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Abstract

Most deep learning models of the ventral stream, and convolutional networks in
particular, share weights among neurons. Weight sharing during learning is crucial
for good performance on image recognition tasks, but it is not biologically plausible.
In this work, we compare performance and Brain-Score results of ImageNet-
trained networks in multiple configurations: convolutional, locally connected (i.e.,
convolutional without weight sharing), and locally connected with anti-Hebbian
plasticity mechanisms that promote weight sharing. We also study the role of
initialization on performance of those networks. We find that the more weight
sharing networks have, the better they perform on both ImageNet and Brain-
Score, which can sometimes be further improved with a convolutional initialization.
However, locally connected networks outperform their convolutional counterparts
on purely neural data (areas V1, V2, V4, IT), but not on behavioral responses.
Moreover, ImageNet performance negatively correlates with correspondence to
V1 data, suggesting that better models of early visual processing don’t necessarily
provide a good input for models of deeper visual areas.

1 Introduction

Convolutional networks not only have great performance on image recognition tasks, but also develop
representations similar to the primate visual stream. For instance, they provide a good fit to multiple
areas of the ventral stream Schrimpf et al. (2018), and even explain the separation between the ventral
and the dorsal streams Bakhtiari et al. (2021). However, the biological plausibility of convolutional
networks is questionable, since they need to share weights among neurons during training (Fig. 1A).
If they don’t (even if they are locally connected, Fig. 1B), they perform much worse on image
recognition tasks, and show a worse fit to the visual stream Pogodin et al. (2021). This issue is not
limited to convolutional networks – any network involving matrix-matrix multiplication (with one
matrix representing neurons, and the other one representing weights) needs weight sharing (e.g., a
recently popular architecture, transformers). Recently it was shown that locally connected networks
(Fig. 1B) can share weights through anti-Hebbian plasticity, but the network must stop training for a
“sleep phase” that uses lateral connectivity in each layer Pogodin et al. (2021) (Fig. 1C,D).

In this work, we study how well locally connected and convolutional networks correspond to the
ventral stream data, as measure by the Brain-Score Schrimpf et al. (2018, 2020), which combines
recordings of behavioral responses (which differ from classification accuracy, see Schrimpf et al.
(2018)) and areas V1, V2, V4, and IT to naturalistic stimuli in primates. We evaluate the role of initial
conditions, frequency of weight sharing (as in Pogodin et al. (2021)) and architectural differences.
We find that better performing models typically result in a better Brain-Score, but locally connected
networks provide a better match to non-behavioral data. In addition, poorly performing models match
better to V1 data.

1st Brain-Score Workshop (BSW 2022), Cascais, Portugal.
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Figure 1: A. Convolutional layer: all neurons see a patch of the input and have the same weight
w𝑖 = w𝑘 = w𝑗 = w. B. Locally connected layer: same, but with different weights. C. Only neurons
with non-overlapping inputs share weights (equivalent to a stack of strided convolutions). D. Training
in a locally connected layer leads to different weights (like in B); a sleep phase (Pogodin et al. (2021))
shares weights among neurons with non-overlapping inputs (like in C).

2 Convolutional vs. locally connected networks: ImageNet and Brain-Score
performance

Locally connected (LC) networks with a weight sharing sleep phase can achieve results similar to
their convolutional counterpart Pogodin et al. (2021). The sleep phase uses lateral connectivity to
create shared inputs for different neurons and equalize their activity with anti-Hebbian learning,
which leads to convolution-like weight sharing (see the corresponding paper for mathematical details).
However, Pogodin et al. (2021) only considered a relatively small model (half-width ResNet-18) and
didn’t study the role of initial conditions and architectural changes.

Here, we conduct experiments on a standard ResNet-18 network in multiple configurations: convolu-
tional, locally connected with random initialization (as in Pogodin et al. (2021)), locally connected
with a convolutional initialization (as in d’Ascoli et al. (2019)), and locally connected with a con-
volutional first layer. As the first layer in a ResNet-18 has the highest resolution (224 by 224 with
stride 2 vs. 56 by 56 with stride 1 for the next one) and the largest filter size (7 by 7 vs. 3 by 3 for all
other layers), it’s potentially prone to more overfitting than other layers. Making it convolutional is
inspired by pre-V1 processing done in the visual system.

2.1 Training details

We trained all networks on ImageNet Deng et al. (2009) with standard augmentations. We used
AdamW Loshchilov & Hutter (2017) with a batch size of 128. We used Nvidia A100 GPUs (40GB
VRAM; for GPUs with less memory, the model would not fit on a single one as just the LC weights
take up about 11GB). We used the implementation from Pogodin et al. (2021), which is available
at https://github.com/romanpogodin/towards-bio-plausible-conv. Results and links to Brain-Score
models are provided in Table 1.
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Figure 2: ImageNet top-1 accuracy vs. Brain-Score for several ResNet-18 networks: convolutional,
locally connected (LC), LC with a convolutional first layer, LC with a weight sharing sleep phase
every 1/10/100 iterations. Orange: randomly initialized LC net; blue: LC net with a convolutional
initialization. A. Average Brain-Score (V1, V2, V4, IT, behavioral data). B. Same, but without
behavioral data. C. Only V1 data.
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2.2 Results (all brain areas)

First, we compared ImageNet top-1 test accuracy and the Brain-Score of all our models (Fig. 2A).
Overall, accuracy correlates with Brain-Score, but there are two interesting trends. First, a convolu-
tional initialization (blue) is always better than a random one (orange) on ImageNet (except for LC +
1st conv), but not always on Brain-Score (for frequent weight sharing, both metrics improve from a
convolutional initialization). Second, LC networks with a convolutional initialization (blue) show a
monotonic increase of Brain-Score with ImageNet accuracy, but an even more accurate fully convo-
lutional network achieves a worse Brain-Score. Both trends are even more pronounced if we only
consider neural data, without the behavioral one (Fig. 2B). Even more, a fully convolutional network
shows the worst overall fit to neural data despite the best performance. One possible explanation is
that LC networks produce a more diverse set of activations, as there’s less regularity in the weights.

2.3 Results (V1)

All brain regions, except V1, show a similar correlation of accuracy and Brain-Score. V1 is the
complete opposite: performance is negatively correlated with the V1 score (Fig. 2C). These results
are consistent with those obtained for smaller networks in Pogodin et al. (2021).

First, we checked if representations in earlier layers (that typically match V1) are useful for ImageNet,
and if readout accuracy for these layers correlates with the V1 score. We trained a linear readout
on top of the second ResNet block (out of four), and observed very poor performance (2-6%) in
purely LC networks, as opposed to 8-20% in networks with more regularization. Therefore, good V1
representations alone are not very helpful for ImageNet.

We also trained a shorter ResNet with only two blocks (10 layers total) to see if the depth of the
model affects the phenomenon. It doesn’t: the V1 score of a short ResNet LC network is 0.544, vs.
0.511 for its convolutional counterpart that performs better on ImageNet. However, the difference in
score is twice as small for the shorter architecture compared to a full ResNet-18.

Finally, we tested untrained networks to see if different initial conditions can explain V1 scores. For
a randomly initialized locally connected network, the V1 score was predictably low: 0.347 (much
smaller than everything in Fig. 2C). A convolutional initialization, however, resulted in a score of
0.516 – higher than for a trained convolutional network. This surprising result suggests that the good
V1 fit of convolutional networks comes primarily from the architecture and translation equivariance
of convolutional layers, while training on ImageNet leads to a more ImageNet-specific representation
that don’t necessarily correspond to V1 representations.

3 Discussion

We explored how deep networks that substitute implausible weight sharing of convolutions with
realistic mechanisms, namely local connections and sleep-phase induced partial weight sharing,
perform on ImageNet and Brain-Score. We found that those two metrics generally correlate, and that
a convolutional initialization of locally connected networks can improve both of them. Moreover, we
found that V1 performance negatively correlates with ImageNet accuracy, both for full networks and
for representations extracted from V1-like early layers.

The discrepancy between V1 and all other brain areas shows that training (on ImageNet) is not
always beneficial for all architectures: while locally connected networks with any initialization end
up with a higher match to the V1 data after training, a fully convolutional one sees a decrease in V1
match. This is in contrast to deeper areas, where training always increases the match to data. We
also found that improving V1 fit of a model might not imply improvements for deeper areas, which
is somewhat consistent with the idea that the visual cortex is not strictly hierarchical St-Yves et al.
(2022). However, our findings are specific to the architectural changes we’ve tested (i.e., amount of
weight sharing). Therefore, they don’t contradict previous studies that don’t show the V1 fit/ImageNet
accuracy discrepancy in different convolutional networks Marques et al. (2021).

Overall, our results show that deep learning models of the visual stream can be improved by adding
realistic training constraints, such as the lack of weight sharing at all times. The improvement,
however, is only visible when we compare the models to real data (in our case, via Brain-Score
Schrimpf et al. (2018, 2020)), and not to machine learning benchmarks.
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A Appendix

Hyperparameters: weight decay for all networks was set to 1e-2. Learning rates were chosen on a
validation set, and are provided in Table 1.

Table 1: ImageNet top-1 accuracy and Brain-Score for several ResNet-18 networks: convolutional,
locally connected (LC), LC with a convolutional first layer, LC with a weight sharing sleep phase
every 1/10/100 iterations, and with random and convolutional (conv) initialization.

Connectivity Weight sharing
frequency Initialization Top-1 acc., % Brain-Score Learning

rateaverage score link

conv - conv 69.9 0.426 brain-score.org/model/1071 1e-3
LC - random 44.9 0.383 brain-score.org/model/1072 5e-4
LC 1 random 62.0 0.409 brain-score.org/model/1073 1e-4
LC 10 random 60.9 0.418 brain-score.org/model/1074 5e-4
LC 100 random 56.5 0.424 brain-score.org/model/1075 5e-4
LC - conv 46.1 0.374 brain-score.org/model/1076 1e-4
LC 1 conv 64.4 0.433 brain-score.org/model/1077 1e-3
LC 10 conv 63.0 0.429 brain-score.org/model/1078 1e-3
LC 100 conv 58.7 0.416 brain-score.org/model/1079 1e-3

LC + 1st conv - random 52.5 0.370 brain-score.org/model/1157 1e-4
LC + 1st conv - conv 52.5 0.379 brain-score.org/model/1094 1e-4

conv (untrained) - conv - 0.227 brain-score.org/model/1159 -
LC (untrained) - random - 0.137 brain-score.org/model/1158 -
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