on ICL and IT have been conducted in isolation. This has led to a research question: What
are the connections between ICL and IT, and in which way do they enhance an LLM’s capability.

In this work, we examine the connection between ICL and IT via the hidden state of the input
sequence’s last token. In an autoregressive model, the hidden state of the input sequence’s last token
summarizes the information of the entire input sequence and determines the logit vector for the next
word prediction. In the context of ICL and IT, three situations arise, each producing different hidden
states. The first situation involves zero-shot learning for an LLM. In this case, the hidden state of the

1https://openai.com/chatgpt
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Figure 1: Illustrations for ICL and IT using sentiment analysis as an example. Through ICL, the
LLM infers a ”Negative” sentiment for ”Many pointless.” conditioned on a set of demonstrations
(Left). In contrast, IT involves further tuning the LLM’s parameters with the IT training data, and
the tuned LLM is then used at inference time (Right).

last token in the input sequence is determined by the LLM, conditioned on the inference example.
Since this is the basic case—where no demonstrations are provided and the LLM’s parameters are
not updated—we denote this as the anchor hidden state, hanchor. The second situation is ICL, where
demonstrations are provided to guide the LLM’s response. Since ICL does not tune the LLM’s
parameters, the hidden state is determined by the LLM, conditioned on the provided demonstrations
and the inference sample. We denote this hidden state as hICL. The third situation is IT, where
demonstrations are used to tune the LLM’s parameters, transforming the LLM into a tuned-LLM.
Here, the hidden state is determined by the tuned-LLM, conditioned on the inference sample, and
we denote this hidden state as hIT . Comparing the similarity between hanchor and hICL allows to
quantify the effect of a demonstration in ICL, while comparing the similarity between hanchor and
hIT allows to quantify the effect of IT with the demonstration. If a demonstration is effective for
ICL and IT, we would observe a small similarity score because the demonstration gears the LLM
to produce a guided (either through ICL or through tuning) response. Moreover, examining the
similarity between hICL and hIT allows us to directly quantify the extent to which ICL and IT on
LLM converge, conditioned on the demonstrations. Figure 2 illustrates the analysis framework.

In the experiment, we select LLaMA-2 (7B) (Touvron et al., 2023) as the foundational LLM. We
compile a demonstration dataset for sentiment analysis, consisting of tuples of <instruction, exam-
ple, label>. Subsequently, we apply ICL and IT to LLaMA-2 using the same demonstration and
examine the similarities between hanchor, hICL, and hIT. We repeat the experiment with variations in
the wording of the instruction and demonstration examples. The results reveal a high similarity be-
tween hICL and hIT, while the similarity of these two hidden states with hanchor is low. This suggests
that ICL and IT essentially guide the LLM to a similar status, although IT tunes the LLM’s param-
eters while ICL does not. To further investigate, we vary the demonstrations used in ICL and IT
and quantify the extent of similarity between ICL and IT conditioned on the demonstrations. For in-
stance, we manipulate the number of demonstrations (from one-shot ICL to few-shot ICL), alter the
semantic similarity between demonstration examples and inference examples, use a wrong label for
the demonstration example, and employ different tasks as demonstrations. The results consistently
support the finding that using a demonstration in ICL has a similar effect as using the demonstration
to instructionally tune the LLM. In additional analyses examining the robustness of our findings, we
change the inference task to a machine translation task and replace LLaMA-2 (7B) with LLaMA-2
(13B); the results remain consistent.

In summary, this work makes two contributions. First, we provide empirical evidence that ICL and
IT are closely related. Although ICL does not alter model parameters—unlike IT—the instructions
and demonstrations they employ drive the model towards convergent hidden states. Second, this
study sheds light on how to design effective datasets and tasks for ICL and IT, potentially advancing
the development and alignment of foundation models for downstream applications. We will make
the experimental codes available for replication.

2



Under review as a conference paper at ICLR 2024

2 ANALYSIS FRAMEWORK

We illustrate our analysis framework in Figure 2, using sentiment analysis on reviews as an example.
In this framework, we examine the impact of different demonstrations (zero-shot vs. few-shot ICL)
and different paradigms (ICL vs. IT) on the model’s hidden states separately. Although LLMs
maintain hidden states for every input token, we primarily focus on the hidden states associated with
the last input token of the sequence in this study. This focus is due to the hidden state of the last
token of the last layer summarizing the information of the entire input sequence and determining the
logit vector for the next word prediction.

Figure 2: Analysis framework using sentiment analysis on reviews as an example. Our framework
has variations by manipulating the demonstrations, changing the LLM, altering the input template,
and adapting to different natural language tasks.

We denote instruction as X (such as, what is the sentiment of this review?), demonstration as
A=(Text A, Label A) (such as, Review: This is a wonderful movie. Sentiment: Positive), and in-
ference text as B=(Text B) (such as, Review: I like this movie.). We then consider the following
three situations.

Basic situation. This is the basic zero-shot learning setting where no demonstrations are provided to
guide the model inference. In this situation, we concatenate instruction with the inference example
(i.e., Instruction X + Text B) and feed into an LLM. We collect the final hidden state of the last
token of the input sequence, denoted as hanchor.

ICL situation. In ICL, demonstrations, along with the inference example (i.e., Instruction X + Text
A + Label A + Text B), are provided as input to the LLM, which then directly infers the distribution
of the last token. We collect the final hidden state of the last token of the input sequence, denoted as
hICL. Comparing the similarity between hanchor and hICL allows us to examine the effect of the
provided demonstration. If the similarity is low, it indicates that the demonstration information are
incorporated by the LLM so that the final hidden states are geared away.

IT situation. In IT, unlike the ICL situation where the demonstration is used as a part of input se-
quence, we instead use the demonstration (i.e., Instruction X + Text A + Label A) to instructionally
tune the LLM, leading to a tuned LLM. We then send the inference example (i.e., Instruction X +
Text B) to the tuned LLM and obtain final hidden state of the last token, denoted as hIT . Note that
the input sequence to the final LLM are exactly the same (i.e., Instruction X + Text B) in both the
basic situation and the IT situation. The only difference is that the basic situation involves the vanilla
LLM while the IT situation involves the instruction-tuned LLM. Therefore, by comparing hanchor

with hIT , we can quantify the effect of IT with the demonstration.

Since the same demonstration is used in both ICL and IT, we can precisely quantify the effect of
the demonstration. By varying the provided demonstrations, we can also determine the extent to
which ICL is related to IT, conditioned on the demonstrations. In the analysis, we further denote
sanchor−ICL as the similarity between hanchor and hICL, and denote sanchor−IT as the similar-
ity between hanchor and hIT . We also measure the similarity between hICL and hIT , denoted
as sICL−IT , which quantifies the extent to which ICL and IT converge. If the sICL−IT is very
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(a) ICL and IT convergence. (b) Wrong demonstration labels (c) Different ICL task

Figure 3: Similarities between different hidden states. We use the box plots to show the distribution
of scores in the repeated experiments.

high, it indicates ICL and IT guide the model status towards the same direction although the model
parameters are not updated in ICL but tuned in IT.

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Datasets: In the experiment, we use the SST2 for sentiment analysis (Socher et al., 2013) and EN-
CS of WMT16 for English-Czech translation (Bojar et al., 2016). For each of the tasks, we manually
craft a pool of instructions and randomly choose instruction in the repeated experiment, alleviating
the concern that the experiment results are driven by a specific instruction. Instructions used for
each task are presented in Appendix A.

LLMs: We use LLaMA-2-base as the foundation model (Touvron et al., 2023), including 7B (32
layers with a hidden size of 4,096) and 13B (40 layers with a hidden size of 5,120). We download the
models following the instructions from Meta AI 2, and implement them using the transformers
library 3.

Instruction tuning: We use the LoRA technique (Hu et al., 2021) to instruction-tune the LLaMA-2
model due to its efficiency. Specifically, we target modules Q and V , and use a dropout probability
0.05, learning rate 1e-4, scaling factor 32, and a rank of 8. We use AdamW optimizer (Loshchilov
& Hutter, 2017). Without further specification, we tune the model with 10 epochs and use bf16
precision.

Repeated experiment: In the following analysis, we randomly choose an instruction, a demonstra-
tion and an inference example from the dataset for ICL and IT. We repeat the procedure for 30 runs
with different random seeds.

3.2 EMPIRICAL FINDINGS

We present the empirical findings as follows.

ICL and IT convergence: In-Context Learning (ICL) and Instruction Tuning (IT) result in a
converged model state. We present the hidden state similarities in Figure 3a. Firstly, we observe
that the similarity between hanchor and either hICL or hIT is almost zero, indicating that the model
undergoes significant changes in its hidden representations when exposed to in-context demonstra-
tions or when tuned by the demonstrations. Furthermore, the high similarity between hICL and hIT

(approximately 0.9) demonstrates that the model is indeed oriented toward a similar state in ICL and
IT. This provides a first evidence that ICL is implicit IT.

Demonstration-inference similarity: The convergence between ICL and IT is positively corre-
lated with the semantic similarity between the demonstration and the inference example. We
further investigate how the semantic similarity between the demonstration (i.e., Text A in Figure

2https://github.com/facebookresearch/llama
3https://github.com/huggingface/transformers
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(a) Anchor-IT (b) Anchor-ICL (c) ICL-IT

Figure 4: Averaged hidden state similarities across demonstration-inference similarity levels.

2) and the inference example (i.e., Text B) affects the ICL-IT convergence. To do this, we use a
sentence-transformer model ”all-MiniLM-L6-v2” 4 to measure the demonstration-inference similar-
ity (Reimers & Gurevych, 2019). We consider 10 levels of similarity ranging from 0 to 1. For each
inference example, we identify demonstrations in the dataset that fall within a specific similarity
range. In each repeated experiment involving different similarity levels, we randomize the input but
use the same set of inference examples across these cases to facilitate a fair comparison. The results
are shown in Figure 4. Clearly, the similarity between ICL and IT increases as the similarity between
the demonstration and the inference example increases (Figure 4c). A possible explanation is that
a demonstration that is more similar to the inference example can better enhance the model’s ICL
ability and is also more helpful for IT, resulting in higher convergence. It is worth noting that the
range of the degree of convergence between ICL and IT is quite large, ranging from around 0.4 when
they are entirely different (demonstration-inference similarity is 0) to 0.8 when they are exactly the
same (demonstration-inference similarity is 1).

In contrast, the similarity between hanchor and hIT exhibits an opposite trend, as shown in Figure
4a, suggesting that a demonstration that is more similar to the inference example can change the
model’s state to a greater extent. This finding aligns with prior literature, which has demonstrated
that instruction tuning with similar examples is more effective (Gudibande et al., 2023). Put it
another way, fine-tuning the model with semantically different examples does not substantially alter
the model’s inference capability.

Interestingly, we observe that the similarity between hanchor and hICL remains consistently low, re-
gardless of the demonstration-inference similarity, as illustrated in Figure 4b. This suggests that in-
corporating demonstrations into the ICL input can consistently and significantly impact the model’s
inference. Previous studies on ICL have indicated that higher demonstration-inference similarity
leads to improved inference accuracy. It’s important to emphasize that Figure 4b does not contradict
this finding, as it measures the similarity between hanchor and hICL.

Number of demonstrations: The convergence between ICL and IT increases as the number of
demonstration increases. In the previous analysis, we used a single demonstration in ICL and IT.
In this experiment, we vary the number of demonstrations (i.e., few-shot learning) in ICL and IT.
Specifically, we consider 1-shot, 2-shot, 5-shot, and 10-shot scenarios. To ensure a fair assessment,
we maintain consistent parameters update times and instruction-tune the model with 10, 5, 2, and 1
epoch(s), respectively. For each repeated experiment in the various few-shot cases, we randomize
the input but use the same set of inference examples across these cases to enable a fair comparison.

We present the results in Figure 5. We observe a clear increasing trend in the convergence between
ICL and IT as we incorporate more demonstrations. This trend is intuitive since ICL with multiple
demonstrations (i.e., few-shot learning) can help the model discover patterns in the context and
quickly adapt to the task. Similarly, IT using more examples related to the same task can better tune
the model for that specific task, leading to a higher level of convergence between ICL and IT.

Wrong label: Demonstration with wrong label slightly affects the ICL-IT convergence. Prior
studies in ICL have shown that the correctness of demonstration’s label does not matter much and
only the task format is important for ICL (Min et al., 2022). Therefore, it motivates us to examine

4https://www.sbert.net
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Figure 5: ICL-IT convergence across different numbers of demonstrations.

how the label correctness affects the ICL-IT convergence. In this experiment, we reverse the labels
of demonstrations (e.g., changing ”Positive” to ”Negative”), and conduct the ICL and IT procedure
again. The results are shown in Figure 3b.

Interestingly, we find that while ICL and IT still exhibit a high level of convergence, the degree is
slightly lower than its counterpart when using correct labels as compared to Figure 3a. Besides,
the variation of the degree of ICL-IT convergence significantly increases, as evidenced by the larger
interquartile range and longer whiskers of the box plot.

As a sanity check, we examine if using wrong labels to do IT hurts the model performance, and
present the results in Figure 6. Surprisingly, although we do observe a performance drop, the de-
crease is not statistically significant, which appears to be well aligned with previous observations in
(Kung & Peng, 2023).

Figure 6: Prediction accuracies of using wrong demonstration labels vs. right. We perform one-
tailed Wilcoxon signed-rank test, and the null hypothesis is the difference between paired observa-
tions (right-wrong) is greater than zero.

Different task: Different demonstration task would not affect the ICL-IT convergence. In the
previous experiments, the demonstration task and the inference task are the same (i.e., sentiment
analysis). This experiment differs in that we change the demonstration task to machine transla-
tion using the EN-CS subset of WMT16 translating English to Czech 5, but the sentiment analysis
remains the inference task. We present the results in Figure 3c. Clearly, the high level of conver-
gence in similarities between ICL-IT, Anchor-ICL, and Anchor-IT indicates that the demonstrations
involving the machine translation task do not impact the model’s inference capability for the senti-
ment analysis task.

Intermediate layers: The convergence between ICL and IT starts to increase at later layers. In
this experiment, we examine the hidden states of the last token of the input sequence in all layers of

5We use the following template: ”Instruction X. English: English A. Czech: Czech A. Instruction X. En-
glish: English B. Czech:”.
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the LLM. The results are shown in Figure 7. Interestingly, we observe an U shape across different
layers. The high similarity between ICL and IT in the lower layer is primarily due to the fact
that the hidden states are all similar to the anchor hidden states, meaning they are not significantly
impacted by the demonstrations. The LLM’s intermediate layers are gradually influenced by the
demonstrations, resulting in the low similarity between ICL and IT in the middle layers. Eventually,
as the input approaches the higher layers that are closer to the final output, the hidden states of ICL
and IT start to converge.

Figure 7: ICL-IT convergence scores of all layers.

4 ADDITIONAL ANALYSIS

4.1 LLAMA-2-13B

In this study, we examine if ICL and IT still converges in a larger LLM. We choose LLaMA-2-13B
as the foundation model and repeat the same analysis procedure to quantify the similarity between
Anchor-IT, Anchor-ICL and ICL-IT. The results are shown in Figure 8a, indicating that ICL-IT
convergence remains high. However, Anchor-IT and Anchor-ICL also achieve a high level of con-
vergence, indicating that larger model is more capable of understanding the task even without any
demonstrations provided (note that in the basic situation, an instruction is provided which could
provide sufficient information for the larger LLM to do zero-shot learning).

4.2 SUPERVISED LEARNING

Instruction tuning differs from classic supervised learning in that the former employs additional
instructions to enhance an LLM’s generalizability, while supervised learning typically teaches the
LLM to specialize in a specific task.

To further understand the role of instructions in IT, we conduct classic supervised learning for the
LLM. In this setup, we remove Instruction X from the training input and solely use task examples to
fine-tune the LLM. We denote this supervised situation as SL. We repeat the same analysis procedure
and measure the similarity between Anchor-SL, Anchor-ICL, and ICL-SL. We present the results
in Figure 8b. Clearly, while the convergence between ICL and SL still exists, the convergence
score is significantly lower than that of its IT counterparts, as shown in Figure 3a. This observation
underscores the critical role of instructions in driving the convergence between ICL and IT in LLMs’
hidden states.

4.3 UNDERSTANDING INSTRUCTION TUNING FROM IN-CONTEXT LEARNING

Evidences discussed above suggest that ICL is essentially doing IT via demonstrations. In this
section, we aim to understand IT through the lens of ICL. Specifically, instead of focusing on the
hidden states, we calculate the change of per token loss of the LLM. We define per token loss as
the cross-entropy loss between each output token and the corresponding ground truth token in a
sequence (Olsson et al., 2022). We illustrate the procedures of the experiment in Figure 9. The
major steps are as follows. Firstly, we randomly sample an instruction X and an example A. We
then construct the input using the template shown in Figure 2 as: ”Instruction X . Review: Text

7
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(a) LLaMA-2-13B. (b) Classic supervised learning. (c) Machine translation task.

Figure 8: Similarities between different hidden states (additional analysis).

A. Sentiment: Label A.”. Next, we send the input to LLaMA-2-7B and collect the per token
loss. After that, we instruction-tune the language model using this example. After tuning, we send
the same input again to the tuned model and collect the per token loss. We then calculate the loss
decrease for each token and average the per token loss decrease by token’s identity (i.e, ”Instruction”
or ”Example”). We conduct 30 independent experiments using different seed values. The results
are shown in Figure 10. Clearly, we observe a more significant loss decrease for the ”Example”
component compared to the ”Instruction” component, suggesting the tuned model is more likely to
reproduce task relevant examples given an instruction. In other words, the instruction is somehow
substituted by the examples it associates at inference time, leading to a similar input format as ICL.

Figure 9: Illustration: The decreased loss indicates instruction can help the model associate relevant
examples at inference time.

4.4 ROBUSTNESS CHECK: MACHINE TRANSLATION

As a robustness check, we replace the sentiment analysis task (a natural language inference task)
with the machine translation task (a natural language generation task), and conduct the same proce-
dure to examine if the connection between ICL and IT still holds. We choose a machine translation
task that translates English text into Czech using the EN-CS subset of WMT16 dataset (Bojar et al.,
2016). We present the results in Figure 8c. It is interesting to note that the similarity between ICL
and IT is remarkably high. Recall that the input examples for ICL and IT are very different. The
substantial similarity between ICL and IT supports the earlier findings that ICL, when using demon-
strations, significantly alters an LLM’s inference capability, akin to how demonstrations are used to
fine-tune the LLM.

Unlike sentiment analysis, where the similarity between Anchor-IT and Anchor-ICL is as low as
zero, the similarity is higher in the machine translation task. However, a statistical test reveals that
the similarity between ICL and IT is statistically greater than that between Anchor-IT and Anchor-
ICL6. This rules out the possibility that all three hidden states are very similar to each other.

6We conducted a one-tailed Wilcoxon signed-rank test between each pair of them. The p-value is 2.79e −
9 for Anchor-IT and ICL-IT, and 9.31e − 10 for Anchor-ICL and ICL-IT. The sample size is 30, and the
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Figure 10: Per-token loss decrease due to instruction tuning.

5 RELATED WORK

In-Context Learning (ICL) is a phenomenon emerged in large language models (Brown et al.,
2020). A growing body of literature has investigated the ICL phenomenon in LLMs. Some studies
have focused on identifying the conditions under which ICL emerges in LLMs, predominantly by
finding good demonstrations (Liu et al., 2021; Lu et al., 2021; Su et al., 2022; Wang et al., 2023) and
identifying pre-training data distributions that can lead to the emergence of ICL (Chan et al., 2022;
Xie et al., 2021). Another line of research aims to explain ICL through building the relationship with
the model training stage (Akyürek et al., 2022; Dai et al., 2022; Li et al., 2023; Von Oswald et al.,
2023). For instance, Akyürek et al. (2022) find ICL implicitly updates smaller models encoded in
the activations. Olsson et al. (2022) provide evidence that the so-called ”induction heads” contribute
to the majority of the ICL behaviors in LLMs.

Our work differs from existing studies in two ways. First, we attempt to understand ICL by in-
vestigating its connection with IT, which is new and opens up the possibilities for harnessing the
complementary knowledge of ICL and IT. Second, we empirically study off-the-shelf LLMs with
much more complex model structures (LLaMA-2 7B and 13B), whereas most prior works conduct
experiments using more simplified models (Li et al., 2023).

Instruction Tuning (IT) is an efficient technique to adapt LLMs to downstream tasks by further
tuning the model on (”input”, ”output”) pairs with instructions in a supervised manner. The intu-
ition behind IT is to bridge the gap between the language modeling objective in pre-training and the
users’ objective in downstream tasks, such that the model can follow the instructions from users.
The effectiveness of IT is well-demonstrated by a variety of instruction-tuned LLMs, with repre-
sentatives such as InstructGPT (Ouyang et al., 2022), Alpaca (Taori et al., 2023), Flan-T5 (Longpre
et al., 2023), and Vicuna 7. A growing body of literature focuses on designing tasks and datasets
for effective instruction tuning. For example, LIMA (Zhou et al., 2023) shows that a small set of
high-quality instruction datasets is sufficient for foundation model alignment. Our work aims to
provide empirical evidence to further understand IT, through the lens of its connection with ICL.

6 CONCLUSIONS

In this work, we explore the connection between in-context learning (ICL) and instruction tuning
(IT). Through carefully designed experiments, we provide strong evidences suggesting ICL is im-
plicitly IT. In other words, ICL changes an LLM’s hidden states as if the demonstrations were used in
IT. This finding sheds light on the behaviors of two very different learning paradigms of LLM (ICL
vs. IT), potentially benefiting the development and alignment of foundation LLMs to downstream
real-world applications.

null hypothesis is that the difference between paired observations (sICL−IT − sanchor−IT and sICL−IT −
sanchor−ICL) is greater than zero.

7https://lmsys.org/blog/2023-03-30-vicuna/
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A INSTRUCTION SETS

What is the sentiment of the movie review below? Is it negative or positive?
Determine whether the sentiment expressed in this movie review is negative or positive:
Identify whether this movie review contains negative or positive opinions.
Classify whether this movie review conveys negative or positive opinions.
Rate whether the viewpoint on the costumes is more negative or positive.
Based on the review content, would you say the sentiment is negative or positive?
Analyze the sentiment expressed in this movie review. Is it positive or negative?
Identify negative or positive of the content.
Evaluate the sentiment of this movie critique. Is it negative or positive?
Determine the sentiment conveyed in this movie review. Is it negative or positive?
Classify the overall sentiment of this movie review as negative or positive.
Determine if the tone of this movie review is negative or positive.
Assess if the tone of this movie review is negative or positive.
Detect whether this movie review contains negative or positive sentiment.
Determine whether this movie review expresses negative or positive sentiment.
Identify whether the sentiment expressed in this movie review is negative or positive.
Distinguish whether the evaluation in this movie review is negative or positive.Provide your answer as either negative or positive:
Infer whether the tone of this movie review is negative or positive.
Grade if the perspective in this movie review is negative or positive.Provide your answer as either negative or positive:
What’s the emotional tone of this movie review? Would you describe it as negative or positive?
Infer whether this movie review expresses negative or positive emotion.
Estimate if the analysis in this movie review is negative or positive.Provide your answer as either negative or positive:
Determine whether the opinions in this movie review are negative or positive.
Identify the sentiment of the following movie review text. Is it negative or positive?
Assess the sentiment expressed in the following movie review. Is it positive or negative?
Determine the sentiment expressed in this movie review. Negative or positive?

Table 1: Instructions for sentiment analysis.

Can you express this English phrase in Czech?
Can you present this English sentence in Czech?
Please make this English sentence into a Czech sentence.
Please convert this English text into Czech.
Help me interpret this English phrase in Czech.
Translate this English sentence into Czech.
Please provide a Czech translation for this English sentence.
I need your help to change this English sentence into Czech.
Could you help convert this English phrase into Czech?
Could you translate this English text into Czech?
Please, translate the following English sentence into Czech.
Rephrase this English sentence in Czech for me, please.
Please give me the Czech version of this English sentence.
Can you assist in translating this English sentence into Czech?
Can you change this English sentence into Czech?
How would you say this English sentence in Czech?
Please convert this English phrase into Czech.
Can you convert this English sentence into Czech, please?
Please interpret this English sentence into Czech for me.
Please provide a Czech version of this English sentence.
Can you give me a Czech translation of this English text?
Could you kindly convert this English text into Czech?
Could you rewrite this English phrase in Czech?
I require this English sentence to be translated to Czech.
I need this English phrase translated to Czech.
Translate this English content into the Czech language, please.
Translate this English phrase into Czech for me, please.
Can you provide a Czech interpretation of this English sentence?
Can you render this in the Czech language, please?
Can you transcribe this English text into Czech?

Table 2: Instructions for machine translation.
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