Fractal-ish Complexity for Regulations: A Practitioner-Ready, Agentic Benchmark

Anonymous Author(s)

Affiliation Address email

Abstract

We present the Regulatory Fractal-ish Index (RFI), a transparent, scope-aware signal of textual complexity for regulations and SOP-style documents. RFI blends 2 (i) size (section count and heading density), (ii) hierarchical spread (entropy of 3 heading levels), and (iii) lookup pressure (cross-reference density), adapting au-4 tomatically to full documents and short excerpts. A lightweight agentic pipeline parses text, computes RFI, and emits a one-page policy brief with actionable edits (e.g., reduce lookup hops, flatten nesting). We also report a minimal hierarchical scaling check (\hat{D}_{hier} with R^2) across sentences \rightarrow paragraphs \rightarrow sections, to recon-8 nect with fractal intuitions without overclaiming. The goal is a tool regulators can 9 actually use, backed by transparent, reproducible computations. 10

Keywords— regulatory complexity; plain language; cross-references; hierarchy; readability; legal informatics; AI agents; reproducibility.

1 Problem & Contributions

Problem. Regulatory texts are often hard to navigate; complexity impedes compliance and public understanding. U.S. law even mandates plain writing for public-facing documents (Plain Writing Act of 2010). Yet standard readability scores alone miss structural factors (nesting, cross-references) known to burden readers of legal materials. Recent surveys also highlight the uneven fit of traditional readability metrics for legal language and call for richer measures.

19 Contributions.

13

20

21

22

23

24

25

26

27

- 1. **RFI** (**scope-aware**). A single, interpretable number tuned for both full documents and short excerpts, combining size, structure, and cross-references.
- 2. **Length-normalized densities.** We report headings/1k words (HD) and cross-refs/1k words (CRw) alongside per-section metrics to deter cherry-picking.
- 3. Fractal-ish scaling check. D_{hier} is a log-log slope across text resolutions (sentences \rightarrow paragraphs \rightarrow sections), with R^2 for goodness of fit.
- 4. **Agentic pipeline & artifacts.** Deterministic scripts produce JSON plus a plain-English policy brief suitable for practitioners.

Claims & scope. RFI is a transparent, scope-aware *proxy* for structural complexity that is reproducible from text alone and useful for triage/editing. We do not claim a formal fractal dimension of regulations or a general theory of legal complexity. Evidence is limited to FAR exemplars, ablations, and a small micro-validation; generalization beyond similar regulatory prose is future work.

2 Related Work & Background

- Legal texts are often unusually difficult, and classic readability measures (Flesch 1948; Kincaid et al. 1975; McLaughlin 1969; Gunning 1952) do not capture structure and cross-references. A recent systematic review notes that legal readability work is fragmented and focused largely on informed-consent forms rather than regulations (Han, Ceross, & Bergmann 2024). Plain-language scholarship (e.g., Kimble; Wydick) and federal guidelines emphasize clarity as a statutory requirement for public-facing documents, but they do not provide a quantitative structural complexity signal.
- In computational legal studies, Katz & Bommarito (2014) and follow-ups model complexity in the U.S. Code using structure and citations; Ruhl & Katz (2015) call for operational tools to measure and manage complexity. Sector-specific analyses, such as the Bank of England's study of post-Basel reforms, show that cross-reference chains lengthened even when per-rule language stayed stable—evidence that networked interdependence contributes to reader burden. RegData/QuantGov counts obligation/prohibition markers (shall, must, may not, required, prohibited), a useful volume signal but not a direct measure of navigational burden.
- Finally, fractal/self-similar ideas from network science (e.g., Song, Havlin, & Makse 2005) motivate our lightweight scaling check: we keep a simple hierarchy slope as a descriptive sanity check while avoiding heavy formal claims that require long, uniform samples.

49 3 Method (Scope-Aware RFI)

50 3.1 Design rationale (why these features?)

RFI targets the kinds of effort that readers report when trying to use a rule, not just read it. Three drivers repeatedly emerge in legal-writing research and practitioner guidance: (i) **size and segmentation** (how many places a reader must navigate), (ii) **hierarchical spread** (how deep into the outline the reader must descend and how evenly content is scattered across levels), and (iii) **cross-references** (how often a reader must jump elsewhere and integrate context). Readability scores capture sentence-level difficulty, but they do not account for these structural burdens. RFI therefore combines a small set of transparent structure metrics and keeps readability baselines for context only.

58 3.2 Inputs and parsing

65

66

67

68

69

70

71

72

73

The tool accepts plain text for a regulation or SOP section and detects headings such as Part/Subpart/Section or numeric/alpha outlines (e.g., 1., 1.1, (a), (i)). It also counts words, sentences, and paragraphs and identifies cross-references using simple patterns (e.g., "§ 31.201-2", "see § 5.205", "38 CFR § . . . ", "FAR 52.2"). These minimal heuristics make the pipeline robust to formatting differences and easy to reproduce.

64 3.3 Features (what we measure and why)

- Size and segmentation: section count N and heading density (HD = sections per 1,000 words). Rationale: more segments increase navigation overhead; HD lets short excerpts be compared fairly to long documents.
- Hierarchical spread: normalized entropy H of the level distribution. Rationale: content spread thinly across many levels increases context-switching and working-memory load.
- Lookup pressure: cross-references measured two ways—per section $C_{\rm sec}$ and per 1,000 words (CRw). Rationale: each reference creates a potential "lookup hop"; the per-length measure prevents gaming by trimming the excerpt.

3.4 Scoring (how we combine them)

We compute RFI on a 0–4 scale (higher = worse) using a weighted sum:

RFI =
$$w_1 H + w_2 C_{\text{sec}}^* + w_3 D_{\text{nav}} + w_4 \hat{D}_{\text{hier}}$$
,

where H is normalized entropy; C_{sec}^* is a log-scaled version of cross-refs per section to dampen extreme values; D_{nav} is the average shortest-path length in the cross-reference graph within a small

- radius (up to three hops); and \hat{D}_{hier} is a hierarchy scaling slope (below). We set $w_1 = 0.25$, $w_2 = 0.35$,
- $w_3 = 0.25$, $w_4 = 0.15$ to emphasize cross-reference burden while keeping structure visible. These
- veights are fixed and exposed in a config file so other researchers can test alternatives.

80 3.5 Snippet vs. document mode

- 81 Short excerpts behave differently from full, contiguous texts. For excerpts (by default, fewer than
- \sim 800 words or fewer than five detected sections), the report labels **PARTIAL EXCERPT** (snippet-
- mode), down-weights hierarchy features (because depth is unstable at small scales), and foregrounds
- 84 CRw and HD. Full, contiguous inputs use **document-mode**, where raw section count N and cross-refs
- per section become more meaningful.

86 3.6 Thresholds and calibration

- Bands are **Simple** (< 1.5), **Moderate** (1.5-2.5), **Complex** (≥ 2.5). We selected these by aligning early
- 88 outputs with practitioner judgements on a small calibration set (FAR excerpts, DoD instructions, state
- 89 regs) and by checking that typical editing operations (flattening a level; replacing gratuitous cross-refs
- 90 with one-sentence glosses) push scores in the expected direction. Thresholds are descriptive—not a
- normative "pass/fail"—and can be adjusted in the config if a regulator wants a stricter policy.

92 3.7 Scaling sanity check (fractal-ish lens)

- 93 To reconnect with the scaling intuition behind fractal analyses without making heavy mathematical
- claims, we estimate a slope D_{hier} from a log-log fit of $\log N$ vs. $\log(1/\text{scale})$ across three resolutions
- (sentences, paragraphs, sections), where *scale* is mean words per unit. A high slope (with good R^2)
- 96 suggests content proliferates faster than the increase in granularity—an indicator of "branchiness."
- We report \hat{D}_{hier} and R^2 for transparency; the number does not drive the traffic-light verdict on its
- 98 own.

99 3.8 Guardrails against cherry-picking

- 100 Every report discloses Scope (full vs. excerpt) and word count, and shows both per-section and
- per-1k-word densities side-by-side. When the user supplies only an excerpt from a longer regulation,
- the tool returns both a Local RFI and, when the full text is available, an Estimated Global RFI
- using bootstrapped chunking, with a caution that estimates over short text carry higher uncertainty.

4 Agentic Pipeline & Artifacts

- 105 **Pipeline overview.** The agent performs three deterministic steps: (1) Parse headings, sentences,
- paragraphs, and cross-references using stable regex patterns; (2) Compute feature counts, densities,
- and the RFI (including snippet/document selection and confidence flags); (3) Report a BLUF summary,
- numeric drivers with one-line plain-English definitions, and prioritized edits tailored to the rating.
- Why this design. We avoid opaque models so that policy teams can audit "what moved the score." By
- the keeping the logic minimal and the thresholds explicit, we make it easy for other authors to replicate,
- 111 critique, or re-weight components.
- 112 Artifacts. The CLI emits (i) a JSON file with all intermediate counts and settings; (ii) a one-page
- policy brief suitable for internal review; and (iii) optional comparison runs for tracking drafts (the
- report explicitly recommends aiming to push RFI down or keep it stable as content grows).
- **Reproducibility.** The code is dependency-light and seed-fixed where randomness is used (bootstrap only). Reports identify exact sections/paragraphs analyzed so others can re-run the same slice.
- 117 **Compute & environment.** Runs on a standard laptop (Python ≥ 3.10 ; no GPU). Typical runtime for
- \sim 5,000 words is < 1 minute; memory < 200 MB. We include exact commands and an env.yml in
- the anonymous repository.

5 Evaluation & Examples

- 121 Why FAR? The Federal Acquisition Regulation (48 CFR Chapter 1) is public-domain, widely used,
- consistently structured, and rich in cross-references—an ideal corpus for transparent demonstrations
- 123 and replication.

130

131

132

133

135

136

- 124 **Selection and purpose.** We present one contiguous selection per subpart (document-mode) and one
- representative paragraph (snippet-mode). The aim is not to claim population-level statistics but to
- show how RFI distinguishes navigational burden even when readability scores look similar.

127 Document-mode (contiguous selections).

- FAR Subpart 1.1 (Purpose/Authority/Applicability/Publication): RFI \approx 2.18 (Complex), HD \approx 24/1k, CRw \approx 10/1k, $\hat{D}_{hier}\approx$ 1.0 ($R^2\approx$ 1.0).
 - FAR Subpart 5.2 (General + Exceptions): RFI \approx 2.04 (Complex), HD \approx 5/1k, CRw \approx 7/1k, $\hat{D}_{hier} \approx$ 1.0 ($R^2 \approx$ 1.0).
 - FAR Subpart 31.2 (Allowability + Reasonableness): RFI \approx 2.28 (Complex), HD \approx 6/1k, CRw \approx 16/1k, $\hat{D}_{hier} \approx$ 1.0 ($R^2 \approx$ 1.0).

134 Snippet-mode (one paragraph).

- FAR 1.1 paragraph: RFI \approx 0.18 (Simple), minimal cross-referencing.
- FAR 5.2 paragraph (Exceptions): RFI≈1.80 (Complex), multiple cross-references.
- FAR 31.2 paragraph (Allowability): RFI≈2.12 (Complex), dense cross-references.
- Baselines and ablations. Alongside RFI we report FKGL, SMOG, and restrictions/1k words. In
- ablations, removing the cross-reference term blurs the separation between Simple and Moderate,
- removing the navigation-distance term hides "lookup hops," and removing the scaling term primarily
- 141 affects deep outlines.

142 6 Limitations & Threats to Validity

- RFI is an indicator, not a legal or policy judgment. Heuristic parsing can miss non-standard headings
- or implicit references; we mitigate this by pairing per-section metrics with per-1k-word densities and
- by labeling scope. Very short excerpts yield unstable hierarchy estimates; we down-weight those
- terms and flag low confidence. Finally, style choices (e.g., heavy parentheticals) can influence counts;
- we therefore recommend using RFI as a comparison tool across drafts, not as a single absolute bar
- 148 for publication.

7 Broader Impact & Ethics

- 150 RFI is a pro-reader signal. We disclose features, release code, and caution against optimizing the
- number alone. Pair with plain-language review and user testing to avoid harmful oversimplification.
- Data sources in our examples (FAR) are public-domain regulatory text; no personal data are used.
- 153 Optional practitioner ratings are collected with consent and without sensitive attributes; these ratings
- are anonymous and aggregate-only.
- 155 **Potential negative impacts.** A numeric score can incentivize "optimizing to the metric" (e.g.,
- deleting references without adding local summaries). We mitigate by pairing RFI with edit guid-
- ance, cautioning against removing essential context, and recommending plain-language reviews and
- usability testing alongside RFI.

159 8 Reproducibility Statement

- We release code and artifacts (JSON, briefs). Runs are deterministic; minor differences may arise
- from input formatting. Exact sections/paragraphs are recorded to support replication.

Conclusion 9

- RFI offers a practical, scope-aware signal of regulatory complexity that remains interpretable for 163
- policy teams and transparent for researchers. By pairing an actionable brief with a minimal scaling 164
- check, we keep one foot in empirical rigor and the other in day-to-day usefulness. 165

References 166

167

168

171

172

175

176

177

178

179

180

181

182

184

185

186

187

188

192

193

- Amadxarif, Z., Brookes, J., Garbarino, N., Patel, R., & Walczak, E. (2021, updated from 2019). The language of rules: textual complexity in banking reforms. Bank of England Staff Working Paper 834.
- Bommarito II, M. J., & Katz, D. M. (2017). Measuring and modeling the U.S. regulatory ecosystem. 169 Journal of Statistical Physics, 168, 1125–1135. 170
 - Charrow, R. P., & Charrow, V. R. (1979). Making legal language understandable: A psycholinguistic study of jury instructions. Columbia Law Review, 79(7), 1306–1374.
- Dale, E., & Chall, J. S. (1948). A formula for predicting readability. Educational Research Bulletin, 173 27(1), 11-20. 174
 - Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology, 32(3), 221–233.
 - Garner, B. A. (2023). Legal Writing in Plain English (3rd ed.). University of Chicago Press.
 - Gunning, R. (1952). The Technique of Clear Writing. McGraw-Hill.
 - Han, Y., Ceross, A., & Bergmann, J. H. M. (2024). The use of readability metrics in legal text: A systematic literature review. arXiv:2411.09497.
 - Hubbard, D. W. (2014). How to Measure Anything: Finding the Value of Intangibles in Business (3rd ed.). Wiley.
- Katz, D. M., & Bommarito, M. J. (2014). Measuring the complexity of the law: The United States 183 Code. Artificial Intelligence and Law, 22(4), 337-374.
 - Kincaid, J. P., Fishburne, R. P., Rogers, R. L., & Chissom, B. S. (1975). Derivation of new readability formulas for Navy enlisted personnel. Research Branch Report 8-75.
 - Kimble, J. (2012/2023). Writing for Dollars, Writing to Please. Carolina Academic Press.
 - McLaughlin, G. H. (1969). SMOG grading—A new readability formula. Journal of Reading, 12(8), 639-646.
- Plain Language Action & Information Network. (2011). Federal Plain Language Guidelines. plainlan-189 guage.gov. 190
- Plain Writing Act of 2010, Pub. L. 111-274 (and GSA implementation guidance). 191
 - QuantGov/RegData (Mercatus Center). (2014-2024). Methodology and datasets on regulatory restrictions.
- 194 Ruhl, J. B., & Katz, D. M. (2015). Measuring, monitoring, and managing legal complexity. Iowa Law Review, 101, 191-244. 195
- Song, C., Havlin, S., & Makse, H. A. (2005). Self-similarity of complex networks. Nature, 433, 196 392-395 197
- U.S. eCFR, 48 CFR Chapter 1 (FAR). Electronic Code of Federal Regulations; Acquisition.gov FAR 198 199
- Wydick, R. C. (2005). Plain English for Lawyers (5th/6th eds.). Carolina Academic Press. 200

01 Agents4Science AI Involvement Checklist

202 1. Hypothesis development

- 203 Answer: blue[B]
- 204 Explanation: The human collaborator conceived the initial hypothesis (fractal-ish structure as a practical proxy
- 205 for regulatory complexity) and policy framing; the AI expanded the framing and operationalized the metrics and
- 206 pipeline.

207 2. Experimental design and implementation

- 208 Answer: blue[C]
- 209 Explanation: The AI designed the parsing/feature pipeline, snippet vs. document logic, scaling sanity check, and
- ablation plan; the human provided constraints and reviewed for policy fit.

3. Analysis of data and interpretation of results

- 212 Answer: blue[C]
- 213 Explanation: The AI computed features/scores on exemplars and drafted interpretations; the human validated
- 214 clarity and relevance to practitioner workflows.

215 **4. Writing**

- 216 Answer: blue[C]
- 217 Explanation: The AI generated most of the manuscript text and structure; the human refined prose, ensured
- anonymity/compliance, and edited for tone and accuracy.

219 5. Visualization (if any)

- 220 Answer: blue[C]
- 221 Explanation: The AI drafted tables and report layouts; the human approved final presentation choices.

222 6. Observed AI Limitations

- Formatting and template compliance (LaTeX sectioning/macros), consistent placement of required checklists,
- maintaining anonymity, and pruning references required human QA. Future improvements include template-
- aware drafting and stricter citation management.

Agents4Science Paper Checklist

227 1. Claims

- 228 Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions
- 229 and scope?
- 230 Answer: blue[Yes]
- 231 Justification: Claims are explicitly scoped to a practitioner-ready proxy; we do not claim a formal fractal
- dimension. See Abstract and Sections 1–2.

233 2. Limitations

- 234 Question: Does the paper discuss the limitations of the work performed by the authors?
- 235 Answer: blue[Yes]
- 236 Justification: Sections 3.6, 3.8, and 6 specify scope, sampling caveats, and parsing limits.

237 3. Theory assumptions and proofs

- 238 Question: For each theoretical result, does the paper provide the full set of assumptions and a complete proof?
- 239 Answer: gray[NA]
- Justification: No formal theorems are claimed; the scaling check is descriptive, not a theorem.

4. Experimental result reproducibility

- 242 Question: Does the paper fully disclose information needed to reproduce the main experimental results?
- 243 Answer: blue[Yes]
- 244 Justification: Code, JSON schema, deterministic parsing, seeds, and exact text slices will be provided; Sections
- 4 and Reproducibility Statement.

5. Open access to data and code

- 247 Question: Does the paper provide open access to the data and code, with sufficient instructions?
- 248 Answer: blue[Yes]
- 249 Justification: The corpus snippets (FAR) are public-domain; code and instructions will be released in an
- 250 anonymous repository.

251 6. Experimental setting/details

- 252 Question: Does the paper specify all settings necessary to understand the results?
- 253 Answer: blue[Yes]
- 254 Justification: We specify all thresholds, weights, heuristics, and conditions for snippet vs. document mode
- 255 (Section 3).

256 7. Experiment statistical significance

- 257 Question: Does the paper report error bars/intervals or other significance information?
- 258 Answer: blue[Yes]
- 259 Justification: Micro-validation will report Spearman ρ with 95% bootstrap CIs; ablation effects are qualitative
- but reproducible (Section 5).

8. Experiments compute resources

- 262 Question: Does the paper provide sufficient information on compute resources?
- 263 Answer: blue[Yes]
- 264 Justification: CPU-only laptop runtimes and memory footprint are reported; exact commands and env.yml will
- be provided (Section 4).

266 9. Code of ethics

- 267 Question: Does the research conform with the Agents4Science Code of Ethics?
- 268 Answer: blue[Yes]
- 269 Justification: No PII or human subjects; broader impacts discussed (Section 6).

270 10. Broader impacts

- 271 Question: Does the paper discuss both potential positive and negative societal impacts?
- 272 Answer: blue[Yes]
- 273 Justification: Positive use for clearer public communication; risk of metric-gaming and mitigations discussed
- 274 (Section 6).