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Abstract

Fairness in ranking models is crucial, as disparities in exposure can disproportionately
affect protected groups. Most fairness-aware ranking systems focus on ensuring comparable
average exposure for groups across the entire ranked list, which may not fully address real-
world concerns. For example, when a ranking model is used for allocating resources among
candidates or disaster hotspots, decision-makers often prioritize only the top-K ranked items,
while the ranking beyond top-K becomes less relevant. In this paper, we propose a list-wise
learning-to-rank framework that addresses the issues of inequalities in top-K rankings at
training time. Specifically, we propose a top-K exposure disparity measure that extends the
classic exposure disparity metric in a ranked list. We then learn a ranker to balance relevance
and fairness in top-K rankings. Since direct top-K selection is computationally expensive
for a large number of items, we transform the non-differentiable selection process into a
differentiable objective function and develop efficient stochastic optimization algorithms to
achieve both high accuracy and sufficient fairness. Extensive experiments demonstrate that
our method outperforms existing methods.

1 Introduction

Fairness in ranking has become a critical concern since unfair rankings lead to inequalities such as unequal
business opportunities, educational placements, and resource allocation (Kulshrestha et al., 2017; Mohler
et al., 2018; Shang et al., 2020). Ranking models used for decision-making, such as evaluating job candidates
or recommending products, typically provide more exposure to top-ranked items than those ranked lower
(Singh & Joachims, 2018). Similar cases are observed in educational systems, where funding agencies allocate
more resources to top-ranked schools (Darling-Hammond, 2001). Due to factors like historical discrimination,
items in the protected group that possess a specific attribute, such as gender, are often under-represented
within the training dataset. This can lead the model to generate rankings that exhibit substantial disparities
in exposure between groups.

Fairness in ranking differs significantly from traditional fairness metrics in classification, as it requires
considering position bias. Traditional fairness literature mainly focuses on ensuring equal classification
outcomes, such as equalized odds and demographic parity (Hardt et al., 2016; Zafar et al., 2017). Pairwise
fairness metrics (Abdollahpouri et al., 2017; Beutel et al., 2019; Narasimhan et al., 2020; Fabris et al., 2023),
which are derived from fairness definitions in binary classification, focus on preserving the pairwise relative
order of items according to their relevance scores, irrespective of group membership. However, these metrics
often overlook the position bias inherent in ranking, where top-ranked items receive more attention. In
contrast, list-wise metrics such as Biega et al. (2018); Singh & Joachims (2018); Zehlike & Castillo (2020)
better address fairness in ranking. While some (Biega et al., 2018) focus on individual fairness, the majority
of them emphasize group fairness, ensuring that different groups receive similar average exposure.

While post-processing methods (Zehlike et al., 2017; Biega et al., 2018; Asudeh et al., 2019; Mehrotra &
Vishnoi, 2022) are proposed to address fairness by re-ordering ranked lists, these approaches face two key
limitations: (1) suboptimal trade-offs between relevance and fairness, and (2) reliance on group labels during
testing. First, post-processing methods adjust rankings after the model has been trained, meaning they
do not incorporate fairness constraints within the model itself, which makes it difficult to achieve the best
ranking quality for a given fairness level or to achieve the highest fairness for a fixed ranking quality. Second,
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these methods access to sensitive group labels during testing, which can limit generalization and raise privacy
concerns, especially when such labels are unavailable or sensitive.

In contrast, in-processing methods such as Zehlike & Castillo (2020) that integrate fairness directly into the
learning-to-rank process during training ensure Pareto efficiency. Specifically, in-processing methods can be
viewed as solving a constrained optimization model where the quality of ranking is optimized subject to a
constraint that bounds the level of unfairness. This means the in-process methods guarantee that no further
improvement in fairness can be made without sacrificing ranking quality.

Many in-processing methods (Zhu et al., 2021; Memarrast et al., 2023) focus on fairness across the entire
ranked list, which may not fully address real-world concerns. For instance, in resource allocation for candidates
or disaster hotspots, decision-makers prioritize only the top-K ranked items, making rankings beyond top-K
irrelevant. While existing methods account for position bias, they do not emphasize fairness in critical top-K
positions. This limitation underscores the need for in-processing approaches that explicitly ensure fairness
within the top-K rankings.

In this paper, we propose a list-wise learning-to-rank framework that addresses the issue of inequalities
in top-K rankings at training time for the first time. Specifically, we introduce a novel top-K exposure
disparity metric, which is an extension of the group exposure disparity in a ranked list (Singh & Joachims,
2018; Zehlike & Castillo, 2020). We then learn a ranker that optimizes the list to balance ranking relevance
and exposure disparities at top-K positions. A direct top-K selection process, such as a naive approach based
on sorting the whole list, is computationally expensive for a large number of items. To this end, we transform
the non-differentiable top-K selection into a differentiable objective function and develop efficient stochastic
algorithms.

To empirically validate the effectiveness of our method, we conduct a comprehensive set of experiments using
popular benchmark datasets. The experimental results demonstrate that our method not only achieves high
ranking accuracy but also significantly alleviates exposure disparities at top-K positions when compared
to several state-of-the-art methods. To the best of our knowledge, this is the first time an in-processing
learning-to-rank framework is proposed to address both relevance and fairness in top-K rankings with a
provable convergence guarantee.

2 Related Work

Ranking fairness metrics based on pairwise comparisons (Abdollahpouri et al., 2017; Beutel et al., 2019;
Narasimhan et al., 2020; Fabris et al., 2023) are proposed to ensure the relative order of a pair is consistent
with certain fairness principles. For example, a ranking algorithm is considered fair if the likelihood of a
clicked item being ranked higher than another relevant unclicked item is equal across groups, provided both
items have received the same level of engagement (Beutel et al., 2019). In contrast, list-wise approaches
optimize fairness across the entire ranking list by ensuring balanced exposure and relevance for all items (Singh
& Joachims, 2018; Yang & Stoyanovich, 2017; Zehlike & Castillo, 2020; Kotary et al., 2022). For example,
a statistical parity-based measure Yang & Stoyanovich (2017) is introduced to calculate the difference in
the distribution of various groups across different prefixes of the ranking. Studies such as Singh & Joachims
(2018); Zehlike & Castillo (2020) define equal exposure fairness, aiming to equalize the average exposures
between minority and majority groups. Some other methods (Chakraborty et al., 2022; Zhao et al., 2023)
address fairness in ranking aggregation, a different area from learning-to-rank.

Ranking fairness can be addressed through pre-, in-, and post-processing approaches. Pre-processing methods
aim to prevent biased models, but creating an unbiased training set is complex and can result in reverse
discrimination (Zehlike & Castillo, 2020). Post-processing methods (Islam et al., 2023; Gao et al., 2022;
Yang et al., 2023; Mehrotra & Vishnoi, 2022; Zehlike et al., 2022; 2017; Biega et al., 2018; Asudeh et al.,
2019; Vardasbi et al., 2024; Gorantla et al., 2024) are developed to re-rank a list to satisfy specific fairness
criteria. Specifically, The FA*IR algorithm, introduced in Zehlike et al. (2017), adjusts ranking lists to ensure
that the ratio of items from the protected group in each prefix of the top-K rankings meets or exceeds a
specified minimum threshold. Additionally, the algorithm is enhanced to accommodate multiple protected
groups (Zehlike et al., 2022). However, the heuristic adjustments are constrained by other models and are
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only compatible with their specific fairness metric. Moreover, there is no widely accepted definition of top-K
fairness nor theoretical guarantee for satisfying fairness constraints (Lahoti et al., 2019).

Post-processing methods such as Celis et al. (2017); Singh & Joachims (2018; 2019); Kotary et al. (2022)
aim to determine the utility-maximizing probabilistic ranking under fairness constraints. For example, a
doubly stochastic matrix represents the probability of item i being ranked at position j, and the optimal
matrix is learned to maximize expected utility subject to group exposure fairness constraints. The matrix is
solvable via linear programming, and the sampled rankings achieve exposure fairness in expectation (Singh &
Joachims, 2019). These methods are categorized as post-processing because they depend on an underlying
predictive model to estimate item relevance. Additionally, these methods aim to estimate the probabilities of
each item being ranked at any position, which are computationally expensive.

In-processing methods aim to address fairness directly within the ranking model during training. DELTR
(Zehlike & Castillo, 2020) extends ListNet (Cao et al., 2007) to a framework that optimizes ranking accuracy
and reduces unfairness, defined as discrepancies in ranking exposure between two groups. Zhu et al.
zhu2020measuring introduce a debiased personalized ranking model addressing item under-recommendation
bias by improving ranking-based statistical parity and equal opportunity. Robust (Memarrast et al., 2023)
constructs a minimax game for fair ranking by balancing fairness constraints with utility using distributional
robustness principles, achieving fairness-utility trade-offs. MCFR (Wang et al., 2024) introduces a meta-
learning framework combining pre- and in-processing techniques with curriculum learning to address fairness
across entire ranked lists. However, these approaches concentrate on the entire ranked list rather than
prioritizing top-K positions.

In-processing approaches for top-K fairness are lacking. Unlike post-processing methods, we focus on
in-processing approaches that provide a theoretical guarantee for satisfying fairness constraints at top-K
positions. Different from K-SONG (Qiu et al., 2022), which focuses solely on top-K ranking relevance (NDCG),
we propose a stochastic algorithm to optimize a top-K ranking that achieves both high relevance, as measured
by NDCG, and sufficient fairness, quantified by reducing exposure disparities between minority and majority
groups. Moreover, unlike other in-processing fair ranking frameworks (Memarrast et al., 2023; Zhu et al.,
2020), which are not scalable due to their model complexities, our framework is efficiently optimizable and
scalable to large datasets.

3 Preliminaries

Let Q denote a set of N queries and q ∈ Q denote a query (e.g., a query for document retrieval or a user for
recommendation). Let Sq = {xq

i |i = 1, . . . , Nq} denote a set of Nq items (e.g., documents, products) to be
ranked for q, where xq

i denote the embedding for each item with respect to query q. Let S be the set of all
query-item pairs, i.e., S = {(q,xq

i )|q ∈ Q,xq
i ∈ Sq}. Let yq

i denote the relevance score (e.g., a rating) between
query q and item xq

i and Yq = {yq
i }Nq

i=1 denote the set of all relevance scores for query q. For simplicity,
we assume that the items in Sq belong to two disjoint groups. Let Sq

a ⊂ Sq denote the set of items in the
minority group and Sq

b ⊂ Sq denote the set of items in the majority group.

Let hq(x; w) denote a predictive function that outputs a score for x with respect to the query q with a higher
score leading to a higher rank of x in an output list. The parameters of the scoring function are denoted
by w (e.g., a deep neural network). The classical approach to obtaining a good hq(x; w) is to optimize w
by maximizing a quality measure on the output lists across all queries or, equivalently, minimizing a loss
function that decreases with the output quality.

There exist multiple ways to measure the quality of ranking items in Sq with respect to a query q. One
commonly used example is the NDCG measure, which is defined as:

NDCG : 1
Zq

∑
xq

i
∈Sq

2yq
i − 1

log(1 + r(w; xq
i ,Sq)) . (1)
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Here, Zq is a normalization constant and r(w; x,Sq) ∈ {1, 2, . . . , Nq} is the rank of x in the set Sq based on
hq(x; w), that is,

r(w; x,Sq) =
∑

x′∈Sq

I(hq(x′; w) − hq(x; w) ≥ 0), (2)

where the indicator function I(·) outputs 1 if the input is true and 0 otherwise. Note that a higher score
hq(x; w) leads to a smaller r(w; x,Sq), and a higher NDCG means a higher quality of ranking for query
q. One can thus optimize w to maximize the average NDCG over all queries to obtain a good prediction
score function hq(x; w). However, doing so is challenging due to the discontinuity of r(w; x,Sq) in w.
Therefore, according to Qiu et al. (2022), one can approximate r(w; x,Sq) by a continuous and differentiable
surrogate function ḡ(w; x,Sq) =

∑
x′∈Sq

ℓ(hq(x′; w) − hq(x; w)), where ℓ(·) is an increasing surrogate loss
function of I(· ≥ 0), e.g., the squared hinge loss ℓ(x) = (x+ c)2

+, where c is a margin parameter. We define
ℓ(w; x′,x, q) = ℓ(hq(x′; w) − hq(x; w)) and obtain a more computationally tractable NDCG loss:

Lq(w) = − 1
Zq

∑
xq

i
∈Sq

2yq
i − 1

log(1 + ḡ(w; xq
i ,Sq)) , (3)

and one can train hq(x; w) by minimizing the average NDCG loss across all queries in S.

Another loss function that measures the quality of a ranking with respect to query q is the ListNet loss
(Cao et al., 2007):

Lq(w) =
∑

xq
i

∈Sq

(
exp(yq

i )∑Nq

j=1 exp(yq
j )

)
· log (ĝ(w; x,Sq)) , (4)

where ĝ(w; x,Sq) =
∑

x′∈Sq
exp(hq(x′; w) − hq(x; w)).

Given a loss function Lq(w), e.g., (3) or (4), for each query q ∈ Q, one can minimize the average loss over all
queries by solving minw

1
|S|
∑

q∈Q Lq(w) to obtain a good prediction score function hq(x; w). However, we
aim to achieve a ranking that is both high-quality and sufficiently fair. Therefore, a measure of the fairness
of hq(x; w) needs to be involved in the optimization above.

There exist multiple ways to define ranking fairness. In this paper, we focus on the equal exposure fairness of
a ranking method similar to Zehlike & Castillo (2020). Formally, according to the probability distribution
over Sq induced by scores {hq(xq

i ; w) : xq
i ∈ Sq}, the exposure of item xq

i ∈ Sq is defined as:

e(w,xq
i ,Sq) := exp(hq(xq

i ; w))∑
xq

j
∈Sq

exp(hq(xq
j ; w)) . (5)

The exposure in (5) can be interpreted as the reciprocal of a surrogate rank function, where higher-ranked
items receive greater exposure. The reason is that we can convert it to 1/

∑
xq

j
∈Sq

exp(hq(xq
j , w) − hq(xq

i , w)).
As a result, the denominator can be considered as a surrogate of the rank function at xq

i using the exponential
surrogate function, i.e., the higher the score hq(xq

i , w), the lower the denominator
∑

xq
j

∈Sq
exp(hq(xq

j , w) −
hq(xq

i , w)), matching its rank function. The exponential surrogate is widely utilized to approximate rank
functions effectively (Rudin, 2009).

Given a query q ∈ Q, the equal exposure fairness requires that the averaged exposures in both minority
and majority groups be equal, namely,

1
|Sq

a|
∑

xq
i

∈Sq
a

e(w,xq
i ,Sq) = 1

|Sq
b |
∑

xq
i

∈Sq
b

e(w,xq
i ,Sq). (6)

This requirement can be satisfied by minimizing the following loss function for each query q, which measures
the disparity in the averaged exposures between groups:

Uq(w) := 1
2

[
1

|Sq
a|
∑

xq
i

∈Sq
a

e(w,xq
i ,Sq) − 1

|Sq
b |
∑

xq
i

∈Sq
b

e(w,xq
i ,Sq)

]2
. (7)
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The learning to rank with equal exposure fairness can be formalized as an optimization problem:

min
w

1
|S|

∑
q∈Q

Lq(w) + C

N

∑
q∼Q

Uq(w), (8)

where the loss Lq(w) can be (3) or (4) or any loss function measuring the quality of ranking and loss function
Uq(w) is defined in (7), which can be viewed as a regularization term to ensuring equal exposure fairness,
and the parameter C balances the quality and the fairness of ranking.

4 Top-K Ranking Fairness

The equal exposure fairness introduced in (6) is defined based on the entire output list for each query, which
may not fully address unfairness in real-world applications. For example, when the ranking is used for
allocating resources among disaster hotpots, the decision-makers might only prioritize the regions that are
ranked at the top-K position, while the ranking beyond K does not matter. To extend our fairness measure
to this situation, we develop a general top-K ranking fairness metric to ensure fairness among different
groups at top-K positions in the output ranking. In particular, the score hq(x; w) satisfies top-K ranking
fairness if

1
|Sq

a|
∑

xq
i

∈Sq
a

I(xq
i ∈ Sq

K)e(w,xq
i ,Sq)

= 1
|Sq

b |
∑

xq
i

∈Sq
b

I(xq
i ∈ Sq

K)e(w,xq
i ,Sq),

(9)

where Sq
K denotes the set of top-K items (ranked by hq(xq

i ; w)’s) in Sq with respect to query q and e(w,xq
i ,Sq)

is the exposure function in (5). As shown in (5), higher-ranked items receive higher exposure scores. When
extending this to a top-K ranking, each item within the top-K positions is weighted according to its exposure
score.

Ensuring the top-K ranking fairness lies in the selection of items for the top-K set, i.e., xq
i ∈ Sq

K . Note that
the top-K set Sq

K depends on the predicted scores hq(xq
i ; w) with model parameters w, and a naive approach

of sorting the scores will be expensive, taking n logn time complexity for a set of n examples. Hence, one
major innovation of this paper is to efficiently handle top-K ranking fairness. Some related methods such
as Wu et al. (2009); Qin et al. (2010) approximate the top-k indicator by ψ(K − ḡ(w;xq

i , Sq)), where ψ is a
continuous surrogate of the indicator function. However, there are two levels of approximation errors: one in
estimating the rank of an item and another in approximating I(· ≥ 0) by ψ(·).

To reduce approximation errors, our idea is to transform the non-differentiable top-K selection operator into
a differentiable one using an approach similar to Qiu et al. (2022). Specifically, let

λq(w) = arg min
λ

K + ε

Nq
+ 1
Nq

∑
xq

i
∈Sq

(hq(xq
i ; w) − λ)+ for q ∈ Q, (10)

where ϵ ∈ (0, 1). It can be easily proved that λq(w) is uniquely defined and is the K + 1-th largest score in
{hq(xq

i ; w)|i = 1, . . . , Nq}. Hence, xq
i ∈ Sq

K is selected in the top-K positions if and only if hq(xq
i ; w) > λ(w).

In other words, the indicator I(xq
i ∈ Sq

K) in (9) can be replaced by I(hq(xq
i ; w) − λ(w) > 0).

The indicator function I(hq(xq
i ; w) − λ(w) > 0) is discontinuous, so we approximate it by a smooth surrogate

ψ(hq(xq
i ; w) − λq(w)) (e.g., sigmoid function) within (9). After that, (9) can be enforced by minimizing the

following loss function for each query q, which measures the disparity in the averaged exposures over top-K
items between groups:

UK
q (w, λq(w)) = 1

2

[
1

|Sq
a|
∑

xq
i

∈Sq
a

ψ(hq(xq
i ; w) − λq(w))e(w,xq

i ,Sq)

− 1
|Sq

b |
∑

xq
i

∈Sq
b

ψ(hq(xq
i ; w) − λq(w))e(w,xq

i ,Sq)
]2
,

(11)
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A learning to rank problem with top-K ranking fairness is formulated as the following fairness regularized
bilevel optimization problem:

min
w

1
|S|

∑
q∈Q

Lq(w) + C

N

∑
q∼Q

UK
q (w, λq(w))

s.t. λq(w) satisfies (10) for q ∈ Q.
(12)

However, the lower level optimization problem (10) is non-smooth and non-strongly convex, making (12)
challenging to solve numerically. Hence, we approximate the lower-level problem with a smooth and strongly
convex objective function. Specifically, we define:

λ̂q(w) = arg min
λ

{
Gq(w, λ) := K + ε

Nq
λ+ τ2

2 λ
2

+ 1
Nq

∑
xq

i
∈Sq

[
τ1 ln

(
1 + exp

(
hq(xq

i ; w) − λ

τ1

))]}
,

(13)

where τ1 > 0 is a smoothing parameter and τ2 > 0 is a strongly convexity parameter. With this approximation,
we propose to solve the following optimization problem:

min
w

F (w) := 1
|S|

∑
q∈Q

Lq(w) + C

N

∑
q∼Q

UK
q (w, λ̂q(w))


s.t. λ̂q(w) satisfies (13) for q ∈ Q.

(14)

This is a challenging optimization problem for several reasons. First, an unbiased stochastic gradient of the
objective function in (14) is not available due to the composite structure in Lq and UK

q . Second, when N and
Nq are large, it is computationally expensive to update λ̂q(w) for all q simultaneously. To address these issues,
we view (14) as an instance of the bi-level finite-sum coupled compositional stochastic optimization
problems, which was studied by Qi et al. (2021); Qiu et al. (2022). Then we apply a stochastic algorithm to
(14). The key component of this algorithm is to construct and update the stochastic approximations of the
gradients of Lq and UK

q with respect to w using a technique called moving average estimators. In the next
two subsections, we will provide the details on how this is done for Lq and UK

q , respectively.

4.1 Stochastic approximation for gradient of ranking loss

Let L(w) := 1
|S|
∑

q∈Q Lq(w). When Lq(w) is either the NDCG loss or the ListNet loss, L(w) is a finite-sum
composite function, that is,

L(w) = 1
|S|

∑
(q,xq

i
)∈S

fq,i(g(w; xq
i ,Sq)), (15)

where g(w; xq
i ,Sq) = 1

Nq
ḡ(w; xq

i ,Sq) and fq,i(g) = 1
Zq

1−2y
q
i

log2(Nqg+1) when Lq is the NDCG loss and g(w; xq
i ,Sq) =

1
Nq
ĝ(w; xq

i ,Sq) and fq,i(g) = exp(yq
i )/(

∑Nq

j=1 exp(yq
j )) · log(Nqg) when Lq is the ListNet loss. We will only

illustrate how a stochastic approximation of ∇L(w) can be constructed when Lq is the NDCG loss because
the construction for ListNet Loss is similar.

Suppose the solution at iteration t is wt. By chain rule:

∇L(wt) = 1
|S|

∑
(q,xq

i
)∈S

∇fq,i(g(wt; xq
i ,Sq))∇g(wt; xq

i ,Sq). (16)

For large-scale ranking problems, we approximate ∇g(wt; xq
i ,Sq) by the stochastic gradient ∇ĝq,i(wt) :=

1
|Bq|

∑
x′∈Bq

∇ℓ(wt; x′,xq
i , q), where Bq is a subset randomly sampled from Sq. To approximate
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∇fq,i(g(wt; xq
i ,Sq)), we maintain a scalar u(t)

q,i at iteration t to approximate g(wt; xq
i ,Sq) for each query-item

pair (q,xq
i ) and update it for iteration t+ 1 by a moving averaging scheme. That is:

u
(t+1)
q,i = γ0ĝq,i(wt) + (1 − γ0)u(t)

q,i, (17)
where γ0 ∈ [0, 1] is an averaging parameter. Moreover, when |S| is large, we also generate a subset randomly
from S, denoted by B, and use it to approximate the average over S in L(w). With these stochastic estimators,
we can approximate ∇L(wt) with

Gt
1 = 1

|B|
∑

(q,xq
i

)∈B

∇fq,i(u(t)
q,i)∇ĝq,i(wt). (18)

4.2 Stochastic approximation for gradient of top-K fairness regularization

Let U(w) := 1
N

∑
q∼Q UK

q (w, λ̂q(w)). Like L(w), U(w) is also a finite-sum composite function but with an
additional challenge that λ̂q(w) is not given explicitly but through solving the lower level optimization in
(13). In particular, according to (5) and (11), we have

U(w) = 1
N

∑
q∈Q

fq(gq,a(w), gq,b(w), gq(w)), (19)

where
fq(z1, z2, z3) := 1

2

(
z1 − z2

|Sq|z3

)2
,

gq(w) := 1
|Sq|

∑
xq

j
∈Sq

exp(hq(xq
j ; w)),

gq,a(w) := 1
|Sq

a|
∑

xq
i

∈Sq
a

ψ(hq(xq
i ; w) − λ̂q(w)) exp(hq(xq

i ; w)),

gq,b(w) := 1
|Sq

b |
∑

xq
i

∈Sq
b

ψ(hq(xq
i ; w) − λ̂q(w)) exp(hq(xq

i ; w)).

By chain rule, we have1

∇U(wt) = 1
N

∑
q∈Q

 ∇1fq(gq,a(wt), gq,b(wt), gq(wt))∇gq,a(wt)
+∇2fq(gq,a(wt), gq,b(wt), gq(wt))∇gq,b(wt)
+∇3fq(gq,a(wt), gq,b(wt), gq(wt))∇gq(wt)

 .
Let Bq

a, Bq
b and Bq be subsets randomly sampled from Sq

a, Sq
b and Sq, respectively. Suppose we have some

estimators for λ̂q(wt) and ∇λ̂q(wt), denoted by λq,t and ∇λq,t, respectively. We then approximate ∇gq,a(wt),
∇gq,b(wt) and ∇gq,a(wt), respectively, by the stochastic gradients:

∇ĝq,a(wt) := 1
|Bq

a|
∑

xq
i

∈Bq
a

(
ψ′(hq(xq

i ; wt) − λq,t) · (∇hq(xq
i ; w) − ∇λq,t)

)
exp(hq(xq

i ; w))

+ 1
|Bq

a|
∑

xq
i

∈Bq
a

ψ(hq(xq
i ; w) − λq,t) exp(hq(xq

i ; w))∇hq(xq
i ; w),

∇ĝq,b(wt) := 1
|Bq

b |
∑

xq
i

∈Bq
b

(
ψ′(hq(xq

i ; w) − λq,t) · (∇hq(xq
i ; w) − ∇λq,t)

)
exp(hq(xq

i ; w))

+ 1
|Bq

b |
∑

xq
i

∈Bq
b

ψ(hq(xq
i ; w) − λq,t) exp(hq(xq

i ; w))∇hq(xq
i ; w),

∇ĝq(wt) := 1
|Bq|

∑
xq

j
∈Bq

exp(hq(xq
i ; w))∇hq(xq

i ; w),

(20)

1Here, ∇kfq represents the gradient of fq w.r.t. its kth input for k = 1, 2, 3.
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where ψ′(·) is the gradient of ψ(·). To approximate the gradient ∇kfq(gq,a(wt), gq,b(wt), gq(wt)), we maintain
three scalars u(t)

q,a, u(t)
q,b and u

(t)
q at iteration t to approximate gq,a(wt), gq,b(wt) and gq(wt), respectively, for

each q ∈ Q, and update them for iteration t+ 1 by a moving averaging scheme:

u(t+1)
q,a = γ1ĝq,a(wt) + (1 − γ1)u(t)

q,a,

u
(t+1)
q,b = γ2ĝq,b(wt) + (1 − γ2)u(t)

q,b,

u(t+1)
q = γ3ĝq(wt) + (1 − γ3)u(t)

q ,

(21)

where γk ∈ [0, 1], k = 1, 2, 3, are averaging parameters just like γ0. Moreover, when N is large, we also
generate a subset randomly from Q, denoted by BQ, and use it to approximate the average over Q in U(w).
Naturally, we can use the queries contained in sample B ⊂ S defined in the previous subsection as BQ. With
these stochastic estimators, we can approximate ∇U(wt) with

Gt
2 = 1

|BQ|
∑

q∈Bq

 ∇1fq(u(t)
q,a, u

(t)
q,b, u

(t)
q )∇ĝq,a(wt)

+∇2fq(u(t)
q,a, u

(t)
q,b, u

(t)
q )∇ĝq,b(wt)

+∇3fq(u(t)
q,a, u

(t)
q,b, u

(t)
q )∇ĝq(wt)

 . (22)

The remaining step is to approximate λ̂q(w) and ∇λ̂q(w). Using the implicit function theorem as shown in
Ghadimi & Wang (2018), we have ∇λ̂q(w) = −∇2

λ,wGq(λ̂q(w); w)(∇2
λGq(λ̂q(w); w))−1. At iteration t, we

maintain a scalar λq,t as an estimation of λ̂(wt), a scalar sq,t as an estimation of ∇2
λGq(λ̂q(wt); wt), and a

scalar vq,t+1 as an estimation of ∇λGq(λq,t; wt). Let Gq(λ,w; Bq) := K+ϵ
Nq

λ + τ2
2 λ

2 + 1
|Bq|

∑
xi∈Bq

τ1 ln(1 +
exp((hq(xi; w)−λ)/τ1)) be an approximation of Gq(λ,w) using mini-batch Bq. We then approximate ∇λ̂q(wt)
by ∇λq,t := −∇2

λ,wGq(wt, λq,t; Bq)s−1
q,t . Then vq,t+1 and sq,t are updated by a moving averaging method

while λq,t is then updated by an approximate gradient step along vq,t+1:

sq,t+1 = (1 − γ4)sq,t + γ4∇2
λGq(λq,t; wt; Bq),

vq,t+1 = (1 − γ4)vq,t + γ4∇λGq(λq,t; wt; Bq),
λq,t+1 = λq,t − η1vq,t+1,

(23)

where η1 ≥ 0 and γ4 ∈ [0, 1].

[t] Stochastic Optmization of top-K Ranking with Exposure Disparity: KSO-RED [1] t = 0, . . . , T − 1 Draw
sample batches B ⊂ S and let BQ be the set of q’s in B. For each q ∈ BQ, draw sample batches Bq ⊂ Sq,
Bq

a ⊂ Sa, Bq
b ⊂ Sb (q,xq

i ) ∈ B Compute ĝq,i(wt) and u(t+1)
q,i . q ∈ BQ Compute ∇ĝq,a(wt), ∇ĝq,b(wt), ∇ĝq(wt),

u
(t+1)
q,a , u(t+1)

q,b , u(t+1)
q , sq,t+1, vq,t+1 and λq,t+1. Compute Gt

1 and Gt
2 according to (18) and (22). Update

zt+1 = (1 − γ)zt + γ(Gt
1 + CGt

2) Update wt+1 = wt − ηzt+1

4.3 Algorithm and convergence result

According to the previous two subsections, we have obtained the stochastic approximations of ∇L(wt) and
∇U(wt) and thus a stochastic approximation of ∇F (wt). We then update wt to wt+1 by a momentum
gradient step. This procedure is presented formally in Algorithm 4.2, where zt+1 is the momentum gradient
used to update wt and γ ∈ (0, 1) is the momentum parameter. In practice, we ignore the gradients of the
top-K selectors ψ(hq(xq

i ; w) − λq,t) and the computation for Gt+1
2 can be simplified.

To present the convergence property of Algorithm 4.2, some assumptions on problem (12) are needed. We
make the following assumptions on problem (12).
Assumption 4.1.

• |hq(x; w)| ≤ Bh for a constant Bh for any q and x.

• hq(x; w) is Ch-Lipschitz continuous in w for any q and x.
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• ∇whq(x; w) is Lh-Lipschitz continuous in w for any q and x.

• ∇2
whq(x; w) is Ph-Lipschitz continuous in w for any q and x.

• Stochastic gradients ĝq,i(w), ∇ĝq,a(w), ∇ĝq,b(w), ∇ĝq(w), ∇λGq(λ; w; Bq), ∇2
λGq(λ; w; Bq) and

∇2
wλGq(λ; w; Bq) have bounded variance σ2 for any q and x.

Given Assumption 4.1, similar to Qiu et al. (2022), we can prove Theorem 4.2. We have the following
convergence property for Algorithm 4.2.
Theorem 4.2 (Theorem 2 in Qiu et al. (2022)). Suppose Assumption 4.1 holds and γ0, γ1, γ2, γ3, γ4, η1, η are
set properly, Algorithm 4.2 ensures that after T = O( 1

ϵ4 ) iterations we can find an ϵ-stationary solution of
F (w), i.e., E[∥∇F (wτ )∥2] ≤ ϵ2 for a randomly selected τ ∈ {1, . . . , T}.

5 Experiments

5.1 Datasets and methods

We evaluate our algorithm in recommendation systems because several benchmark datasets are available,
which contain rich item attributes such as genre and year that are useful for fairness evaluation and contain a
large set of items (e.g., 20K items) for evaluating large-scale ranking systems.

MovieLens20M (Harper & Konstan, 2015): This dataset comprises 20 million ratings from 138,000 users
across 27,000 movies. After filtering, each user has rated at least 20 movies. The dataset enriches each movie
entry with metadata such as name, genre, and release year.

Netflix Prize dataset (Bennett et al., 2007): Originally containing 100 million ratings for 17,770 movies
from 480,189 users, we use a random subset of 20 million ratings for computational feasibility, maintaining a
similar structure including movie name, genre, and year.

Derived Sensitive Group Datasets: To evaluate fairness between protected and non-protected groups,
we derive three subsets from the primary datasets:

• MovieLens-20M-H: horror vs. non-horror

• MovieLens-20M-D: documentary vs. non-documentary

• Netflix-20M: movies before 1990 vs. from 1990 onwards

We introduce baselines and our proposed ones, all of which are in-processing fair ranking frameworks.

• K-SONG (Qiu et al., 2022): A color-blind method achieves top-K ranking accuracy without
considering fairness.

• DELTR (Zehlike & Castillo, 2020): Optimizes ListNet ranking and disparate exposure to ensure
group fairness.

• DPR-RSP and DPR-REO (Zhu et al., 2020): These methods focus on reducing ranking-based
statistical parity bias and mitigating item under-recommendation bias, while maintaining recommen-
dation performance.

• Robust (Memarrast et al., 2023): An adversarial learning-to-rank method that optimizes ranking
utility while enforcing demographic parity fairness constraints through a minimax optimization
framework.

• NG-DE: We integrate Qiu et al. (2022) and Zehlike & Castillo (2020) to optimize the NDCG ranking
loss and the Disparate Exposure.

9
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• SO-RED: Our Stochastic Optimization for NDCG ranking loss and Ranking Exposure Disparity
defined in 7. The fairness objective only focuses on exposure instead of top-K exposure. The training
objective is the same as the closest baseline DELTR. The optimization algorithm employs moving
average estimators for robust gradient computation.

• KSO-RED: Our top-K Stochastic Optimization for both top-K NDCG and top-K Ranking Exposure
Disparity defined in 11. The code will be made available on GitHub upon the acceptance of the
paper.

Learning to Rank with top- Fairness Conference’17, July 2017, Washington, DC, USA

Figure 1: Comparison of accuracy and fairness at top-K on testing set.

5.2 Evaluation metrics and experiment setup

The central aspect of our evaluation is the trade-off between accuracy and fairness. Accuracy is measured
using the NDCG metric defined in 1, with higher values indicating better ranking performance. Fairness is
measured by the top-K exposure disparity defined in 9, with smaller differences indicating better fairness.

For model training and evaluation, we adopt a conventional split of training, validation, and test as in Wang
et al. (2020); Qiu et al. (2022). We employ the classic deep neural model NeuMF (He et al., 2017) as the
prediction function hq(x; w). For all methods, we sample the same batches of queries/users and the mixture
of relevant and irrelevant items per query during each iteration to ensure a fair comparison. Details on our
experimental setup are in Appendix A, including specifics on model pre-training, fine-tuning strategies, and
hyperparameter selection. An ablation study for the impact of the averaging parameter is in E.

10
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For baseline models, we maintain the same hyper-parameter settings as in the original papers to ensure
optimal performance and fair comparison, as detailed in Appendix B. In addition to these quantitative
results, we present a visualization of how our method adjusts rankings to achieve fairer outcomes, described
in Appendix F.

5.3 Results

As shown in Figure 1, we evaluate a total of 7 methods on three datasets at varying top-K lengths (K=50,
100, 200). In each sub-figure, the x-axis represents top-K exposure disparity (the lower, the better), and
the y-axis represents top-K NDCG (the higher, the better). Methods are labeled with different colors. The
performance of each method changes when the trade-off parameter varies. The trade-off parameter in our
framework is the hyper-parameter C as defined in 12 across a range from 0 to a very big number (e.g., 109)
to balance the quality and the fairness of ranking. A higher C value places more emphasis on fairness, and
C = 0 corresponds to a color-blind ranking algorithm with no fairness constraints, such as K-SONG.

The results indicate that our two proposed methods, in particular, KSO-RED, consistently outperform the
baseline models NG-DE, DELTR, DPR-RSP, DPR-REO, and Robust across various top-K results. That
is, under the same fairness loss, our methods achieve the highest NDCG accuracy. Specifically, NG-DE
demonstrates superior performance in terms of NDCG compared to DELTR in most scenarios, highlighting
that K-SONG achieves better NDCG ranking performance than ListNet, particularly on the two MovieLens
datasets. Furthermore, our SO-RED generally performs better than DELTR, which shares the same training
objective, and NG-DE, validating the effectiveness of our optimization strategy. Notably, our KSO-RED,
which directly focuses on top-K optimization, exhibits outstanding performance at shorter top-K lengths
NDCG@K(50, 100, 200), highlighting its proficiency in optimizing fairness within top-K ranking. More
details are in Appendix D.

6 Conclusion

We propose a novel learning-to-rank framework that addresses the issues of inequalities in top-K positions at
training time. We develop an efficient stochastic optimization algorithm KSO-RED with provable convergence
to optimize a top-K ranking that achieves both high quality and minimized exposure disparity. Extensive
experiments demonstrate that our method outperforms existing methods. Our work contributes to the
development of more equitable and unbiased ranking and recommendation systems. The optimization
framework can be generalized to a wide range of fairness metrics, including exposure disparities. It is our
future work to consider other types of fairness metrics.
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A Experimental Details

For model training and evaluation, we adopt a conventional split of training, validation, and test as in Wang
et al. (2020); Qiu et al. (2022). Specifically, we adopt the testing protocol by sampling 5 rated and 300
unrated items per user to evaluate the NDCG and fairness metrics, whereas the training employs a similar
protocol as in Wang et al. (2020). For all methods, we sample the same batches of queries/users and the
mixture of relevant and irrelevant items per query during each iteration to ensure a fair comparison.

The model will be pre-trained, and the resulting warm-up model will be employed by K-SONG, NG-DE,
DELTR, SO-RED, and KSO-RED for a fair comparison. In our fine-tuning process, to ensure consistency and
fairness in model performance comparisons, the optimal hyper-parameter settings are based on established
optimal values from K-SONG. We employ the NeuMF model (He et al., 2017) as our primary predictive
function due to its proven efficacy in recommendation tasks. Initially, the model undergoes a 20-epoch
pre-training with a learning rate of 0.001 and a batch size of 256. Subsequent fine-tuning reinitializes the last
layer, adjusting the learning rate to 0.0004 and applying a weight decay of 1 × 10−7 over 120 epochs with a
learning rate reduction by a factor of 0.25 after 60 epochs. To streamline our experiment, we leverage the
tuned results from K-SONG and adopt the best value for the hyper-parameter γ0, which is set to 0.3, serving
as the base model hyper-parameter. The averaging parameters γ1, γ2, and γ3 are tuned from the set of {0.2,
0.6, 1}.
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B Parameters for Baseline Models

For baseline models—DELTR, DPR-RSP, DPR-REO, and Robust—we maintain the same hyper-parameter
settings as used in the original papers to ensure optimal performance and a fair comparison. Specifically,
in DELTR (Zehlike & Castillo, 2020) we tune the fairness hyper-parameter (γ) from 0 to 100M, covering
their tuning range. For DPR-RSP and DPR-REO (Zhu et al., 2020), we select 1K and 11K for the fairness
hyper-parameter, as mentioned in their respective papers. In addition, in order to adapt their code to our
experimental setup, align the training/testing data with ours, and incorporate our evaluation metrics, we
adjust certain data structures, such as query-item lists and batch processing of predictions to ensure their
code could process large datasets effectively. All other hyper-parameters are kept the same as in the original
papers. For Robust (Memarrast et al., 2023), we adapt our dataset and code to ensure a fair and consistent
evaluation. Specifically, we construct query representations by generating matrices for each user and item,
then concatenating user-item pair (including user, item, sensitive attributes, and the corresponding matrices)
as a query for training. Given the O(m×n) time and space complexity of this method where m is the number
of users and n is the number of items, directly applying it to large-scale datasets such as MovieLens20M
and Netflix20M is impractical. To address this, we sample the training dataset, reducing the complexity to
O(m× c), where c is a fixed number of sampled items per user. This modification ensures scalability while
maintaining the integrity of the original method. Importantly, we retain the full test dataset for evaluation,
following the original code structure to ensure a fair comparison. All other hyper-parameters are kept as
specified in the original paper.

C Computing Resources for the Experiment

Our main experiments were conducted on a system equipped with the following hardware:

• 24-core Intel CPU

• 96 GB of memory

• 1 NVIDIA V100S GPU (with 32 GB memory)

• 1.5 TB SSD drive

The estimated time for training and validation over 120 epochs for each parameter set is 2 hours.

D Experiment Statistical Significance

Table 1 shows the NDCG and fair loss values with standard deviations for various methods across different
values of topK = 50, 100, 200 and configurations C = 0, 100k. The values in parentheses represent the
standard deviations for each corresponding metric, providing insight into the consistency of the performance
measures.

E Ablation Study

As shown in Figure 2, we conducted an ablation study to investigate the impact of the averaging parameter
γ2 in the SO-RED and KSO-RED models to investigate its impact on the trade-off between accuracy and
fairness. We conduct experiments on the MovieLens-20M-H dataset, varying γ from 0.2 to 1.0.

The results reveal that a lower γ value among {0.2, 0.6, 1.0} (stronger moving average ratio) leads to a more
equitable balance between accuracy and fairness, as evidenced by the top-K NDCG-Fairness metrics. This
trend underscores the importance of the averaging parameter in optimizing the trade-off between accuracy
and fairness in recommendation systems.
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K
50 100 200

KSO-RED

C=0
NDCG 0.5769 (0.0521) 0.5910 (0.0465) 0.5973 (0.0430)
Fair loss 0.0139 (0.0001) 0.0069 (0.0000) 0.0034 (0.0000)
C=100K
NDCG 0.5719 (0.0541) 0.5847 (0.0409) 0.5901 (0.0464)
Fair loss 0.0095 (0.0000) 0.0042 (0.0000) 0.0012 (0.0000)

SO-RED

C=0
NDCG 0.5769 (0.0521) 0.5910 (0.0465) 0.5973 (0.0430)
Fair loss 0.0139 (0.0001) 0.0069 (0.0000) 0.0034 (0.0000)
C=100K
NDCG 0.5740 (0.0528) 0.5886 (0.0471) 0.5953 (0.0442)
Fair loss 0.0103 (0.0000) 0.0063 (0.0000) 0.0012 (0.0000)

K-SONG NDCG 0.5769 (0.0521) 0.5910 (0.0465) 0.5973 (0.0430)
Fair loss 0.0139 (0.0001) 0.0069 (0.0000) 0.0034 (0.0000)

NG-DE

C=0
NDCG 0.5769 (0.0521) 0.5910 (0.0465) 0.5973 (0.0430)
Fair loss 0.0139 (0.0001) 0.0069 (0.0000) 0.0034 (0.0000)
C=100K
NDCG 0.5707 (0.0553) 0.5864 (0.0491) 0.5914 (0.0465)
Fair loss 0.0135 (0.0001) 0.0048 (0.0000) 0.0011 (0.0000)

DELTR

C=0
NDCG 0.5496 (0.0551) 0.5531 (0.0501) 0.5581 (0.0481)
Fair loss 0.0136 (0.0001) 0.0041 (0.0000) 0.0015 (0.0000)
C=100K
NDCG 0.5452 (0.0584) 0.5656 (0.0517) 0.5591 (0.0484)
Fair loss 0.0114 (0.0000) 0.0042 (0.0000) 0.0008 (0.0000)

Table 1: NDCG and fair loss values with standard deviations for various methods.
Conference’17, July 2017, Washington, DC, USA

(a) MovieLens-20M-H-K50 (b) MovieLens-20M-H-K100 (c) MovieLens-20M-H-K200

Figure 2: Comparison of different γ values on the MovieLens-20M-H dataset.

F Ranking Visualization

In addition to these quantitative results, we present a visualization of how our method adjusts rankings to
achieve fairer outcomes, particularly on the most biased 0.02% of rankings for users in the MovieLens-20M-H
dataset. Figures 3a and 3b illustrate the impact of incorporating the fairness objective during training with
our KSO-RED algorithm. In both figures, each row corresponds to the ranking of 305 items for a specific user,

16



Under review as submission to TMLR

(a) MovieLens-20M-D-K50 (b) MovieLens-20M-D-K100 (c) MovieLens-20M-D-K200

(d) MovieLens-20M-H-K50 (e) MovieLens-20M-H-K100 (f) MovieLens-20M-H-K200

(g) Net�ix-20M-K50 (h) Net�ix-20M-K100 (i) Net�ix-20M-K200

(a) Before incorporating fairness (b) After incorporating fairness

1
Figure 3: Ranked item list for the most unfair 0.02% of rankings in the MovieLens-20M-H dataset.

where red pixels represent items from the minority group (e.g., horror movies), and green pixels represent
items from the majority group (e.g., non-horror movies).

The two figures show test set results generated by KSO-RED, trained with two different values of C. When
C = 0 (Figure 3a), the rankings are color-blind, with no fairness considerations. As C increases (Figure
3b), the emphasis on fairness becomes more pronounced. This visualization underscores the effectiveness
of KSO-RED in adjusting rankings to ensure a more equitable distribution of exposure, particularly when
higher fairness constraints are applied.
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