
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OS-MAP: HOW FAR CAN COMPUTER-USING
AGENTS GO IN BREADTH AND DEPTH?

Anonymous authors
Paper under double-blind review

ABSTRACT

Computer-using agents have shown strong potential to boost human productiv-
ity and enable new application forms across platforms. While recent advances
have led to usable applications, existing benchmarks fail to account for the inter-
nal task heterogeneity and the corresponding agent capabilities, as well as their
alignment with actual user demands—hindering both targeted capability devel-
opment and the reliable transition of research progress into practical deployment.
To bridge the gap, we present OS-MAP, a benchmark for daily computer-using
automation that organizes its 416 realistic tasks across 15 applications along two
key dimensions: a five-level taxonomy of automation and a generalization scope
derived from a real-world user demand hierarchy. To enable fine-grained anal-
ysis of required capabilities and alignment with real-world scenarios, OS-MAP
evaluates agents along two dimensions: automation level across a five-level taxon-
omy, and generalization scope across a demand hierarchy. This design captures
varying levels of required agent autonomy and generalization, forming a perfor-
mance–generalization evaluation matrix for structured and comprehensive assess-
ment. Experiments show that even State-of-the-Art agents with VLM backbones
struggle with higher-level tasks involving perception, reasoning, and coordina-
tion—highlighting the need for a deeper understanding of current strengths and
limitations to drive the future progress in computer-using agents research and
deployment. All code, environments, baselines, and data are publicly available at
https://anonymous.4open.science/r/OSMap-C2F5/.

1 INTRODUCTION

Computer-using agents, which can understand user intent and autonomously perform operations
across digital environments, is driving the next transformation in human-computer interaction (Hu
et al., 2024a;b). Powered by the extensive world knowledge, interaction capability, and tool-use
abilities of Large Language Models and Vision Language Models, computer-using agents such
as Operator (OpenAI, 2025), Claude 3.5 (Anthropic, 2024), UFO2 (Zhang et al., 2025), and UI-
TARS (Qin et al., 2025) can understand natural language instructions and interact directly with
various applications in a human-like manner. Once a fixture of science fiction—like J.A.R.V.I.S.
in Iron Man, seamlessly managing schedules, editing documents, shopping across websites, and
automating routine computer tasks—such digital personal assistants are now becoming a tangible
reality (Wu et al., 2024a). This transformation frees humans to focus on creative work, significantly
boosting productivity and enabling new applications.

As research on computer-using agents continues to advance, an increasing number of models with
strong functionalities (Qin et al., 2025; Bai et al., 2025; Xu et al., 2024a; Wu et al., 2024b) and
agent systems (Jiang et al., 2025; Agashe et al., 2025; Zhang et al., 2025; Jia et al., 2024) are being
proposed. Despite the rapid emergence of new methods, the open-ended semantics and diverse
capability demands of computer-using tasks still hinder actual deployment. To bridge this research-
to-practice gap, it is crucial to develop a principled benchmark that allows the community to quantify
agent capabilities and identify specific failure points. However, existing benchmarks fall short of this
goal. While spanning various platforms and scenarios, they treat tasks as flat collections, without
decomposing task heterogeneity and required capabilities (Drouin et al., 2024; Xie et al., 2024;
Bonatti et al., 2024; Rawles et al., 2024), making it difficult to perform fine-grained evaluation and
differentiation. Moreover, task collections are typically organized around applications (Li et al.,

1

https://anonymous.4open.science/r/OSMap-C2F5/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Automation

Level

Generalization 

Scope

L1

Execution

S1
Narrow

S2
Medium

L3

Adaptation

L2

Planning

L4

Orchestration

L5

Proactivity

S3
General

OS-Atlas

UGround

CogAgent

UI-TARS

Claude

SeeClick

GPT

AutoGLM
OSCAR

OS-Copilot

PC-Agent

MobileAgent
AppAgent

Aguvis

SheetCopilot

Pix2Act

Qwen2.5-VL

WebAgent

Microsoft

Copilot

Commercial Product

Agentic Model

Agent Framework

Action Model

General-Propose Model

GitHub

Copilot
Cortana

Siri

High Value Area

OS-Genesis
AgentStore

Agent S2

Figure 1: OS-MAP qualitative evaluation matrix, summarizing how different types of agents perform
across two dimensions. General-purpose models show strong generalization, while scenario experts
excel at specific tasks. Mainstream computer-using agents aim to balance both, yet still face major
challenges. Agent positioning is based on reported performance, as detailed in Appendix A.

2024a; Xie et al., 2024) rather than aligned with the actual distribution of daily computer use, limiting
the relevance of benchmark performance to real-world utility (Hu et al., 2024a).

To bridge these gaps, we present the OS-MAP benchmark that is grounded in dynamic desktop
environments and structured along two key dimensions: automation levels and generalization scopes.
First, we propose a five-level capability taxonomy based on degrees of autonomy, encompassing
a wide range of computer-using tasks—from atomic execution and simple planning to disturbance
adaptation, complex orchestration, and proactive behaviors. Second, we derive a real-world user
demand hierarchy on daily computer-using scenarios and select representative tasks to ensure both
high coverage and alignment with practical demands. Furthermore, we combine the two dimensions
into a unified evaluation matrix (Figure 1), which highlights how general-purpose models, scenario
experts, and mainstream computer-using agents differ in capability trade-offs between automation
and generalization. The upper-right corner marks a high-value region—representing impactful yet
unachieved applications—where no current agent demonstrates sufficient capability.

Across 416 tasks spanning 15 applications in OS-MAP, even the strongest existing computer-using
agents achieve only an 11.5% overall success rate, with near-zero performance on higher-level
tasks—falling far short of human performance. These findings underscore the importance of a
principled evaluation framework. By offering both qualitative and quantitative insights into where
and to what extent computer-using agents can assist humans, our framework supports comprehensive
evaluation and provides a clear roadmap for future progress.

2 ENVIRONMENT

OS-MAP adopts and extends the OSWorld (Xie et al., 2024) infrastructure, which centers around a
virtual machine (VM) and a host-side controller (VMC). This dynamic and executable environment
offers fine-grained control, consistent reproducibility, flexible extensibility, and secure isolation,
forming an ideal sandbox for evaluating computer-using agents in real-world scenarios.

2.1 TASK DEFINITION

In general, computing-using automation tasks are roughly modeled as partially observable Markov
decision processes (S,O,A, T ,R). At timestep t, the agent resides in the environment state st ∈ S ,
but only receives a partial observation ot ∈ O (e.g., the current screenshot). Based on ot, the agent
emits an action at ∈ A (e.g., a structured text click(350,600)). The environment transitions to
the next state st+1 = T (st, at) via the transition function T , which is governed by the underlying

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Instruction: Make this image a transparent background and set it as my avatar. 

…

…

…

Observation

Setup 

config

Environment

Initial 

setup

Agent

Action

Eval func

Final 

State

Iterative

Instruction

…

Figure 2: OS-MAP is built on an executable desktop environment designed for daily computer tasks,
integrating a suite of applications and tools. It provides the infrastructure for reliable evaluation
by handling task initialization and success verification. Agents interact autonomously via GUI
operations, guided by instructions and screenshot perception.

software and OS logic, revealing a new observation ot+1. This process continues iteratively until
the agent actively issues a terminal action (i.e., DONE or FAIL), or passively exceeds a predefined
step limit. After termination, the system determines whether the task is successfully completed and
provides a final outcome reward r ∈ R = {0, 1}, without any intermediate process rewards.

2.2 ENVIRONMENT STRUCTURE

Task lifetime. Each task is specified by a JSON file defining initialization, instruction, and evalua-
tion protocols. As shown in Figure 2, evaluation begins by restoring a designated VM snapshot and
running lightweight setup routines. The agent then enters the interaction loop, receiving observations
from and sending actions to the VM via the VMC. This loop continues until the agent terminates the
episode, either actively or passively. The evaluator then compares the VM state to reference criteria
and returns a binary reward. See Appendix B.1 for details.

Initialization and evaluation configuration. Task setup in OS-MAP combines VM snapshots
with modular configuration functions, supporting scalable and flexible task creation. Standard
initialization adopt reusable OSWorld functions (e.g., file downloading, shell commands), while more
complex setups—such as software installation or database configuration—are manually performed
and captured as directly restorable snapshots. Evaluation integrates both state-based and action-
based assessments to support tasks with varying levels of automation. Depending on the task, state
evaluation may involve file comparison and system state inspection, or execution-based verification.
See Appendix B.2 and B.3 for detailed initialization and evaluation modes.

Observation and action space. Recent computer-using agents research increasingly gravitates
toward human-like interaction paradigms: raw pixel screenshots as observations and atomic keyboard-
/mouse operations as actions. OS-MAP adopts this design, using raw screenshots as input—without
accessibility trees or Set-of-Marks (Yang et al., 2023) annotations—for simplicity and broader appli-
cability. The action space follows OSWorld’s 13 atomic operations and 3 meta-actions (i.t., WAIT,
FAIL, DONE). See Appendix B.4 and B.5 for detailed space descriptions with examples.

3 BENCHMARK

OS-MAP comprises 416 real-world computer-using automation tasks on 15 Ubuntu applications,
spanning diverse everyday scenarios. Tasks are categorized along two orthogonal dimensions:
automation level, capturing the degree of agent autonomy, and generalization scope, defined by
a hierarchical demand taxonomy, measuring agents’ capability transferability. Together, they form
a structured evaluation matrix (Fig. 1) supports systematic evaluation. The following sections
introduces the automation levels (§3.1), generalization scope (§3.2), evaluation matrix (§3.3), task
curation pipeline (§3.4), and benchmark statistics (§3.5).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Executor

Planner

Agent

Conductor

Companion

L1
User 

Assistance

L2
Partial 

Automation

L3
Local

 Automation

L4
Global 

Automation

L5
Beyond 

Automation

Noticed user’s daily wallpaper 

change—offering help!

Download & rotate

Bing wallpaper every day.

Download and use today’s 

Bing wallpaper.

Set it as wallpaper.

Open this picture.

Figure 3: Automation levels demonstration on a specific task: rotating wallpapers daily. From the
user’s perspective, achieving the same goal involves increasing agent responsibility and decreasing
user involvement as automation level rises. Task executions become longer and more complex,
reflecting the shifting division of labor between human and the agent.

3.1 AUTOMATION LEVELS

Real-world computer automation varies in task complexity, user involvement, and agent responsibil-
ity. To support consistent evaluation across these variations, we introduce a five-level automation
taxonomy, inspired by SAE driving automation taxonomy (Committee, 2021) and grounded in the
division of labor between humans and agents. Figure 3 illustrates how a concrete task manifests
across all five interaction modes. Each level reflects a specific degree of autonomy in planning and
execution, shaped by both task complexity and the expected user role.

L1: Reactive executor. The agent executes user-defined atomic operations (e.g., clicks, keystrokes)
without making decisions. Task planning remains entirely user-driven. This stage primarily eval-
uates perceptual grounding and command-to-action mapping—capabilities that many grounding
models (Cheng et al., 2024; Wu et al., 2024b; Gou et al., 2024) specifically target.

L2: Deterministic planner. The user specifies only the task goal, leaving the agent to autonomously
plan and execute actions under ideal and predictable conditions. High-level task decomposition
remains user-driven, and intervention is required when failures occur. This stage tests prior knowledge
and basic planning, representing the operational level of most current agents and proprietary models.

L3: Adaptive agent. L3 emphasizes robustness in dynamic, noisy, and partially observable
environments. Agents must adapt plans autonomously in response to unpredictable events or evolving
interface states. While users still define high-level goals, they no longer need to monitor or intervene
during execution. Only a small subset of agents specifically designed for adaptivity reach this level,
demonstrating resilience and flexible subtask completion under real-world conditions.

L4: Global conductor. The agents take full responsibility for decomposing high-level goals and
orchestrating complex workflows involving subgoals, cross-application context switching, and tool
usage. Acting as autonomous top-level orchestrators, they coordinate entire tasks end-to-end, with
users only issuing goals and verifying outcomes. As shown in our results, no current agent effectively
handles this level, though emerging multi-agent approaches show promise.

L5: Proactive companion. L5 marks a shift from reactive execution to proactive collaboration.
The agent continuously monitors context, anticipates user needs, and initiates helpful actions without
explicit instructions. It learns from long-term interactions to provide personalized support as an
intelligent digital companion. While still an underexplored concept, with only a few studies across
different scenarios (Lu et al., 2024; Chen et al., 2025; Chaves and Gerosa, 2021; Liao et al., 2023), it
holds significant promise for future applications. OS-MAP does not yet include L5 tasks and we
leave them for future improvements.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 GENERALIZATION SCOPE

While §3.1 focuses on structural organization via automation levels, this section turns to the content
dimension. Designing meaningful tasks for computer-using agents is challenging. Prior benchmarks
often rely on predefined applications sets (Xie et al., 2024; Bonatti et al., 2024; Li et al., 2024a;
Chai et al., 2025) or template-based generation (Rawles et al., 2024; Drouin et al., 2024). In
contrast, we take a demand-driven approach—identifying common daily use cases and deriving tasks
accordingly—to ensure realism, representativeness, and practical relevance.

Demand hierarchy. We define a three-level hierarchy: domains, scenarios, and representative tasks
with applications, guided by industry data (Tower, 2025) and public surveys (OECD, 2025). Starting
from the State of Mobile 2025 report, we adapt mobile usage statistics to the desktop setting by
excluding mobile-specific categories (e.g., payments) and adding desktop-relevant ones (e.g., office
work), forming six domains: work, study, life services, entertainment, creative production, and system
management. Figure 4 illustrates this demand hierarchy details. Scenarios are derived by aligning
app subcategories with activity metadata from OECD ICT Access and Usage Database (OECD,
2025). Tasks are then selected through expert review and LLM-assisted ideation, filtered by clarity,
reproducibility, and independence from real-world accounts or network-side effects.

Generalization scope. Anchored in this hierarchy, we define three scopes of generalization: S1
(Narrow), S2 (Domain-Level), and S3 (General) to characterize agents’ capability breadth across
diverse user demand. An S1 agent handles tasks within a single scenario (e.g., calendar management).
An S2 agent succeeds across multiple scenarios within a domain (e.g., document editing, emailing,
and scheduling in the work domain). An S3 agent demonstrates S2-level performance across most or
all six domains, effectively acting as a cross-domain generalist for daily computer-using assistance.

3.3 EVALUATION MATRIX

We further integrate the two orthogonal dimensions—automation levels (L1–L5) and generalization
scopes (S1–S3)—into a two-dimensional evaluation matrix, enabling a systematic assessment of both
the depth and breadth of agent capabilities, as presented in Figure 1. This depth–breadth perspective
aligns with the performance–generality framework proposed in earlier AGI research (Morris et al.,
2024; Zhang et al., 2024a). In the context of computer-using, performance denotes the extent to
which an agent can operate independently from human intervention within collaborative settings, as
reflected by the task complexity across the automation levels. Generality refers to the range of tasks
where the agent meets the performance threshold, anchored in its coverage of the demand hierarchy.

By decoupling performance and generality, the matrix provides a fine-grained evaluation of CUAs’
practical utility by revealing strengths and limitations and supporting clear comparisons across
systems with differing design priorities. The structure also scales naturally—new tasks or scenarios
can be added to underexplored regions without disrupting the overall framework. Most importantly,
it offers a clear developmental roadmap, guiding researchers and practitioners in setting progressive
goals along both dimensions toward building more capable and general-purpose agents.

3.4 TASK CURATION PROCESS

Each task in OS-MAP is created following a standardized six-step process grounded in the two-
dimensional organization framework: (1) task selection, (2) exploration and specification, (3) instruc-
tion and configuration, (4) reference state preparation, (5) evaluation setup, and (6) cross-validation.
Detailed descriptions of each step are provided in Appendix C.1. To ensure correctness and stability
in an open-ended environment, each stage of this process demands significant manual effort and
verification. Appendix C.2 presents the full design and refinement process of a representative L4
task. We also incorporate and adapt OSWorld tasks by mapping them to our difficulty levels and
generalization tiers. All included tasks undergo the same validation pipeline, while those with invalid
formats or ambiguous feasibility are excluded. Related details are discussed in Appendix C.3.

3.5 BENCHMARK STATISTICS

Statistics. Figure 4 presents the distribution of tasks in OS-MAP across the user-centered demand
hierarchy. Based on industry surveys (Tower, 2025; OECD, 2025), we define a three-level demand
hierarchy comprising 6 top-level needs, 18 sub-needs, and 45 concrete scenarios, spanning 15
representative applications and covering a broad range of daily computer-using situations. In total,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Of
fic

e

[12
2]

Knowledge

[98]

Life
[49]

E
nt

er
ta

in
m

en
t

[3
1]

C
reativity

[25]

System[91]

Communication

[24]

Sche
dul

e

[5]

Do
cu

m
en

ta
tio

n

[5
6]

D
at

a
[3

7]

R
eading and

Learning
[21]

Knowledge

[49]

Skills Practice[28]

Shopping
[12]

Trave
ling

[15]

Pub
lic 

Serv
ice

s

[6]

Fin
an

ce

[11
]

In
fo

m
at
io
n

[5
]

Vi
de

o 
an

d 
M

us
ic

[1
4]

N
et

wo
rk

 P
la

tf
or

m
[4

]

G
am

in
g

[1
3]

D
igital C

ontent

C
reation
[25]

Files and

Applications

[55]

Personalization[36]

Emailing

Messag
ing

Meeti
ngCalen

dar
ToD

o

Writ
ing

Pr
es

en
ta

tio
nTa

bl
in

g

Vi
su

al
iz

at
io

nE
-book

O
nline C

ourses

Technical Tutorials

Data Retrieval

Inform
ation

OrganizationLiteratureNotes and
Mindmaps

Coding

Math
Languages

Searching

Ordering

Ticket

Cars

Accom
modat

ion

Map 
Navig

atio
n

Citiz
en 

Serv
ice

Pu
blic

 Sp
ac

e

Tr
an

sa
ct

ion

Man
ag

em
en

t

Ne
ws

W
ea

th
er

Vi
de

o

M
us

ic
C
om

m
un

it
y

M
in

ig
am

es
 P

la
yi

ng

G
am

e 
In

fo
rm

at
io

n

Im
age E

diting

Video E
ditting

D
iagram

 D
raw

ing

Files

App Installation

App Configuration

System Resources

Appearance

Profile

System Settings

Figure 4: Task distribution on the demand
hierarchy in OS-MAP benchmark.

Table 1: Statistics of OS-MAP.

Task Type Statistics
Total Tasks 416 (100%)
- Single-App 283 (62.3%)
- Multi-App 154 (37.7%)

Automation Level
- L1: Execution 25 (6.0%)
- L2: Planning 234 (56.3%)
- L3: Adaptability 115 (27.6%)
- L4: Orchestration 42 (10.1%)

Source
- Authors 161 (38.7%)
- Labeled from OSWorld 255 (61.3%)

Avg. Words of Task Instructions 34.3
Avg. Steps 11.4

OS-MAP contains 416 tasks representative of their respective scenarios. Among them, 138 tasks
are meticulously designed by the authors, while the remaining 296 are relabeled and filtered for
ambiguity and redundancy from OSWorld (Xie et al., 2024) as Appendix C.3 describes. Table 1
provides more detailed statistics. Notably, 37.7% of tasks involve multi-app workflows, posing
significant challenges to agents’ adaptation and orchestration capabilities.

Comparison with existing benchmarks. Table 2 compares OS-MAP with existing efforts across
key dimensions. First, OS-MAP builds on an executable environment, inheriting the architecture,
utility functions, and evaluation tools from OSWorld (Xie et al., 2024). This ensures controllability
and flexible open-domain scalability. Second, we expand the number of applications and tasks,
including a substantial portion of cross-application tasks, thereby enhancing the task diversity. Most
importantly, we introduce a fine-grained evaluation framework based on both task difficulty levels
and user demand hierarchy. These two axes are further integrated into a structured, two-dimensional
evaluation matrix, enabling systematic, detailed comparisons and offering clear guidance for future
development—an aspect largely overlooked by existing benchmarks.

Table 2: Comparison of different environments for benchmarking CUAs. The columns indicate:
dynamic executable environment provided (Exec. Env.?), the ease of adding new tasks involving
arbitrary applications in open domains (Scal. Env.), the number of applications or websites (#App-
s/sites), the number of task instances and templates (if applicable) (# Inst. (# Temp.)), inclusion
of cross-app tasks (Cross-app?), whether to provide evaluation based on task difficulty (Task Diff.
Levels?), demand perspective (Demand Scope?), or a multi-dimensional structure (Struct. Eval.?).

Benchmark Exec.
Env.?

Scal.
Env.?

# Apps/
sites

# Inst.
(# Temp.)

Cross-
app?

Task Diff.
Levels?

Demand
Scope?

Struct.
Eval.?

GAIA Mialon et al. (2023) ✗ - - 466 ✗ ✓ ✗ ✗
MIND2WEB Deng et al. (2023) ✗ - 137 2350 ✗ ✗ ✗ ✗
WEBVOYAGER He et al. (2024) ✗ - 15 643 ✗ ✗ ✗ ✗
PIXELHELP Li et al. (2020) ✗ - 4 187 ✗ ✗ ✗ ✗
AITW Rawles et al. (2024) ✗ - 357+ 30k ✗ ✗ ✗ ✗
OMNIACT Kapoor et al. (2024) ✗ - 60+ 9802 ✗ ✗ ✗ ✗

WEBSHOP Yao et al. (2022) ✓ ✗ 1 12k (1) ✗ ✗ ✗ ✗
WEBARENA Zhou et al. (2023) ✓ ✗ 6 812 (241) ✗ ✗ ✗ ✗
WORKARENA Drouin et al. (2024) ✓ ✗ 1 23k (29) ✗ ✗ ✗ ✗
ANDROIDARENA Xing et al. (2024) ✓ ✗ 13 221 ✓ ✓ ✗ ✓
ANDROIDWORLD Rawles et al. (2024) ✓ ✓ 20 ∞ (116) ✓ ✗ ✗ ✗
ANDROIDAGENTARENA Chai et al. (2025) ✓ ✓ 21 201 ✗ ✓ ✗ ✗
OSWORLD Xie et al. (2024) ✓ ✓ 9 369 ✓ ✗ ✗ ✗
SPIDER2-V Cao et al. (2024) ✓ ✓ 20 494 ✓ ✗ ✗ ✗
WINDOWSAGENTARENA Bonatti et al. (2024) ✓ ✓ 11 154 ✓ ✗ ✗ ✗
THEAGENTCOMPANY Xu et al. (2024b) ✓ ✗ 6 175 ✓ ✗ ✓ ✗
SCIENCEBOARD Sun et al. (2025) ✓ ✓ 6 169 ✓ ✓ ✗ ✓

OS-MAP ✓ ✓ 15 416 ✓ ✓ ✓ ✓

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETTINGS

Agent types. We construct three types of computer-using agents based on different types of state-of-
the-art models: (1) General baselines: directly uses a general-purpose VLMs (GPT-4o (Hurst
et al., 2024), Claude-3.7-Sonnet (Anthropic, 2025), Gemini-2.5-Pro (Team, 2025),
Qwen2.5-VL-72B (Bai et al., 2025), InternVL3-8B (Zhu et al., 2025)) to perform each task
end-to-end. (2) GUI-specific model baseline: executes tasks end-to-end using GUI-specialized
VLMs (UI-TARS-72B (Qin et al., 2025)). (3) Planning-Grounding: to compensate for the impre-
cise grounding abilities of general models, GPT-4o (Hurst et al., 2024) is used to conduct high-level
plans, which are then refined by lightweight GUI action models (Aguvis-7B (Xu et al., 2024a),
OS-ATLAS-Base-7B (Wu et al., 2024b), UGround-7B (Gou et al., 2024), GUI-Actor-7B (Wu
et al., 2025)) for precise grounding.

Agent settings. All three agent types share a common decision-making and interaction pattern,
along with similar prompting strategies. Specifically, the agent interacts with the environment under
the guidance of a system prompt, which includes descriptions of the task goal, observation space,
action space, and required output format. At each step, the agent generates an action based on the
current screenshot and the three most recent rounds of interaction history. Detailed prompts and
interaction protocols are provided in Appendix E.

4.2 RESULTS

We compare the performance of the above four computer-using agents types powered by different
models on OS-MAP, as presented in Table 3. We summarize our key empirical results as follows:

Computer-using agents remain far from practical deployment. Despite recent advances, current
agents exhibit consistently poor performance across all levels of automation, with many near zero,
highlighting a substantial performance gap from human users. This suggests that existing models still
struggle with core capabilities such as grounding.

Agents’ performance exhibits a stepwise decline across automation levels. Among the evaluated
models, UI-TARS-72B achieves the best balance of visual grounding, robust planning, and task
generalization, significantly outperforming other competitors. It performs well when tasks include
step-level guidance (L1) and maintains solid performance on basic planning (L2). However, its
advantage drops markedly on environmental adaptation (L3) and multi-context orchestration (L4),
suggesting that adaptive reasoning and long-horizon planning remain key challenges.

Open-source models have achieved competitive end-to-end performance. Although smaller in
scale, open-source models fine-tuned on GUI-specific data (Bai et al., 2025) or trained in GUI-centric
environments (Qin et al., 2025) demonstrate better performance than proprietary general-purpose
models in end-to-end execution. Their superiority stems from targeted training in GUI contexts,
which enhances planning stability and task adaptation in complex desktop environments.

Tailored training and agentic setting yield better computering-using performance. Compared
to general models, GUI-specific models (Qin et al., 2025) and interleaved planning-grounding
agents (Xu et al., 2024a; Wu et al., 2024b; Gou et al., 2024; Wu et al., 2025) gain a significant im-
provement. The specially designed GUI training makes models familiar with computer environments,
while the planning-grounding agents combine the world knowledge and strategic planning of general
models with the precise perception and control ability of the GUI-oriented models.

4.3 ANALYSIS

To understand key challenges behind poor performance, this section analyzes representative failure
cases to uncover core factors that lead to agent breakdowns. We highlight both general capability
gaps observed across agents and level-specific bottlenecks tied to increasing automation levels. These
insights shed light on where agents fall short and inform more targeted future improvements. See
Appendix F for a more detailed case analysis with screenshots.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Success rates of computer-using agents on OS-MAP. We present each agent backbone’s per-
formance on tasks across different automation levels. Proprietary VLMs , and Open-Source VLMs

are distinguished by color. In Planning-Grounding setting, GPT-4o is used as the planning model.

Agent Type Model Success Rate (↑)
L1 L2 L3 L4 Overall

General Baselines

GPT-4o 12.0% 1.3% 1.7% 0.0% 1.9%
Claude-3.7-Sonnet 0.0% 3.8% 0.0% 0.0% 2.1%
Gemini-2.5-Pro 8.0% 10.6% 2.7% 2.4% 7.5%
Qwen2.5-VL-72B 32.0% 7.9% 1.0% 0.0% 6.6%
InternVL3-8B 8.0% 1.6% 1.0% 0.0% 1.6%

GUI-Specific Baseline UI-TARS-72B 48.0% 14.0% 1.0% 0.0% 11.4%

Planning-Grounding

Aguvis-7B 4.0% 4.7% 1.8% 0.0% 3.4%
OS-ATLAS-Base-7B 8.0% 6.4% 1.8% 0.0% 4.6%
UGround-7B 16.0% 4.6% 1.8% 0.0% 4.0%
GUI-Actor-7B 40.0% 15.1% 1.8% 0.0% 11.5%

Human Performance 96.0% 74.8% 65.2% 59.5% 71.9%

4.3.1 GENERAL FAILURES

Poor instruction following. This manifests as frequent violations of the required output format. A
typical case is Claude-3.7-Sonnet issuing an OPEN_FILE_EXPLORER action when openning
the file manager—despite the valid action space only contains atomic mouse and keyboard operations.

Severe hallucination. Due to limited perception and reasoning, agents often wrongly assume that
previous actions have succeeded, and occasionally exhibit drastic hallucinations—e.g., mistaking the
activities window for Chrome and attempting to search within it (Figure 13 in Appendix F).

Figure 5: Agent prefers en-
tering a URL instead of
navigating websites.

Figure 6: GUI action
model fails in the ground-
ing of the green block.

Figure 7: Searching for the
album Taylor Swift instead
of albums by Taylor Swift.

Figure 8: Agent is deleting
all history, not just those
from YouTube.

Figure 9: Agent start filling
out the form before clarify-
ing information.

Figure 10: Calculating cal-
culus internally instead of
trying tools in the context.

Figure 11: Failure cases of each automation levels, reflecting bottlenecks in core capabilities.

4.3.2 LEVEL-WISE BOTTLENECKS

L1: execution. Proprietary models exhibit poor grounding capabilities, often preferring command-
line operations or direct URL jumps (Figure 5). In contrast, GUI action models demonstrate more
human-aligned interaction patterns, yet still struggle with locating non-textual elements (Figure 6).

L2: planning. Agents are prone to two common failure modes at this level: (1) distraction by
similar but incorrect options—for example, searching for the album Taylor Swift instead of all
albums by Taylor Swift (Figure 7); and (2) neglecting specific task constraints—e.g., deleting all
browsing history instead of only entries related to YouTube (Figure 8).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

L3: adaptability. Agents demonstrate basic proactive exploration (e.g., inspecting potential di-
rectories before file operations) and reactive handling (e.g., closing unexpected pop-ups). However,
they struggle with fallback strategies under deviation, such as failing to exit full-screen mode
via hotkeys (Figure 14 in Appendix F), or activating theater mode before resizing, which hides the
required controls (Figure 15 ). They also show poor awareness of implicit task context (Figure 16).

L4: orchestration. Agents exhibit major bottlenecks in all challenges including goal decomposition,
dependency tracking, context switching, and tool use: unclear decomposition leads to aimless
clicking (Figure 17 in Appendix F); misordered context switches break task dependencies (Figure 9)
or initiating transactions before checking the balance (Figure 18); and failure to leverage external
tools (Figure 10).

5 RELATED WORK

Computer use benchmarks. Existing computer-using benchmarks can be broadly categorized
along several dimensions: by platform (e.g., Web (Deng et al., 2023; Zhou et al., 2023), Desktop (Xie
et al., 2024; Cao et al., 2024; Xu et al., 2024b), or Mobile (Rawles et al., 2023; 2024; Chai et al.,
2025)); by task type (e.g., understanding (Liu et al., 2024; Chen et al., 2024a), grounding (Cheng
et al., 2024; Nayak et al., 2025), and end-to-end automation); and by scenario domain (e.g., everyday,
office (Drouin et al., 2024), or professional (Cao et al., 2024; Li et al., 2025)). A recent trend is the
adoption of dynamic environments (Xie et al., 2024; Cao et al., 2024; Xu et al., 2024b; Rawles et al.,
2024; Sun et al., 2025). Focusing on end-to-end evaluation in daily scenarios on a dynamic desktop
environment, OS-MAP is the first to systematically analyze task structures and automation levels
grounded in real-world user needs, bridging capability evaluation with practical relevance.

Computer-using agents. Recent advances in computer-using agents have been highly diverse. For
modeling, efforts have focused on enhancing visual perception through high-resolution (Hong et al.,
2024; Li et al., 2024b) or adaptive cropping and token selection (Zhang et al., 2024b; Lin et al., 2024;
Wu et al., 2025) techniques. For data, two trends have emerged: (1) large-scale multi-task web-based
pretraining (Cheng et al., 2024; You et al., 2024; Chen et al., 2024b; Wu et al., 2024b; Gou et al., 2024;
Qin et al., 2025), and (2) supervised fine-tuning on high-quality interaction trajectories (Zhang et al.,
2024c; Sun et al., 2024; Su et al., 2025). Reinforcement learning has been introduced to improve
error recovery, and long-horizon reasoning (Fan et al., 2025; Lu et al., 2025; Xia and Luo, 2025;
Liu et al., 2025). A parallel line of work builds ReAct-style (Yao et al., 2023) agents coordinating
structured functional modules, with growing emphasis on hierarchical planning, systematic memory
organization, and collaborative multi-agent systems (Agashe et al., 2024; Wu et al., 2024a; Jia et al.,
2024; Agashe et al., 2025; Jiang et al., 2025; Wang et al., 2025; Zhang et al., 2025).

AI capability levels. Both industry and academia have long explored ways to define graded AI
capabilities (Sheridan and Parasuraman, 2005; Parasuraman et al., 2000; Goertzel, 2014). A well-
known example is the levels of driving automation (Committee, 2021) based on the human–system
driving collaboration model. Recently, researchers have proposed grading schemes for artificial
general intelligence with the performance-generality capability framework (Morris et al., 2024;
Zhang et al., 2024a). A related research (Li et al., 2024c) discusses the intelligence levels of personal
LLM agents in terms of collaboration patterns, but with abstract classification, vague levels, and
overlapping capabilities. Our work grounds the performance–generality perspective in the concrete
domain of computer automation, introducing clear levels aligned with real-world tasks, and further
instantiates this taxonomy as OS-MAP benchmark to support quantitative evaluation.

6 CONCLUSION

In this work, we propose a two-dimensional evaluation framework for computer-using agents,
spanning automation levels and generalization scopes. We instantiate it as the OS-MAP Benchmark,
comprising 416 tasks across 15 desktop applications, executed in a controllable and extensible
environment to ensure quantitative and reproducible evaluation. Despite recent progress, OS-MAP
remains highly challenging—state-of-the-art general-purpose and GUI-specialized VLMs still fall far
short of human performance. Through in-depth failure analysis, we identify key capability bottlenecks
at each automation level, laying a foundation for targeted improvements in future research.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao,
Xiangxin Zhou, Ziyu Zhao, et al. Os agents: A survey on mllm-based agents for general computing
devices use, 2024a.

Siyuan Hu, Mingyu Ouyang, Difei Gao, and Mike Zheng Shou. The dawn of gui agent: A preliminary
case study with claude 3.5 computer use. arXiv preprint arXiv:2411.10323, 2024b.

OpenAI. Introducing operator. https://openai.com/index/
introducing-operator/, 2025. Accessed: 2025-04-25.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
3-5-models-and-computer-use, 2024. Accessed: 2025-04-25.

Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang,
Pu Zhao, Chao Du, et al. Ufo2: The desktop agentos. arXiv preprint arXiv:2504.14603, 2025.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024a.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024b.

Wenjia Jiang, Yangyang Zhuang, Chenxi Song, Xu Yang, Joey Tianyi Zhou, and Chi Zhang. Ap-
pagentx: Evolving gui agents as proficient smartphone users. arXiv preprint arXiv:2503.02268,
2025.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Chengyou Jia, Minnan Luo, Zhuohang Dang, Qiushi Sun, Fangzhi Xu, Junlin Hu, Tianbao Xie, and
Zhiyong Wu. Agentstore: Scalable integration of heterogeneous agents as specialized generalist
computer assistant. arXiv preprint arXiv:2410.18603, 2024.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom Marty,
Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena: How capable are
web agents at solving common knowledge work tasks? arXiv preprint arXiv:2403.07718, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

10

https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024.

Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. On the effects of data scale on ui control agents. Advances in Neural
Information Processing Systems, 37:92130–92154, 2024a.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

On-Road Automated Driving (ORAD) Committee. Taxonomy and Definitions for Terms Related
to Driving Automation Systems for On-Road Motor Vehicles, April 2021. URL https://doi.
org/10.4271/J3016_202104.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Yaxi Lu, Shenzhi Yang, Cheng Qian, Guirong Chen, Qinyu Luo, Yesai Wu, Huadong Wang, Xin
Cong, Zhong Zhang, Yankai Lin, et al. Proactive agent: Shifting llm agents from reactive responses
to active assistance. arXiv preprint arXiv:2410.12361, 2024.

Valerie Chen, Alan Zhu, Sebastian Zhao, Hussein Mozannar, David Sontag, and Ameet Talwalkar.
Need help? designing proactive ai assistants for programming. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems, pages 1–18, 2025.

Ana Paula Chaves and Marco Aurelio Gerosa. How should my chatbot interact? a survey on social
characteristics in human–chatbot interaction design. International Journal of Human–Computer
Interaction, 37(8):729–758, 2021.

Lizi Liao, Grace Hui Yang, and Chirag Shah. Proactive conversational agents in the post-chatgpt world.
In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 3452–3455, 2023.

Yuxiang Chai, Hanhao Li, Jiayu Zhang, Liang Liu, Guangyi Liu, Guozhi Wang, Shuai Ren, Siyuan
Huang, and Hongsheng Li. A3: Android agent arena for mobile gui agents. arXiv preprint
arXiv:2501.01149, 2025.

Sensor Tower. State of mobile 2025: The industry’s leading report. https://sensortower.
com/state-of-mobile-2025, 2025. Accessed: 2025-04-25.

OECD. Ict access and usage database. https://oe.cd/dx/ict-access-usage, 2025.
Accessed: 2025-04-25.

Meredith Ringel Morris, Jascha Sohl-Dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Aleksan-
dra Faust, Clement Farabet, and Shane Legg. Position: Levels of agi for operationalizing progress
on the path to agi. In Forty-first International Conference on Machine Learning, 2024.

Kaiyan Zhang, Biqing Qi, and Bowen Zhou. Towards building specialized generalist ai with system 1
and system 2 fusion. arXiv preprint arXiv:2407.08642, 2024a.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

11

https://doi.org/10.4271/J3016_202104
https://doi.org/10.4271/J3016_202104
https://sensortower.com/state-of-mobile-2025
https://sensortower.com/state-of-mobile-2025
https://oe.cd/dx/ict-access-usage


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences. arXiv preprint arXiv:2005.03776, 2020.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. In European Conference on Computer Vision, pages
161–178. Springer, 2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the
weakness of large language model agents within a complex android environment. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 6061–6072,
2024.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xinzhuang
Xiong, Hanchong Zhang, Wenjing Hu, Yuchen Mao, et al. Spider2-v: How far are multimodal
agents from automating data science and engineering workflows? Advances in Neural Information
Processing Systems, 37:107703–107744, 2024.

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on
consequential real world tasks. arXiv preprint arXiv:2412.14161, 2024b.

Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao,
Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, et al. Scienceboard: Evaluating multimodal autonomous
agents in realistic scientific workflows. arXiv preprint arXiv:2505.19897, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025. Accessed: 2025-04-25.

Gemini Team. Introducing gemini 2.0: our new ai model for the agen-
tic era. https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/, 2025. Accessed: 2025-04-
25.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden, Qingwei Lin, Huan Zhang, Tong Zhang,
Jianbing Zhang, Dongmei Zhang, and Jianfeng Gao. Gui-actor: Coordinate-free visual grounding
for gui agents, 2025. URL https://arxiv.org/abs/2506.03143.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

12

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2506.03143


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and
grounding? arXiv preprint arXiv:2404.05955, 2024.

Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Liuyi Chen, Yilin Bai, Zhigang He, Chenlong
Wang, Huichi Zhou, Yiqiang Li, et al. Gui-world: A dataset for gui-oriented multimodal llm-based
agents. arXiv e-prints, pages arXiv–2406, 2024a.

Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A Rodriguez, Montek Kalsi, Rabiul Awal,
Nicolas Chapados, M Tamer Özsu, Aishwarya Agrawal, David Vazquez, et al. Ui-vision: A desktop-
centric gui benchmark for visual perception and interaction. arXiv preprint arXiv:2503.15661,
2025.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
arXiv preprint arXiv:2504.07981, 2025.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14281–14290, 2024.

Zhangheng Li, Keen You, Haotian Zhang, Di Feng, Harsh Agrawal, Xiujun Li, Mohana Prasad Sathya
Moorthy, Jeff Nichols, Yinfei Yang, and Zhe Gan. Ferret-ui 2: Mastering universal user interface
understanding across platforms. arXiv preprint arXiv:2410.18967, 2024b.

Jiwen Zhang, Yaqi Yu, Minghui Liao, Wentao Li, Jihao Wu, and Zhongyu Wei. Ui-hawk: Unleashing
the screen stream understanding for gui agents. Preprints, manuscript/202408.2137, 2024b.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Zechen Bai, Weixian Lei, Lijuan Wang,
and Mike Zheng Shou. Showui: One vision-language-action model for generalist gui agent. In
NeurIPS 2024 Workshop on Open-World Agents, 2024.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. In
European Conference on Computer Vision, pages 240–255. Springer, 2024.

Xuetian Chen, Hangcheng Li, Jiaqing Liang, Sihang Jiang, and Deqing Yang. Edge: Enhanced
grounded gui understanding with enriched multi-granularity synthetic data. arXiv preprint
arXiv:2410.19461, 2024b.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
Tang. Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint arXiv:2403.02713,
2024c.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arık. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments. arXiv
preprint arXiv:2501.10893, 2025.

Yue Fan, Handong Zhao, Ruiyi Zhang, Yu Shen, Xin Eric Wang, and Gang Wu. Gui-bee:
Align gui action grounding to novel environments via autonomous exploration. arXiv preprint
arXiv:2501.13896, 2025.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Guanjing Xiong, and
Hongsheng Li. Ui-r1: Enhancing action prediction of gui agents by reinforcement learning. arXiv
preprint arXiv:2503.21620, 2025.

Xiaobo Xia and Run Luo. Gui-r1: A generalist r1-style vision-language action model for gui agents.
arXiv preprint arXiv:2504.10458, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners. arXiv preprint arXiv:2504.14239, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. Mobile-agent-e: Self-evolving mobile assistant for complex tasks. arXiv preprint
arXiv:2501.11733, 2025.

Thomas B Sheridan and Raja Parasuraman. Human-automation interaction. Reviews of human factors
and ergonomics, 1(1):89–129, 2005.

Raja Parasuraman, Thomas B Sheridan, and Christopher D Wickens. A model for types and levels of
human interaction with automation. IEEE Transactions on systems, man, and cybernetics-Part A:
Systems and Humans, 30(3):286–297, 2000.

Ben Goertzel. Artificial general intelligence: concept, state of the art, and future prospects. Journal
of Artificial General Intelligence, 5(1):1, 2014.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024c.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A QUALITATIVE EVALUATION MATRIX

This section explains the qualitative criteria used to position each method in the evaluation matrix
(Figure 1). Given the subjective and heuristic nature of this analysis, the capability levels shown are
approximate and do not reflect strict objectivity or fine-grained scale.

• Academic methods. For research models, capability levels are estimated based on their task
scope, qualitative behavior, and whether they address key challenges or demonstrate core abilities.
Quantitative results on relevant benchmarks are then used to refine their positions. For example,
SeeClick Cheng et al. (2024), U-Ground Gou et al. (2024), and OS-Atlas Wu et al. (2024b)
are all evaluated on the ScreenSpot Cheng et al. (2024) dataset, which focuses on GUI action
grounding—a task category near L1. The latter two models incorporate rudimentary planning
and can independently complete simple end-to-end tasks, suggesting capabilities closer to L2.
Their exact placement is further adjusted based on performance scores (e.g., overall accuracy) and
domain generalization, as ScreenSpot includes multiple domains. Other methods are evaluated
similarly, using additional benchmarks such as AITW Rawles et al. (2023), GAIA Mialon et al.
(2023), WebArena Zhou et al. (2023), and OSWorld Xie et al. (2024).

• General-purpose models. For models like GPT, we base our assessment on their qualitative and
quantitative performance in OSWorld Xie et al. (2024) and OS-MAP, under both end-to-end and
planning-grounding settings. These models show strong generalization—able to plan in nearly any
scenario—but limited adaptivity, often struggling with unexpected events or common errors. As a
result, they are positioned in the upper-middle region of the matrix.

• Commercial products. For tools like Microsoft Copilot, which lack quantitative evaluations or
OSWorld-style experiments, we rely on a combination of official capability descriptions, public
user discussions, and authors’ own usage experience. Earlier commercial products like Siri offer
narrow functionality and low automation, while GitHub Copilot shows high-level code generation
capabilities, often anticipating user needs. Microsoft Copilot for Windows 11 provides a more
balanced and moderate level of capability and coverage.

B ENVIRONMENT STRUCTURE

The core of the OS-MAP environment consists of a virtual machine (VM) and a virtual machine
controller (VMC). The host machine runs a VM using virtualization software such as VMware.
This VM serves both as the source of visual observations and the target for action execution by
the agents. The host communicates with the VM through a virtual network, enabling initialization,
observation extraction, file transfer, and other forms of control. These components, together with
tools for launching the VM, loading snapshots, and managing execution states, collectively form the
VMC, which runs on the host side. The following sections detail how this architecture supports the
task lifetime, initialization and configuration, state-based evaluation, and the design of the observation
and action spaces.

B.1 TASK LIFETIME

OS-MAP consists of 416 tasks across diverse scenarios, each controlled and executed sequentially by
a main evaluation loop. For each iteration, a new task evaluation is initiated. The lifetime of a task is
composed of the following five stages:

1. Initialization. To ensure reproducibility, each task begins by loading a designated snapshot.
Afterward, a predefined initialization script is executed. Snapshots and initialization scripts are
designed to work in tandem, offering both high flexibility and low initialization overhead.

2. Task execution. Once initialized, the system enters the execution loop. At each step, the VMC
captures the current observation and passes it to the agent. Based on the current state and
interaction history, the agent outputs a textual action. This action is parsed and executed by the
VMC within the VM. The loop continues until the agent either terminates voluntarily (via DONE
or FAIL) or reaches the maximum allowed number of steps.

3. Post-execution configuration (optional). For certain tasks, the final state after agent execution is
not directly extractable. In such cases, additional actions are required to bring the system into a

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

verifiable state. For example, after adding an item to the cart on the Decathlon website, the system
needs to open the cart page so the evaluator can verify the result by inspecting the DOM tree.

4. State extraction. The VMC includes a set of state extraction functions designed to retrieve relevant
information from the VM. These serve as input for the next evaluation step.

5. Evaluation. Evaluation functions are task-specific and compare the extracted state against expected
conditions. Depending on the nature of the state, corresponding comparison logic is applied—such
as string matching, file equivalence, or key–value comparison.

B.2 INITIALIZATION CONFIGURATIONS

Task initialization in OS-MAP relies on a combination of restorable VM snapshots and configuration
scripts. For simple tasks, initialization can be performed directly via scripts, which are pre-written
command sequences that encapsulate commonly used operations—such as file downloads, application
launches, API calls, webpage interactions via Playwright, and shell commands. For more complex or
customized tasks (e.g., pre-created users and messages in Rocket.Chat), manual setup is conducted in
advance and saved as a snapshot for fast recovery. In practice, task initialization uses both snapshot
recovery and lightweight runtime configuration: snapshots (either from leaf nodes or key intermediate
nodes of the snapshot tree) are loaded first, followed by scripted configuration. This hybrid approach
ensures high flexibility and minimizes initialization time.

B.3 STATE-BASED EVALUATION

The primary motivation for introducing a dynamic environment is to enable state-based evaluation.
The underlying logic is that as long as the system ultimately reaches a predefined desired state, the
task is considered successfully completed—regardless of the specific sequence of actions taken to
reach that state. This approach allows for a fair comparison between different execution trajectories
of the same task.

Accordingly, each task JSON file must define both the target state and the method for extracting
relevant system states. Common examples include retrieving specific files, reading software or system
configurations, or extracting the content of rendered webpages via Playwright. In certain tasks, a
post-config step is required to convert hard-to-access intermediate states into more easily extractable
forms. Implementing state-based evaluation requires substantial reverse engineering of software and
operating systems to locate and extract relevant data. Once the VM’s state is extracted to the host
machine, an evaluation function compares it against the target state to determine whether the task has
been successfully completed.

The evaluation methods are tailored to the extracted state types, typically involving file comparisons
or configuration matching. In some cases, more specialized metrics—such as image similarity or
fuzzy text matching scores—are used. All evaluation results are ultimately converted into a binary
outcome, indicating task success or failure.

B.4 OBSERVATION SPACE

OS-MAP use screenshot for the only observation modality. Following OSWorld Xie et al. (2024), the
VMC takes full-screen screenshots and preserves the cursor to align with human perception of the
UI. The default resolution is 1920× 1080, and supports adjustments to avoid overfitting on absolute
pixel coordinates and generalization studies.

While previous benchmarks Xie et al. (2024); Cao et al. (2024) also used inputs such as the accessi-
bility (a11y) tree and Set-of-Marks Yang et al. (2023) (SoM) prompted screenshots, OS-MAP relies
solely on screenshots for two main reasons:

• Screenshots are easy to capture and align closely with human perception.

• They preserve rich visual information, whereas a11y trees and SoM formats can be overly exces-
sively verbose, lossy, inaccurate, or unavailable in visually complex interfaces.

Although structured inputs sometimes yield better performance, recent methods have increasingly
shifted toward using VLMs on raw screenshots Qin et al. (2025); Bai et al. (2025); Wu et al. (2024b),
making pure visual input the more general and future-proof approach.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Action types and parameters defined in action space COMPUTER_13, a variance we created
for the potential reinforcement learning research based on our environment.

Action Type Parameters Note
MOVE_TO x, y Move the cursor to the specified position
CLICK button,

x, y,
num_clicks

Click the left button if the button not specified, otherwise click the
specified button; click at the current position if x and y are not
specified, otherwise click at the specified position

MOUSE_DOWN button Press the left button if the button not specified, otherwise press the
specified button

MOUSE_UP button Release the left button if the button not specified, otherwise release
the specified button

RIGHT_CLICK x, y Right click at the current position if x and y are not specified, other-
wise right click at the specified position

DOUBLE_CLICK x, y Double click at the current position if x and y are not specified,
otherwise double click at the specified position

DRAG_TO x, y Drag the cursor to the specified position with the left button pressed
SCROLL dx, dy Scroll the mouse wheel up or down
TYPING text Type the specified text
PRESS key Press the specified key and release it
KEY_DOWN key Press the specified key
KEY_UP key Release the specified key
HOTKEY keys Press the specified key combination
WAIT - Wait until the next action
FAIL - Decide the task cannot be performed
DONE - Decide the task is done
CALL_USER - Call the simulated user to fill the credentials when logging-in

B.5 ACTION SPACE

OS-MAP adopts the Computer_13 action space from OSWorld, covering all basic mouse and
keyboard operations—such as mouse movement, various clicks, drags, key presses, and hotkeys. It
also includes three meta-actions: WAIT, FAIL, and DONE, which allow the agent to express task
progress or termination conditions.

To support human-in-the-loop collaboration, OS-MAP introduces a new action: CALL_USER, used
when human input is required—for example, entering sensitive information like login credentials. This
helps define the agent’s permission boundary and enables more realistic human-agent cooperation. In
OS-MAP benchmark, this action is only used during Google account login, where the agent yields
control and a script autofills the credentials.

In total, OS-MAP defines 17 actions, summarized with their parameters in Table 4.

C TASK CURATION DETAILS

All tasks in OS-MAP are designed according to a structured framework based on automation levels
and hierarchies of user needs. Each task is implemented on the VM with a well-defined initial state
and evaluation function, ensuring consistent and repeatable benchmarking. Task Curation was a
collaborative effort by the authors, involving nine computer science students who jointly annotated
and refined the tasks over approximately 600 hours of work.

Section C.1 outlines the standard six-stage pipeline for task creation, while Section C.2 provides a
detailed walkthrough of how a representative Level-4 (L4) task was designed, iterated, and finalized
from scratch. Section C.3 describes the process of filtering and re-annotating tasks imported from
OSWorld Xie et al. (2024).

C.1 PIPELINE DESCRIPTIONS

Based on the two-dimensional task organization framework described above, each task in OS-MAP
is created by the co-authors following a standardized procedure:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 12: Detailed Specification of the task goal in ToDo (not informed in the task instruction).

1. Task selection. We begin by identifying underrepresented scenes within the demand hierarchy.
For each selected scene, we determine a representative application and outline a task concept
aligned with that context.

2. Exploration & specification. Annotators study the target app or website using official documen-
tation, demos, and hands-on interaction. They then define a concrete task objective, assign an
appropriate difficulty level, and manually execute the task flow to verify feasibility. To prevent
data contamination, task goals must not overlap with content from official materials; annotators
are required to adapt or design new content accordingly.

3. Instruction & configuration. Annotators craft clear and concise task instructions and executable
initialization configurations. Together, they control task difficulty—higher-level tasks omit de-
tails or include (human-recognizable) misleading cues, requiring agents to actively explore the
environment for critical information.

4. Reference state preparation. The annotators manually complete the task to record a standard
success state for the following evaluation process.

5. Evaluation setup. Evaluation involves comparing VM file or system states against predefined
targets. Some tasks also require post-execution scripts or logic (postconfig) to expose the key
status for assessment.

6. Cross-validation. Each task undergoes a rigorous review by two other annotators across several
dimensions before inclusion: (1) task authenticity and representativeness, (2) clarity and unam-
biguity of instructions, (3) reproducibility, (4) correctness and (5) robustness of evaluation, (6)
alignment with difficulty level, and (7) non-duplication.

C.2 A REPRESENTATIVE EXAMPLE

We illustrate the creation of a representative L4 task, from ideation to finalization:
1. Task selection. Upon reviewing the current task set, we found a gap in L4-level tasks within the

office productivity domain—particularly tasks involving tool use, to-do management, and email
communication. We thus defined a task prototype: write a to-do item that instructs the user to
download multiple documents from a website, translate them using Google Translate, and send
them as an email attachment to a colleague.

2. Exploration & specification. We selected the How’s Life reports from the official OECD website
as the document source. A to-do entry was added in a ToDo application, with a detailed task
description specifying file names, save locations, and expected actions (see Figure 12).

3. Instruction & configuration. Through reverse engineering of the ToDo application, we identified
the configuration file’s location and edit protocol. Based on this, we created a config file and
imported it during task initialization, so the to-do item loads automatically. Similarly, we reverse-
engineered the Thunderbird email client, configuring its profile folder to pre-load an account and
a draft email with a blank recipient field and no attachment.

4. Reference state preparation. We manually completed the task to obtain a reference success
state—defined as the appearance of a new email in the recipient’s local mail server directory.
During testing, we observed long download times and limits on translation input and attachment
size. To ensure feasibility, we reduced the requirement from translating six reports to just one.

5. Evaluation setup. The evaluation checks for textual equality between the expected and actual
email file and is provided as part of the task package.

6. Cross-validation. The task was tested by two additional annotators to validate both procedure
correctness and robustness—i.e., whether the task would still pass evaluation despite minor
execution variations or small errors.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.3 FILTERING OF TASKS FROM OSWORLD

We reused and adapted the majority of tasks from OSWorld. After careful filtering and re-annotation,
a total of 255 tasks were retained. The excluded tasks fall into three main categories:
• Redundant tasks within the same scenario – For example, the LibreOffice Calc tasks derived

from the SheetCopilot dataset often involved templated spreadsheet operations (e.g., statistical
summaries and charting). Only 1–2 representative tasks were kept to avoid unnecessary duplication.

• Tasks lacking general relevance – These focused too heavily on application-specific UI details, such
as fine-grained formatting combinations in office software (e.g., font size, line spacing, paragraph
alignment), rather than testing generalizable agent capabilities.

• Tasks marked as infeasible – These either had ambiguous descriptions or indirect, open-ended
solutions that made evaluation problematic. For example, the task "Could you please convert a
PowerPoint presentation to video and play it with VLC?" was removed. Retaining such tasks would
conflict with our design principle of aligning higher-level tasks with feasible, goal-driven behavior,
while rewriting them would introduce challenges in open-ended evaluation.

D EXPERIMENT DETAILS

D.1 MODEL BASELINES

We utilize the versions of gpt-4o-2024-11-20 and claude-3-7-sonnet-20250219 for
results of GPT-4o and Claude-3.7-Sonnet, respectively, need to be noted that result could be
changed from time since it is close-sourced. For all VLMs, we take the default hyper-parameters, i.e.,
we set the temperature parameter to 1.0, and top_p to 0.9, and the maximum number of tokens for
generation is set to 1500. We set the maximum number of interaction steps for L1, L2, L3 and L4
tasks to 15, 15, 30, and 50, respectively, which is sufficient to complete most tasks.

E PROMPTS FOR AGENTS

Multi-modal computer use agent baseline involves complex prompt engineering, including system
prompts, task instruction prompts, and step prompts. The following sections introduce these three
types in detail and present representative examples of task instructions.

E.1 SYSTEM PROMPT

The system prompt is the main part of prompt engineering in OS-MAP, including role description
and observation space, action space, use cases, and format description with tips. The following will
show the four parts of the system prompt. The complete system prompt is the splicing of the four
parts.

Role description and observation space

You will act as an agent responsible for automating desktop
computer tasks according to my instructions. You must possess
strong knowledge of computer GUI operations and experience
using common software applications.

↪→
↪→
↪→

For each task, I will provide you with an instruction that
describes the task goal and may include additional hints. You
will then enter an operation loop, where you fully take over
the control of the computer, performing one action step at a
time. At each step, you will receive the history of actions and
the current screenshot as observations, and you need to output
what action to perform next. The action will be executed, and
the loop continues with a new screenshot.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Your output can include your reasoning--such as your observations,
long-term planning, the objective of the current step, and the
expected outcome. However, you must ALWAYS include a predicted
ACTION and the action must conform to the action space
described below. Your output must follow the specified FORMAT
and include the correct `action_type` and required parameters.

↪→
↪→
↪→
↪→
↪→

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Action space

ACTION_SPACE = [
{

"action_type": "MOVE_TO",
"note": "move the cursor to the specified position",
"parameters": {

"x": {
"type": float,
"range": [0, X_MAX],
"optional": False,

},
"y": {

"type": float,
"range": [0, Y_MAX],
"optional": False,

}
}

},

... more action definitions ...

{
"action_type": "TYPING",
"note": "type the specified text",
"parameters": {

"text": {
"type": str,
"range": None,
"optional": False,

}
}

},

... more action definitions ...

{
"action_type": "CALL_USER",
"note": "Call the user to fill in the Google account or

password (the input box must be activated), one at a
time, according to the parameter call_type.",

↪→
↪→
"parameters": {

"call_type": {
"type": str,
"range": ["email", "password"],
"optional": False,

}
}

},
{

"action_type": "WAIT",
"note": "wait until the next action",

},
{

"action_type": "FAIL",
"note": "decide the task is failed or can not be

performed",↪→
},
{

"action_type": "DONE",
"note": "decide the task is done",

}
]

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Use Cases

Notes:
1. To reiterate, regardless of whether you include reasoning, your

output MUST contain an action in the SPECIFIED FORMAT (a
dictionary enclosed in triple backticks as shown in the
examples below), and it must include a valid `action_type` and
parameters as defined above.

↪→
↪→
↪→
↪→
2. For `MOUSE_MOVE`, you must specify the exact target `x` and `y`

coordinates. The screen bounds are `X_MAX = 1920`, `Y_MAX =
1080`. The coordinates must fall within [0, 1920] and [0, 1080].
Example:

↪→
↪→
↪→
```{
"action_type": "MOUSE_MOVE",
"x": 1319,
"y": 65

}```
3. For `[CLICK, RIGHT_CLICK, DOUBLE_CLICK, DRAG_TO]`, specifying `x`

and `y` is optional. If omitted, the action defaults to the
current cursor position (often used after `MOUSE_MOVE`).
However, it is RECOMMENDED to specify the coordinates
explicitly. Same format as `MOUSE_MOVE`:

↪→
↪→
↪→
↪→
```{
"action_type": "CLICK",
"x": 1319,
"y": 65

}```
... more use cases ...

Format descriptions with tips

11. Other special actions are `[WAIT, FAIL, DONE]`. Use them when
you think it's necessary to wait, when the task has failed, or
when it has succeeded. Each `WAIT` pauses for ~2 seconds. Do not
declare `FAIL` lightly without attempting reasonable actions and
explorations, but if you still cannot get out of the
predicament after trying for several steps, you can declare it.
Only use `DONE` when you are certain the task is completed
successfully. Do NOT use dictionary format or triple backticks.
Just output like the BARE "DONE" without any other thought or
formatting.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
12. If the task is file editing, make sure it is saved successfully.

If there is no clear description of the file name, save
location, etc., use the default.

↪→
↪→
13. If there are clear step-level instructions, please follow them

strictly. Otherwise, you can do whatever you want as long as
the task is completed.

↪→
↪→
14. My computer password is `"password"`. You may use it freely

whenever `sudo` access is required.↪→

Please think step by step. Carefully observe the current screenshot
and then output your reasoning (optional), your plan, the
current action and expected results, and most importantly, the
FORMATTED ACTION.

↪→
↪→
↪→
Do NOT ask questions. Do NOT attempt to interact with the user in

any way other than via the `CALL_USER` action. You are fully
responsible for controlling the computer. Do NOT output
anything else.

↪→
↪→
↪→

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.2 TASK INSTRUCTION PROMPTS

The task instruction is appended directly after the system prompt and is also loaded only once per
task. It specifies the concrete objective the agent is expected to complete, in the following format:

You are asked to complete the following task: {{Instruction}}

E.3 STEP PROMPT

The system prompt is loaded once at the beginning of each task to provide the agent with general
instructions and behavioral priors. At every step during task execution, the agent also receives a
step prompt in the following fixed format, where "History" stands for the previous three interaction
history.

{{History}} {{Screenshot}} Given the screenshot below, what is the
next step you will take to help complete the task?↪→

E.4 REPRESENTATIVE TASK INSTRUCTIONS

Task instructions are written in a human-friendly tone, clearly stating the objective and specifying
any necessary details for evaluation. To enhance generalization and reduce overfitting to prompt
patterns, we ensure diversity in language style and phrasing across tasks. Below, we present several
representative examples.

Rotate Wallpapers (L4)

Download the Bing wallpaper for Italy from the latest 5 days in 4K
resolution to ~/Pictures/wallpapers and name them 0.jpg
(today's), 1.jpg, ..., add them to the wallpaper candidates,
and set the today's one as the wallpaper. Next, configure a
cron task to switch wallpapers in order at 00:00 every day. The
required script change_wallpaper.sh is already provided on the
desktop and can be used for cron tasks after only modifying the
wallpaper directory.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Zotero Citation (L4)

I am writing my course paper and I need to cite a reference. I
remember it in Zotero, but I can't remember which one it is.
Please help me find this article and imitate the two IEEE
formats above to complete the citation. Note that the font
format must also be the same. Then download this article to the
Documents/references folder and put it together with other
cited papers.

↪→
↪→
↪→
↪→
↪→
↪→

Meet Schedule (L3)

Did you see the meeting time sent in the DATA group in Rocket.Chat?
Add it to the event in Calendar, title it Team Meeting, and
make sure you don't make mistakes with the date, time, and
location.

↪→
↪→
↪→

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F CASE ANALYSIS

This section provides the full context and failure analysis for several representative error cases
referenced in the main Analysis section §4.3.

Figure 13 illustrates a severe hallucination, where the agent mistakenly identifies the current webpage
as a Chrome browser interface and treats the top search bar as a search engine input.

Figures 14 and 15 show two L3 tasks in which the agent fails to adapt when the straightforward
method breaks down—for example, when the target element is missing from the screenshot.

In Figure 16, another L3 task requires the agent to interact with a map embedded on the current page.
However, the agent ignores this context and instead jumps to a global Google Maps search, bypassing
the intended interaction.

Figures 17 and 18 depict two L4 tasks characterized by long instructions and complex dependencies.
In one case, the agent fails to properly decompose the instruction and proceeds with aimless explo-
ration; in the other, it confuses the order of contextual navigation and concrete operations. These
cases highlight the agent’s significant shortcomings in handling the high-level reasoning and planning
required at L4.

Figure 13: (L2) The agent identifies this page as
Chrome and attempts to use the "search engine".

Figure 14: (L3) The agent does not know to use
the keyboard shortcut to exit full-screen mode.

Figure 15: (L3) Task instruction: Enter theater mode and resize the scale to 48. However, the resize
button is hidden in theater mode, and the agent does not know it should swap the execution order.

G LIMITATIONS AND FUTURE WORK

First, designing tasks that align precisely with automation levels and hierarchical needs often requires
carefully controlled initial states and evaluation functions built through extensive reverse engineering,
limiting the scalability of synthetic approaches. Moreover, the need for distribution and reproducibility
prevents alignment with many real-world scenarios, which are often tightly coupled with user accounts,
personalized content, or external effects, making them unsuitable as benchmark tasks.

Future work may explore scalable methods to generate fine-grained, controllable tasks that better
cover the full range of user needs. Additionally, integrating environment-aware reward shaping could
enable finer supervision and continual improvement for computer-using agents. We hope OS-MAP
offers a solid foundation and actionable insights for advancing this direction.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 16: (L3) Task instruction: Locate the MOST geographically central station in Paris on this
map and jump to its location on Google Maps. The agent simply ignores the current page (weather
station map) and searches for subway stations in the center of Paris on Google Maps.

Figure 17: (L4) Task instruction: I am writing
my course paper and I need to cite a reference.
I remember it in Zotero, but I can’t remember
which one it is. Please help me find this article
and imitate the two IEEE formats above to com-
plete the citation. Note that the font format must
also be the same. Then download this article to
the Documents/references folder and put it to-
gether with other cited papers. The agent did not
break down the task into subtasks and clicked
aimlessly on the Zotero interface.

Figure 18: (L4) Task instruction: I plan to use
the money in my wallet to buy something to re-
ward myself. Please check how much money is in
my wallet account, and then buy the item of the
corresponding amount in the todo list. Please
choose the appropriate size and add it to the
shopping cart. Then go back to the firefly and
add a corresponding expense transaction, named
the item name on the todo list. The agent does
not check the wallet balance or place an order,
but tries to add a transaction record first.

H REPRODUCIBILITY STATEMENT

We provide an anonymous downloadable source code at https://anonymous.4open.
science/r/OSMap-C2F5/. The deployment process of OS-MAP is detailed in the README.md
of the code repository, while the experimental settings for running evaluations on OS-MAP are de-
scribed in Section 4.

24

https://anonymous.4open.science/r/OSMap-C2F5/
https://anonymous.4open.science/r/OSMap-C2F5/

	Introduction
	Environment
	Task Definition
	Environment Structure

	Benchmark
	Automation Levels
	Generalization Scope
	Evaluation Matrix
	Task Curation Process
	Benchmark Statistics

	Experiments and Analysis
	Experimental Settings
	Results
	Analysis
	General Failures
	Level-wise Bottlenecks


	Related Work
	Conclusion
	Qualitative Evaluation Matrix
	Environment Structure
	Task Lifetime
	Initialization Configurations
	State-based Evaluation
	Observation Space
	Action Space

	Task Curation Details
	Pipeline Descriptions
	A Representative Example
	Filtering of Tasks from OSWorld

	Experiment Details
	Model Baselines

	Prompts for Agents
	System Prompt
	Task Instruction Prompts
	Step Prompt
	Representative Task Instructions

	Case Analysis
	Limitations and Future Work
	Reproducibility statement

