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ABSTRACT

Video generation based on diffusion models presents a challenging multimodal
task, with video editing emerging as a pivotal direction in this field. Recent
video editing approaches primarily fall into two categories: training-required
and training-free methods. While training-based methods incur high computa-
tional costs, training-free alternatives yield suboptimal performance. To address
these limitations, we propose DAPE, a high-quality yet cost-effective two-stage
parameter-efficient fine-tuning (PEFT) framework for video editing. In the first
stage, we design an efficient norm-tuning method to enhance temporal consis-
tency in generated videos. The second stage introduces a vision-friendly adapter
to improve visual quality. Additionally, we identify critical shortcomings in ex-
isting benchmarks including limited category diversity, imbalanced object distri-
bution, and inconsistent frame counts. To mitigate these issues, we curate a high-
quality dataset benchmark comprising more videos with rich annotations and edit-
ing prompts, enabling objective and comprehensive evaluation of advanced meth-
ods. Extensive experiments on existing datasets (BalanceCC, loveu-tgve, RAVE)
and our proposed benchmark demonstrate that DAPE significantly improves tem-
poral coherence and text-video alignment while outperforming previous state-of-
the-art approaches. We will release the code and dataset in the final version.

1 INTRODUCTION

Video generation (Vondrick et al., 2016; Ho et al., 2022b; Singer et al., 2022; Ho et al., 2022a; Ope-
nAI, 2024) has emerged as one of the most challenging and promising research directions within
computer vision in recent years. As a prominent subfield, video editing (Wu et al., 2023a; Qi et al.,
2023; Liu et al., 2024; Yang et al., 2025) aims to controllably modify the visual elements (e.g.,
objects, backgrounds), semantic information (e.g., textual descriptions), or dynamic characteris-
tics (e.g., motion trajectories) of existing video contents while maintaining spatio-temporal coher-
ence (Sun et al., 2024a). This technique holds significant commercial value, especially in areas
such as metaverse and digital human creation, drawing considerable attention from leading tech-
nology companies like Microsoft (Feng et al., 2024; Xing et al., 2024), Google (Ho et al., 2022a),
Nvidia (Blattmann et al., 2023b) and OpenAI (OpenAI, 2024). Figure 1 shows four applications.

Inspired by the recent success of diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021) and
image editing methods (Hertz et al., 2022; Couairon et al., 2022; Brooks et al., 2023), contem-
porary video editing approaches typically adopt DDIM Inversion (Song et al., 2020) strategy and
subsequently apply various conditioning strategies during denoising to facilitate content editing.
For instance, RAVE (Kara et al., 2024) enhances temporal consistency via grid concatenation and
noise shuffling for conditional injection, while CCEdit (Feng et al., 2024) improves the precise and
creative editing capabilities by introducing a novel trident network structure that separates struc-
ture and appearance control. However, training-based methods generally incur high computational
costs, whereas training-free methods typically struggle to achieve high-quality results. Balancing
computational efficiency and video generation quality remains a critical challenge in video editing
research (Sun et al., 2024b).
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A duck swims gracefully in a calm pond, its reflections shimmering in Van Gogh's 
starry night style.

A boat sails on calm waters, with passengers aboard, against a backdrop of majestic 
icebergs and a serene sky lush green mountains and a vibrant sunset sky.

A bald eagle with a white head and yellow beak stares intently, set against a blurred 
green background a glowing cyberpunk cityscape, with neon-green accents.

A fluffy cat curious squirrel sits on a wooden surface, looking around curiously 
under a clear blue sky.

Subject Modification

Background Alteration

Overall Style Adjustment

Random Edits Combination

Figure 1: DAPE is a high-quality and cost-effective dual-stage parameter-efficient fine-tuning
framework for text-based video editing. The diagram presents the performance of our method
(lower) on original videos (upper) across four typical scenarios.

In visual tasks (Yin et al., 2023; 2024a;b), parameter-efficient fine-tuning (PEFT) techniques have
been widely employed to enhance the performance of large-scale models on specific downstream
tasks, such as image recognition (Zhang et al., 2020) and object segmentation (Peng et al., 2024).
PEFT methods optimize only a small subset of model parameters, thus significantly reducing train-
ing costs and enhancing model performance even with limited training data (Houlsby et al., 2019;
Xin et al., 2024). Diffusion-based video editing task often uses a single video template to gener-
ate new videos (Wu et al., 2023a; Kara et al., 2024), inherently forming a few-shot learning sce-
nario (Song et al., 2023). Hence, leveraging PEFT to balance computational cost and video editing
quality is highly promising. Despite its potential, PEFT remains under-explored in video editing,
and it is essential to conduct a comprehensive investigation into its value within video editing tasks.

To address the challenges of optimizing video editing performance and computational efficiency,
we propose DAPE, a novel dual-stage parameter-efficient fine-tuning approach for video editing
designed to enhance temporal and visual consistency. First, recent studies have demonstrated that
parameter plays a crucial role in enhancing textual condition controlling (Peebles & Xie, 2023;
Huang & Belongie, 2017) and visual understanding (Basu et al., 2024), with recent evidence shows
that temporal consistency in text-to-video (T2V) generation is particularly sensitive to normalization
scales within temporal layers (Zhang et al., 2023b). To address this sensitivity, we propose a novel
norm-tuning strategy and introduce a learnable scale factor to balance the original and normalized
features optimally. Second, we find that adapter-based fine-tuning methods can effectively enhance
the image quality of video editing. To improve model comprehension of single-video templates,
we design a visual adapter module strategically integrated into the diffusion model. After that, we
try to combine the strengths of both. In exploring the individual effects of these two optimization
schemes, we find that separately, each significantly enhances either temporal consistency or visual
quality. However, jointly training them introduces negative interactions, compromising their re-
spective strengths. Considering our low-cost training methods with only single video, we employ
a dual-stage framework to concurrently enhance both temporal consistency and visual quality. Fur-
thermore, existing video editing benchmarks suffer from excessive frame lengths, low visual qual-
ity, and limited content diversity, thus inadequately assessing overall model capabilities. To address
these limitations, we present a novel and comprehensive, DAPE Dataset, characterized by standard-
ized format, high-quality visuals, and a wide variety of video types. The DAPE Dataset comprises
232 videos (significantly more than other video editing benchmarks commonly used in recent aca-
demic literature), each accompanied by a detailed video caption, video element types annotations,
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video scene complexity labels, and a set of diverse editing prompts. Extensive experimental evalu-
ations conducted on our DAPE Dataset and three representative benchmarks (RAVE Dataset (Kara
et al., 2024), BalanceCC (Feng et al., 2024), loveu-tgve (Wu et al., 2023b)) demonstrate that our
proposed method quantitatively and qualitatively outperforms previous state-of-the-art, substantially
advancing temporal and visual consistency in video editing.

The key contributions are summarized as follows:

• We propose a novel dual-stage parameter-efficient fine-tuning method to significantly im-
prove temporal and spatial consistency in video editing tasks.

• We design effective PEFT modules for the video editing tasks during each stage respec-
tively, aiming to optimize temporal consistency and visual feature comprehension.

• We introduce a high-quality and comprehensive DAPE Dataset, enabling comprehensive
and objective assessment of video editing methods.

• Extensive experiments on multiple datasets (DAPE Dataset, RAVE Dataset, BalanceCC,
loveu-tgve) validate the superior performance of our method, outperforming previous state-
of-the-art quantitatively and qualitatively.

2 RELATED WORK

Text-Guided Video Editing Text-guided video editing offers an efficient and lightweight alterna-
tive for video generation by adapting T2I diffusion models to modify video content while preserving
original motion dynamics.This paradigm can be broadly categorized into two approaches, training-
based and training-free. Training-based approaches typically fine-tune temporal layers of diffusion
models to capture inter-frame temporal relationships, including Tune-A-Video (Wu et al., 2023a),
Edit-A-Video (Shin et al., 2024), Video-P2P (Liu et al., 2024) and EI2 (Zhang et al., 2023b), while
training-free methods often utilize frame-level feature guidance or auxiliary conditions (e.g., depth
maps, sketches) to enhance consistency (such as Tokenflow (Geyer et al., 2023), FateZero (Qi et al.,
2023), Render-A-Video (Yang et al., 2023), ControlVideo (Zhang et al., 2023a) and RAVE (Kara
et al., 2024)). Here, we propose a fine-tuning-based video editing framework to optimize the tem-
poral consistency and visual quality of existing methods.

Parameter-Efficient Fine-Tuning In natural language processing (NLP), PEFT techniques allevi-
ate the computational overhead associated with fully fine-tuning models for downstream tasks by
reducing the number of trainable parameters while maintaining performance. Recent investigations
in video generation have also explored PEFT approaches. For instance, SimDA (Xing et al., 2024)
efficiently adapted a 1.1B text-to-image model for video synthesis using only 24 million trainable
parameters. ExVideo (Duan et al., 2024) achieved long-video generation by leveraging 3D convolu-
tions and parameter-efficient post-tuning. T2V Adapter (He et al., 2025) proposed prompt-learning
adapter GE-Adapter for video editing effect optimization. However, these PEFT methods are not
specifically optimized for temporal consistency and image quality in video editing tasks.

3 METHODOLOGY

3.1 PRELIMINARIES

Latent Diffusion Models (LDMs). LDMs (Rombach et al., 2022) are efficient variants of
DDPMs (Ho et al., 2020) that operate the diffusion process in a latent space. They are mainly
built upon two key components. First, an auto-encoder maps images x to the latent space z = E(x)
and reconstructs them via D(z) enabling D(E(x)) ≈ x. The diffusion process is then performed on
z, using a U-Net based network to predict the added noise ϵθ. The objective of LDMs is as follows:
where zt denotes the noisy latent at timestep t, and c represents the text condition embedding.

Adapter Tuning. As a typical parameter-efficient fine-tuning method, adapter tuning refers to the
approach that integrating small, trainable modules into models and fine-tuning them during train-
ing (Houlsby et al., 2019). These learnable structure can facilitate robust performance in specific
downstream tasks by capturing domain-specific variations while avoiding catastrophic forgetting. A
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Figure 2: Overall of DAPE. DAPE is a generative model fine-tuning approach specifically designed
for video editing tasks. In the first stage, we propose a novel norm-based fine-tuning method to
enhance temporal consistency in editing results. In the second stage, we improve the visual quality
of editing results through a carefully designed adapter fine-tuning approach..

conventional adapter module can be formulated as follows:

Adapter(X) = X+Wup (ϕ (Wdown(X))) , (1)

where Wdown and Wup are the learnable projection matrices, and ϕ(·) denotes an activation function.

3.2 FRAMEWORK

DAPE Architecture. As illustrated in Figure 2, DAPE is a diffusion-based framework that im-
porves both cross-frame temporal consistency and local-frame visual fidelity for video editing tasks.
We adopts a dual-stage paradigm that decouples the learning of temporal and visual features to mit-
igating strength conflict. During training stage, we first exclusively fine-tunes the normalization
layer parameters using our adjustable norm-tuning methods to establish a robust, temporally coher-
ent backbone. Then we freezes the now-optimized normalization layers, insert and exclusively train
the lightweight visual adapter to enhance visual quality and fine-grained details. During inference,
we uses DDIM Inversion (Song et al., 2020) to retain the original video’s features within the initial
noise and progressively removes the U-Net-predicted noise conditioned on various inputs, ultimately
generating the edited videos.

Adjustable Norm-tuning. Motivated by recent findings highlighting the pivotal role of normaliza-
tion layers in shaping the quality and consistency of generation (Peebles & Xie, 2023; Zhang et al.,
2023b), we introduce a novel approach, namely adjustable norm-tuning, to optimize normalization
parameters of diffusion models blocks including ResNet blocks and attention blocks. To make the
fine-tuning process dataset-specific, enhance feature scaling and enable better adaptation to new do-
mains, a learnable affine parameters γ0 is incorporated in the norm-tuning step. γ0 is initialized to
0 as conventional normalization conduct and is multiplied on latent representations zt. In the lower
part of Figure 2, stage I can be formulated as follows:

ẑt = γ ·Norm(zt) + β + γ0 · zt, (2)

where zt is the input latent feature at timestep t, Norm(·) denotes a normalization operation with
learnable parameters γ, β.

Visual Adapter. Adapters have been widely used to capture visual features in image tasks (Yin
et al., 2023). To improve the stability of training and model adaptability, a layer normalization block
with a learnable scaling parameters w0 is adopted, followed by down projection, convolution layer,
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nonlinear activation, up projection, and skip connections. Notably, to enhance spatial perceptual
capabilities while minimizing additional parameters, convolution layer using a single depth-wise
5 × 5 kernel, leading to measurable improvements in extensive experiments. Besides, the visual
adapter is placed exclusively within the first cross-attention block of the up-sampling (decoder)
layers to achieve the best performance both in temporal coherence and alignment, shown in our
ablation study. The procedure can be formally described as follows, also shown in Figure 2:

z = z0 + Up(σ(zconv)),

zconv = Down(znorm) + ωdw ⊗dw Down(znorm)
(3)

where σ is the activation function, ωdw denotes the convolutional kernel and ⊗dw indicates depth-
wise convolution.

Loss Function. Considering that one-shot fine-tuning on a single video can create a significant do-
main discrepancy relative to the model’s large-scale pre-training data, robustness to feature outliers
is crucial. Therefore, we adopt the Huber loss, which combines the stability of MSE for small er-
rors with the robustness of L1 loss for large errors, leading to more stable gradients. Our ablations
confirm that Huber loss yields marginal but consistent gains over MSE for our task. The Huber loss
is defined as:

Lδ(r) =

{
1
2r

2 if |r| ≤ δ,

δ · (|r| − 1
2δ) otherwise,

(4)

where r is the residual between the predicted and target noise, and δ is a threshold hyperparameter.

4 DAPE BENCHMARK

Establishment. Despite the availability of several datasets in the field of video editing, current

Stage 1:
Video Selection

Stage 2:
Video Annotation

Stage 3:
Prompt Generation

Original 
videos 
(2134)

Resize resolution 
to 512×512

Final
videos
(232)

Trim frames to 
32/ 64/ 128

Manual screening
(679)

Optical flow filtering

Scene cut filtering
(1522)

Final annotation

Caption
(232)

Category
(232×3D)

Complexity
(232×3D)

Human
Annotation

(20%)

Caption (232)

Edited caption
(232×6D)

Difficulty score
(232×6D)

Manual Revision
(5% revised)

GPT-4o Generation
(100%)

Qwen2.5-VL
Annotation

(100%)
validate

Final videos (232)

revise

Final edit prompt

Figure 3: The curation pipeline of our dataset. We cu-
rated 232 high-quality samples by video selection, video
annotation and human-in-the-loop annotations.

benchmarks still suffer from key lim-
itations including inconsistent resolu-
tion and frame count,low visual qual-
ity such as excessive camera motion and
image blur, and limited content diver-
sity. These flaws hinder researchers
from conducting objective assessments
of model performance. To miti-
gate evaluation bias, we introduce the
DAPE Dataset, a standardized bench-
mark specifically designed to support
video editing researches, which is sig-
nificantly more than other benchmarks
commonly used in recent academic lit-
erature.

Curation. The curation pipeline of our
dataset is illustrated in Figure 3. We curated 232 high-quality videos from an initial pool of over
2,100 commercially licensed sources (Kara et al., 2024; Xu et al., 2016; Wang et al., 2019; Pixabay).
Each video underwent a rigorous filtering pipeline: it was first standardized to a 512x512 resolution
and a duration of 32, 64, or 128 frames; then automatically filtered to remove excessive motion and
scene discontinuities (Blattmann et al., 2023a; Wang et al., 2024); and finally manually verified for
visual clarity and quality. These strict selection criteria and human-involved verification ensured that
each video was suitable for effective evaluation. Moreover, the distribution of videos resulted from
random sampling of a large pool of real-world videos, reflecting the typical characteristics of user-
generated content. For annotation, we employed a human-in-the-loop approach: initial captions and
diverse editing prompts were generated using state-of-the-art models (Qwen2.5, GPT-4o) (Teodoro
et al., 2024; Feng et al., 2024; Bai et al., 2025; Hurst et al., 2024), and were subsequently reviewed
by multiple human annotators to ensure accuracy and relevance.

Statistics The overall distribution of semantic categories and complexity levels in the DAPE Dataset
is illustrated in Figure 4. The DAPE Dataset covers diverse semantic categories: “people” (33%)
and “animal” (18%) are most common, while “artifact,” “environment,” “vehicle,” and “food” con-
stitute the remainder, reflecting the dominance of human-centric content. For background and
events, distributions are more balanced, with indoor scenes (34%) and daily events (44%) most
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Subject

Complexity

Background

Complexity

Event

Type

Event

Complexity

Subject

Type

Background

Type

Simple

54%

Daily

44%
Moderate

44%

Simple

39%

People

33%
Indoor

34%

Moderate

33%

Simple

52%

Natural

27% Documentary

26%

Urban

25%

Moderate

30%

Animal

18%

Complex

18%

Artifact

14%

Blur or blank

14%

Complex

13%

Environment

13%

Vehicle

11%

Food

11%

Sports

11%

Cooking

11%

Performance

8%

Complex

17%

Figure 4: Dataset statistics. Distributions of the DAPE
Dataset across six semantic dimensions: category and
complexity for subject, background, and event.

frequent, consistent with everyday user-
generated videos. Each component is
further assigned a three-level complex-
ity score (simple, moderate, complex),
with the dataset emphasizing the first
two to match current model capabilities.
Supplementary material provides details
on construction, annotation, sample vi-
sualizations, and dataset comparisons.

5 EXPERIMENTS

5.1 SETTINGS

Implementation Details. DAPE employs the pre-trained T2I model, stable diffusion-v1.5 as ini-
tialization weights. Adjustable norm-tuning stage employs 400 timesteps with a learning rate of
5 × 10−5 and a batch size of 1, while the visual adapter tuning stage involves 70 timesteps at a
learning rate of 1 × 10−5 with the same batch size. During inference, the sampler configured for
50 steps, classifier-free guidance (Ho & Salimans, 2022) 7.5. Our experiments are conducted on 8
NVIDIA A800 GPUs.

Baselines. We select five latest baseline methods covering both training-based and training-free
approaches using their official implementations, including Tune-A-Video (ICCV’23) (Wu et al.,
2023a), CAMEL (CVPR’24) (Zhang et al., 2024), SimDA (CVPR’24) (Xing et al., 2024), RAVE
(CVPR’24) (Kara et al., 2024), and CCEdit (CVPR’24) (Feng et al., 2024). Our proposed DAPE
framework can also be applied to other frameworks. Therefore, we conducted many experiments
based on each baseline to demonstrate the potential insights and implications of our approach for
other models.

Datasets. To fully demonstrate the effectiveness of our methods, we conduct experiments on our
DAPE Dataset and three other lastest and typical video editing datasets: loveu-tgve (Wu et al.,
2023b), RAVE Dataset (Kara et al., 2024), and BalanceCC (Feng et al., 2024).

Evaluation Metrics. We evaluate generated videos primarily from two perspectives: 1) Tempo-
ral consistency: it consists of CLIP-Frame calculating the average CLIP score pairwise similarity
across frames, Interpolation Error and PSNR (Jiang et al., 2018) and Warping Error (Lai et al., 2018)
employing RAFT (Teed & Deng, 2020). 2) Text-video alignment: we use the widely adopted met-
ric CLIP-Text to assess text-video alignment, computing the mean similarity between video frame
embeddings and textual embeddings via the CLIP model (Radford et al., 2021).

5.2 MAIN RESULTS

Quantitative Results. Table 1 presents the quantitative results of all methods on the four datasets.
Macroscopically, DAPE achieves the best performance (highlighted in bold) across all datasets,
demonstrating its effectiveness in enhancing the quantitative performance of mainstream video edit-
ing tasks. Microscopically, DAPE significantly improves the performance of baseline methods on
most metrics. These results confirm that the proposed adjustable norm tuning and visual adapter
components , as integral elements of our framework, effectively enhance temporal consistency and
alignment. Additionally, our analysis of the results on the three existing datasets reveals that the
ranking of baseline methods varies across different datasets. This observation further underscores
the necessity of establishing a comprehensive benchmark dataset.

Qualitative Results. Figure 7 illustrates the marked differences among the methods regarding tem-
poral consistency, text alignment, and detail quality. For instance, when tasked with changing an
SUV to a red sports car, baselines either fail on color/object accuracy (TAV, CAMEL, CCEdit) or
quality (SimDA, RAVE), whereas DAPE successfully generates a high-fidelity result. Similarly, in
applying a Van Gogh style, most methods fail to synthesize the artistic effect, while DAPE produces
a consistent and appealing stylized video. For object replacement (squirrel to rabbit), competing
methods introduce artifacts like inconsistent identity (TAV), poor details (CAMEL, RAVE), or se-
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Method

BalanceCC loveu-tgve
Temporal Consistency Alignment Temporal Consistency Alignment

C. F. ↑ I. E. ↓ I. P. ↑ W. E. ↓ C. T. ↑ C. F. ↑ I. E. ↓ I. P. ↑ W. E. ↓ C. T. ↑
×10−2 ×10−2 ×1 ×10−2 ×10−2 ×10−2 ×10−2 ×1 ×10−2 ×10−2

Baselines
TAV [ICCV’23] 93.11 14.43 17.57 5.57 31.82 94.44 10.36 20.82 4.05 29.95
CAMEL [CVPR’24] 94.67 8.80 22.61 4.07 29.27 94.44 10.14 21.11 4.03 27.70
SimDA [CVPR’24] 91.32 12.79 18.57 5.06 31.28 91.96 9.08 21.75 3.11 29.33
RAVE [CVPR’24] 94.10 8.69 22.05 2.46 32.15 94.32 8.27 22.59 2.34 30.18
CCEdit [CVPR’24] 95.50 7.29 24.33 4.52 29.76 94.00 7.65 23.76 3.24 28.80

Ours
DAPE (TAV) 93.46 13.98 17.83 5.31 31.82 94.53 10.28 20.88 3.96 29.98
DAPE (CAMEL) 94.75 8.68 22.75 3.94 29.37 94.67 10.04 21.20 4.07 27.78
DAPE (SimDA) 91.43 12.29 18.85 4.92 31.37 92.07 8.91 21.96 3.01 29.17
DAPE (RAVE) 94.61 7.18 23.91 2.13 32.85 94.33 7.73 23.16 2.18 30.35
DAPE (CCEdit) 95.54 7.58 24.38 4.03 30.19 93.76 7.59 23.85 2.97 29.32

Method

RAVE Dataset DAPE Dataset
Temporal Consistency Alignment Temporal Consistency Alignment

C. F. ↑ I. E. ↓ I. P. ↑ W. E. ↓ C. T. ↑ C. F. ↑ I. E. ↓ I. P. ↑ W. E. ↓ C. T. ↑
×10−2 ×10−2 ×1 ×10−2 ×10−2 ×10−2 ×10−2 ×1 ×10−2 ×10−2

Baselines
TAV [ICCV’24] 94.35 15.03 16.64 5.55 31.09 94.88 9.00 21.73 2.73 31.34
CAMEL [CVPR’24] 92.85 14.18 17.36 5.66 27.40 95.74 6.78 24.53 2.28 29.95
SimDA [CVPR’24] 91.94 13.75 17.43 5.40 30.07 92.22 7.96 22.75 2.42 30.61
RAVE [CVPR’24] 94.85 8.71 21.94 2.53 29.76 95.80 6.65 24.09 1.37 32.52
CCEdit [CVPR’24] 93.74 10.34 20.37 4.46 26.41 96.47 5.41 26.66 1.90 28.56

Ours
DAPE (TAV) 94.53 14.77 16.78 5.40 31.19 94.92 9.14 21.80 2.66 31.47
DAPE (CAMEL) 92.93 14.10 17.43 5.47 27.41 95.89 6.61 24.74 2.21 30.00
DAPE (SimDA) 92.05 13.62 17.57 5.26 30.13 93.11 7.74 23.23 2.37 31.15
DAPE (RAVE) 94.98 8.34 22.30 2.42 29.78 95.85 6.27 24.63 1.26 32.61
DAPE (CCEdit) 93.83 8.47 22.37 2.90 28.35 96.59 5.31 27.09 1.52 29.07

Table 1: Quantitative comparison. Experimentsare conducted on four datasets to evaluate the mod-
els’ performance on five metrics (CLIP-Frame (C. F.), Interpolation Error (I. E.), Interpolation PSNR
(I. P.), WarpError (W. E.), CLIP-Text (C. T.)). ↑ means higher is better while ↓ donates the lower the
better. The best/second-best performance are highlighted in bold/underline, respectively.

mantic errors (CCEdit). In contrast, DAPE maintains high-level consistency and fine-grained detail.
In short, qualitative results indicate that our proposed DAPE method outperforms the baselines in

①
②

③

④

⑦
⑥

⑤

AttnDownBlock

DownBlock

AttnMidBlock

UpBlock

AttnUpBlock

Figure 5: Different blocks in U-Net. For better
clarity, we index U-Net blocks from ① to ⑦.
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Overall Quality

Figure 6: User Study Results. Comparison of sub-
jective scores for each model. Models perform the
best, second best and third best with 6, 5 and 4
scores, and the scores for each model are weighted
by vote frequency.

terms of temporal consistency, text alignment
and detail fidelity, ultimately leading to notice-
ably improved visual smoothness and semantic
relevance.

User Study. We conduct a user study to further
validate our method. A total of 1,536 responses

were collected from 30 participants, each com-
pleting a questionnaire with 25 sets of com-
parisons. These participants have received a
good aesthetic education, including individuals
deeply specialized in computer vision and those
with cross-disciplinary background. Partici-
pants are asked to rank the top-three videos by
textual alignment, temporal smoothness, and
visual quality. Our method outperforms the
baselines, showing better alignment with hu-
man judgment. Figure 6 shows the results and
the questionnaire example are provided in the
appendix. The results of the user research in-
dicate that the proposed method achieved supe-
rior performance across all three dimensions.
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A black SUV A red sports car drives along a winding 
road surrounded by lush green trees and grassy fields.
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style of a Van Gogh landscape.
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A squirrel nibbles on a nut, its bushy tail visible, A 
rabbit nibbles on a leaf, its soft ears visible,

against a blurred natural background.

Figure 7: Qualitative comparison. Different model performance on typical editing tasks. DAPE
performs better in terms of temporal consistency, text alignment and visual quality.

5.3 ABLATION STUDY

In this section, we conduct ablation experiments to validate our key design choices, including the
adapter’s embedding location, the impact of each module, and our framework’s performance against
other PEFT methods. All ablation experiments are conducted on DAPE dataset.

Adapter Position. We explored various adapter insertion points within the U-Net’s attention blocks
(see Figure 5) to identify the optimal configuration. As shown in Table 2, different placements yield a
trade-off: inserting adapters in shallow layers (①②⑥⑦) boosts semantic consistency (CLIP-F) at the
cost of structural coherence (Int. Err.), while using too many adapters (①-⑦) even degrades overall
performance. Ultimately, placing the adapter solely in the first block of the decoder (⑤) achieves
the best balance across all metrics. This configuration effectively refines high-level visual concepts
without disrupting the features encoded in earlier layers. This suggests that the decoder’s early
layers are crucial for reconstructing high-level semantics from the latent bottleneck, making them
the optimal point to influence core visual concepts (e.g., style, identity) with minimal disruption to
the original content structure. Figure 8 shows an example among six settings.

Table 2: Ablation Results of Adapter Position. ⑤
is selected as the final setting due to its balance of
two judging dimensions.

Method
Temporal Consistency Align.

C. F. ↑ I. E. ↓ I. P. ↑ W. E. ↓ C. T. ↑
×10−2 ×10−2 ×1 ×10−2 ×10−2

①-⑦ 94.59 9.10 21.57 2.71 28.66
①②⑥⑦ 94.88 9.41 21.41 3.00 29.00
③-⑤ 94.78 8.69 21.96 2.55 29.52
①-③ 94.78 9.18 21.69 2.94 29.02
⑤-⑦ 94.68 8.68 21.93 2.55 29.34
⑤ 94.81 8.62 21.98 2.50 29.57

Module Impact and Design Choices.
To validate our dual-stage design, we
analyze the contribution of each com-
ponent in Table 3. The Visual Adapter
(V. A.) alone excels at improving visual
details (lowest Int. Err.), while Adjustable
Norm-tuning (A. N.) is more effective for tem-
poral consistency and text alignment (high-
est CLIP-F and CLIP-T). Crucially, training
both modules simultaneously in a one-stage
setup results in suboptimal performance, con-
firming a negative interaction between the two
optimization goals. Our proposed dual-stage
approach successfully mitigates this conflict,
achieving the best overall performance, particularly in reducing Warping Error. Furthermore, we
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Table 3: Ablation on inner design of DAPE.
The proposed two-stage setting can outper-
form baseline on all metrics. H. L., V. A., and
A. N. stand for Huber Loss, Visual Adapter,
and Adjustable Norm-tuning, respectively.

Method
Temporal Consistency Align.

C. F. ↑ I. E. ↓ I. P. ↑ W. E. ↓ C. T. ↑
×10−2 ×10−2 ×1 ×10−2 ×10−2

w/o All 94.85 8.71 21.94 2.53 29.76
w/o H. L. 94.78 8.36 22.34 2.44 29.52
w/ V. A. 94.71 8.25 22.58 2.47 29.34
w/ A. N. 95.05 8.69 22.01 2.62 29.82
One-stage 94.76 8.37 22.51 2.50 29.42
w/ all 94.98 8.34 22.30 2.42 29.78

Table 4: Quantitative comparison against
PEFT baselines. DAPE outperforms all
baselines across nearly every metric, includ-
ing popular methods like LoRA and Adapter.

Method
Temporal Consistency Align.

C. F. ↑ I. E. ↓ I. P. ↑ W. E. ↓ C. T. ↑
×10−2 ×10−2 ×1 ×10−2 ×10−2

Fixed 94.85 8.71 21.94 2.53 29.76
LoRA 94.54 10.55 20.45 3.58 29.32
Adapter 94.76 9.23 21.54 2.92 29.60
Mona 94.64 9.21 21.55 2.84 28.96
Partial-1 94.81 8.78 21.84 2.56 29.71
Norm-tuning 94.92 8.53 22.24 2.57 29.92
Bitfit 94.85 9.00 21.71 2.75 29.78
DAPE 94.98 8.34 22.30 2.42 29.78

confirmed that using Huber Loss provides a consistent improvement over standard MSE loss (as
shown in the last two rows of Table 3), making the one-shot tuning process more robust.

In
pu

t 
①

-⑦
①
②
⑥
⑦

③
-⑤

①
-③

⑤
-⑦

⑤
a marble scuplture of a woman running

Figure 8: Visualization of adapter ablation. The
editing prompt requires changing the visual style
to a marble sculpture. ①–⑦, ①②⑥⑦, and ①–③
fail to effectively follow the editing instruction.
③–⑤ negatively impact the facial lighting details,
while ⑤–⑦ struggle to maintain temporal consis-
tency. ⑤ achieves the optimal editing results.

Comparison with PEFT Baselines. To sit-
uate DAPE within the broader PEFT land-
scape, we compare it against several standard
fine-tuning methods in Table 4. The results
clearly show that DAPE outperforms all base-
lines, including popular methods like LoRA
and Adapter, across nearly every metric. No-
tably, while Norm-tuning alone is a strong per-
former, our full dual-stage framework further
enhances the results, especially in temporal
consistency (e.g., Warping Error) and visual
quality (e.g., Int. PSNR).

6 CONCLUSION

In this paper, we introduce DAPE, a dual-stage
parameter-efficient fine-tuning framework with
adjustable norm-tuning and a carefully posi-
tioned visual adapter, to significantly enhance
the temporal consistency and visual quality
and generate more consistent videos. Accom-
panying this framework, we propose DAPE
Dataset, a comprehensive benchmark designed
to systematically evaluate performance across
diverse editing scenarios. Extensive experi-
mental validation confirmed that our approach
achieves state-of-the-art results, effectively bal-
ancing visual quality, temporal coherence, and prompt adherence, paving the way for future research
in generative model optimization and broader applications.
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A APPENDIX

A.1 DATASET

Dataset Statistics. The overall distribution of semantic categories and complexity levels in the
DAPE Dataset is illustrated in Figure 4. For subject type, the “people” category is the most preva-
lent (33%), followed by “animal” (18%), while “artifact,” “environment,” “vehicle,” and “food”
collectively make up the remainder. This designed choice reflects the dominance of human-centric
content in real-world video scenarios. Regarding background and event types, the distribution is
relatively balanced. Indoor scenes appear most frequently (34%), and “daily” events are the most
common (44%), aligning with the characteristics of everyday user-generated content. Each of the
three components is further annotated with a three-level complexity score: simple, moderate, and
complex. The dataset is intentionally constructed to emphasize simple and moderate levels across
all dimensions, considering the current maturity of video editing models.

Dataset Construction. The construction of our dataset is organized into three sequential steps:
video selection, video annotation, and prompt generation, as illustrated in Figure 3. This pipeline
is specifically designed for building video editing datasets, integrating both automated tools and
human validation. Each video is accompanied by detailed annotations and multiple prompts for
video editing tasks, as illustrated in Figure 9. The details of the three-step construction pipeline as
follows.

Step 1. Video Selection. We initially collected 2,134 videos from four sources, including
RAVE Kara et al. (2024), MSR-VTT Xu et al. (2016), VATEX Wang et al. (2019), and Pixabay. For
large-scale datasets such as VATEX, random sampling was applied to reduce redundancy. Videos
were resized to 512×512 and trimmed to 32, 64, or 128 frames. We then apply optical flow filter-
ing to exclude samples with excessive motion and scene cut filtering to remove videos with abrupt
transitions Blattmann et al. (2023a); Wang et al. (2024).

After automated filtering, 31.8% of the videos remained. These candidates then underwent manual
quality screening, resulting in a curated set of 232 high-quality videos suitable for downstream
evaluation. A video was retained only if it met the following predefined criteria across four key
dimensions:

• Motion: Both camera and subject movement should be smooth and stable, without abrupt
shaking or erratic motion.

• Editing: The video should maintain temporal continuity, with no scene cuts, montage
transitions, or long static frames.

• Content: The visual subject must be complete and unobstructed, with no prominent over-
laid text or distracting visual elements.

• Visual Quality: The overall presentation should be aesthetically coherent, with appropriate
lighting, contrast, and composition.
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Dataset #Videos Frames Resolution #Prompts Caption #Sub Cats. #Bg Cats. #Evt Cats.
TGVE (CVPR’23) 76 32/128 480×480 4 Y N/A N/A N/A
BalanceCC (CVPR’24) 100 60–600 512×512 4 Y 4 N/A N/A
RAVE (CVPR’24) 41 8/36/90 mixed 5 N 5 N/A N/A
MIVE (arXiv’24) 200 12–46 512×512 2 Y N/A N/A N/A
Ours 232 32/64/128 512×512 6 Y 6 4 5

Table 5: Comparison of DAPE with existing video editing datasets. ’Sub Cats.’, ’Bg Cats.’, and ’Evt
Cats.’ refer to subject categories, background categories and event categories, respectively.

Step 2. Video Annotation. We first conducted manual annotations on approximately 20% of the
dataset, performed by three domain experts following a shared annotation guideline. These human-
labeled samples served as a reference for calibrating the annotation quality. Based on this subset,
we employed the Qwen2.5 vision-language model to annotate the remaining videos. For each video,
eight evenly spaced frames were sampled as input to Qwen2.5, which was prompted to generate a
caption, three semantic labels (subject, background, event), and corresponding complexity scores.
Evaluation against the human-labeled subset showed that Qwen2.5 achieved an accuracy of ap-
proximately 97.9% in semantic classification, which was within acceptable bounds for large-scale
annotation. Detailed examples of the videos and their corresponding annotations are illustrated in
Figure 10.

Each video in our dataset is categorized based on three core components—subject, background, and
event. The specific category sets for each component are adapted from the classification scheme
used in MSR-VTT Xu et al. (2016), with modifications to better suit our video editing context.

• Subject: Indicates the primary entity or focus present in the video, including people, ani-
mal, vehicle, artifact, food and environment.

• Background: Describes the dominant scene or setting in which the video takes place,
including indoor, urban, natural and blur or blank.

• Event: Refers to the main activity or situation depicted in the video, including sports,
daily, performance, documentary and cooking.

Step 3. Prompt Generation. Compared with annotation, the task of generation is more chal-
lenging for human annotators. To address this, we leveraged the GPT-4o model to automatically
generate editing instructions based on a designed framework. Each instruction targets one of five
aspects: subject modification, background alteration, event reorganization, overall style adjustment,
or a random combination thereof. The model produces an edited version of the caption and assigns
a corresponding difficulty score for each prompt. All generated outputs were manually reviewed for
feasibility. Domain experts further examined the instructions, 5.2% of prompts that were judged to
be unrealistic were identified and revised.

Each video in our dataset is associated with five types of editing tasks, each targeting different
aspects of the video content.

• Subject Modification: Alters the appearance or identity of the primary subject in the video
such as changing clothing, replacing a person with an animal.

• Background Alteration: Modifies the visual setting or environment in which the video
takes place such as changing a kitchen scene to a grassland.

• Event Reorganization: Modifies the main action or activity depicted in the video such as
changing a person walking a dog to playing basketball.

• Overall Style Adjustment: Changes the visual tone or artistic style of the video such as
applying cartoon effects, converting to black-and-white.

• Random Edits Combination: Randomly applies a combination of two editing types se-
lected from the four categories above.

Comparison with existing datasets. In recent years, a surge of excellent work in video edit-
ing has also led to the release of several specialized datasets. For instance, the work on Tune-
A-Video Wu et al. (2023a) explored one-shot tuning for text-to-video generation. Concurrently,
methods like CCEdit Feng et al. (2024), which enables creative control by decoupling structure and
appearance, RAVE Kara et al. (2024), which uses noise shuffling for fast and consistent editing,
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and MIVE Teodoro et al. (2024), which tackles multi-instance editing, have all contributed to the
landscape of available video editing benchmarks.

While these pioneering works and their associated datasets have driven progress, they exhibit certain
limitations in scale, standardization, and annotation depth. As shown in Tab. 5, our DAPE dataset
demonstrates clear advantages across multiple key metrics. Specifically, DAPE not only provides
a larger collection of videos but also maintains a higher degree of standardization with consistent
spatial (512x512) and temporal (32/64/128 frames) resolutions.

Crucially, DAPE surpasses existing datasets in annotation richness. All samples include natural
language captions to support the effective training and evaluation of text-video alignment. Going
a step further, DAPE introduces structured semantic annotations across subject, background, and
event dimensions, encompassing 6, 4, and 5 categories, respectively. This fine-grained annotation
scheme enables a more nuanced analysis of model capabilities. Furthermore, DAPE offers a broader
range of editing prompt types, facilitating a more comprehensive evaluation of models under diverse
and realistic editing scenarios.

A.2 USER STUDY

To evaluate the performance of our proposed DAPE approach against existing methods (CCEdit,
RAVE, SimDA, CAMEL, and TAV), we conducted a comprehensive user study. We recruited 30
anonymous participants, all of whom possess a strong background in aesthetic judgment, culti-
vated through formal education or professional experience. The participant pool was strategically
composed of individuals with significant expertise in computer vision or related fields to ensure
a high-quality and insightful evaluation. Specifically, our cohort included 3 professors/senior re-
searchers, 13 Ph.D. students, and 14 Master’s students, all with research backgrounds or practical
experience in computer science. The study centered on 21 randomly selected video-text pairs from
our dataset. Participants were asked to assess the editing results based on three key criteria: textual
alignment, temporal consistency, and overall editing quality. As shown in 6, our method outperforms
the baselines, illustrating better human intuition following, temporal continuity and visual fineness.
An example of the questionnaire administered is shown in Figure 11.
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Description: "A blindfolded man 
attempts to cut a watermelon on a 
table, using a knife.“
Subject category: People
Background category: Indoor
Event category: Cooking
Subject complexity: Simple
Background complexity: Simple
Event complexity: Complex
Frame count: 64

(L1)Subject Modification: "A blindfolded child attempts to cut a watermelon on a table, using a knife."
(L2)Background Alteration: "A blindfolded man attempts to cut a watermelon on a table in a sunny 
park."
(L3)Event Reorganization: "A blindfolded man attempts to smash a watermelon on a table, using a 
wooden stick."
(L4)Overall Style Adjustment: "A blindfolded man attempts to cut a watermelon on a table, in a black-
and-white silent film style."
(L4)Random Edits Combination 1: "A blindfolded child carefully tries to smash a watermelon on a 
table with a wooden stick."
(L5)Random Edits Combination 2: "A blindfolded man attempts to cut a watermelon on a table, 
surrounded by rolling sand dunes, in a surreal Salvador Dalí-inspired style.“

Video InfoVideo Clip Edit Prompt

Description: "A gorilla sits outdoors, 
eating a piece of food with both 
hands, surrounded by dirt and 
sparse greenery."
Subject category: Animal
Background category: Natural
Event category: Documentary
Subject complexity: Simple
Background complexity: Moderate
Event complexity: Moderate
Frame count: 64

(L1)Subject Modification: "A bear sits outdoors, eating a piece of food with both hands, surrounded by dirt 
and sparse greenery."
(L3)Background Alteration: "A gorilla sits on a snowy mountainside, eating a piece of food with both 
hands, surrounded by icy rocks and patches of snow."
(L2)Event Reorganization: "A gorilla sits outdoors, carefully peeling a banana with both hands, 
surrounded by dirt and sparse greenery."
(L4)Overall Style Adjustment: "A gorilla sits outdoors, eating a piece of food with both hands in a 
monochromatic charcoal sketch style, surrounded by rough, shaded outlines of dirt and greenery."
(L3)Random Edits Combination 1: "A koala sits outdoors, nibbling on eucalyptus leaves with both 
hands, surrounded by dirt and sparse greenery."
(L5)Random Edits Combination 2: "A gorilla sits on the deck of a futuristic space station, eating a 
piece of food with both hands, depicted in vibrant neon cyberpunk style."

Description: "An Air India plane 
taxis on a runway, with buildings and 
greenery in the background."
Subject category: Vehicle
Background category: Urban
Event category: Documentary
Subject complexity: Simple
Background complexity: Complex
Event complexity: Moderate
Frame count: 128

(L1)Subject Modification: "A jet fighter on a runway, with buildings and greenery in the background."
(L2)Background Alteration: "An Air India plane taxis on a runway, with a desert and sand dunes in the 
background."
(L3)Event Reorganization: "An Air India plane prepares for takeoff on a runway, with buildings and 
greenery in the background."
(L4)Overall Style Adjustment: "An Air India plane taxis on a runway, with buildings and greenery in the 
background, painted in a dreamy watercolor style."
(L5)Random Edits Combination 1: "A futuristic passenger drone prepares for takeoff on a runway, 
with buildings and greenery in the background."
(L5)Random Edits Combination 2: "An Air India plane taxis on a runway, with towering cliffs and a 
misty waterfall in the background, in a cinematic fantasy style."

Description: "Hands fold a delicate 
pink origami flower, showcasing 
intricate folds and craftsmanship."
Subject category: Artifact
Background category: Blur or blank
Event category: Daily Life
Subject complexity: Moderate
Background complexity: Simple
Event complexity: Complex
Frame count: 64

(L1)Subject Modification: "Hands fold a delicate blue origami crane, showcasing intricate folds and 
craftsmanship."
(L3)Background Alteration: "Hands fold a delicate pink origami flower under a glowing lantern in a 
serene Japanese garden."
(L2)Event Reorganization: "Hands fold a delicate pink origami flower to create a charming bouquet 
centerpiece."
(L4)Overall Style Adjustment: "Hands fold a delicate pink origami flower, with soft brushstrokes 
reminiscent of an impressionist painting."
(L5)Random Edits Combination 1: "A pair of robotic hands craft a delicate pink origami flower, 
showcasing intricate folds in a futuristic workshop."
(L4)Random Edits Combination 2: "Hands fold a delicate pink origami flower in a tranquil Zen temple, 
depicted in watercolor-style visuals."

Description: "Chef mixing a fresh 
salad in a glass bowl on a wooden 
table."
Subject category: Food
Background category: Indoor
Event category: Cooking
Subject complexity: Moderate
Background complexity: Simple
Event complexity: Complex
Frame count: 32

(L1)Subject Modification: "A home cook mixing a fresh salad in a glass bowl on a wooden table."
(L3)Background Alteration: "Chef mixing a fresh salad in a glass bowl on a sandy seaside table."
(L2)Event Reorganization: "Chef garnishing a fresh salad with herbs in a glass bowl on a wooden 
table."
(L4)Overall Style Adjustment: "Chef mixing a fresh salad in a glass bowl on a wooden table, 
impressionist painting style."
(L5)Random Edits Combination 1: "A child mixing a colorful fruit salad playfully in a glass bowl on a 
wooden table."
(L5)Random Edits Combination 2: "Chef mixing a fresh salad in a luminous glass bowl on a futuristic 
neon-lit countertop, cyberpunk style."

Description: "Aerial view of waves 
crashing onto a sandy beach, 
creating white foam and patterns in 
the sand."
Subject category: Environment
Background category: Natural
Event category: Documentary
Subject complexity: Simple
Background complexity: Moderate
Event complexity: Complex
Frame count: 64

(L2)Subject Modification: "Aerial view of seagulls gliding over a sandy beach, creating shadows and 
patterns in the sand."
(L3)Background Alteration: "Aerial view of waves crashing onto icy shores, creating white foam and 
patterns in the frozen surface."
(L3)Event Reorganization: "Aerial view of waves gently receding, revealing seashells and starfish on 
the sandy beach."
(L4)Overall Style Adjustment: "Aerial view of waves crashing onto a sandy beach, creating white foam 
and patterns in the sand, painted in a Van Gogh style with swirling textures."
(L4)Random Edits Combination 1: "A flock of seagulls gliding over icy shores, creating shadows and 
intricate patterns on the frozen surface."
(L5)Random Edits Combination 2: "Aerial view of waves crashing onto a sandy beach, creating water 
and sand patterns in a luminous, neon cyberpunk style."

Figure 9: Illustrative examples of our DAPE Dataset. The labels (L1–L5) indicate the difficulty
levels of the editing tasks.
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Description: "An athlete performs a high 
jump, clearing the bar and landing on a 
mat in an outdoor track setting. “

People | Urban | Sports

Description: "Autumn leaves sway 
gently over a flowing stream, reflecting 
sunlight. “
Environment | Natural | Documentary

Description: "A group practices throwing 
axes in a forest, aiming at targets off-
screen. “

People | Natural | Sports

Description: "A baby lies on a white rug, 
looking around curiously in a cozy living 
room. “

People | Indoor | Daily

Description: "A bald eagle with a white 
head and yellow beak stares intently, set 
against a blurred green background. “

Animal | Blur Or Blank | Documentary

Description: "A blue and white train crosses 
a bridge over a rocky river, surrounded by 
lush green trees and houses.“

Vehicle | Urban | Documentary

Description: "A boy joyfully bounces on 
a red and blue inflatable play area 
outdoors. “

People | Urban | Sports

Description: "A boy plays the piano, 
focused on sheet music in a cozy room 
with notes on the wall. “

People | Indoor | Performance

Description: "A small bulldozer pushes a 
pile of dirt near a white building on a sunny 
day. “

Vehicle | Urban | Daily

Description: "A child and a dog play 
together in an inflatable pool filled with 
water on a grassy lawn. “

People | Urban | Daily

Description: “A child drive a toy car on a 
suburban street, wearing helmets for 
safety.“

People | Urban | Daily

Description: "A young foal stands in a 
fenced area, exploring its surroundings on 
a sunny day. “

Animal | Urban | Daily

Description: "A golden pavilion stands on 
a snowy lake, surrounded by snow-
covered trees and falling snowflakes. “

Environment | Natural | Daily

Description: "Hands solving a 
Rubik's Cube on a beige carpet 
background. “

Artifact | Blur Or Blank | Daily

Description: "Two individuals arrange 
flowers and greenery in a workshop setting, 
surrounded by floral decorations.“

People | Indoor | Daily

Description: "A kangaroo eats a red 
object in a grassy area surrounded by 
trees and foliage. “

Animal | Natural | Documentary

Description: "A man in glasses and a 
light sweater speaks, during a 
presentation. “

People | Indoor | Daily

Description: "A person kneads dough in a 
white bowl, hands covered in flour, against 
a dark background. “

Food | Indoor | Cooking

Description: "A person is repairing 
a tire with a needle and thread 
outdoors. “

Artifact | Urban | Daily

Description: "Rocky shoreline with calm 
water, surrounded by mountains under a 
cloudy sky.“

Environment | Natural | Documentary

Description: "A squirrel nibbles on a nut, 
its bushy tail visible, against a blurred 
natural background. “

Animal | Blur Or Blank | Documentary

Description: "An SUV drives through a 
shallow river in a forested area, creating 
ripples and splashes. “

Vehicle | Natural | Daily

Description: "Cooking vegetables in a pan 
on an induction stove, stirred with a 
wooden spoon. “

Food | Indoor | Cooking

Description: "A woman gestures and speaks 
animatedly against a vibrant, abstract black, 
white, and red background. “

People | Blur Or Blank | Performance

Simple | Moderate | Complex Moderate | Complex | Moderate Complex | Complex | Moderate Simple | Simple | Simple

Simple | Simple | Simple Simple | Complex | Simple Simple | Simple | Complex Simple | Simple | Simple

Simple | Simple | Moderate Moderate | Simple | Complex Simple | Moderate | Complex Simple | Simple | Simple

Simple | Complex | Simple Moderate | Simple | Moderate Moderate | Moderate | Moderate Simple | Complex | Simple

Simple | Simple | Simple Simple | Simple | Moderate Simple | Simple | Moderate Simple | Complex | Simple

Simple | Simple | Simple Moderate | Complex | Moderate Moderate | Simple | Moderate Simple | Moderate | Simple

Figure 10: More sample video frames from our DAPE Dataset.
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Input Video

Text Prompt: "A young goat sits on a rock, grooming itself with its front paw, in a hand-drawn watercolor painting style”

We aim to evaluate the difference between the video generated by the model and the original video, so as to compare the 
advantages and disadvantages of the methods. Please answer the corresponding questions according to your visual 
perception. It will be evaluated from three aspects: instruction compliance, video fluency and overall effect, including 21 
videos in total, which is expected to take 15-20min.

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6
Best
Second
Third

1.Please select and rank the top three most satisfactory generated videos according to their 
compliance with the text instructions.

2.Please choose according to the overall smoothness of the generated video (no distortion, flicker, 
etc.), select the top three most satisfactory videos and rank them.

3.Please select and rank the top three most satisfactory generated videos according to the overall 
visual experience of the generated videos.

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6
Best
Second
Third

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6
Best
Second
Third

1 2 3 4 5 6

Figure 11: Questionnaire example of user study.
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