Under review as a conference paper at ICLR 2026

OS-MAP: How FAR CAN COMPUTER-USING
AGENTS GO IN BREADTH AND DEPTH?

Anonymous authors
Paper under double-blind review

ABSTRACT

Computer-using agents have shown strong potential to boost human productiv-
ity and enable new application forms across platforms. While recent advances
have led to usable applications, existing benchmarks fail to account for the inter-
nal task heterogeneity and the corresponding agent capabilities, as well as their
alignment with actual user demands—hindering both targeted capability devel-
opment and the reliable transition of research progress into practical deployment.
To bridge the gap, we present OS-MAP, a benchmark for daily computer-using
automation that organizes its 416 realistic tasks across 15 applications along two
key dimensions: a five-level taxonomy of automation and a generalization scope
derived from a real-world user demand hierarchy. To enable fine-grained anal-
ysis of required capabilities and alignment with real-world scenarios, OS-MAP
evaluates agents along two dimensions: automation level across a five-level taxon-
omy, and generalization scope across a demand hierarchy. This design captures
varying levels of required agent autonomy and generalization, forming a perfor-
mance—generalization evaluation matrix for structured and comprehensive assess-
ment. Experiments show that even State-of-the-Art agents with VLM backbones
struggle with higher-level tasks involving perception, reasoning, and coordina-
tion—highlighting the need for a deeper understanding of current strengths and
limitations to drive the future progress in computer-using agents research and
deployment. All code, environments, baselines, and data are publicly available at
https://anonymous.4open.science/r/0SMap-C2F5/.

1 INTRODUCTION

Computer-using agents, which can understand user intent and autonomously perform operations
across digital environments, is driving the next transformation in human-computer interaction (Hu
et al., 2024a;b). Powered by the extensive world knowledge, interaction capability, and tool-use
abilities of Large Language Models and Vision Language Models, computer-using agents such
as Operator (OpenAl, 2025), Claude 3.5 (Anthropic, 2024), UFO? (Zhang et al., 2025), and UI-
TARS (Qin et al., 2025) can understand natural language instructions and interact directly with
various applications in a human-like manner. Once a fixture of science fiction—like J.A.R.V.L.S.
in Iron Man, seamlessly managing schedules, editing documents, shopping across websites, and
automating routine computer tasks—such digital personal assistants are now becoming a tangible
reality (Wu et al., 2024a). This transformation frees humans to focus on creative work, significantly
boosting productivity and enabling new applications.

As research on computer-using agents continues to advance, an increasing number of models with
strong functionalities (Qin et al., 2025; Bai et al., 2025; Xu et al., 2024a; Wu et al., 2024b) and
agent systems (Jiang et al., 2025; Agashe et al., 2025; Zhang et al., 2025; Jia et al., 2024) are being
proposed. Despite the rapid emergence of new methods, the open-ended semantics and diverse
capability demands of computer-using tasks still hinder actual deployment. To bridge this research-
to-practice gap, it is crucial to develop a principled benchmark that allows the community to quantify
agent capabilities and identify specific failure points. However, existing benchmarks fall short of this
goal. While spanning various platforms and scenarios, they treat tasks as flat collections, without
decomposing task heterogeneity and required capabilities (Drouin et al., 2024; Xie et al., 2024;
Bonatti et al., 2024; Rawles et al., 2024), making it difficult to perform fine-grained evaluation and
differentiation. Moreover, task collections are typically organized around applications (Li et al.,

https://anonymous.4open.science/r/OSMap-C2F5/

Under review as a conference paper at ICLR 2026

Generalization

Scope
General-Propose Model
@ Action Model
Agentic Model
.
s3 Pt High Value Area Agent Framework
General Claude
A Commercial Product
Qwen2.5-VL
UI-TARS
OS-Atlas
OSCAR Agent S2
Aguvis AutoGLM
UGround i
2 A AppAgent MobileAgent
Medium Micrqsofl
. Copilot 0OS-Genesis
SeeClick CogAgent AgentStore
X OS-Copilot
Pix2Act
s1 WebAgent pc.agent A
Narrow A GitHub
Cortans ™" SheetCopilot Copilot
Automation
Level
L1 L2 L3 L4 L5
Execution Planning Adaptation Orchestration Proactivity

Figure 1: OS-MAP qualitative evaluation matrix, summarizing how different types of agents perform
across two dimensions. General-purpose models show strong generalization, while scenario experts
excel at specific tasks. Mainstream computer-using agents aim to balance both, yet still face major
challenges. Agent positioning is based on reported performance, as detailed in Appendix A.

2024a; Xie et al., 2024) rather than aligned with the actual distribution of daily computer use, limiting
the relevance of benchmark performance to real-world utility (Hu et al., 2024a).

To bridge these gaps, we present the OS-MAP benchmark that is grounded in dynamic desktop
environments and structured along two key dimensions: automation levels and generalization scopes.
First, we propose a five-level capability taxonomy based on degrees of autonomy, encompassing
a wide range of computer-using tasks—from atomic execution and simple planning to disturbance
adaptation, complex orchestration, and proactive behaviors. Second, we derive a real-world user
demand hierarchy on daily computer-using scenarios and select representative tasks to ensure both
high coverage and alignment with practical demands. Furthermore, we combine the two dimensions
into a unified evaluation matrix (Figure 1), which highlights how general-purpose models, scenario
experts, and mainstream computer-using agents differ in capability trade-offs between automation
and generalization. The upper-right corner marks a high-value region—representing impactful yet
unachieved applications—where no current agent demonstrates sufficient capability.

Across 416 tasks spanning 15 applications in OS-MAP, even the strongest existing computer-using
agents achieve only an 11.5% overall success rate, with near-zero performance on higher-level
tasks—falling far short of human performance. These findings underscore the importance of a
principled evaluation framework. By offering both qualitative and quantitative insights into where
and to what extent computer-using agents can assist humans, our framework supports comprehensive
evaluation and provides a clear roadmap for future progress.

2 ENVIRONMENT

OS-MAP adopts and extends the OSWorld (Xie et al., 2024) infrastructure, which centers around a
virtual machine (VM) and a host-side controller (VMC). This dynamic and executable environment
offers fine-grained control, consistent reproducibility, flexible extensibility, and secure isolation,
forming an ideal sandbox for evaluating computer-using agents in real-world scenarios.

2.1 TASK DEFINITION

In general, computing-using automation tasks are roughly modeled as partially observable Markov
decision processes (S, O, A, T, R). At timestep ¢, the agent resides in the environment state s; € S,
but only receives a partial observation o; € O (e.g., the current screenshot). Based on o, the agent
emits an action a; € A (e.g., a structured text c1ick (350, 600)). The environment transitions to
the next state s;11 = 7 (8¢, a¢) via the transition function 7, which is governed by the underlying

Under review as a conference paper at ICLR 2026

Instruction: Make this image a transparent background and set it as my avatar.
Eval func

i

Final
| State

ubuntu Environment
Setup | Initial G
config setup m g
‘ oY X

! N =

i
i
i
! Action | lterative | Observation
i
i
i

RN NN B-TER 3

‘@

Agent

instruction | @*$ X

BEO=R O
ERE N E-TEN

Figure 2: OS-MAP is built on an executable desktop environment designed for daily computer tasks,
integrating a suite of applications and tools. It provides the infrastructure for reliable evaluation
by handling task initialization and success verification. Agents interact autonomously via GUI
operations, guided by instructions and screenshot perception.

software and OS logic, revealing a new observation o;;. This process continues iteratively until
the agent actively issues a terminal action (i.e., DONE or FAIL), or passively exceeds a predefined
step limit. After termination, the system determines whether the task is successfully completed and
provides a final outcome reward r € R = {0, 1}, without any intermediate process rewards.

2.2 ENVIRONMENT STRUCTURE

Task lifetime. Each task is specified by a JSON file defining initialization, instruction, and evalua-
tion protocols. As shown in Figure 2, evaluation begins by restoring a designated VM snapshot and
running lightweight setup routines. The agent then enters the interaction loop, receiving observations
from and sending actions to the VM via the VMC. This loop continues until the agent terminates the
episode, either actively or passively. The evaluator then compares the VM state to reference criteria
and returns a binary reward. See Appendix B.1 for details.

Initialization and evaluation configuration. Task setup in OS-MAP combines VM snapshots
with modular configuration functions, supporting scalable and flexible task creation. Standard
initialization adopt reusable OSWorld functions (e.g., file downloading, shell commands), while more
complex setups—such as software installation or database configuration—are manually performed
and captured as directly restorable snapshots. Evaluation integrates both state-based and action-
based assessments to support tasks with varying levels of automation. Depending on the task, state
evaluation may involve file comparison and system state inspection, or execution-based verification.
See Appendix B.2 and B.3 for detailed initialization and evaluation modes.

Observation and action space. Recent computer-using agents research increasingly gravitates
toward human-like interaction paradigms: raw pixel screenshots as observations and atomic keyboard-
/mouse operations as actions. OS-MAP adopts this design, using raw screenshots as input—without
accessibility trees or Set-of-Marks (Yang et al., 2023) annotations—for simplicity and broader appli-
cability. The action space follows OSWorld’s 13 atomic operations and 3 meta-actions (i.z., WAIT,
FAIL, DONE). See Appendix B.4 and B.5 for detailed space descriptions with examples.

3 BENCHMARK

OS-MAP comprises 416 real-world computer-using automation tasks on 15 Ubuntu applications,
spanning diverse everyday scenarios. Tasks are categorized along two orthogonal dimensions:
automation level, capturing the degree of agent autonomy, and generalization scope, defined by
a hierarchical demand taxonomy, measuring agents’ capability transferability. Together, they form
a structured evaluation matrix (Fig. 1) supports systematic evaluation. The following sections
introduces the automation levels (§3.1), generalization scope (§3.2), evaluation matrix (§3.3), task
curation pipeline (§3.4), and benchmark statistics (§3.5).

Under review as a conference paper at ICLR 2026

user’s daily wallpaper @3 @
change— !

L5

Beyond
Companion Automation

@\t / L4
Bing wallpaper Global
Conductor Automation

L3

Local
Automation

and use (€38

L2

Partial
Automation

it as
Planner
L1

User
Assistance

Open this picture. G/
Executor

Figure 3: Automation levels demonstration on a specific task: rotating wallpapers daily. From the
user’s perspective, achieving the same goal involves increasing agent responsibility and decreasing
user involvement as automation level rises. Task executions become longer and more complex,
reflecting the shifting division of labor between human and the agent.

3.1 AUTOMATION LEVELS

Real-world computer automation varies in task complexity, user involvement, and agent responsibil-
ity. To support consistent evaluation across these variations, we introduce a five-level automation
taxonomy, inspired by SAE driving automation taxonomy (Committee, 2021) and grounded in the
division of labor between humans and agents. Figure 3 illustrates how a concrete task manifests
across all five interaction modes. Each level reflects a specific degree of autonomy in planning and
execution, shaped by both task complexity and the expected user role.

L1: Reactive executor. The agent executes user-defined atomic operations (e.g., clicks, keystrokes)
without making decisions. Task planning remains entirely user-driven. This stage primarily eval-
uates perceptual grounding and command-to-action mapping—capabilities that many grounding
models (Cheng et al., 2024; Wu et al., 2024b; Gou et al., 2024) specifically target.

L2: Deterministic planner. The user specifies only the task goal, leaving the agent to autonomously
plan and execute actions under ideal and predictable conditions. High-level task decomposition
remains user-driven, and intervention is required when failures occur. This stage tests prior knowledge
and basic planning, representing the operational level of most current agents and proprietary models.

L3: Adaptive agent. 13 emphasizes robustness in dynamic, noisy, and partially observable
environments. Agents must adapt plans autonomously in response to unpredictable events or evolving
interface states. While users still define high-level goals, they no longer need to monitor or intervene
during execution. Only a small subset of agents specifically designed for adaptivity reach this level,
demonstrating resilience and flexible subtask completion under real-world conditions.

L4: Global conductor. The agents take full responsibility for decomposing high-level goals and
orchestrating complex workflows involving subgoals, cross-application context switching, and tool
usage. Acting as autonomous top-level orchestrators, they coordinate entire tasks end-to-end, with
users only issuing goals and verifying outcomes. As shown in our results, no current agent effectively
handles this level, though emerging multi-agent approaches show promise.

L5: Proactive companion. L5 marks a shift from reactive execution to proactive collaboration.
The agent continuously monitors context, anticipates user needs, and initiates helpful actions without
explicit instructions. It learns from long-term interactions to provide personalized support as an
intelligent digital companion. While still an underexplored concept, with only a few studies across
different scenarios (Lu et al., 2024; Chen et al., 2025; Chaves and Gerosa, 2021; Liao et al., 2023), it
holds significant promise for future applications. OS-MAP does not yet include L5 tasks and we
leave them for future improvements.

Under review as a conference paper at ICLR 2026

3.2 GENERALIZATION SCOPE

While §3.1 focuses on structural organization via automation levels, this section turns to the content
dimension. Designing meaningful tasks for computer-using agents is challenging. Prior benchmarks
often rely on predefined applications sets (Xie et al., 2024; Bonatti et al., 2024; Li et al., 2024a;
Chai et al., 2025) or template-based generation (Rawles et al., 2024; Drouin et al., 2024). In
contrast, we take a demand-driven approach—identifying common daily use cases and deriving tasks
accordingly—to ensure realism, representativeness, and practical relevance.

Demand hierarchy. We define a three-level hierarchy: domains, scenarios, and representative tasks
with applications, guided by industry data (Tower, 2025) and public surveys (OECD, 2025). Starting
from the State of Mobile 2025 report, we adapt mobile usage statistics to the desktop setting by
excluding mobile-specific categories (e.g., payments) and adding desktop-relevant ones (e.g., office
work), forming six domains: work, study, life services, entertainment, creative production, and system
management. Figure 4 illustrates this demand hierarchy details. Scenarios are derived by aligning
app subcategories with activity metadata from OECD ICT Access and Usage Database (OECD,
2025). Tasks are then selected through expert review and LLM-assisted ideation, filtered by clarity,
reproducibility, and independence from real-world accounts or network-side effects.

Generalization scope. Anchored in this hierarchy, we define three scopes of generalization: S1
(Narrow), S2 (Domain-Level), and S3 (General) to characterize agents’ capability breadth across
diverse user demand. An S1 agent handles tasks within a single scenario (e.g., calendar management).
An S2 agent succeeds across multiple scenarios within a domain (e.g., document editing, emailing,
and scheduling in the work domain). An S3 agent demonstrates S2-level performance across most or
all six domains, effectively acting as a cross-domain generalist for daily computer-using assistance.

3.3 EVALUATION MATRIX

We further integrate the two orthogonal dimensions—automation levels (L1-L5) and generalization
scopes (S1—S3)—into a two-dimensional evaluation matrix, enabling a systematic assessment of both
the depth and breadth of agent capabilities, as presented in Figure 1. This depth—breadth perspective
aligns with the performance—generality framework proposed in earlier AGI research (Morris et al.,
2024; Zhang et al., 2024a). In the context of computer-using, performance denotes the extent to
which an agent can operate independently from human intervention within collaborative settings, as
reflected by the task complexity across the automation levels. Generality refers to the range of tasks
where the agent meets the performance threshold, anchored in its coverage of the demand hierarchy.

By decoupling performance and generality, the matrix provides a fine-grained evaluation of CUAs’
practical utility by revealing strengths and limitations and supporting clear comparisons across
systems with differing design priorities. The structure also scales naturally—new tasks or scenarios
can be added to underexplored regions without disrupting the overall framework. Most importantly,
it offers a clear developmental roadmap, guiding researchers and practitioners in setting progressive
goals along both dimensions toward building more capable and general-purpose agents.

3.4 TASK CURATION PROCESS

Each task in OS-MAP is created following a standardized six-step process grounded in the two-
dimensional organization framework: (1) task selection, (2) exploration and specification, (3) instruc-
tion and configuration, (4) reference state preparation, (5) evaluation setup, and (6) cross-validation.
Detailed descriptions of each step are provided in Appendix C.1. To ensure correctness and stability
in an open-ended environment, each stage of this process demands significant manual effort and
verification. Appendix C.2 presents the full design and refinement process of a representative L4
task. We also incorporate and adapt OSWorld tasks by mapping them to our difficulty levels and
generalization tiers. All included tasks undergo the same validation pipeline, while those with invalid
formats or ambiguous feasibility are excluded. Related details are discussed in Appendix C.3.

3.5 BENCHMARK STATISTICS

Statistics. Figure 4 presents the distribution of tasks in OS-MAP across the user-centered demand
hierarchy. Based on industry surveys (Tower, 2025; OECD, 2025), we define a three-level demand
hierarchy comprising 6 top-level needs, 18 sub-needs, and 45 concrete scenarios, spanning 15
representative applications and covering a broad range of daily computer-using situations. In total,

Under review as a conference paper at ICLR 2026

Table 1: Statistics of OS-MAP.

:53 & & Task Type Statistics
A Total Tasks 416 (100%)
% » il - Single-App 283 (62.3%)
R . S - Multi-App 154 (37.7%)
o I —— Automation Level
e, aee - L1: Execution 25 (6.0%)
£EBE . - L2: Planning 234 (56.3%)
= \ o - L3: Adaptability 115 (27.6%)
i - L4: Orchestration 42 (10.1%)
., Source
% - Authors 161 (38.7%)
- Labeled from OSWorld 255 (61.3%)
Avg. Words of Task Instructions 343
Avg. Steps 11.4

Figure 4: Task distribution on the demand
hierarchy in OS-MAP benchmark.

OS-MAP contains 416 tasks representative of their respective scenarios. Among them, 138 tasks
are meticulously designed by the authors, while the remaining 296 are relabeled and filtered for
ambiguity and redundancy from OSWorld (Xie et al., 2024) as Appendix C.3 describes. Table 1
provides more detailed statistics. Notably, 37.7% of tasks involve multi-app workflows, posing
significant challenges to agents’ adaptation and orchestration capabilities.

Comparison with existing benchmarks. Table 2 compares OS-MAP with existing efforts across
key dimensions. First, OS-MAP builds on an executable environment, inheriting the architecture,
utility functions, and evaluation tools from OSWorld (Xie et al., 2024). This ensures controllability
and flexible open-domain scalability. Second, we expand the number of applications and tasks,
including a substantial portion of cross-application tasks, thereby enhancing the task diversity. Most
importantly, we introduce a fine-grained evaluation framework based on both task difficulty levels
and user demand hierarchy. These two axes are further integrated into a structured, two-dimensional
evaluation matrix, enabling systematic, detailed comparisons and offering clear guidance for future
development—an aspect largely overlooked by existing benchmarks.

Table 2: Comparison of different environments for benchmarking CUAs. The columns indicate:
dynamic executable environment provided (Exec. Env.?), the ease of adding new tasks involving
arbitrary applications in open domains (Scal. Env.), the number of applications or websites (#App-
s/sites), the number of task instances and templates (if applicable) (# Inst. (# Temp.)), inclusion
of cross-app tasks (Cross-app?), whether to provide evaluation based on task difficulty (Task Diff.
Levels?), demand perspective (Demand Scope?), or a multi-dimensional structure (Struct. Eval.?).

Benchmark Exec. Scal. # A_PPS/ # Inst. Cross- Task Diff. Demand Struct.
Env.? Env.? sites (# Temp.) app? Levels? Scope? Eval.?
GAIA Mialon et al. (2023) X - 466 X X X
MIND2WEB Deng et al. (2023) X 137 2350 X X X X
WEBVOYAGER He et al. (2024) X 15 643 X X X X
PIXELHELP Li et al. (2020) X 4 187 X X X X
AITW Rawles et al. (2024) X 357+ 30k X X X X
OMNIACT Kapoor et al. (2024) X 60+ 9802 X X X X
WEBSHOP Yao et al. (2022) X 1 12k (1) X X X X
WEBARENA Zhou et al. (2023) X 6 812 (241) X X X X
WORKARENA Drouin et al. (2024) X 1 23k (29) X X X X
ANDROIDARENA Xing et al. (2024) X 13 221 X
ANDROIDWORLD Rawles et al. (2024) 20 oo (116) X X X
ANDROIDAGENTARENA Chai et al. (2025) 21 201 X X X
OSWORLD Xie et al. (2024) 9 369 X X X
SPIDER2-V Cao et al. (2024) 20 494 X X X
WINDOWSAGENTARENA Bonatti et al. (2024) 11 154 X X X
THEAGENTCOMPANY Xu et al. (2024b) X 6 175 X X
SCIENCEBOARD Sun et al. (2025) 6 169 X
OS-Map 15 416

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETTINGS

Agent types. We construct three types of computer-using agents based on different types of state-of-
the-art models: (1) General baselines: directly uses a general-purpose VLMs (GPT-40 (Hurst
et al., 2024), Claude-3.7-Sonnet (Anthropic, 2025), Gemini-2.5-Pro (Team, 2025),
Qwen?2.5-VL-72B (Bai et al., 2025), InternVL3-8B (Zhu et al., 2025)) to perform each task
end-to-end. (2) GUI-specific model baseline: executes tasks end-to-end using GUI-specialized
VLMs (UI-TARS-72B (Qin et al., 2025)). (3) Planning-Grounding: to compensate for the impre-
cise grounding abilities of general models, GPT—40 (Hurst et al., 2024) is used to conduct high-level
plans, which are then refined by lightweight GUI action models (Aguvis—7B (Xu et al., 2024a),
OS-ATLAS-Base-7B (Wuetal., 2024b), UGround-7B (Gou et al., 2024), GUTI-Actor—-7B (Wu
et al., 2025)) for precise grounding.

Agent settings. All three agent types share a common decision-making and interaction pattern,
along with similar prompting strategies. Specifically, the agent interacts with the environment under
the guidance of a system prompt, which includes descriptions of the task goal, observation space,
action space, and required output format. At each step, the agent generates an action based on the
current screenshot and the three most recent rounds of interaction history. Detailed prompts and
interaction protocols are provided in Appendix E.

4.2 RESULTS

We compare the performance of the above four computer-using agents types powered by different
models on OS-MAP, as presented in Table 3. We summarize our key empirical results as follows:

Computer-using agents remain far from practical deployment. Despite recent advances, current
agents exhibit consistently poor performance across all levels of automation, with many near zero,
highlighting a substantial performance gap from human users. This suggests that existing models still
struggle with core capabilities such as grounding.

Agents’ performance exhibits a stepwise decline across automation levels. Among the evaluated
models, UT-TARS-72B achieves the best balance of visual grounding, robust planning, and task
generalization, significantly outperforming other competitors. It performs well when tasks include
step-level guidance (1.1) and maintains solid performance on basic planning (L2). However, its
advantage drops markedly on environmental adaptation (1.3) and multi-context orchestration (L4),
suggesting that adaptive reasoning and long-horizon planning remain key challenges.

Open-source models have achieved competitive end-to-end performance. Although smaller in
scale, open-source models fine-tuned on GUI-specific data (Bai et al., 2025) or trained in GUI-centric
environments (Qin et al., 2025) demonstrate better performance than proprietary general-purpose
models in end-to-end execution. Their superiority stems from targeted training in GUI contexts,
which enhances planning stability and task adaptation in complex desktop environments.

Tailored training and agentic setting yield better computering-using performance. Compared
to general models, GUI-specific models (Qin et al., 2025) and interleaved planning-grounding
agents (Xu et al., 2024a; Wu et al., 2024b; Gou et al., 2024; Wu et al., 2025) gain a significant im-
provement. The specially designed GUI training makes models familiar with computer environments,
while the planning-grounding agents combine the world knowledge and strategic planning of general
models with the precise perception and control ability of the GUI-oriented models.

4.3 ANALYSIS

To understand key challenges behind poor performance, this section analyzes representative failure
cases to uncover core factors that lead to agent breakdowns. We highlight both general capability
gaps observed across agents and level-specific bottlenecks tied to increasing automation levels. These
insights shed light on where agents fall short and inform more targeted future improvements. See
Appendix F for a more detailed case analysis with screenshots.

Under review as a conference paper at ICLR 2026

Table 3: Success rates of computer-using agents on OS-MAP. We present each agent backbone’s per-
formance on tasks across different automation levels. Proprietary VLMs , and Open-Source VLMs

are distinguished by color. In Planning-Grounding setting, GPT-40 is used as the planning model.

Success Rate (1)

Agent Type Model
Ll L2 L3 L4 Overall
GPT-40 12.0% 1.3% 1.7% 0.0% 1.9%
Claude-3.7-Sonnet 0.0% 3.8% 0.0% 0.0% 2.1%
General Baselines Gemini-2.5-Pro 8.0% 10.6% 2.7% 2.4% 7.5%
Qwen2.5-VL-72B 32.0% 7.9% 1.0% 0.0% 6.6%
InternVL3-8B 8.0% 1.6% 1.0% 0.0% 1.6%
GUI-Specific Baseline UI-TARS-72B 48.0% 14.0% 1.0% 0.0% 11.4%
Aguvis-7B 4.0% 4.7% 1.8% 0.0% 3.4%
Planning-Grounding OS-ATLAS-Base-7B 8.0% 6.4% 1.8% 0.0% 4.6%
UGround-7B 16.0% 4.6% 1.8% 0.0% 4.0%
GUI-Actor-7B 40.0% 15.1% 1.8% 0.0% 11.5%
Human Performance 96.0% 74.8% 65.2% 59.5% 71.9%

4.3.1 GENERAL FAILURES

Poor instruction following. This manifests as frequent violations of the required output format. A
typical case is Claude—3.7-Sonnet issuing an OPEN_FILE_EXPLORER action when openning
the file manager—despite the valid action space only contains atomic mouse and keyboard operations.

Severe hallucination. Due to limited perception and reasoning, agents often wrongly assume that
previous actions have succeeded, and occasionally exhibit drastic hallucinations—e. g., mistaking the
activities window for Chrome and attempting to search within it (Figure 13 in Appendix F).

Figure 5: Agent prefers en- Figure 6: GUI action Figure 7: Searching for the
tering a URL instead of = model fails in the ground- album Taylor Swift instead
navigating websites. ing of the green block. of albums by Taylor Swift.

AAAA

Figure 8: Agentis deleting Figure 9: Agent start filling Figure 10: Calculating cal-
all history, not just those out the form before clarify- culus internally instead of
from YouTube. ing information. trying tools in the context.

Figure 11: Failure cases of each automation levels, reflecting bottlenecks in core capabilities.
4.3.2 LEVEL-WISE BOTTLENECKS

L1: execution. Proprietary models exhibit poor grounding capabilities, often preferring command-
line operations or direct URL jumps (Figure 5). In contrast, GUI action models demonstrate more
human-aligned interaction patterns, yet still struggle with locating non-textual elements (Figure 6).

L2: planning. Agents are prone to two common failure modes at this level: (1) distraction by
similar but incorrect options—for example, searching for the album Taylor Swift instead of all
albums by Taylor Swift (Figure 7); and (2) neglecting specific task constraints—e.g., deleting all
browsing history instead of only entries related to YouTube (Figure 8).

Under review as a conference paper at ICLR 2026

L3: adaptability. Agents demonstrate basic proactive exploration (e.g., inspecting potential di-
rectories before file operations) and reactive handling (e.g., closing unexpected pop-ups). However,
they struggle with fallback strategies under deviation, such as failing to exit full-screen mode
via hotkeys (Figure 14 in Appendix F), or activating theater mode before resizing, which hides the
required controls (Figure 15). They also show poor awareness of implicit task context (Figure 16).

L4: orchestration. Agents exhibit major bottlenecks in all challenges including goal decomposition,
dependency tracking, context switching, and tool use: unclear decomposition leads to aimless
clicking (Figure 17 in Appendix F); misordered context switches break task dependencies (Figure 9)
or initiating transactions before checking the balance (Figure 18); and failure to leverage external
tools (Figure 10).

5 RELATED WORK

Computer use benchmarks. Existing computer-using benchmarks can be broadly categorized
along several dimensions: by platform (e.g., Web (Deng et al., 2023; Zhou et al., 2023), Desktop (Xie
et al., 2024; Cao et al., 2024; Xu et al., 2024b), or Mobile (Rawles et al., 2023; 2024; Chai et al.,
2025)); by task type (e.g., understanding (Liu et al., 2024; Chen et al., 2024a), grounding (Cheng
et al., 2024; Nayak et al., 2025), and end-to-end automation); and by scenario domain (e.g., everyday,
office (Drouin et al., 2024), or professional (Cao et al., 2024; Li et al., 2025)). A recent trend is the
adoption of dynamic environments (Xie et al., 2024; Cao et al., 2024; Xu et al., 2024b; Rawles et al.,
2024; Sun et al., 2025). Focusing on end-to-end evaluation in daily scenarios on a dynamic desktop
environment, OS-MAP is the first to systematically analyze task structures and automation levels
grounded in real-world user needs, bridging capability evaluation with practical relevance.

Computer-using agents. Recent advances in computer-using agents have been highly diverse. For
modeling, efforts have focused on enhancing visual perception through high-resolution (Hong et al.,
2024; Li et al., 2024b) or adaptive cropping and token selection (Zhang et al., 2024b; Lin et al., 2024;
Wu et al., 2025) techniques. For data, two trends have emerged: (1) large-scale multi-task web-based
pretraining (Cheng et al., 2024; You et al., 2024; Chen et al., 2024b; Wu et al., 2024b; Gou et al., 2024;
Qin et al., 2025), and (2) supervised fine-tuning on high-quality interaction trajectories (Zhang et al.,
2024c; Sun et al., 2024; Su et al., 2025). Reinforcement learning has been introduced to improve
error recovery, and long-horizon reasoning (Fan et al., 2025; Lu et al., 2025; Xia and Luo, 2025;
Liu et al., 2025). A parallel line of work builds ReAct-style (Yao et al., 2023) agents coordinating
structured functional modules, with growing emphasis on hierarchical planning, systematic memory
organization, and collaborative multi-agent systems (Agashe et al., 2024; Wu et al., 2024a; Jia et al.,
2024; Agashe et al., 2025; Jiang et al., 2025; Wang et al., 2025; Zhang et al., 2025).

Al capability levels. Both industry and academia have long explored ways to define graded Al
capabilities (Sheridan and Parasuraman, 2005; Parasuraman et al., 2000; Goertzel, 2014). A well-
known example is the levels of driving automation (Committee, 2021) based on the human—system
driving collaboration model. Recently, researchers have proposed grading schemes for artificial
general intelligence with the performance-generality capability framework (Morris et al., 2024;
Zhang et al., 2024a). A related research (Li et al., 2024c) discusses the intelligence levels of personal
LLM agents in terms of collaboration patterns, but with abstract classification, vague levels, and
overlapping capabilities. Our work grounds the performance—generality perspective in the concrete
domain of computer automation, introducing clear levels aligned with real-world tasks, and further
instantiates this taxonomy as OS-MAP benchmark to support quantitative evaluation.

6 CONCLUSION

In this work, we propose a two-dimensional evaluation framework for computer-using agents,
spanning automation levels and generalization scopes. We instantiate it as the OS-MAP Benchmark,
comprising 416 tasks across 15 desktop applications, executed in a controllable and extensible
environment to ensure quantitative and reproducible evaluation. Despite recent progress, OS-MAP
remains highly challenging—state-of-the-art general-purpose and GUI-specialized VLMs still fall far
short of human performance. Through in-depth failure analysis, we identify key capability bottlenecks
at each automation level, laying a foundation for targeted improvements in future research.

Under review as a conference paper at ICLR 2026

REFERENCES

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao,
Xiangxin Zhou, Ziyu Zhao, et al. Os agents: A survey on mllm-based agents for general computing
devices use, 2024a.

Siyuan Hu, Mingyu Ouyang, Difei Gao, and Mike Zheng Shou. The dawn of gui agent: A preliminary
case study with claude 3.5 computer use. arXiv preprint arXiv:2411.10323, 2024b.

OpenAl Introducing operator. https://openai.com/index/
introducing-operator/, 2025. Accessed: 2025-04-25.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
3-5-models—-and-computer—-use, 2024. Accessed: 2025-04-25.

Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang,
Pu Zhao, Chao Du, et al. Ufo2: The desktop agentos. arXiv preprint arXiv:2504.14603, 2025.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024a.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024b.

Wenjia Jiang, Yangyang Zhuang, Chenxi Song, Xu Yang, Joey Tianyi Zhou, and Chi Zhang. Ap-
pagentx: Evolving gui agents as proficient smartphone users. arXiv preprint arXiv:2503.02268,
2025.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Chengyou Jia, Minnan Luo, Zhuohang Dang, Qiushi Sun, Fangzhi Xu, Junlin Hu, Tianbao Xie, and
Zhiyong Wu. Agentstore: Scalable integration of heterogeneous agents as specialized generalist
computer assistant. arXiv preprint arXiv:2410.18603, 2024.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom Marty,
Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena: How capable are
web agents at solving common knowledge work tasks? arXiv preprint arXiv:2403.07718, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040-52094, 2024.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong

Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

10

https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use

Under review as a conference paper at ICLR 2026

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024.

Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. On the effects of data scale on ui control agents. Advances in Neural
Information Processing Systems, 37:92130-92154, 2024a.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

On-Road Automated Driving (ORAD) Committee. Taxonomy and Definitions for Terms Related
to Driving Automation Systems for On-Road Motor Vehicles, April 2021. URL https://doi.
org/10.4271/J3016_202104.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Yaxi Lu, Shenzhi Yang, Cheng Qian, Guirong Chen, Qinyu Luo, Yesai Wu, Huadong Wang, Xin
Cong, Zhong Zhang, Yankai Lin, et al. Proactive agent: Shifting 1lm agents from reactive responses
to active assistance. arXiv preprint arXiv:2410.12361, 2024.

Valerie Chen, Alan Zhu, Sebastian Zhao, Hussein Mozannar, David Sontag, and Ameet Talwalkar.
Need help? designing proactive ai assistants for programming. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems, pages 1-18, 2025.

Ana Paula Chaves and Marco Aurelio Gerosa. How should my chatbot interact? a survey on social
characteristics in human—chatbot interaction design. International Journal of Human—Computer
Interaction, 37(8):729-758, 2021.

Lizi Liao, Grace Hui Yang, and Chirag Shah. Proactive conversational agents in the post-chatgpt world.
In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 3452-3455, 2023.

Yuxiang Chai, Hanhao Li, Jiayu Zhang, Liang Liu, Guangyi Liu, Guozhi Wang, Shuai Ren, Siyuan
Huang, and Hongsheng Li. A3: Android agent arena for mobile gui agents. arXiv preprint
arXiv:2501.01149, 2025.

Sensor Tower. State of mobile 2025: The industry’s leading report. https://sensortower.
com/state—of-mobile—-2025, 2025. Accessed: 2025-04-25.

OECD. Ict access and usage database. https://oe.cd/dx/ict—access—-usage, 2025.
Accessed: 2025-04-25.

Meredith Ringel Morris, Jascha Sohl-Dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Aleksan-
dra Faust, Clement Farabet, and Shane Legg. Position: Levels of agi for operationalizing progress
on the path to agi. In Forty-first International Conference on Machine Learning, 2024.

Kaiyan Zhang, Biging Qi, and Bowen Zhou. Towards building specialized generalist ai with system 1
and system 2 fusion. arXiv preprint arXiv:2407.08642, 2024a.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091-28114, 2023.

11

https://doi.org/10.4271/J3016_202104
https://doi.org/10.4271/J3016_202104
https://sensortower.com/state-of-mobile-2025
https://sensortower.com/state-of-mobile-2025
https://oe.cd/dx/ict-access-usage

Under review as a conference paper at ICLR 2026

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences. arXiv preprint arXiv:2005.03776, 2020.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist

autonomous agents for desktop and web. In European Conference on Computer Vision, pages
161-178. Springer, 2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744-20757, 2022.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the
weakness of large language model agents within a complex android environment. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 6061-6072,
2024.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xinzhuang
Xiong, Hanchong Zhang, Wenjing Hu, Yuchen Mao, et al. Spider2-v: How far are multimodal
agents from automating data science and engineering workflows? Advances in Neural Information
Processing Systems, 37:107703—-107744, 2024.

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on
consequential real world tasks. arXiv preprint arXiv:2412.14161, 2024b.

Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao,
Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, et al. Scienceboard: Evaluating multimodal autonomous
agents in realistic scientific workflows. arXiv preprint arXiv:2505.19897, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025. Accessed: 2025-04-25.

Gemini Team. Introducing gemini 2.0: our new ai model for the agen-
tic era. https://blog.google/technology/google—deepmind/

gemini-model-thinking-updates-march-2025/, 2025. Accessed: 2025-04-
25.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden, Qingwei Lin, Huan Zhang, Tong Zhang,
Jianbing Zhang, Dongmei Zhang, and Jianfeng Gao. Gui-actor: Coordinate-free visual grounding
for gui agents, 2025. URL https://arxiv.org/abs/2506.03143.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708-59728, 2023.

12

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2506.03143

Under review as a conference paper at ICLR 2026

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
Yue. Visualwebbench: How far have multimodal Ilms evolved in web page understanding and
grounding? arXiv preprint arXiv:2404.05955, 2024.

Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Liuyi Chen, Yilin Bai, Zhigang He, Chenlong
Wang, Huichi Zhou, Yiqiang Li, et al. Gui-world: A dataset for gui-oriented multimodal 1lm-based
agents. arXiv e-prints, pages arXiv—2406, 2024a.

Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A Rodriguez, Montek Kalsi, Rabiul Awal,
Nicolas Chapados, M Tamer Ozsu, Aishwarya Agrawal, David Vazquez, et al. Ui-vision: A desktop-
centric gui benchmark for visual perception and interaction. arXiv preprint arXiv:2503.15661,
2025.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
arXiv preprint arXiv:2504.07981, 2025.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14281-14290, 2024.

Zhangheng Li, Keen You, Haotian Zhang, Di Feng, Harsh Agrawal, Xiujun Li, Mohana Prasad Sathya
Moorthy, Jeff Nichols, Yinfei Yang, and Zhe Gan. Ferret-ui 2: Mastering universal user interface
understanding across platforms. arXiv preprint arXiv:2410.18967, 2024b.

Jiwen Zhang, Yaqi Yu, Minghui Liao, Wentao Li, Jihao Wu, and Zhongyu Wei. Ui-hawk: Unleashing
the screen stream understanding for gui agents. Preprints, manuscript/202408.2137, 2024b.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Zechen Bai, Weixian Lei, Lijuan Wang,
and Mike Zheng Shou. Showui: One vision-language-action model for generalist gui agent. In
NeurIPS 2024 Workshop on Open-World Agents, 2024.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. In
European Conference on Computer Vision, pages 240-255. Springer, 2024.

Xuetian Chen, Hangcheng Li, Jiaqing Liang, Sihang Jiang, and Deqing Yang. Edge: Enhanced
grounded gui understanding with enriched multi-granularity synthetic data. arXiv preprint
arXiv:2410.19461, 2024b.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
Tang. Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint arXiv:2403.02713,
2024c.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan O Arik. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments. arXiv
preprint arXiv:2501.10893, 2025.

Yue Fan, Handong Zhao, Ruiyi Zhang, Yu Shen, Xin Eric Wang, and Gang Wu. Gui-bee:
Align gui action grounding to novel environments via autonomous exploration. arXiv preprint
arXiv:2501.13896, 2025.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Guanjing Xiong, and
Hongsheng Li. Ui-rl: Enhancing action prediction of gui agents by reinforcement learning. arXiv
preprint arXiv:2503.21620, 2025.

Xiaobo Xia and Run Luo. Gui-rl: A generalist r1-style vision-language action model for gui agents.
arXiv preprint arXiv:2504.10458, 2025.

13

Under review as a conference paper at ICLR 2026

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-rl: Advancing multimodal gui agents from reactive actors to deliberative
reasoners. arXiv preprint arXiv:2504.14239, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. Mobile-agent-e: Self-evolving mobile assistant for complex tasks. arXiv preprint
arXiv:2501.11733, 2025.

Thomas B Sheridan and Raja Parasuraman. Human-automation interaction. Reviews of human factors
and ergonomics, 1(1):89-129, 2005.

Raja Parasuraman, Thomas B Sheridan, and Christopher D Wickens. A model for types and levels of
human interaction with automation. IEEE Transactions on systems, man, and cybernetics-Part A:
Systems and Humans, 30(3):286-297, 2000.

Ben Goertzel. Artificial general intelligence: concept, state of the art, and future prospects. Journal
of Artificial General Intelligence, 5(1):1, 2014.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024c.

14

Under review as a conference paper at ICLR 2026

A QUALITATIVE EVALUATION MATRIX

This section explains the qualitative criteria used to position each method in the evaluation matrix
(Figure 1). Given the subjective and heuristic nature of this analysis, the capability levels shown are
approximate and do not reflect strict objectivity or fine-grained scale.

* Academic methods. For research models, capability levels are estimated based on their task
scope, qualitative behavior, and whether they address key challenges or demonstrate core abilities.
Quantitative results on relevant benchmarks are then used to refine their positions. For example,
SeeClick Cheng et al. (2024), U-Ground Gou et al. (2024), and OS-Atlas Wu et al. (2024b)
are all evaluated on the ScreenSpot Cheng et al. (2024) dataset, which focuses on GUI action
grounding—a task category near L1. The latter two models incorporate rudimentary planning
and can independently complete simple end-to-end tasks, suggesting capabilities closer to L2.
Their exact placement is further adjusted based on performance scores (e.g., overall accuracy) and
domain generalization, as ScreenSpot includes multiple domains. Other methods are evaluated
similarly, using additional benchmarks such as AITW Rawles et al. (2023), GAIA Mialon et al.
(2023), WebArena Zhou et al. (2023), and OSWorld Xie et al. (2024).

* General-purpose models. For models like GPT, we base our assessment on their qualitative and
quantitative performance in OSWorld Xie et al. (2024) and OS-MAP, under both end-to-end and
planning-grounding settings. These models show strong generalization—able to plan in nearly any
scenario—but limited adaptivity, often struggling with unexpected events or common errors. As a
result, they are positioned in the upper-middle region of the matrix.

¢ Commercial products. For tools like Microsoft Copilot, which lack quantitative evaluations or
OSWorld-style experiments, we rely on a combination of official capability descriptions, public
user discussions, and authors’ own usage experience. Earlier commercial products like Siri offer
narrow functionality and low automation, while GitHub Copilot shows high-level code generation
capabilities, often anticipating user needs. Microsoft Copilot for Windows 11 provides a more
balanced and moderate level of capability and coverage.

B ENVIRONMENT STRUCTURE

The core of the OS-MAP environment consists of a virtual machine (VM) and a virtual machine
controller (VMC). The host machine runs a VM using virtualization software such as VMware.
This VM serves both as the source of visual observations and the target for action execution by
the agents. The host communicates with the VM through a virtual network, enabling initialization,
observation extraction, file transfer, and other forms of control. These components, together with
tools for launching the VM, loading snapshots, and managing execution states, collectively form the
VMC, which runs on the host side. The following sections detail how this architecture supports the
task lifetime, initialization and configuration, state-based evaluation, and the design of the observation
and action spaces.

B.1 TASK LIFETIME

OS-MAP consists of 416 tasks across diverse scenarios, each controlled and executed sequentially by
a main evaluation loop. For each iteration, a new task evaluation is initiated. The lifetime of a task is
composed of the following five stages:

1. Initialization. To ensure reproducibility, each task begins by loading a designated snapshot.
Afterward, a predefined initialization script is executed. Snapshots and initialization scripts are
designed to work in tandem, offering both high flexibility and low initialization overhead.

2. Task execution. Once initialized, the system enters the execution loop. At each step, the VMC
captures the current observation and passes it to the agent. Based on the current state and
interaction history, the agent outputs a textual action. This action is parsed and executed by the
VMC within the VM. The loop continues until the agent either terminates voluntarily (via DONE
or FAIL) or reaches the maximum allowed number of steps.

3. Post-execution configuration (optional). For certain tasks, the final state after agent execution is
not directly extractable. In such cases, additional actions are required to bring the system into a

15

Under review as a conference paper at ICLR 2026

verifiable state. For example, after adding an item to the cart on the Decathlon website, the system
needs to open the cart page so the evaluator can verify the result by inspecting the DOM tree.

4. State extraction. The VMC includes a set of state extraction functions designed to retrieve relevant
information from the VM. These serve as input for the next evaluation step.

5. Evaluation. Evaluation functions are task-specific and compare the extracted state against expected
conditions. Depending on the nature of the state, corresponding comparison logic is applied—such
as string matching, file equivalence, or key—value comparison.

B.2 INITIALIZATION CONFIGURATIONS

Task initialization in OS-MAP relies on a combination of restorable VM snapshots and configuration
scripts. For simple tasks, initialization can be performed directly via scripts, which are pre-written
command sequences that encapsulate commonly used operations—such as file downloads, application
launches, API calls, webpage interactions via Playwright, and shell commands. For more complex or
customized tasks (e.g., pre-created users and messages in Rocket.Chat), manual setup is conducted in
advance and saved as a snapshot for fast recovery. In practice, task initialization uses both snapshot
recovery and lightweight runtime configuration: snapshots (either from leaf nodes or key intermediate
nodes of the snapshot tree) are loaded first, followed by scripted configuration. This hybrid approach
ensures high flexibility and minimizes initialization time.

B.3 STATE-BASED EVALUATION

The primary motivation for introducing a dynamic environment is to enable state-based evaluation.
The underlying logic is that as long as the system ultimately reaches a predefined desired state, the
task is considered successfully completed—regardless of the specific sequence of actions taken to
reach that state. This approach allows for a fair comparison between different execution trajectories
of the same task.

Accordingly, each task JSON file must define both the target state and the method for extracting
relevant system states. Common examples include retrieving specific files, reading software or system
configurations, or extracting the content of rendered webpages via Playwright. In certain tasks, a
post-config step is required to convert hard-to-access intermediate states into more easily extractable
forms. Implementing state-based evaluation requires substantial reverse engineering of software and
operating systems to locate and extract relevant data. Once the VM’s state is extracted to the host
machine, an evaluation function compares it against the target state to determine whether the task has
been successfully completed.

The evaluation methods are tailored to the extracted state types, typically involving file comparisons
or configuration matching. In some cases, more specialized metrics—such as image similarity or
fuzzy text matching scores—are used. All evaluation results are ultimately converted into a binary
outcome, indicating task success or failure.

B.4 OBSERVATION SPACE

OS-MAP use screenshot for the only observation modality. Following OSWorld Xie et al. (2024), the
VMC takes full-screen screenshots and preserves the cursor to align with human perception of the
UL The default resolution is 1920 x 1080, and supports adjustments to avoid overfitting on absolute
pixel coordinates and generalization studies.

While previous benchmarks Xie et al. (2024); Cao et al. (2024) also used inputs such as the accessi-
bility (ally) tree and Set-of-Marks Yang et al. (2023) (SoM) prompted screenshots, OS-MAP relies
solely on screenshots for two main reasons:

» Screenshots are easy to capture and align closely with human perception.
* They preserve rich visual information, whereas ally trees and SoM formats can be overly exces-

sively verbose, lossy, inaccurate, or unavailable in visually complex interfaces.

Although structured inputs sometimes yield better performance, recent methods have increasingly
shifted toward using VLMs on raw screenshots Qin et al. (2025); Bai et al. (2025); Wu et al. (2024b),
making pure visual input the more general and future-proof approach.

16

Under review as a conference paper at ICLR 2026

Table 4: Action types and parameters defined in action space COMPUTER__13, a variance we created
for the potential reinforcement learning research based on our environment.

Action Type Parameters Note

MOVE_TO X, y Move the cursor to the specified position

CLICK button, Click the left button if the button not specified, otherwise click the

X, specified button; click at the current position if x and y are not
num_clicks specified, otherwise click at the specified position

MOUSE_DOWN button Press the left button if the button not specified, otherwise press the
specified button

MOUSE_UP button Release the left button if the button not specified, otherwise release
the specified button

RIGHT_CLICK X,y Right click at the current position if x and y are not specified, other-
wise right click at the specified position

DOUBLE_CLICK | x,y Double click at the current position if x and y are not specified,
otherwise double click at the specified position

DRAG_TO X,y Drag the cursor to the specified position with the left button pressed

SCROLL dx, dy Scroll the mouse wheel up or down

TYPING text Type the specified text

PRESS key Press the specified key and release it

KEY_DOWN key Press the specified key

KEY_UP key Release the specified key

HOTKEY keys Press the specified key combination

WAIT - Wait until the next action

FAIL - Decide the task cannot be performed

DONE - Decide the task is done

CALL_USER - Call the simulated user to fill the credentials when logging-in

B.5 ACTION SPACE

OS-MAP adopts the Computer_13 action space from OSWorld, covering all basic mouse and
keyboard operations—such as mouse movement, various clicks, drags, key presses, and hotkeys. It
also includes three meta-actions: WAIT, FAIL, and DONE, which allow the agent to express task
progress or termination conditions.

To support human-in-the-loop collaboration, OS-MAP introduces a new action: CALL_USER, used
when human input is required—for example, entering sensitive information like login credentials. This
helps define the agent’s permission boundary and enables more realistic human-agent cooperation. In
OS-MAP benchmark, this action is only used during Google account login, where the agent yields
control and a script autofills the credentials.

In total, OS-MAP defines 17 actions, summarized with their parameters in Table 4.

C TASK CURATION DETAILS

All tasks in OS-MAP are designed according to a structured framework based on automation levels
and hierarchies of user needs. Each task is implemented on the VM with a well-defined initial state
and evaluation function, ensuring consistent and repeatable benchmarking. Task Curation was a
collaborative effort by the authors, involving nine computer science students who jointly annotated
and refined the tasks over approximately 600 hours of work.

Section C.1 outlines the standard six-stage pipeline for task creation, while Section C.2 provides a
detailed walkthrough of how a representative Level-4 (L4) task was designed, iterated, and finalized
from scratch. Section C.3 describes the process of filtering and re-annotating tasks imported from
OSWorld Xie et al. (2024).

C.1 PIPELINE DESCRIPTIONS

Based on the two-dimensional task organization framework described above, each task in OS-MAP
is created by the co-authors following a standardized procedure:

17

Under review as a conference paper at ICLR 2026

Send the email with How's Life publications 1! ~

Notes Due Date

Download the latest 2 publications in the How's Today | Tomorrow Nodateset v
Life series from OECD. Translate them into Ch

via Google Translate's document translat

them as '20xx.pdF", and put them in ~/
hows _ife_series.

tto Chinese
tion, name
Priority

Figure 12: Detailed Specification of the task goal in ToDo (not informed in the task instruction).

. Task selection. We begin by identifying underrepresented scenes within the demand hierarchy.

For each selected scene, we determine a representative application and outline a task concept
aligned with that context.

Exploration & specification. Annotators study the target app or website using official documen-
tation, demos, and hands-on interaction. They then define a concrete task objective, assign an
appropriate difficulty level, and manually execute the task flow to verify feasibility. To prevent
data contamination, task goals must not overlap with content from official materials; annotators
are required to adapt or design new content accordingly.

Instruction & configuration. Annotators craft clear and concise task instructions and executable
initialization configurations. Together, they control task difficulty—higher-level tasks omit de-
tails or include (human-recognizable) misleading cues, requiring agents to actively explore the
environment for critical information.

Reference state preparation. The annotators manually complete the task to record a standard
success state for the following evaluation process.

Evaluation setup. Evaluation involves comparing VM file or system states against predefined
targets. Some tasks also require post-execution scripts or logic (postconfig) to expose the key
status for assessment.

Cross-validation. Each task undergoes a rigorous review by two other annotators across several
dimensions before inclusion: (1) task authenticity and representativeness, (2) clarity and unam-
biguity of instructions, (3) reproducibility, (4) correctness and (5) robustness of evaluation, (6)
alignment with difficulty level, and (7) non-duplication.

C.2 A REPRESENTATIVE EXAMPLE

We illustrate the creation of a representative L4 task, from ideation to finalization:

1.

Task selection. Upon reviewing the current task set, we found a gap in L4-level tasks within the
office productivity domain—particularly tasks involving tool use, to-do management, and email
communication. We thus defined a task prototype: write a to-do item that instructs the user to
download multiple documents from a website, translate them using Google Translate, and send
them as an email attachment to a colleague.

Exploration & specification. We selected the How’s Life reports from the official OECD website
as the document source. A to-do entry was added in a ToDo application, with a detailed task
description specifying file names, save locations, and expected actions (see Figure 12).

Instruction & configuration. Through reverse engineering of the ToDo application, we identified
the configuration file’s location and edit protocol. Based on this, we created a config file and
imported it during task initialization, so the to-do item loads automatically. Similarly, we reverse-
engineered the Thunderbird email client, configuring its profile folder to pre-load an account and
a draft email with a blank recipient field and no attachment.

Reference state preparation. We manually completed the task to obtain a reference success
state—defined as the appearance of a new email in the recipient’s local mail server directory.
During testing, we observed long download times and limits on translation input and attachment
size. To ensure feasibility, we reduced the requirement from translating six reports to just one.

Evaluation setup. The evaluation checks for textual equality between the expected and actual
email file and is provided as part of the task package.

Cross-validation. The task was tested by two additional annotators to validate both procedure
correctness and robustness—i.e., whether the task would still pass evaluation despite minor
execution variations or small errors.

18

Under review as a conference paper at ICLR 2026

C.3 FILTERING OF TASKS FROM OSWORLD

We reused and adapted the majority of tasks from OSWorld. After careful filtering and re-annotation,

a total of 255 tasks were retained. The excluded tasks fall into three main categories:

* Redundant tasks within the same scenario — For example, the LibreOffice Calc tasks derived
from the SheetCopilot dataset often involved templated spreadsheet operations (e.g., statistical
summaries and charting). Only 1-2 representative tasks were kept to avoid unnecessary duplication.

* Tasks lacking general relevance — These focused too heavily on application-specific UI details, such
as fine-grained formatting combinations in office software (e.g., font size, line spacing, paragraph
alignment), rather than testing generalizable agent capabilities.

» Tasks marked as infeasible — These either had ambiguous descriptions or indirect, open-ended
solutions that made evaluation problematic. For example, the task "Could you please convert a
PowerPoint presentation to video and play it with VLC?" was removed. Retaining such tasks would
conflict with our design principle of aligning higher-level tasks with feasible, goal-driven behavior,
while rewriting them would introduce challenges in open-ended evaluation.

D EXPERIMENT DETAILS
D.1 MODEL BASELINES

We utilize the versions of gpt-40-2024-11-20 and claude-3-7-sonnet-20250219 for
results of GPT-40 and Claude-3.7-Sonnet, respectively, need to be noted that result could be
changed from time since it is close-sourced. For all VLMs, we take the default hyper-parameters, i.e.,
we set the temperature parameter to 1.0, and top_p to 0.9, and the maximum number of tokens for
generation is set to 1500. We set the maximum number of interaction steps for 1.1, L2, 1.3 and L4
tasks to 15, 15, 30, and 50, respectively, which is sufficient to complete most tasks.

E PROMPTS FOR AGENTS

Multi-modal computer use agent baseline involves complex prompt engineering, including system
prompts, task instruction prompts, and step prompts. The following sections introduce these three
types in detail and present representative examples of task instructions.

E.1 SYSTEM PROMPT

The system prompt is the main part of prompt engineering in OS-MAP, including role description
and observation space, action space, use cases, and format description with tips. The following will
show the four parts of the system prompt. The complete system prompt is the splicing of the four
parts.

Role description and observation space

You will act as an agent responsible for automating desktop
computer tasks according to my instructions. You must possess
strong knowledge of computer GUI operations and experience
using common software applications.

rry

r each task, I will provide you with an instruction that
describes the task goal and may include additional hints. You
will then enter an operation loop, where you fully take over
the control of the computer, performing one action step at a
time. At each step, you will receive the history of actions and
the current screenshot as observations, and you need to output
what action to perform next. The action will be executed, and
the loop continues with a new screenshot.

[Lefggd

Your output can include your reasoning--such as your observations,
long-term planning, the objective of the current step, and the
expected outcome. However, you must ALWAYS include a predicted
ACTION and the action must conform to the action space
described below. Your output must follow the specified FORMAT
and include the correct “action_type” and required parameters.

£d

rry

19

Under review as a conference paper at ICLR 2026

Action space

{

ACTION_SPACE = [

"action_type": "MOVE_TO",
"note": "move the cursor to the specified position",
"parameters": {
M. {
"type": float,
"range": [0, X_MAX],

"optional": False,

"y": {
"type": float,
"range": [0, Y_MAX],

"optional": False,

more action definitions

"action_type": "TYPING",
"note": "type the specified text",
"parameters": {
"text": {
"type": str,
"range": None,
"optional": False,

more action definitions

"action_type": "CALL_USER",
"note": "Call the user to fill in the Google account or
— password (the input box must be activated), one at a
— time, according to the parameter call_type.",
"parameters": {
"call_type": {

"type": str,

"range": ["email", "password"],

"optional": False,

"action_type": "WAIT",

"note": "wait until the next action",
"action_type": "FAIL",

"note": "decide the task is failed or can not be

— performed",

"action_type": "DONE",
"note": "decide the task is done",

20

Under review as a conference paper at ICLR 2026

Use Cases

Notes:
1. To reiterate, regardless of whether you include reasoning, your
— output MUST contain an action in the SPECIFIED FORMAT (a
— dictionary enclosed in triple backticks as shown in the
— examples below), and it must include a valid “action_type ™ and
— parameters as defined above.
2. For "MOUSE_MOVE", you must specify the exact target “x° and "y~
<« coordinates. The screen bounds are “X_MAX = 19207, “Y_MAX =
< 1080°. The coordinates must fall within [0, 1920] and [0, 1080].
— Example:
B

"action_type": "MOUSE_MOVE",

"x": 1319,

"yll: 65
pet
3. For "[CLICK, RIGHT_CLICK, DOUBLE_CLICK, DRAG_TO]", specifying “x°
— and "y~ is optional. If omitted, the action defaults to the
— current cursor position (often used after "MOUSE_MOVE") .
— However, it is RECOMMENDED to specify the coordinates
— explicitly. Same format as "MOUSE_MOVE:
T

"action_type": "CLICK",

"x": 1319,

"y": 65
poet

more use cases

Format descriptions with tips

=
=

R

Other special actions are " [WAIT, FAIL, DONE] . Use them when
you think it's necessary to wait, when the task has failed, or
when it has succeeded. Each "WAIT® pauses for ~2 seconds. Do not
declare "FAIL® lightly without attempting reasonable actions and
explorations, but if you still cannot get out of the
predicament after trying for several steps, you can declare it.
Only use “DONE® when you are certain the task is completed
successfully. Do NOT use dictionary format or triple backticks.
Just output like the BARE "DONE" without any other thought or
formatting.

If the task is file editing, make sure it is saved successfully.
If there is no clear description of the file name, save
location, etc., use the default.

If there are clear step-level instructions, please follow them
strictly. Otherwise, you can do whatever you want as long as
the task is completed.

My computer password is ~"password" . You may use it freely
whenever “sudo™ access is required.

RILGIER

£ .

Please think step by step. Carefully observe the current screenshot
and then output your reasoning (optional), your plan, the
current action and expected results, and most importantly, the
FORMATTED ACTION.

NOT ask questions. Do NOT attempt to interact with the user in

— any way other than via the “CALL_USER" action. You are fully

— responsible for controlling the computer. Do NOT output

— anything else.

S

21

Under review as a conference paper at ICLR 2026

E.2 TASK INSTRUCTION PROMPTS

The task instruction is appended directly after the system prompt and is also loaded only once per
task. It specifies the concrete objective the agent is expected to complete, in the following format:

[You are asked to complete the following task: {{Instruction}}]

E.3 STEP PROMPT

The system prompt is loaded once at the beginning of each task to provide the agent with general
instructions and behavioral priors. At every step during task execution, the agent also receives a
step prompt in the following fixed format, where "History" stands for the previous three interaction
history.

{{History}} {{Screenshot}} Given the screenshot below, what is the
— next step you will take to help complete the task?

E.4 REPRESENTATIVE TASK INSTRUCTIONS

Task instructions are written in a human-friendly tone, clearly stating the objective and specifying
any necessary details for evaluation. To enhance generalization and reduce overfitting to prompt
patterns, we ensure diversity in language style and phrasing across tasks. Below, we present several
representative examples.

Rotate Wallpapers (1L4)

Download the Bing wallpaper for Italy from the latest 5 days in 4K
resolution to ~/Pictures/wallpapers and name them 0. Jjpg
(today's), 1l.jpg, ..., add them to the wallpaper candidates,
and set the today's one as the wallpaper. Next, configure a
cron task to switch wallpapers in order at 00:00 every day. The
required script change_wallpaper.sh is already provided on the
desktop and can be used for cron tasks after only modifying the
wallpaper directory.

rrergny

Zotero Citation (L4)

I am writing my course paper and I need to cite a reference. I
remember it in Zotero, but I can't remember which one it is.
Please help me find this article and imitate the two IEEE
formats above to complete the citation. Note that the font
format must also be the same. Then download this article to the
Documents/references folder and put it together with other
cited papers.

rreeLd

Meet Schedule (L3)

Did you see the meeting time sent in the DATA group in Rocket.Chat?
— Add it to the event in Calendar, title it Team Meeting, and

— make sure you don't make mistakes with the date, time, and

— location.

22

Under review as a conference paper at ICLR 2026

F CASE ANALYSIS

This section provides the full context and failure analysis for several representative error cases
referenced in the main Analysis section §4.3.

Figure 13 illustrates a severe hallucination, where the agent mistakenly identifies the current webpage
as a Chrome browser interface and treats the top search bar as a search engine input.

Figures 14 and 15 show two L3 tasks in which the agent fails to adapt when the straightforward
method breaks down—for example, when the target element is missing from the screenshot.

In Figure 16, another L3 task requires the agent to interact with a map embedded on the current page.
However, the agent ignores this context and instead jumps to a global Google Maps search, bypassing
the intended interaction.

Figures 17 and 18 depict two L4 tasks characterized by long instructions and complex dependencies.
In one case, the agent fails to properly decompose the instruction and proceeds with aimless explo-
ration; in the other, it confuses the order of contextual navigation and concrete operations. These
cases highlight the agent’s significant shortcomings in handling the high-level reasoning and planning
required at L4.

L% Q0

INESS— °

OR: THE

SECUTION -

A
]
-]
]

I EEE L

Figure 13: (1.2) The agent identifies this page as Figure 14: (1.3) The agent does not know to use
Chrome and attempts to use the "search engine". the keyboard shortcut to exit full-screen mode.

on . .
£33 Minesweeper.Online

Standard mode

<| 7| @|

Figure 15: (1.3) Task instruction: Enter theater mode and resize the scale to 48. However, the resize
button is hidden in theater mode, and the agent does not know it should swap the execution order.

G LIMITATIONS AND FUTURE WORK

First, designing tasks that align precisely with automation levels and hierarchical needs often requires
carefully controlled initial states and evaluation functions built through extensive reverse engineering,
limiting the scalability of synthetic approaches. Moreover, the need for distribution and reproducibility
prevents alignment with many real-world scenarios, which are often tightly coupled with user accounts,
personalized content, or external effects, making them unsuitable as benchmark tasks.

Future work may explore scalable methods to generate fine-grained, controllable tasks that better
cover the full range of user needs. Additionally, integrating environment-aware reward shaping could
enable finer supervision and continual improvement for computer-using agents. We hope OS-MAP
offers a solid foundation and actionable insights for advancing this direction.

23

Under review as a conference paper at ICLR 2026

2025-05-15 02:00 UTCH8

European Air Quality Index

Figure 16: (13) Task instruction: Locate the MOST geographically central station in Paris on this
map and jump to its location on Google Maps. The agent simply ignores the current page (weather
station map) and searches for subway stations in the center of Paris on Google Maps.

tion
) tween
d Real-

odels (LAMs)

spabiltcs of

Figure 17: (L4) Task instruction: I am writing
my course paper and I need to cite a reference.
I remember it in Zotero, but I can’t remember
which one it is. Please help me find this article
and imitate the two IEEE formats above to com-
plete the citation. Note that the font format must
also be the same. Then download this article to
the Documents/references folder and put it to-
gether with other cited papers. The agent did not
break down the task into subtasks and clicked
aimlessly on the Zotero interface.

H REPRODUCIBILITY STATEMENT

D D P

@

i@ A

Figure 18: (L4) Task instruction: I plan to use
the money in my wallet to buy something to re-
ward myself. Please check how much money is in
my wallet account, and then buy the item of the
corresponding amount in the todo list. Please
choose the appropriate size and add it to the
shopping cart. Then go back to the firefly and
add a corresponding expense transaction, named
the item name on the todo list. The agent does
not check the wallet balance or place an order,
but tries to add a transaction record first.

We provide an anonymous downloadable source code at https://anonymous.4open.
science/r/0SMap-C2F5/. The deployment process of OS-MAP is detailed in the README . md
of the code repository, while the experimental settings for running evaluations on OS-MAP are de-
scribed in Section 4.

24

https://anonymous.4open.science/r/OSMap-C2F5/
https://anonymous.4open.science/r/OSMap-C2F5/

	Introduction
	Environment
	Task Definition
	Environment Structure

	Benchmark
	Automation Levels
	Generalization Scope
	Evaluation Matrix
	Task Curation Process
	Benchmark Statistics

	Experiments and Analysis
	Experimental Settings
	Results
	Analysis
	General Failures
	Level-wise Bottlenecks

	Related Work
	Conclusion
	Qualitative Evaluation Matrix
	Environment Structure
	Task Lifetime
	Initialization Configurations
	State-based Evaluation
	Observation Space
	Action Space

	Task Curation Details
	Pipeline Descriptions
	A Representative Example
	Filtering of Tasks from OSWorld

	Experiment Details
	Model Baselines

	Prompts for Agents
	System Prompt
	Task Instruction Prompts
	Step Prompt
	Representative Task Instructions

	Case Analysis
	Limitations and Future Work
	Reproducibility statement

