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Abstract

Causal effect estimation is a crucial theoretical tool
in uncertainty analysis. The challenge of unobserv-
able confoundings has raised concerns regarding
quantitative causality computation. To address this
issue, proxy control has become popular, employ-
ing auxiliary variables W as proxies for the con-
founding variablesU . However, proximal methods
rely on strong assumptions, such as reversibility
and completeness, that are challenging to interpret
empirically and verify. Consequently, their appli-
cability in real-world scenarios is limited, partic-
ularly when the proxies lack informativeness. In
our paper, we have developed a novel optimization
method named Partial Identification with Proxy of
Latent Confoundings via Sum-of-Ratios Fractional
Programming (PI-SFP). This method does not im-
pose any additional restrictions upon proxies and
only assumes the mild partial observability of the
transition matrix P (W | U). We have theoreti-
cally proven the global convergence of PI-SFP to
the valid bound of the causal effect and analyzed
the conditions under which the bounds could be
tight. Our synthetic and real-world experiments
validate our theoretical framework.

1 INTRODUCTION

Causal inference is crucial in uncertainty analysis across
various fields such as medicine [Castro et al., 2020], eco-
nomics [Hicks et al., 1980, Zhang et al., 2023b, 2020], and
education [Peng and Knowles, 2003]. However, extract-
ing useful causal information from observational data is
challenging due to latent confoundings that can impede sta-
tistical association studies [Pearl, 2009a]. To address this
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FIGURE 1: Causal identification with confoundings via
single-proxy control (a) or double-proxy control (b,c).W
or Z are so-called confonuder proxies when identifying the
causal effect of treatmentX on outcome Y .

issue, researchers commonly rely on auxiliary variables
for confounding adjustment. Representative auxiliaries in-
clude instrumental variables (IV) [Söderström and Stoica,
2002], proximal variables [Kuroki and Pearl, 2014, Tchet-
gen et al., 2020], or outcome-dependent variables [Gabriel
et al., 2022].

In this paper, our primary focus is proximal causal identifi-
cation, as it represents one of the most commonly utilized
auxiliaries in our real world. The use of proxies for con-
founding adjustment has become a prominent topic of re-
search both theoretically and empirically. Empirical work in
this area dates back to [Wickens, 1972], which examined the
potential benefits of proxies as an alternative to latent con-
founding in least square estimations. The concept has since
been applied in observational studies such as Kolenikov and
Angeles [2009], Wooldridge [2009] and further studied in
other empirical works [Frost, 1979, Rothman et al., 2008].
On the other hand, theoretical research on this topic can be
broadly categorized into two groups, which we illustrate in
Fig.1: the "single-proxy scenario" (Figure1(a)) [Tchetgen
et al., 2023, Park and Tchetgen, 2023] and the "double-proxy
scenario" (Figures 1(b) and 1(c)) [Miao and Tchetgen, 2018,
Shi et al., 2020, Singh, 2020, Kallus et al., 2021], where two
confounding proxies Z,W are available.

However, the application scope of proximal-based learn-
ing are still limited. For Figure 1(a), when both W and
U are discrete random variables with a finite number of



choices, Pearl [2012], Tchetgen et al. [2023], Park and Tch-
etgen [2023] proved the point-wise identifiability of the true
causal quantities when the proxies are informative enough,
e.g., the probability transition matrix P (W | U) is fully ob-
servable and reversible, which is the so-called completeness
assumption. Stepping forward, when P (W | U) is not ob-
servable, Pearl extended the point-wise double-proxy cases
(Figures 1(b), 1(c)) from Cai and Kuroki [2012], where
both the exposure proxy control Z and the outcome proxy
control W exist. Regretfully, so-called “double-negative
control” [Miao et al., 2018, Cui et al., 2020, Tchetgen et al.,
2020, Deaner, 2018, Shi et al., 2020, Singh, 2020, Nagasawa,
2018] methods and “single-proxy control” methods [Pearl,
2012, Tchetgen et al., 2023, Park and Tchetgen, 2023] are
still subject to strict bridge functions, completeness assump-
tions 1, or their weaker forms Ghassami et al. [2023], Kallus
et al. [2021].

These untestable and impractical constraints surrogates
an important motivation: excessively strong conditions on
proxy are imposed to sufficiently achieve the point-wise
value of the causal effect, which would be violated in
general cases. For instance, in a recommender system, an
item’s exposure to users is often considered as treatment
X(X = 0, 1), while the observed feedback is treated
as outcome Y . In this process, the user’s socio-economic
status and the item characteristics are used as latent con-
founders [Sato et al., 2020], which affect bothX andY , and
some observations of confounders are considered as proxy
(e.g., item popularity ranking) W [Zhang et al., 2023a].
Unfortunately, the measurement ofW and U would be in-
accurate, and even worse, P (W | U) is irreversible due to
the low dimension ofW , rendering the previous approach
invalid. Hence, a natural scientific question arises: How to
conduct partial identification via partially observed prox-
ies?

To address this question, due to its originality and diffi-
culty of double-proxies collection, we mainly focus on
the single proxy case (Fig.1(a)), which is mostly related
to Pearl [2012], Tchetgen et al. [2023], Park and Tchetgen
[2023], and our method could be naturally generalized to
Fig.1(b)-Fig.1(c). We weaken the requirement of “total pre-
cise observability” of P (W | U) to “partial observability”,
and thus generalize the point-wise identification into a par-
tial identification. Our method contributes to the traditional
fractional programming methods [Stancu-Minasian, 2012]
since we do not rely on strong concavity assumption. More
importantly, our method also advances the state-of-the-art
constrained-optimization-based literature upon partial iden-
tification Duarte et al. [2023], Li and Pearl [2022], since
we additionally provide a non-parametric convergence rate
to causal queries based on branch-and-bound strategy. Our

1The previous reversibility assumption of P (W | U) was
strengthened to that of P (Z,W | x) and P (y,Z,W | x). More-
over, the path W to Y in Fig. 1(c) can be additionally permitted.

contributions are summarized as follows:

• We generalize the traditional proximal learning liter-
ature from point-wise identification to partial identi-
fication, with a more reasonable and weaker partial
observability assumption.

• We introduce a global optimization strategy called PI-
SFP and theoretically prove that it can globally con-
verge to the valid bound of casual queries. Moreover,
we justify whether the bound is tight. Synthetic and
real-world experiments have demonstrated our find-
ings.

• We theoretically justify the necessity of the partial ob-
servability assumption in proximal control. It is sup-
ported by the negative result that traditional informative
proxies might not sufficiently guarantee informative
partial identification.

2 PRELIMINARIES AND FRAMEWORK

The concept of causal effect is closely linked with the
‘do’ operator, which can be viewed as an external inter-
vention [Pearl et al., 2000, Pearl, 2009b]. In particular,
the causal effect of treatment X on outcome Y is rep-
resented as f(y | do(x)) in Fig.1, where do(x) signi-
fies that the treatment X is fixed at a specific value x,
and f(·) denotes the probability mass/density function for
discrete/continuous variables. We use du to denote the
cardinality of confounders. As per the back-door crite-
ria [Pearl et al., 2000], the identification of f(y | do(x))
is given by

∑du
i=1 f(y | ui, x)f(ui), namely f(y, x) +∑du

i=1 f(y, ui, x)f(ui,¬x)/f(ui, x).
Such decomposition results from f(ui) = f(ui, x) +
f(ui,¬x). In Kuroki and Pearl [2014], the authors assumed
that the transition matrix P (W | U) is observable and
reversible, and hence claimed that f(y | do(x)) is identifi-
able. In other words, the value of each item as above can be
explicitly extracted as follows2: f(y,U , x)

f(U , x)
f(U ,¬x)

=P (W | U)−1

 f(y,W , x)
f(W , x)
f(W ,¬x)

 . (1)

Our paper focuses on generalization, where we consider the
partial identification of f(y | do(x)) instead of its unique
form computation. This change stems from our relaxed
assumption on P (W | U), where we move from total ob-
servability to partial observability and remove the guarantee

2In our paper, we use bold letters to denote column vectors
of corresponding possible values. For instance, f(y,U , x) =
[f(y, u1, x), f(y, u2, x), ...f(y, udu , x)]

T . Furthermore, if a sym-
bol has two bold letters such as P (W | U), it denotes the matrix
[f(W | u1), f(W | u2), ...f(W | udu)], where f(W | ui) =
[f(w1 | ui), f(w2 | ui), ...f(wdw | ui)]

T , i = 1, 2, ...du.



for reversibility (thus P (W | U)
−1 in Eqn (2) may not

exist). Specifically, we expand the identification region of
P (W | U) from a fixed distribution to the family P , which
contains all possible P (W | U) such that P (W | U) −
P (W | U) and P (W | U) − P (W | U) all both non-
negative. Here P (W | U) and P (W | U) are two pri-
ori known matrices to bound P (W | U). This scenario is
prevalent in the real world. While studies [Kuroki and Pearl,
2014, Greenland, 2005] have generally confirmed its verifia-
bility, recent literature has not fully explored it. In our paper,
we reiterate the condition P (W | U) ∈ P as the ’partial
observability assumption’ in our following text. Under this
assumption, we can naturally set our original goal as seek-
ing the lower bound of f(y | do(x)) (upper bound is sym-
metric) by solving the following partial identification prob-
lem: f(y, x) + min

∑du
i=1 f(y, ui, x)f(ui,¬x)/f(ui, x),

subject to f(y,W ,U ,X) ∈ F . Here f(y,W ,U ,X) is a
three-order dw∗du∗dx tensor indicating the joint probability
distribution of each w ∈W , u ∈ U , x ∈X together with
Y = y. The set F = {f(y,W ,U ,X) : f(y,W ,U ,X) is
compatible with P (W | U) ∈ P}.

Achieving this goal is challenging due to the difficulty in
achieving its tight bound. Firstly, the feasible region F is
challenging to represent in a closed form due to the boundary
constraints that include the partially observable P (W | U).
This constraint can be seen as a first-kind Fredholm integral
equation, which is an ill-posed problem when P (W | U)
is irreversible3. To address this issue, we propose relaxing
the feasible region from F to F̃ (F ⊆ F̃ ), which contains a
closed-form expression. Specifically, the relaxed condition
f(y,W ,U ,X) ∈ F̃ ensures that the feasible regions of
f(y,U , x), f(y,U , x), and f(U ,¬x) can be represented
in a calculable closed-form. We refer to these as IRF (y,U,x),
IRF (U,x), and IRF (U,¬x), respectively, in our final objec-
tive function in the following section.

Secondly, even if we retreat and seek its valid bound
as above, it remains non-trivial due to the difficulty
in finding an appropriate optimization method. Since
the causal effect is expressed as a fractional sum-
mation, it is natural to explore techniques in sum-
of-ratios fractional programming (SFP). The general
form of SFP, as summarized in [Schaible and Shi,
2003], is represented as follows: min{

∑M
i=1

g1i(ϕ)
g2i(ϕ)},ϕ ∈

S}, g1i(ϕ) is convex, g2i(ϕ) is concave, g1i(ϕ), g2i(ϕ) >
0. Here S is a convex set, and M ≥ 2 is a in-
teger. In order to ensure the global nature of op-
timal solutions, g1i(Φ) and g2i(Φ) are assumed to
be convex and concave, respectively. In contrast with
the above formulation, we should choose ϕ =
((f(y, ui, x), ...)

T , (f(ui, x), ...)
T , (f(ui,¬x), ...)T ), and

g1i(ϕ) = f(y, ui, x)f(ui,¬x), g2i(ϕ) = f(ui, x). More-
3Otherwise, the closed-form expression of F can only be ap-

proximated iteratively by complex numerical methods [Strand and
Westwater, 1968], which is beyond our scope.

over, M = du, i = 1, 2, ...du. However, this construc-
tion violates the traditional convex-concave assumption,
as g1i(ϕ) is not convex. Therefore, here traditional SFP
algorithms [Schaible and Shi, 2003] are not suitable.

To address these two challenges, we introduce the Partial
Identification with Sum-of-Ratios Fractional Programming
(PI-SFP) algorithm. Motivated by the branch and bound
strategy [Dai et al., 2005, Lawler and Wood, 1966, Dur et al.,
2001, Pei and Zhu, 2013] and DC programming [Horst and
Thoai, 1999, Tao and An, 1997, Pei and Zhu, 2013], our
algorithm iteratively searches the optimal bound through fea-
sible region partitioning. Different from the closely-related
partial identification literature Duarte et al. [2023], Li and
Pearl [2022], we also provide a comprehensive new conver-
gence analysis.

For supplement, due to these two challenges of solving
the partial observability case, another line of recent litera-
ture has avoided further discussion on the observability of
P (W | U). Instead, researchers have introduced an auxil-
iary variable Z and formalized the problem as the double
negative control [Miao et al., 2018, Cui et al., 2020, Tchet-
gen et al., 2020, Deaner, 2018, Shi et al., 2020, Singh, 2020,
Nagasawa, 2018, Kallus et al., 2021]. However, as illus-
trated in the introduction, there are no free lunch (Table. 2).
These works are restricted by additional assumptions about
proxies, such as the completeness condition and the bridge
function condition. Importantly, all of these works still rely
on the reversibility of P (W | U), except for Ghassami et al.
[2023], Kallus et al. [2021], who substituted it as a weaker
bridge function condition. Consequently, even if the transi-
tion matrix is still reversible, but with a large conditional
number4, numerical computations would already become
extensively overwhelming. In conclusion, revisiting single-
proxy control under the partial observability of P (W | U)
is not only challenging but also necessary.

3 METHOD

We begin by presenting definitions and assumptions and
then rigorously formulate the objective function.

DEFINITIONS We denote Y, Y0, Y1 ∈ [Y L, Y U ], Z ∈
[ZL, ZU ], X ∈ [XL, XU ], W ∈ [WL,WU ], U ∈
[UL, UU ]. Moreover, we use dz, du, dw, dx to denote the
cardinality of variables Z,U ,W ,X . For instance, the set
of confounderU is {u1, u2, ...udu}. X ̸= x is simplified as
¬x. Y can be discrete or continuous.

Moreover, Yx is the value of Y when X is forced to be x.

4The conditional number of matrix A is denoted as κ(A) =
σmax(A)
σmin(A)

, where σmax(A) and σmin(A) denote the maximal and
minimal singular values of A. If some rows/columns of A are
similar (or equal), then κ(A) is large (or +∞), and A−1 is com-
putationally hard (or may not exist).



π(x) is a weight function5 ofX . On this basis, ACEX→Y

denotes the average causal effect (ACE) from X to Y ,
namely that ACEX→Y =

∫
x

∫
y
yf(Yx = y)π(x)dxdy.

Assumption 1 (partial observability) P (W | U) ∈ P .

Here the set P is identified in Section 2, where P (W | U)

and P (W | U) are two a priori known matrices serving as
the partial order of P (W | U).

OBJECTIVE FUNCTION The objective of this section
is to formalize the optimization problem of the single proxy
control under Assumption. 1. During this process, we aim
to tackle the two challenges introduced in the preliminaries.
Our primary objective is (the maximum case is symmetric):

min f(y, x) +
d∑
i=1

f(y, ui, x)f(ui,¬x)
f(ui, x)

,

subject to: f(y,U ,W ,X) ∈ F .

(2)

Here F = {f(y,U ,W ,X) : f(y,U ,W ,X) is compati-
ble with Assumption. 1 and observed f(y,W ,X)}.

As we suggested in the preliminaries, the first challenge is
the nonexistence of closed-form expression of F . To solve
it, we introduce the new symbol F̃ to formally describe the
relaxation of the identification region of f(y,U ,W ,X).
For preparation, we introduce the symbol θ,ψ,ω and
follow the previous notation ϕ: θi = f(y, ui, x), ψi =
f(ui, x), ωi = f(ui,¬x),θ = (θ1, θ2, ...θd)

T ,ψ =
(ψ1, ψ2, ...ψd)

T ,ω = (ω1, ω2, ...ωd)
T , ϕ = (θ ψ ω).

Then we construct a broader set F̃ as follows:

F̃ =
{
f(y,U ,W ,X) : ϕ ∈ IRΦ, IRΦ = IR1

Φ ∩ IR2
Φ

}
,

where the set IR1
Φ denotes the set of Φ satisfies

P (W | U)ϕ ≥ f(y,W , x), f(W , x), f(W ,¬x) ≥
P (W | U)ϕ. Here we use S1 ≥ S2 to denote S1 − S2

is a non-negative matrix, and Id∗d denotes the d ∗ d identity
matrix. Moreover, the set IR2

Φ indicates all possible ϕ such
that 1 ∗ θ = f(y, x),1 ∗ ϕ = f(x),1 ∗ ω = f(¬x), and
∀i, θi ∈ [0, f(y, x)], ϕi ∈ (0, f(x)], ωi ∈ [0, f(¬x)].

Here 1 denotes the corresponding all-ones vector. By this
construction, the enclosure property F ⊆ F̃ is guaranteed.

Proposition 1 F is enclosed by F̃ , namely that F ⊆ F̃ .

The proof is shown in the Appendix A.1. Proposi-
tion. (1) provides the extension of the feasible region

5In [Kallus et al., 2021], it is called as generalized average
causal effect. It can degenerate to the traditional form [Pearl, 2013]
as ACEX→Y = E(Y1) − E(Y0) if we choose dx = 2, X =
{0, 1}, and π(x) = sgn(x), where sgn(·) is the sign function.

of f(y,U ,W ,X) from F to F̃ . On this basis, Eqn (2)
is relaxed as follows: f(Yx = y) = min f(y, x) +∑d
i=1 θiωi/ψi, subject to: f(y,U ,W ,X) ∈ F̃ , i.e.,ϕ ∈

IRΦ.

Symmetrically, the optimal value is denoted as f(Yx = y)
for the maximum case. Moreover, the corresponding set
of optimal solutions are denoted as Φopt. The following
proposition discuss the tightness of f(Yx = y):

Proposition 2 The outcome f(Yx = y) serves as the valid
lower bound of f(Yx = y). Moreover, this bound is tight if

and only if the following set is not empty:
{
f(y,U ,W ,X) :

f(y,U ,W ,X) ∈ F and is compatible with some ϕopt ∈
Φopt

}
̸= ∅, where ϕopt is an element of the set Φopt. The

maximum case f(Yx = y) is symmetric.

As discussed in the preliminaries, we have explained the
reasons why guaranteeing that f(Yx = y) is a tight bound
is beyond the community scope, hence Proposition 2 is
already the optimal result. In practice, it could be verified
that Eqn (2) holds in a number of cases, whose details are
detailed in Appendix A.2.

We now aim to tackle the second challenge: the non-trivial
nature of the fractional programming problem due to
the invalidation of the convex-concave condition. To
address this issue, we adopt the difference-in-convex
(DC) decomposition strategy to formally describe how we
relax the above formulation into a linear programming
problem. To prepare for this, we first transform the
fractional form and introduce the knockoff variable
ψo to replace the denominator. Next, we introduce the
4d− dimensional vector γ: ψo = (ψo1, ψ

o
2, ...ψd)

T , γ =(
(ψo)T ,θT ,ψT ,ωT

)T
,where (θ,ψ,ω) is copied from ϕ.

Then our original function is equivalently transformed to

f(Yx = y) = min f(y, x) +
d∑
i=1

ψoi θiωi

subject to : γ ∈ IRΓ := {γ : ϕ ∈ IRΦ, ψ
o
i ψi = 1}.

(3)

Here i = 1, ...d. Although the knock-off trick has been
implemented, achieving the final goal remains challenging
in practice. Firstly, the objective function and constraints
are both non-convex and nonlinear. Secondly, relying on
local optimal algorithms alone is not viable, as it may not
guarantee the validity of the bound f(Yx = y). Thus, our
motivation is to construct a weaker linear programming form
that can approximate the global optimal value of (3). To
achieve this, we propose applying the difference-in-convex
(DC) decomposition as our core idea: ∀γ,
d∑
i=1

ψoi θiωi = C1(γ)− C2(γ), ψ
o
i ψi = Di1(γ)−Di2(γ),

(4)



where i = 1, 2, · · · , d, C1(γ), C2(γ), Di1(γ), Di2(γ)
6

are all convex functions (see Appendix A.5) satisfying that
C1(γ), C2(γ), Di1(γ) :=

d∑
i=1

1

6
(
∑
cyc

ψoi )
3 +

1

2

∑
cyc

(ψoi )
4 +

1

2

∑
cyc

(ψoi )
2,

d∑
i=1

1

6

∑
cyc

(ψoi )
3 +

1

4

∑
cyc

[(ψoi )
2 + θi]

2 + [ψoi + θ2i ]
2,

1

2
(ψoi + ψi)

2, Di2(γ) =
1

2
[(ψoi )

2 + (ψi)
2],

(5)

respectively. Exploiting their convexity, we bound them by
the following linear functions, which are constructed by
secants and tangents of the original function:

C1(γ)− C2(γ) ≥ C tan
1 (γ)− Csec

2 (γ),

Di1(γ)−Di2(γ) ∈ [Dtan
i1 (γ)−Dsec

i2 (γ), D
sec
i1 (γ)−Dtan

i2 (γ)]
(6)

For their explicit form solutions, we refer the readers to (10).
This allows us to relax the original problem in (3) into the
following linear program:

min f(y, x) + C tan
1 (γ)− Csec

2 (γ)

subject to : ϕ ∈ IRΦ, D
tan
i1 (γ)−Dsec

i2 (γ) ≤ 1,

Dsec
i1 (γ)−Dtan

i2 (γ) ≥ 1, i = 1, 2, · · · , d.
(7)

It is clear that this shift causes the estimation error. In order
to eliminate it in practice, we iteratively do DC within sim-
plicial partitioned feasible regions. Details will be shown
in the following section. In conclusion, we already address
these two challenges in the preliminaries. In addition, Our
framework is natural to extend to the ACE cases, and we
refer readers to Appendix A.4 for details.

4 ALGORITHM

In this section, we demonstrate how to compute f(Yx = y)
in (3) practically. As mentioned earlier, this involves opti-
mizing a non-convex function, which requires new optimiza-
tion techniques to find the global optimum. To this end, we
propose Partial Identification via Sum-of-ratios Fractional
Programming (PI-SFP), a fractional programming-based
method that optimizes the objective through iterative ap-
proximation. Specifically, we begin by constructing a sim-
plex S0 that encloses the feasible region of (3). We then
use S0 to identify a lower bound of f(Yx = y) using the
difference-in-convex (DC) decomposition strategy. In each
iteration, we partition S0 into multiple simplices to refine
the lower bound constructed in the initial step.

6Note that the sub-script cyc in (5) is an abbreviation of cyclic
sum following [Du et al., 2012], which cycles through {ψo

i , θi, ωi}
in the corresponding function and take the sum. For instance, we
have

∑
cyc[ψ

o
i +θ

2
i ]

2 = [ψo
i +θ

2
i ]

2+[θi+ω
2
i ]

2+[ωi+(ψo
i )

2]2.

Algorithm 1: Partial Identification via Sum-of-ratios
Fractional Programming (PI-SFP).
Input: Observational distribution f(y,W ,X),

P (W | U), P (W | U), a prespecified error
bound δ > 0.

Output: A lower bound estimate fkopt(Yx = y).

1 Let k = 0, construct an original simplex S0 =

Initialization(f(y,W ,X), P (W | U), P (W | U));

2 Calculate a lower bound of fS0(Yx = y) via the
Bounding function: fS0(Yx = y) = Bounding(S0);

3 Set the collection of simplices at the 0-th iteration as
S0 = {S0};

4 while PI-SFPerror ≤ δ do
5 Let S̃k = argminS∈Sk

fS(Yx = y), where
fS(Yx = y) denotes the output of Bounding(S)
with input S;

6 Split S̃k into two simplicies S̃k1 and S̃k2 via the
Bisection function: S̃k1, S̃k2 = Bisection(S̃k)
and set Sk+1 =

(
Sk \ S̃k

)
∪ {S̃k1, S̃k2};

7 Calculate the estimation error bound via
PI-SFPerror = Global_error(S̃0, S̃1, · · · , S̃k+1);

8 Set k = k + 1;

9 Return fkopt(Yx = y) = max
i∈{0,1,...k}

fS̃i
(Yx = y).

The remainder of this section is organized as follows. In
Section. 4.1, we introduce the main framework of our al-
gorithm, which we divided into four modules: 1) Initial-
ization, 2)Bisection, 3) Bounding, and 4) Global_error.
We then elaborate on each module in detail in Section. 4.2.
For ease of notation, we introduce the following symbols
for algorithm description: • For a simplex S, dia(S) :=
maxs1,s2∈S ∥s1−s2∥2 denotes its diameter, and Si denotes
its i−th supporting vector, i = 0, 1, ...4d. • fS(Yx = y) de-
notes the optimal value of (3) when its feasible region is
strengthened to γ ∈ IRΓ ∩ S.

4.1 OVERVIEW OF PI-SFP

The framework of PI-SFP to solve (3) is as follows.

Step 1 involves pre-processing, where the Initialization
function is used to construct a baseline simplex S0 enclos-
ing the original feasible region, such that IRΓ ⊆ S0 and
f(Yx = y) = fS0(Yx = y) (see Lemma 2 in Appendix A.5).
This equivalent transformation enables the computation of
f(Yx = y) via fS0

(Yx = y). In Step 2, we use the DC de-
composition strategy as in (4)-(7) to find a lower bound of
fS0

(Yx = y), which is denoted by fS0
(Yx = y).

In Steps 4-9, we employ a bisection-like approach to iter-
atively partition S0 into a set of simplices Sk in the k-th



Algorithm 2: Recursive procedure to split the simplicial
partitions (Bisection).

Input: Simplex S with vertices {S0, · · · , S4d}.
Output: Two new simplices S1, S2.

1 Set St1 , St2 as the vertices incident to the longest edge
of S: {t1, t2} = argmax

{a,b}∈{0,1,··· ,4d}
∥Sa − Sb∥2;

2 Construct S1, S2 based on the following two sets of
vertices: {S0, · · · , St1−1, v, St1+1, · · · , S4d},
{S0, · · · , St2−1, v, St2+1, · · · , S4d}, where v
corresponds to the midpoint the longest edge.

iteration. Next, we reapply the DC decomposition strategy
to new simplices to obtain a more accurate estimate. We
stop and return the lower bound estimate in Step 10 once
the bounding error calculated by Global_error reaches the
prespecified threshold δ. Otherwise, we make more delicate
partitions and iterate this step.

4.2 IMPLEMENTATION OF PI-SFP

In this section, the above four functions are illustrated in de-
tail. 1) Initialization(): The objective of this function is to
construct an original simplex S0 that encloses the feasible re-
gion IRΓ. To achieve this, we draw inspiration from [Horst
et al., 2000, Pei and Zhu, 2013] and use the following
approach to construct S0. The justification of such con-
struction is given in lemma. (2).Here S0 denotes the set of
γ = (γ1, · · · γ4d) satisfying 1 ≤ i ≤ 4du, 1 ∗ γ ≤ α, γi ≥
γli := min

γ∈IRΓ

γi, and α = 1+f(y, x)+ d2(ψl+ψu)2

4f(x)ψlψu , where

ψl = min
i∈[2d+1,3d]

γli, ψ
u = min

i∈[2d+1,3d]
γui , γ

u
i := max

γ∈IRΓ

γ. (8)

2) Bisection(): Motivated by the approach proposed in Ri-
vara [1984], the goal of this function is to partition an input
simplex S into two simplices S1 and S2 using the longest-
edge (LE) bisection strategy. The partitioning details are
outlined in Algorithm 2.

3) Bounding(): The purpose of this function is to derive a
lower bound of fS(Yx = y) using the input S. This is the
most crucial element of the algorithm. It is worth remem-
bering that fS(Yx = y) can be expressed as the solution of
the optimization program (3) with an additional constraint
γ ∈ S. With the derivations shown in (4)-(7), we can easily
obtain a lower bound of fS(Yx = y) by solving the follow-

ing optimization problem7:

fS(Yx = y) = min f(y, x) + C tan
1 (γ)− Csec

2 (γ)

subject to: ϕ ∈ IRΦ,γ ∈ S;Dtan
i1 (γ)−Dsec

i2 (γ) ≤ 1,

Dsec
i1 (γ)−Dtan

i2 (γ) ≥ 1, i = 1, ...d.
(9)

As demonstrated in lemma. (5) of Appendix A.5,
the functions C tan

1 (γ), Csec
2 (γ), Dtan

i1 (γ), Dsec
i2 (γ),

Dsec
i1 (γ) and Dtan

i2 (γ) are constructed from C1(γ), C2(γ),
Di1(γ), Di2(γ)’s in (5) based on secants and tangents
within the simplex S:[
C tan
k (γ)

Dtan
ik (γ)

]
: =

[
Ck(γ0)
Dik(γ0)

]
+

[
∂Ck(γ)
∂γ |γ=γ0

∂Dik(γ)
∂γ |γ=γ0

]
(γ − γ0)[

Csec
k (γ)

Dsec
ik (γ)

]
: =

[
Ck(S

0), ...Ck(S
4d)

Dik(S
0), ...Dik(S

4d)

][
S0, ..., S4d

1, ..., 1

]−1[
γ
1

]
.

(10)
Here k = 1, 2,∀γ0 ∈ S. As shown above, (9) is a lin-
ear programming problem that can be solved using various
methods, including the simplex algorithm [Klee and Minty,
1972] and the interior algorithm [Kojima et al., 1989, Nes-
terov and Nemirovskii, 1994].

4) Global_error(): This function is to terminate PI-SFP via
estimating the order of the error with respect to n. Recall
that in Step 5 of Algorithm. 1, we always select the S̃k with
the lowest fS(Yx = y) in the k−th iteration. This strategy
guarantees (see Appendix A.5 for more details)

fS̃k
(Yx = y) ≤ min

S∈Sk

fS(Yx = y) = f(Yx = y), (11)

i.e., all the fS̃k
(Yx = y)’s are lower bounds of f(Yx = y),

and thus fnopt(Yx = y) ≤ f(Yx = y). From this, we further
have that, in the n-th iteration, for any k ∈ {0, · · · , n},

0 ≤ f(Yx = y)− fnopt(Yx = y)

≤ min
S∈Sk

fS(Yx = y)− fS̃k
(Yx = y)

≤ f
S̃k
(Yx = y)− fS̃k

(Yx = y).

(12)

Also see Appendix A.5 for details. This allows us to calcu-
late an error bound via targeting

min
0≤k≤n

{
f
S̃k
(Yx = y)− fS̃k

(Yx = y)

}
. (13)

Since the bound of f
S̃k
(Yx = y) − fS̃k

(Yx = y) is domi-

nated by the diameter of the simplex S̃k, i.e., dia(S̃k), we
aim to get an order of (13) based on the order of the small-
est dia(S̃k) with respect to n. As shown in Eqn (A.48) in
Appendix A.5, this order is controlled by the length Ln
of the longest nested subsequence of {S̃k}nk=0, which is
summarized as Algorithm 3.

7If IRΓ ∩ S = ∅, then fS(Yx = y) = +∞.



Algorithm 3: Procedure to estimate the current conver-
gence (Global_error).
Input: Collections of simplex partitions in each

iteration till n−th iteration: S̃0, · · · , S̃n.
Output: An estimate of the global error.

1 Let {S̃ik}
Ln

k=1 be the (longest) subsequence of {S̃k}nk=0

such that each S̃ij+1
is partitioned from S̃ij for

j = 0, 1, · · · , Ln − 1, where Ln is the length of this
subsequence;

2 Return the global error estimate (
√
3
2 )⌊

Ln
4d ⌋.

5 THEORETICAL ANALYSIS

This section delves into the theoretical properties of PI-SFP.
First, we examine the general convergence rate of PI-SFP
concerning Ln (see Theorem. 1). Then, we demonstrate that
PI-SFP can be extended from computing f(Yx = y) to the
general ACE case.

Assumption 2 (Positivity) P is a set of P (W | U) guar-
anteeing each compatible solution P (U ,X = x) to be pos-
itive definite. Namely, ∃δ > 0, such that ∀ϕ = (θ,ψ,ω) ∈
IRϕ, we have ψ ≥ δ ∗ 11∗d > 01∗d.

It is a fairly broad and reasonable assumption in practice,
just in order to ensure that the denominator in the origi-
nal formulation is not too small to facilitate the calcula-
tion. Under this assumption, we have ψoi <

1
δ in (3) and

ψl > δ in (8). Hence we have supγ∈IRΓ
∥γ∥+∞ < +∞

and dia(S0) < +∞ respectively. In addition, when As-
sumption 2 is violated, we propose an alternative PI-SFP
refer readers to Appendix A.3 for more information.On this
basis, we formally collate the previous analysis as follows:

Theorem 1 Under Assumption. 1–2, PI-SFP concentrates
around the target value f(Yx = y) at the O(( 34 )

⌊Ln
4d ⌋)

rate. Specifically, | fnopt(Yx = y) − f(Yx = y) |≤

A( 34 )
⌊Ln

4d ⌋dia(S0)
2, where A = A1 + A2 + A3 <

+∞, A1 = max
γ∈S0

2(
√
2+1)

√
d

δ ∥∂(C1(γ)−C2(γ))
∂γ ∥, A2 =

max
γ∈S0

∥∂
2C1(γ)
∂γ2 ∥F , A3 = 1

2 max
γ∈S0

∥∂
2C2(γ)
∂γ2 ∥F . Here ∥ · ∥

denotes the Euclidean norm, and ∥ · ∥F denotes the Frobe-
nius norm. Ln ∈ [⌊log(n)⌋ + 1, n] is the length of the
longest nested sequence till n−th iteration. Moreover,
lim

n→+∞
fnopt(Yx = y) = f(Yx = y).

Theorem. 1 states that PI-SFP converges to f(Yx = y)
with the growing length of the longest nested sequence,
and will approach it in the infinite case. We relegate the
proof to Appendix A.5 and reserve a brief summary. First,
f(Yx = y) is equal to fS0(Yx = y) via constructing an orig-
inal enclosure S0 in (8). Second, fS0

(Yx = y) is substituted

with minS∈Sk
fS(Yx = y) in the k-th iteration by bisection.

Third, each fS(Yx = y) is lower bounded by (9), namely
we have ∀S ∈ Sk, fS(Yx = y) ≥ fS(Yx = y). Finally,

S̃k with the lowest bound min
S∈Sk

fS(Yx = y) is gathered as

{S̃k}nk=0 in order to formulate fnopt(Yx = y) (see Step 10
in Algorithm 1). The asymptotic error can be bounded by
(12)-(13). In conclusion, these four steps correspond to the
four functions in the above section in order.

Noteworthy, it is well beyond the scope of this paper to
theoretically estimate Ln w.r.t n, both empirically and the-
oretically. We refer readers to Appendix A.7.5 for detailed
comment. In this comment, we also figure out a conjecture
upon finiteness of regular simplicial partitions, which is our
extra contribution. Moreover, our method and theorem could
be naturally extended to the ACE case, which is detailed in
Appendix A.6 for space limitation.

6 SIMULATIONS AND REAL-WORLD
EXPERIMENTS

In this section, we perform experiments to demonstrate the
efficacy of PI-SFP, aiming to address two key questions:
1) Can PI-SFP effectively manage the partially observable
P (W | U), a scenario not previously explored in the liter-
ature, and generate informative bounds? 2) How does PI-
SFP’s convergence rate manifest in practical applications?
Due to space constraints, some visualizations are deferred
to Appendix A.8.

6.1 SIMULATIONS

Experiment settings We refer to the case presented in Sec-
tion. 3, as shown in Equation. (A.5), and generalize our
findings, with a specific focus on Fig. 1(a). We address an
intriguing and universal situation referred to as ’information
leakage,’ where the information of U is regularly retained
by W but incurs loss during transmission. Formally, we
claim P (W = wi | U = ui) ≥ 1 − ε, ε ∈ (0, 1). To
make the experiment simple and representative, we con-
sider the binary cases of W ,U ,X . On this basis, the
construction is P (W | U) := (1 − ε)I2∗2 + εJ2∗2 and
P (W | U) := (1 − ε)I2∗2, ε ∈ (0, 1). The construction
of f(Y ,W ,X) still follows (A.5)8. Moreover, we set the
iteration number as 1000.

Experiment result The simulation results, shown in Ta-
ble. 1 and Fig.3, indicate that PI-SFP successfully finds
optimal solutions and values, with a fast convergence rate
within 1000 iterations. At the beginning step, estimation
errors increase as ε increases, but they remain under control

8In order to avoid the ill-conditioned case for PYTHON 3.8.5,
we make a rather broad restriction that elements of P (U , x) are at
least 1e−2 in all cases (Assumption. 2)



ε
Φ PI-SFP result f(Yx = y) (Ground Truth) Error

θ1 θ2 ψ1 ψ2 ω1 ω2

0.1 0.067 0.133 0.261 0.239 0.333 0.167 0.370 0.372 0.548%
0.2 0.050 0.150 0.262 0.238 0.375 0.125 0.350 0.351 0.285%
0.3 0.029 0.171 0.264 0.236 0.429 0.072 0.298 0.301 0.997%

≥ 0.4 0.001 0.199 0.310 0.190 0.500 0.000 0.200 0.205 2.439%

TABLE 1: Simulation results (the upper bound is symmetric). The middle column Φ denotes the optimal solution within
iteration 106. The ground truth is approached via 106 Monte-Carlo sampling. Our PI-SFP result decreases monotonically
with the increasing ε, since the feasible region of latent variables Φ is gradually enlarged with ε. Detailed visulization of
convergence rate is shown in Fig. 3 (Appendix A.8).

by the theoretical error guaranteed by Theorem.1. During
iterations, estimation errors converge quickly to the real
f(Yx = y). The ground truth decreases as the feasible re-
gion of Φ increases, i.e., when ε increases. Moreover, when
ε ≥ 0.4, we observe that f(Yx = y) achieves its minimum
value Pearl [2009b] of f(y, x) = 0.200.

6.2 REAL-WORLD APPLICATIONS

In the simulation experiments, we have demonstrated that PI-
SFP can quickly converge to the valid bound; furthermore,
in the real experiments in this section, we show that the valid
bound generated by PI-SFP can more effectively substanti-
ate the causal relationships in the real world compared with
previous methods. Specifically, we re-analyze the Zika Virus
outbreak dataset [Taddeo et al., 2022, Tchetgen et al., 2024]
in the most-related literature [Tchetgen et al., 2023]. Our
PI-SFP result exhibits a more significant adverse effect from
Zika Virus to the birth rate, which is more aligned with the
well-known scientific hypothesis [Castro et al., 2018] com-
pared with the previous literature [Tchetgen et al., 2023].
We defer the experimental details to Appendix A.8 due to
space limitation.

7 JUSTIFICATION OF ASSUMPTIONS
AND FURTHER DISCUSSIONS

In this section, for the core partial observability assumption
(Assumption.1), we analyze its necessity, generalizability,
and verifiability. First, the necessity is supported by the fol-
lowing lemma. It leads to an interesting and counter-intuitive
negative result: informative proxies (namely transition ma-
trix P (W | U) is reversible) do not guarantee informative
bounds (instead of the vanilla bound);

lemma 1 Assume that [P (W | U), P (W | U)] =
[0dw∗du ,1dw∗du ], and f(U , x) > 0. We consider the
whole set of f(y,W ,U ,X) which is within F̃ and is
additionally compatible with two observed distributions
f(W ,¬x) > 0dw∗1, f(y,W , x) > 0dw∗1 by an unknown
P (W | U). Then (i) The tight lower bound of f(Yx = y)

is vanilla, namely f(y, x). (ii) If P (W | U) is restricted
to be left-reversible and f(W | ¬x) ̸= f(W | x, y), then
the tight lower bound of f(Yx = y) is still the vanilla
f(y, x). (iii) If P (W | U) is restricted to be left-reversible
and f(W | ¬x) = f(W | x, y), then f(Yx = y) is lower
bounded by another vanilla bound f(y | x).

The proof is in Appendix A.7.1. This lemma extends the
well-known inequality f(Yx = y) ≥ f(y, x) [Pearl, 2009b]
to single proxy control. Lemma 1 sufficiently indicates that
partial observability Assumption 1 ([Kuroki and Pearl, 2014,
Greenland, 2005]), instead of the reversibility assumption
in the previous literature (e.g., [Miao and Tchetgen, 2018]),
is more necessary for partial identification in most cases.

Furthermore, for genealizability, verifiability and practical
correspondence of Assumption 1, we refer readers to argu-
ments in Appendix A.7.1. Moreover, we provide algorithm
comparison and algorithm acceleration in Appendix A.7.2,
discuss graph structure extension in Appendix A.7.3, and
then extend to the continuous case of confounders in Ap-
pendix A.7.4.

8 CONCLUSIONS

In this paper, we highlight the limitations and strict assump-
tions of the transfer matrix P (W | U) through practical ex-
amples, emphasizing that exact observability and reversibil-
ity are often not feasible in real-world scenarios. Based on
this, we propose a novel PI-SFP framework that achieves
a valid bound for the causal effect, even with only partial
observability of P (W | U). To achieve it, we employ de-
formation techniques in DC programming and implement a
branch-and-bound method. We offer a theoretical analysis
of the mathematical reasons behind the lack of tight bounds
and provide sufficient and necessary conditions to determine
if the bounds are tight. We also conduct a convergence rate
analysis of PI-SFP. Furthermore, we provide specific con-
vergence rate analysis for these methods. We also provide a
fundamental negative result that informative proxies might
not yield informative partial identification bounds.

Our paper has initiated new research trajectories, specifically



focusing on the proximal partial identification with broader
confounding proxy information. An additional avenue for
exploration could involve evaluating the performance of PI-
SFP under more intricate partial observability assumptions.
Furthermore, it would be promising for in-depth investiga-
tion to extend our single-proxy control scheme to encom-
pass double-proxy control and other causal graphs. These
avenues remain further exploration in our future research.
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Literature Tools Assumptions
Valid

Instrument
Negative
exposure

Negative
outcome

Reversibility
Completeness

Bridge
function

Observability
of P (W | U)

[Balke and Pearl, 1994]
[Kitagawa, 2009] ! # # # # #

[Kuroki and Pearl, 2014](1)
[Rothman et al., 2008]
[Lee and Bareinboim, 2020]

# # ! ! # !a

[Kuroki and Pearl, 2014](2)
[Nagasawa, 2018] # ! ! ! # #

[Miao et al., 2018]
[Shi et al., 2020]
[Singh, 2020]
[Cui et al., 2020]
[Tchetgen et al., 2020]
[Deaner, 2018]

# ! ! ! ! #

[Kallus et al., 2021] # ! ! # ! #

Our paper $ $ " $ $ "b

TABLE 2: Tools and assumptions of previous literature on partial identification. [Kuroki and Pearl, 2014](1) is without Z,
while (2) is with Z.

aP (W | U) is assumed to be reversible and explicitly, totally observed.
bIn our paper, P (W | U) only needs be partially bounded.

In the appendices, we provide supplementary material and proofs for our main text. Appendices A.1-A.2 contain proofs for
propositions. In Appendix A.1, we establish that F ⊆ F̃ . In Appendix A.2, we demonstrate that the bound is tight under
certain conditions.

Appendix A.3 is dedicated to discussing the assumption. We explore cases where Assumption 2 does not hold.

Appendix A.5 contains the main results. Firstly, we show that the original simplex S0 encloses our identification region.
Secondly, we prove that the original optimization problem can be transformed into a set of sub-problems in the reduced
space. Thirdly, we demonstrate our construction to transfer the original nonlinear optimization problem to the weaker linear
case. Finally, we prove that our algorithm converges to the global optimal solution at an exponential rate.

Appendix A.6 extends our result from f(Yx = y) to the more general ACE.

Appendix A.7 is dedicated to extensions. We discuss 1) the previous assumptions in the original literature, 2) auxiliary
acceleration strategies, 3) extension of graph structure, and 4) extension to the continuous confounding.

A.1 THE PROOF OF PROPOSITION 1

According to Assumption. 1, by integration, we can also directly claim that if f(y,U ,W ,X) ∈ F , then

P (W | U)θ ≤ P (y,W , x) ≤ P (W | U)θ,∀x ∈ X.

P (W | U)ψ ≤ P (W , x) ≤ P (W | U)ψ,∀x ∈ X.

P (W | U)ω ≤ f(W ,¬x) ≤ P (W | U)ω,∀x ∈ X.

(A.1)

Thus [
−Id∗d
Id∗d

] f(y,W , x)T

f(W , x)T

f(W ,¬x)T

T −
[

−P (W | U)
P (W | U)

]
ϕ ≥ 0. (A.2)

Combined with the natural that θi ∈ [0, P (y, x)], ψi ∈ [0, P (x)], ωi ∈ [0, P (¬x)], i = 1, 2, ...d, we have f(y,U ,W ,X) ∈
F̃ . In conclusion, we claim F ⊆ F̃ .



A.2 THE PROOF OF PROPOSITION 2

As the optimal solution ϕopt satisfies the constraint (2) in Proposition. (2), we can equivalently claim that ϕopt is compatible
with some f(y,W ,U ,X) which satisfies f(y,W ,U ,X) ∈ F . On this basis, the original formulation can be transformed
with stricter constraints but equal minimum optimal value, namely that from

min f(y, x) +
d∑
i=1

1

ψi
θiωi, subject to: f(y,U ,W ,X) ∈ F̃ (A.3)

to

min f(y, x) +
d∑
i=1

1

ψi
θiωi, subject to: f(y,U ,W ,X) ∈ F̃ ∩ F = F . (A.4)

This is equal to the original (2). Hence f(Yx = y) is the tight lower bound of f(Yx = y) under constraint. 2.

By contrast, if the constraint (2) does not hold, then any f(y,U ,W ,X) compatible with ϕopt will be within Fc ∩ F̃ . In
another word, the minimum value of the original formulation will be lower than that of Eqn (2), and the bound f(Yx = y) is
not tight. Proved.

We further provide an instance that our bound is tight:
f(Y = y,W , x)T

f(Y = y,W ,¬x)T
f(Y ̸= y,W , x)T

f(Y ̸= y,W ,¬x)T

 =


0.08 0.12
0.15 0.1
0.18 0.12
0.15 0.1

 , [P (W | U)
P (W | U)

]
=

[
0.6I2∗2 + 0.4J2∗2

0.6I2∗2

]
. (A.5)

HereW ,U ,X are all binary, and In∗n,Jn∗n denote the n dimensional identity matrix and all-ones matrix respectively.
we can verify one of the optimal solutions ϕopt = [0 0.2 0.3 0.2 0.5 0]T . The corresponding f(y,U ,W ,X) satisfying
Eqn (2) exists, whose explicit form is detailed as follows:

[
f(Y = y,W = w1,U ,X) f(Y ̸= y,W = w1,U ,X)
f(Y = y,W = w2,U ,X) f(Y ̸= y,W = w2,U ,X)

]
=


0 0.15 0.18 0.15

0.08 0 0 0
0 0.1 0.12 0.1

0.12 0 0 0

 (A.6)

A.3 FURTHER DISCUSSION ON ASSUMPTION. 2

In this section, we consider the case when Assumption. 2 does not hold. We propose a new version of PI-SFP. Recall that
our objective function is:

f(Yx = y) = min f(y, x) +
d∑
i=1

1

ψi
θiωi, subject to: f(y,U ,W ,X) ∈ F̃ , i.e.,ϕ ∈ IRΦ. (A.7)

In our main text, we let ψoi = 1
ψi

. However, when we can not guarantee that ∃δ, ∀i ∈ {1, 2, ...d}, ψi ≥ δ (without
Assumption. 2,), then ψoi may turn to infinity. On this basis, we introduce another algebraic distortion ψoi = θiωi

ψi
. Then the

above programming can be transformed to:

f(Yx = y) = min f(y, x) +
d∑
i=1

ψoi

subject to: γ ∈ IRΓ,where IRΓ = {γ : ϕ ∈ IRΦ, ψ
o
i ψi = θiωi, ψ

o
i ≤ C, i = 1, ...d.}.

(A.8)

where C is a local optimal value (a priori computed) of f(Yx = y). On this basis, we can adopt the analogous strategy as in
the traditional PI-SFP. Here the original S0 is easy to be constructed since ∥γ∥+∞ < +∞.

Programming (A.8) can also be adopted under Assumption. 2. Compared with the traditional PI-SFP, firstly, programming
(A.8) needs an a priori computed C to upper bound ψoi . Secondly, we will do linearization on ψoi ψi = θiωi instead of
ψoi ψi = 1, which is more complex. There is no guarantee of which version is better and we will explore it in the future work.



A.4 VALID BOUND OF AVERAGE CAUSAL EFFECT (ACE)

The identification region of f(Yx) is constructed as follows.

IRF (Yx) = {f(Yx) :
∫ Y U

Y L

f(Yx = y)dy = 1,

∀y ∈ [Y L, Y U ], f(y,U ,W ,X) ∈ F}.
(A.9)

Then the valid bound of ACEX→Y can be denoted as [ACEX→Y , ACEX→Y ]:

ACEX→Y ≤ min{ACEX→Y

=

∫ XU

XL

∫ Y U

Y L

f(Yx = y)π(x)dxdy : f(Yx) ∈ IRF (Yx)},

ACEX→Y ≥ max{ACEX→Y

=

∫ XU

XL

∫ Y U

Y L

f(Yx = y)π(x)dxdy : f(Yx) ∈ IRF (Yx)}.

(A.10)

[ACEX→Y , ACEX→Y ] is the valid bound of ACE. In our paper, we aim to design an algorithm to seek the valid bound of
f(Yx = y), and then extend our strategy from bounding f(Yx = y) to bounding ACE. Homoplastically, we only need to
consider the optimization technique on the minimum case, and the maximum case will be symmetric.

A.5 THE PROOF OF THEOREM. 1

The sketch of proof This is the main result of our paper. The main procedure are as follows:

| f(Yx = y)− fnopt(Yx = y) |

= | f(Yx = y)− max
k∈{0,1,...n}

fS̃k
(Yx = y) | Definition of fnopt(Yx = y)

= min
k∈{0,1,...n}

| f(Yx = y)− fS̃k
(Yx = y) |

(1)
= min
k∈{0,1,...n}

| fS0(Yx = y)− fS̃k
(Yx = y) | Initialization

(2)
= min
k∈{0,1,...n}

| min
S∈Sk

fS(Yx = y)− fS̃k
(Yx = y) | Bisection

∗
≤ min
k∈{0,1,...n}

| fS̃k
(Yx = y)− fS̃k

(Yx = y) |

≤ | fS̃iLn

(Yx = y)− fS̃iLn

(Yx = y) |

(3)
=O(dia(S̃iLn

)) Bounding

(4)
=O((

√
3

2
)⌊

Ln
4d ⌋). Global_error

(A.11)

∗ is directly by (2) and we have previously mentioned it in Eqn (12). In the following demonstration, we mainly focus on
procedure (1)(2)(3)(4), corresponding to the algorithm part Initialization, Bisection, Bounding, Global_error in order.

(1) Initialization() We will claim that IRΓ ⊆ S0.

lemma 2 The original S0 satisfies IRΓ ⊆ S0, and thus f(Yx = y) = fS0
(Yx = y).

The proof of lemma. (2) The simplex construction is as follows. S0 is spanned by {S0
0 , S

1
0 , ...S

4d
0 }, where

Si0 =

{
γl, i = 0

γl + (α− 11∗4dγ
l) ∗ e⃗i, i ∈ {1, 2, ...4d}

, where γl = (γl1, γ
l
2, ...γ

l
4d)

T , (A.12)



where Si0 is the supporting vertices set described in our main text. For each γ ∈ IRΓ, we attempt to provide a direct
construction as follows:

∀γ ∈ IRΓ,we have γ ∗
=

4d∑
i=0

βiS
i
0, βi =

{
1−

∑4d
i=1 βi, i = 0

γe⃗i−γl
i

α−11∗4dγl , i = 1, 2, ...4d
, βi ∈ [0, 1], (A.13)

To prove (A.13), we only need to prove the correctness of the equality ∗ and the fact βi ∈ [0, 1],∀i = 0, 1, ...4d.

First, we demonstrate the correctness of this construction.
4d∑
i=0

βiS
i
0 = β0S0 +

4d∑
i=1

βiS
i
0

= β0γ
l +

4d∑
i=1

βi
(
γl + (α− 11∗4dγ

l)e⃗i
)

(definition of Si0)

= (1−
4d∑
i=1

βi)γ
l +

4d∑
i=1

βi
(
γl + (α− 11∗4dγ

l)e⃗i
)

(definition of βi)

= γl +

4d∑
i=1

γe⃗i − γli
α− 11∗4dγl

(
(α− 11∗4dγ

l)e⃗i
)

(definition of βi)

= γl +

(
4d∑
i=1

γe⃗i − γli

)
e⃗i = γ.

(A.14)

Second, we claim ∀i ∈ {1, ...4d}, βi ∈ [0, 1]. Since we already have βi > 0, i = 1, 2, ...4d according to the construction of
{α,γl}, we only need to prove the left: β0 > 0. Notice that

4d∑
i=1

βi =

4d∑
i=1

γe⃗i − γli
α− 11∗4dγl

=
11∗4dγ − 11∗4dγ

l

α− 11∗4dγl
. (A.15)

Due to β0 = 1−
∑4d
i=1 βi, it is equal to prove

11∗4dγ ≤ α = 1 + f(y, x) +
d2(ψl + ψu)2

4f(x)ψlψu
, (A.16)

where ψl, ψu are identified in the main text. It is equivalent to

d∑
i=1

ψoi +

d∑
i=1

θi +

d∑
i=1

ψi +

d∑
i=1

ωi ≤ 1 + f(y, x) +
d2(ψl + ψu)2

4f(x)ψlψu
, (A.17)

namely that
d∑
i=1

ψoi ≤ d2(ψl + ψu)2

4f(x)ψlψu
. (A.18)

We only need prove the inequality (A.18). It is due to the fact (ψi − ψl)( 1
ψi

− 1
ψu ) ≥ 0, namely 1 + ψl

ψu ≥ ψl

ψi
+ ψi

ψu . By
which we have

(1 +
ψl

ψu
)d ≥ ψl

d∑
i=1

1

ψi
+

1

ψu

d∑
i=1

ψi ≥ 2

√
ψl

ψu

√√√√ d∑
i=1

1

ψi

√
f(x). (A.19)

It is equal to
d∑
i=1

ψoi =

d∑
i=1

1

ψi
≤ (ψu + ψl)2d2

4f(x)ψuψl
, and thus

4d∑
i=1

βi ∈ [0, 1]. (A.20)

On this basis, β0 = 1 −
∑4d
i=1 βi ∈ [0, 1]. Combining with βi ≥ 0, i ∈ {0, 1, ...4d} and Eqn (A.13), we claim that

∀γ ∈ IRΓ, we have γ ∈ S0. Due to the arbitrary of γ, we have IRΓ ⊆ S0, and thus f(Yx = y) = fS0
(Yx = y).

(2) Bisection() We introduce the following lemma:



lemma 3 The partitioning set Sk satisfies fS0(Yx = y) = min
S∈Sk

fS(Yx = y).

The proof of lemma. (3) By definition of bisection process, S̃k is bisectioned into S̃k1, S̃k2. Then

Sk+1 :=
(
Sk \ S̃k

)
∪ {S̃k1, S̃k2} (A.21)

Hence we have ∪S∈Sk
S = ∪S∈Sk+1

S, ∀k = 0, 1, ... Thus S0 = ∪S∈Sk
S, and we have

fS0(Yx = y) = f(∪S∈Sk
S)(Yx = y) = min

S∈Sk

fS(Yx = y). (A.22)

Hence we have proved.

(3) Bounding() We first introduce lemma. (4) and lemma. (5) for preparation, then the procedure (3) is proved by lemma. (6).

lemma 4 The decomposition of (3) can be established as Eqn (5).

The proof of lemma. (4) Specifically, we give the explicit decomposition as follows, and the sub-script cyc means the cycle
of symbol set [ψoi , θi, ωi]:

ψoi θiωi

=

[
1

2

∑
cyc

(ψoi )
2θi +

1

2

∑
cyc

(ψoi )θ
2
i +

d∑
i=1

ψoi θiωi

]
− 1

2

∑
cyc

(ψoi )
2θi −

1

2

∑
cyc

(ψoi )θ
2
i

=

[
1

6
(
∑
cyc

ψoi )
3 − 1

6
(
∑
cyc

(ψoi )
3)

]
− 1

2

∑
cyc

(ψoi )
2θi −

1

2

∑
cyc

(ψoi )θ
2
i

=

[
1

6
(
∑
cyc

ψoi )
3 − 1

6
(
∑
cyc

(ψoi )
3)

]
+

1

2

∑
cyc

(ψoi )
4 − 1

4

∑
cyc

(ψoi )
4 − 1

4

∑
cyc

(θi)
2 − 1

2

∑
cyc

(ψoi )
2θi

+
1

2

∑
cyc

(ψoi )
2 − 1

4

∑
cyc

(ψoi )
2 − 1

4

∑
cyc

(θi)
4 − 1

2

∑
cyc

ψoi θ
2
i

=

[
1

6
(
∑
cyc

ψoi )
3 − 1

6
(
∑
cyc

(ψoi )
3)

]
+

1

2

∑
cyc

(ψoi )
4 − 1

4

∑
cyc

((ψoi )
2 + θi)

2 +
1

2

∑
cyc

(ψoi )
2−

1

4

∑
cyc

(ψoi + θ2i )
2.

(A.23)

On this basis, if we choose

C1(γ) =

d∑
i=1

[
1

6
(
∑
cyc

ψoi )
3 +

1

2

∑
cyc

(ψoi )
4 +

1

2

∑
cyc

(ψoi )
2

]
,

C2(γ) =

d∑
i=1

[
1

6

∑
cyc

(ψoi )
3 +

1

4

∑
cyc

[(ψoi )
2 + θi]

2 +
1

4

∑
cyc

[ψoi + θ2i ]
2

]
,

(A.24)

then we have
d∑
i=1

ψoi θiωi = C1(γ)− C2(γ). (A.25)

Here the Hessian matrix ∂2C1(γ)
∂2(γ) and ∂2C2(γ)

∂2(γ) is positive semi-definite:

∂2C1(γ)

∂2(γ)
=
∂2C2(γ)

∂2(γ)
= [γ + 6γ ◦ γ + 14d∗1] ◦

[
11∗2d 01∗d 11∗d

]T ≥ 04d∗1, (A.26)



where ◦ denotes the Hadamard product. Moreover,

∂2Di1(γ)

∂2(γ)
=
∂2Di2(γ)

∂2(γ)
=
[
11∗d 01∗d 11∗d 01∗d

]T ≥ 04d∗1. (A.27)

Di1(γ), Di2(γ) are also positive semi-definite.

On this basis, we further give the upper and lower bound of the convex function as follows:

lemma 5 If function F (γ) is differential and convex restricted by any simplex S, then F tan(γ) ≤ F (γ) ≤ F sec(γ), where
γ0 ∈ S. In our paper, function F (·) can be chosen as C1(·), C2(·), Di1(·), Di2(·), and F tan(·), F sec(·) hold the same
construction as in Formulation 10. 9

The proof of lemma. (5) The left part is intuitive. It is the tangent line equation of F (γ). We only consider the right part by
the convex property of F (γ), whose construction is motivated by Pei and Zhu [2013]. We use γi, i = 1, 2, ...4d to denote
the value of γ on each dimension (λi ∈ [0, 1],

∑4d
i=0 λi = 1):

F (γ) = F (

4d∑
i=0

λiS
i) ≤

4d∑
i=0

λiF (S
i) =

4d∑
i=0

λi[F (S
0), F (S1), ..., F (S4d)]

[
S0, ..., S4d

1, ..., 1

]−1

[
Si

1
]

= [F (S0), F (S2), ..., F (S4d)]

[
S0, ..., S4d

1, ..., 1

]−1

[
γ
1
] = F sec(γ).

(A.28)

Hence we have proved our lemma.

On this basis, we can claim (9) provides the lower bound of fS(Yx = y), namely fS(Yx = y) ≤ fS(Yx = y). After the above
difference-in-convex linear construction, we introduce the following lemma to approximate fS(Yx = y) by fS(Yx = y):

lemma 6 ∀S, | fS(Yx = y) − fS(Yx = y) |≤ A ∗ dia(S)2, where A = max
γ∈S0

∥∂(C1(γ)−C2(γ))
∂γ ∥ 2(

√
2+1)

√
d

δ +

max
γ∈S0

∥∂
2C1(γ)
∂γ2 ∥F + 1

2 max
γ∈S0

∥∂
2C2(γ)
∂γ2 ∥F < +∞.

The proof of lemma. (6) Since dia(S0) < +∞, we have that each element of γ ∈ S0 can be bounded, namely ∥γ∥+∞ <

+∞. Then ∥∂C1(γ)
∂γ ∥, ∥∂C2(γ)

∂γ ∥, ∥∂
2C1(γ)
∂γ2 ∥F , ∥∂

2C2(γ)
∂γ2 ∥F are all finite. Here ∥ · ∥ denotes the Euclidean norm, and ∥ · ∥F

denotes the Frobenius norm.

If the corresponding optimal solution of fS(Yx = y) and fS(Yx = y) are denoted as γ and γ (γ,γ ∈ S). Then according to
lemma. (5), | fS(Yx = y)− fS(Yx = y) | can be bounded as follows:

0 ≤fS(Yx = y)− fS(Yx = y)

= | C1(γ)− C tan
1 (γ)− C2(γ) + Csec

2 (γ) |

≤ | C1(γ)− C tan
1 (γ)− C2(γ) + Csec

2 (γ) | + | C1(γ)− C1(γ)− C2(γ) + C2(γ) |
∗
≤| C1(γ)− C tan

1 (γ) |︸ ︷︷ ︸
(1)

+ | C2(γ)− Csec
2 (γ) |︸ ︷︷ ︸

(2)

+ | (C1(γ)− C2(γ))− (C1(γ)− C2(γ)) |︸ ︷︷ ︸
(3)

(A.29)

item (1):We consider the last line. The tangent line equation satisfies the following bound by Taylor expansion:

| C1(γ)− C tan
1 (γ) |= O(max

γ∈S0

∥∂
2C1(γ)

∂γ2
∥F (dia(S))2) = O(dia(S)2), (A.30)

9The matrix of the starting simplex
[
S0
0 , ..., S

4d
0

1, ..., 1

]
is reversible by the construction in lemma. (2). Moreover, the reversibility of[

S0, ..., S4d

1, ..., 1

]
, S ∈ Sk, k = 0, 1, ... still holds during bisection, since each bisection can be seen as a linear transformation between

different columns.



item (2): On the other hand, note that γ =
4d∑
j=0

λjS
j , here

4d∑
j=0

λj = 1, λj ≥ 0:

| C2(γ)− Csec
2 (γ) |=− [C2(S

0), C2(S
1), ...C2(S

4d)]

[
S0, ..., S4d

1, ..., 1

]−1
 4d∑
i=0

λiS
i

1

+ C2(

4d∑
j=0

λjS
j)

=

4d∑
j=0

λjC2(S
j)− C2(

4d∑
j=0

λjS
j).

(A.31)

We now aim to bound Eqn (A.31), inspired by [Budimir et al., 2001]. For simplicity, we use ▽ to denote the derivative of a
vector. Notice that the convex function has the property:

C2(

4d∑
i=0

λjS
j)− C2(S

j) ≥ ⟨∇C2(S
j),

4d∑
j=0

λjS
j − Sj⟩ (A.32)

By summation, we have

(A.31) =
4d∑
j=0

λjC2(S
j)− C2(

4d∑
i=0

λjS
j)

≤
4d∑
j=0

λj⟨∇C2(S
j),−

4d∑
j=0

λjS
j + Sj⟩

=

4d∑
j=0

λj⟨∇C2(S
j), Sj⟩ − ⟨

4d∑
j=0

λjS
j ,

4d∑
j=0

λj∇C2(S
j)⟩

(A.33)

(A.33) equals to

1

2

4d∑
i=0

4d∑
j=0

λiλj
[[
⟨∇C2(S

j), Sj⟩+ ⟨∇C2(S
i), Si⟩

]
−
[
⟨∇C2(S

j), Si⟩+ ⟨∇C2(S
i), Sj⟩

]]
=
1

2

4d∑
i=0

4d∑
j=0

λiλj⟨Si − Sj ,∇C2(S
i)−∇C2(S

j)⟩

≤1

2

4d∑
i=0

4d∑
j=0

λiλj∥Si − Sj∥∥∇C2(S
i)−∇C2(S

j)∥

≤1

2

4d∑
i=0

4d∑
j=0

λiλj(max
γ∈S

∥∂
2C2(γ)

∂γ2
∥F )∥Si − Sj∥2

≤1

2

4d∑
i=0

4d∑
j=0

λiλj(max
γ∈S

∥∂
2C2(γ)

∂γ2
∥F )dia(S)2

≤1

2
(max
γ∈S0

∥∂
2C2(γ)

∂γ2
∥F )dia(S)2.

(A.34)

We have

0 ≤
4d∑
j=0

λjC2(S
j)− C2(

4d∑
j=0

λjS
j) ≤ 1

2
max
γ∈S

∥∂
2C2(γ)

∂γ2
∥F (dia(S))2 = O((dia(S))2). (A.35)

Thus

Eqn (A.31) =
4d∑
j=0

λjC2(S
j)− C2(

4d∑
j=0

λjS
j) = O((dia(S))2). (A.36)



item (3) We introduce an auxiliary optimization problem as follows:

min f(y, x) + C1(γ)− C2(γ)

subject to : ϕ ∈ IRΦ, Di1(γ)−Di2(γ) = 1,

γ ∈ {γ
′
: ∃γ

′′
∈ S, ∥γ

′
− γ

′′
∥ ≤ (

√
2 + 1)

√
d

δ
dia(S)2} ∩ S0.

(A.37)

Compared with the optimization problem of fS(Yx = y) (by (A.37) with an additional constraint γ ∈ S), (A.37) provides a
relaxed constraint on γ. We denote the optimal solution of (A.37) as γ

:
, and the optimal value as fS(Yx = y)

:::::::::
.

On the one hand, (A.37) slightly relaxes the constraint γ ∈ S0. Namely for each γ
:

, there exists a corresponding γ
′′ ∈ S

with a distance less than Q
δ dia(S)

2. Hence

[C1(γ)− C2(γ)]− [C1(γ
:
)− C2(γ

:
)]

≤[C1(γ
′′
)− C2(γ

′′
)]− [C1(γ

:
)− C2(γ

:
)]

≤max
γ∈S0

∥∂(C1(γ)− C2(γ))

∂γ
∥

(
(
√
2 + 1)

√
d

δ
dia(S)2

)
.

(A.38)

On the other hand, we consider the optimal solution γ of fS(Yx = y). We identify the elements γT = ((ψo)T ,θT ,ψT ,ωT ).
Then we introduce an auxiliary solution as follows:

ψoi
::

=
1

ψi
,ψo

::
= (ψo1

::
, ...ψod

::
),γ

:

′
= ((ψo

::
)T ,θT ,ψT ,ωT ). (A.39)

We will show that γ
:

′
is within the feasible region of (A.37). By identification in (A.39), the first row of constraints in (A.37)

can be directly satisfied. Moreover, by Assumption. 2, we have

∥γ
:

′
− γ∥ =

(
d∑
i=1

(
1

ψi
− ψoi )

2

) 1
2

≤1

δ
(

d∑
i=1

(ψiψ
o
i − 1)2)

1
2

=
1

δ
(

d∑
i=1

(Di1(γ)−Di2(γ)− 1)2)
1
2

≤
√
d

δ
max
i=1,...d

(
1−

(
Di1(γ)−Di2(γ)

))
≤
√
d

δ
max
i=1,...d

[(
Dsec
i1 (γ)−Dtan

i2 (γ)
)
−
(
Di1(γ)−Di2(γ)

)]
.

(A.40)

Symmetrically, we have

∥γ
:

′
− γ∥ ≤

√
d

δ
max
i=1,...d

[(
Di1(γ)−Di2(γ)

)
−
(
Dtan
i1 (γ)−Dsec

i2 (γ)
)]
. (A.41)

By the same strategy in item(1)-(2), and noticing the fact that

max
γ∈S

∥∂
2Di1(γ)

∂γ2
∥F = 2,max

γ∈S
∥∂

2Di2(γ)

∂γ2
∥F =

√
2, (A.42)



(A.40) and (A.41) can be combined as

∥γ
:

′
− γ∥ ≤

√
d

δ
min{1

2
∗ 2 +

√
2, 2 +

1

2

√
2}dia(S)2 =

√
d

δ
(
√
2 + 1)dia(S)2. (A.43)

Hence we claim this γ
:

′
is within the feasible region of (A.37). Then

[
C1(γ

:
)− C2(γ

:
)

]
−
[
C1(γ)− C2(γ)

]
≤
[
C1(γ

:

′
)− C2(γ

:

′
)

]
−
[
C1(γ)− C2(γ)

]
≤ max

γ∈S
∥∂(C1(γ)− C2(γ))

∂γ
∥
√
d

δ
(
√
2 + 1)dia(S)2.

(A.44)

Combining (A.38) and (A.44), we have

| (C1(γ)− C2(γ))− (C1(γ)− C2(γ)) |≤ max
γ∈S0

∥∂(C1(γ)− C2(γ))

∂γ
∥2

√
d

δ
(
√
2 + 1)dia(S)2. (A.45)

Combination of item(1)-(3) Combining with Eqn (A.30) and Eqn (A.36), and recalling the bound in (A.29), we have:

fS(Yx = y) ≤ fS(Yx = y) ≤ fS(Yx = y) +A ∗ dia(S)2. (A.46)

In brief, we have | fS(Yx = y)− fS(Yx = y) |= O(dia(S)2). Thus we have proved our lemma.

Remark 1 We can do enhancement in Bounding as follows. It is through taking advantage of the information from the
parent simplex pa(S) 10 and encapsulating the above bounding strategy into a recursive form during partitioning.

fS(Yx = y) =max{Bounding(pa(S)), fS(Yx = y)} (A.47)

(4) Global_error For the final preparation, we introduce the bisection theorem:

Theorem 2 (Kearfott [1978], Theorem 3.1) When S̃ik is bisectioned from S0 by k times, we have dia(S̃ik) ≤
(
√
3
2 )⌊

k
4d ⌋dia(S0).

On this basis, notice that lemma. (6) holds on each iteration, and dia(S0) < +∞, then we have

| fS̃iLn

(Yx = y)− fS̃iLn

(Yx = y) |≤ A((
3

4
)⌊

Ln
4d ⌋) = O((

3

4
)

Ln
4d ), (A.48)

where A is identified in our main text.

Until here we have proved procedure (1)-(4), thus the main part of Theorem. 1 has been proved.

Additionally, consider the infinite case. Due to Ln ≥ log(n) (the worst case is that simplices set is bisectioned like a
complete binary tree), we have L→ +∞ when n→ +∞, thus limn→+∞ | f(Yx = y)− fnopt(f(Yx = y)) |= 0. Done.

A.6 EXTENSION TO THE ACE CASE

Taking advantage of PI-SFP, we can further achieve the valid bound of ACEX→Y . The above PI-SFP algorithm is to seek
f(Yx = y) when x is fixed. We do further extension to consider all values ofX simultaneously. In this sense, we reorganize
(2) to bound ACE as follows:

10S1 = pa(S2) denotes S2 is bisectioned from S1.



min
∑
x

π(x)

∫ Y U

Y L

yf(y, x)dy

+
∑
x

π(x)

d∑
i=1

(∫ Y U

Y L yf(y, ui, x)dy
)
f(ui,¬x)

f(ui, x)

subject to: f(y,U ,W ,X) ∈ F .

(A.49)

Using the same strategy as in Section. 3-4, we can achieve the valid bound of ACEX→Y in (A.10),

We first illustrate the construction of (A.49):∫ XU

XL

∫ Y U

Y L

f(Yx = y)π(x)dxdy

=

∫ XU

XL

∫ Y U

Y L

d∑
i=1

(
f(y, ui, x)f(ui,¬x)

f(ui, x)
+ f(y, x)

)
π(x)dxdy

=
∑
x

π(x)

∫ Y U

Y L

yf(y, x)dy +
∑
x

π(x)

d∑
i=1

(∫ Y U

Y L yf(y, ui, x)dy
)
f(ui,¬x)

f(ui, x)
.

(A.50)

Let X = {x1, x2, ...xdx}. In this section, we extend PI-SFP method from bounding f(Yx = y) to bounding ACE. For
simplicity, we extend the denotations in our main text as follows:

θi|x =

∫ Y U

Y L

yf(y, U = ui, x)dy, θx = (θ1|x, θ2|x, ...θd|x)
T ,

ψi|x = f(U = ui, x), ψx = (ψ1|x, ψ2|x, ...ψd|x)
T ,

ωi|x = f(U = ui,¬x), ωx = (ω1|x, ω2|x, ...ωd|x)
T ,

ψi|xψ
o
i|x = 1, ψo

x = (ψo1|x, ψ
o
2|x, ...ψ

o
d|x)

T ,

ϕx = (θx,ψx,ωx), γx =
(
(ψo

x)
T ,θTx ,ψ

T
x ,ω

T
x

)T
.

(A.51)

On this basis, the independent variables are transformed to γ = (γx1
,γx2

, ...γxdx
). Following the same strategy as in

Section. 3 and Section. 4, we can relax the programming (A.49) in our main text as follows. It is a natural extension of (3) in
Section. 3, by which we seek the valid bound of ACE:

ACEX→Y =min
∑
x

∫ Y U

Y L

π(x)yf(y, x)dy +
∑
x

d∑
i=1

ψoi|xθi|xωi|xπ(x),

subject to ∀x ∈ X,ψoi|xψi|x = 1,ϕx ∈ IRΦx = IR1
Φx

∩ IR2
Φx
,

(A.52)

where the set IR1
Φ is constructed as

IR1
Φx

= {ϕx :

[
−Id∗d
Id∗d

] (
∫ Y U

Y L yf(y,W , x)dy)T

f(W , x)T

f(W ,¬x)T

T −
[

−P (W | U)
P (W | U)

]
ϕx ≥ 0}. (A.53)

Id∗d is the d ∗ d identity matrix. Moreover, the set IR2
Φ indicates the natural constraints by default:

IR2
Φx

=

ϕx :

 11∗dθx
11∗dϕx

11∗dωx

 =

 ∫ Y U

Y L yf(y, x)dy
f(x)
f(¬x)}

 ,∀i,
θi|x ∈ [0, f(y, x)]
ϕi|x ∈ (0, f(x)]
ωi|x ∈ [0, f(¬x)]


 . (A.54)



11∗d is the 1 ∗ d all-ones vector. Then (7) in our main text is extended as

min
∑
x

π(x){[C tan
1 (γx)− Csec

2 (γx)]1π(x)>0 + [Csec
1 (γx)− C tan

2 (γx)]1π(x)<0},

subject to Dl
i(γx) ≤ 1, Du

i (γx) ≥ 1,∀i = 1, 2, ...d,ϕx ∈ IRΦx .

(A.55)

Here the function C tan
k (γx), C

sec
k (γx), k = 1, 2, Dl

i(γx), D
u
i (γx), i = 1, 2, ...d are all following (10) in our main text. After

this construction, we adopt the same simplicial partition strategy as in our main text.

A.7 THE PROOF OF FURTHER DISCUSSIONS AND EXTENSIONS

This part is the supplement of the discussion in the main paper.

A.7.1 Discussion 1: the proof of lemma. (1) and the justification of our Assumption 1

For simplification, the denotations Y = y, x are simplified as y and x, the denotation ¬x is simplified as xc, and dw is
simplified as W . Samely, we use Ei∗i to denote the i ∗ i identity matrix, Ji,j to denote the i ∗ j all-ones matrix, and 0i∗j to
denote the i ∗ j all-zero matrix.

• Conclusion 1: The tight lower bound of f(Yx = y) is f(y, x).

We divide it into two parts. On the one hand, if W ≥ d, P (W | U) can be constructed as follows.

P (W | U) =


m∗m︷︸︸︷
P11

(W −m)∗m︷︸︸︷
P21

(d−m)∗(d−m)︷︸︸︷
P12

(W −d+m)∗(d−m)︷︸︸︷
P22

 , (A.56)

where P11,P12,P21,P22 are matrices whose upper brackets indicate their rows and columns (m ∈ [1, d− 1]). Specifically,

P11 =

m∑
i=1

f(W = wi | y, x)Em∗m, P12 =

d−m∑
i=1

f(W = wi | xc)E(d−m)∗(d−m),

P21 =

f(W = wm+1 | y, x)
...

f(W = wW | y, x)

J1∗m, P22 =

f(W = wd−m+1 | xc)
...

f(W = wW | xc)

J1∗(d−m).

(A.57)

There is a solution for f(y,U , x), f(U , xc) respectively as

1
m∑
i=1

f(W = wi | y, x)


f(y,W = w1, x)

...
f(y,W = wm, x)

0(d−m)∗1

 , 1
d−m∑
i=1

P (W = wi | xc)


0m∗1

P (W = w1, x
c)

...
P (W = wd−m, x

c)

 . (A.58)

Due to f(y,U , x) ◦ f(U , xc) = 0 and the condition f(U , x) > 0, we have

f(Yx = y) = f(y, x) +

d∑
i=1

f(y, ui, x)

P (ui, x)
P (ui, x

c) = f(y, x). (A.59)

On the other hand, if W < d, we make adjustments on (A.56) (m1 +m2 ≤ W ):
m1∗m1︷︸︸︷
P11

(W −m1)∗m1︷︸︸︷
P21

m2∗m2︷︸︸︷
P12

(W −m2)∗m2︷︸︸︷
P22

W ∗(d−m1−m2)︷︸︸︷
P3

 , (A.60)



Specifically,

P11 =

m1∑
i=1

P (W = wi | y, x)Em1∗m1 , P12 =

m2∑
i=1

P (W = wi | xc)Em2∗m2 .

P21 =

f(W = wm1+1 | y, x)
...

f(W = wW | y, x)

J1,m1 , P22 =

f(W = wm2+1 | xc)
...

f(W = wW | xc)

J1∗m2 .

P3 =
1

W
JW ∗(d−m1−m2).

(A.61)

Analogously, there is a solution for f(y,U , x), f(U , xc) as follows respectively:

1
m1∑
i=1

f(W = wi | y, x)


f(y,W = w1, x)

...
f(y,W = wm1

, x)
0(d−m1)∗1

 , 1
m2∑
i=1

P (W = wi | xc)


0m1∗1

P (W = w1, x
c)

...
P (W = wm2

, xc)
0(d−m1−m2)∗1

 . (A.62)

In this case, we also have f(Yx = y) = f(y, x) +
d∑
i=1

f(y,ui,x)
f(ui,x)

f(ui, x
c) = f(y, x). In conclusion, if no assumptions are

imposed, we have min f(Yx = y) = f(y, x). Proved.

• Conclusion 2: If P (W | U) is restricted to be left-reversible and f(W | ¬x) ̸= f(W | x, y), then the tight lower
bound of f(Yx = y) is f(y, x).

Without loss of generalization, we can assume that ∃i0 ∈ {d, d+1, ...W }, such that f(W = wi0 | ¬x) ̸= f(W = wi0 | x, y),
or else we just need to relabelW in another order.

On this basis, we still follow the Construction. A.56 in the first part. The tight lower bound has already been proved as
f(y, x), thus we only need demonstrate that with some choice of m, P (W | U) is left-reversible with the above assumption.
In practice, we choose m = d− 1. Then the P (W | U) is reformulated as


(d−1)∗(d−1)︷︸︸︷
P11

(W −d+1)∗(d−1)︷︸︸︷
P21

1∗1︷︸︸︷
P12

(W −1)∗1︷︸︸︷
P22

 :=



d−1∑
i=1

P (W = wi | y, x)E(d−1)∗(d−1)
f(W = wd | y, x)
f(W = wd+1 | y, x)

...
f(W = wW | y, x)

J1∗(d−1)


f(W = w1 | xc)
f(W = w2 | xc)

...
f(W = wW | xc)



. (A.63)

We make equivalent denotations: 
(d−1)∗1︷︸︸︷
P

′

12
(W −d+1)∗1︷︸︸︷
P

′

22

 :=


1∗1︷︸︸︷
P12

(W −1)∗1︷︸︸︷
P22

 (A.64)

In the following part, we claim that we only need to prove P
′

22 − P21P
−1
11 P

′

12 ̸= 0. We do the following algebraic
distortion:[

E(d−1)∗(d−1) 0(d−1)∗(W −d+1)

−P21P
−1
11 E(W −d+1)∗(W −d+1)

]
∗
[
P11 P

′

12

P21 P
′

22

]
=

[
P11 P

′

12

0(W −d+1)∗(d−1) P
′

22 − P21P
−1
11 P

′

12

]
. (A.65)

According to the well-known Sylvester’s inequality [Matsaglia and PH Styan, 1974]: ∀Am∗n,Bn∗p, we have
min{rank(A), rank(B)} ≥ rank(AB) ≥ rank(A) + rank(B)− n. Then we have

rank

([
P11 P

′

12

P21 P
′

22

])
= rank

([
P11 P

′

12

0(W −d+1)∗(d−1) P
′

22 − P21P
−1
11 P

′

12

])
. (A.66)



If P
′

22−P21P
−1
11 P

′

12 = 0(W −d+1)∗(d−1), then the right side of rank() will be equal to rank(
[
P11,P

′

12

]
) = d−1 < d.

On the other hand, if P
′

22 − P21P
−1
11 P

′

12 ̸= 0(W −d+1)∗(d−1), then it will turn to be d (full column rank). In conclusion,
to demonstrate the left-reversibility of P (W | U), P

′

22 − P21P
−1
11 P

′

12 ̸= 0 is all we need.

If we use [·](i) to denote the i-th element of vector i = d, ...W , then

[P
′

22 − P21P
−1
11 P

′

12](i) =

d−1∑
i=1

f(W = wi | xc)

 f(W = wi, x
c)

d−1∑
i=1

f(W = wi, xc)

− f(y,W = wi, x)
d−1∑
i=1

f(y,W = wi, x)

 . (A.67)

We make the contradiction. If we have P
′

22 − P21P
−1
11 P

′

12 = 0(W −d+1)∗(d−1), then

∥P
′

22 − P21P
−1
11 P

′

12∥1 =

d−1∑
i=1

f(W = wi | xc)


W∑
i=d

f(W = wi, x
c)

d−1∑
i=1

f(W = wi, xc)

−

W∑
i=d

f(y,W = wi, x)

d−1∑
i=1

f(y,W = wi, x)



=

d−1∑
i=1

f(W = wi | xc)

 f(xc)
d−1∑
i=1

f(W = wi, xc)

− f(y, x)
d−1∑
i=1

f(y,W = wi, x)



=

d−1∑
i=1

f(W = wi | xc)

 1
d−1∑
i=1

f(W = wi | xc)
− 1

d−1∑
i=1

f(W = wi | y, x)

 = 0.

(A.68)

Thus we have
d−1∑
i=1

f(W = wi | xc) =
d−1∑
i=1

f(W = wi | y, x). Then we substitute it into Eqn (A.67), we have

f(W = wi | xc)− f(W = wi | x, y) = 0,∀i ∈ {d, ...W }. (A.69)

Contradiction! Hence we have P22 − P21P
−1
11 P12 ̸= 0(W −d+1)∗(d−1), and then P (W | U) in Construction. A.63 is

left-reversible. Proved.

• Conclusion 3: If P (W | U) is restricted to be left-reversible and f(W | ¬x) = f(W | x, y), then the tight lower
bound of f(Yx = y) is f(y | x).

If this assumption holds, we will have P
′

22 − P21P
−1
11 P

′

12 = 0 in the above construction, thus P (W | U) will be
irreversible and validates the condintion here. Hence we need another way.

According to the left-reversibility of P (W | U), we have

f(U | x, y) = P (W | U)−1f(W | x, y) = P (W | U)−1f(W | xc) = f(U | xc) (A.70)



Then we have

f(Yx = y) = f(x, y) +

d∑
i=1

f(x, y, ui)

f(x, ui)
f(ui, x

c)

= f(x, y) + f(x, y)f(xc)

d∑
i=1

f(ui | x, y)
f(x, ui)

f(ui | xc)

= f(x, y) + f(x, y)f(xc)

d∑
i=1

f(ui | x, y)2

f(x, ui)

∗
≥ f(x, y) + f(x, y)f(xc)

(
∑d
i=1 f(ui | x, y))2∑d
i=1 f(x, ui)

= f(x, y)

(
1 +

f(xc)

f(x)

)
= f(y | x).

(A.71)

According to the Chauchy’s inequality, the ′ ≥′ (∗) turns to be ′ =′ if and only if f(U | x, y) = f(U | x). Combining with
Eqn (A.70), we have f(U | x, y) = f(U | x) = f(U | xc) = f(U). It holds if and only if f(W | x, y) = f(W | x) =
f(W | xc) = f(W ), or else the lower bound is not tight.

Generalisability Our PI-SFP approach’s generalizability can be highlighted in two ways: 1) PI-SFP can handle cases where
either reversibility or total observability, or both, do not exist, which renders the literature on single-proxy control ineffective.
2) Extending PI-SFP to incorporate negative control (as shown in Fig.1(b) and Fig.1(c)) is an optional add-on and not a
necessity. This simplicity eliminates the need for numerous assumptions, such as completeness and bridge function, which
are present in previous double negative control literature [Miao et al., 2018, Cui et al., 2020, Tchetgen et al., 2020, Deaner,
2018, Shi et al., 2020, Singh, 2020, Nagasawa, 2018, Kallus et al., 2021]. The negative control extension to Fig. 1(b)-1(c)
will be discussed in the next subsection.

Verifiability The feasibility of Assumption 1 has been suggested in previous work. Kuroki et al. Kuroki and Pearl [2014]
suggested that the bounds P (W | U) and P (W | U) can be determined a priori through the Bayesian strategy [Greenland,
2005] and some re-calibration methods [Rothman et al., 2008, Selén, 1986]. In their "Head Start Program," they provide a
detailed estimation of P (W | U) to support this claim.

Practical correspondence

• Some general cases (just conduct sampling upon U ): This hypothesis is commonly encountered in real situations, with
Kuroki, Judea Pearl Kuroki and Pearl [2014] (page 4) and Li, Judea Pearl Li and Pearl [2022] specifically illustrating
how to sample U to infer approximate/bounded estimates of P (W | U), and mentioning such sampling method has
been previously and commonly used, such as fundamental work Greenland [2005], Rothman et al. [2008], Carroll et al.
[2006], Selén [1986].

• Concrete example 1 for P (W | U) (recommendation system:W denotes the popularity of U ): There are also some
more practical examples in our life. For instance, in the context of recommendation systems, a significant amount of
work uses the representation of product-user features as a confounder U . However, this representation often includes
sensitive information, leading to incomplete observations of U . Building upon this, the popularity ranking of products
in different regions and time periods is publicly available information, which can be used as a proxy variableW for
products. By analyzing the different purchasing tendencies of various demographic groups, we can obtain upper and
lower bounds estimates for the transition matrix P (W | U). In this scenario, firstly, P (W | U) is often irreversible
because popularity ranking information itself can be seen as an indicator/projection, and the information it carries is
not as rich as the product features. Secondly, we typically can only estimate the upper and lower bounds of P (W | U)
(through methods like Bayesian estimation), as the sampling estimation process for U is likely to be biased.

• Concrete example 2 for P (W | U) (privacy protection: W is the de-identified U ): Our PI-SFP framework is also
related to privacy-protecting scenario. Survey collectors often need to gather some sensitive information U . To obtain
more accurate responses and avoid the risk of disclosing personal privacy, they often ask survey respondents to answer
some yes-or-no questions using the Randomized Response method. We consider the survey results as W , with the
following steps: First, the survey respondent flips a coin (with equal probability of heads or tails), and only they know
the result. If it lands heads, they answer the question truthfully; if it lands tails, they flip the coin again (with only them
knowing the result); if the second toss is headed, they answer “Yes”; if it is tails, they answer “No”. With this setup,



even if we do not know U , we can deduce P (W ) and P (W |U) = [3/4, 1/4; 1/4, 3/4]. Of course, this simple setup
may still expose other sensitive information, such as the joint distribution of P (Y ,U ,X), which is something the
government would not want to see or make public. Therefore, in practical use, for highly confidential information
which requires the strongest privacy protection, we tend to develop a more complex/dynamic/irreversible P (W |U)
(i.e., privacy-protecting algorithms) and manually set its upper and lower bounds.

A.7.2 Discussion 2: algorithm comparison and acceleration

In this section, we discuss two additional optimization methods which are potential to solve our partial observability problem.
We subsequently illustrate the superior performance of PI-SFP compared to these methods. Furthermore, we introduce a
novel pruning strategy supported by a local optimization method, which accelerates the optimization process.

Algorithm comparison The author of Shen et al. [2017] derived an ε−approximation method that can be utilized in our
problem, and the outcome will lie within [f(Yx = y), (1 + ε)f(Yx = y)]. However, this algorithm exhibits an exponential
time complexity for the dimension du, making it challenging to operate effectively in high-dimensional confoundings.
Additionally, an iterative algorithm was developed in Le Thi et al. [2014] to search the Karush-Kuhn-Tucker (KKT) point of
the difference-in-convex (DC) problem, which can be applied to (3). Nevertheless, KKT theory cannot guarantee global
optimality compared to our PI-SFP.

Algorithm acceleration To expedite the PI-SFP process, we propose setting sufficient criteria to evaluate whether the current
partition contains the optimal solution. If the criteria are not met, we can delete the branch online and narrow our search. To
this end, we propose a new auxiliary algorithm specifically designed to search for the local minimum of f(Yx = y), which
serves as an upper-bound of f(Yx = y). We achieve this by implementing the algorithm in the sub-simplex S. Specifically,
if the optimal value fS(Yx = y) is even larger than the local minimum, then it will be larger than f(Yx = y). Therefore,
we claim that this partition must not include the optimal solutions and can be removed permanently. The auxiliary local
optimization algorithm is provided as follows. The principle of our algorithm is based on the lemma:

lemma 7 ∀i, j, if we make adjustment: θ̆i θ̆j
ψ̆i ψ̆j
ω̆i ω̆j

 =

 θi θj
ψi ψj
ωi ωj

[ α 1− α
1− α α

]
, where α ∈

{
(0, 1] if ( θiθj − ψi

ψj
)(ωi

ωj
− ψi

ψj
) ≥ 0.

[1,+∞) if ( θiθj − ψi

ψj
)(ωi

ωj
− ψi

ψj
) ≤ 0,

(A.72)

Then we have ∑
m=i,j

θ̆m

ψ̆m
ω̆m ≤

∑
m=i,j

θm
ψm

ωm. (A.73)

We consider the case α ∈ (0, 1), and the second case is symmetric. Due to ( θiθj − ψi

ψj
)(ωi

ωj
− ψi

ψj
) ≥ 0, we have

(θi − θj)(ωj − ωi)ψiψj + (θjωjψi − θiωiψj)(ψj − ψi) ≤ 0. (A.74)

If we denote that

Qij := αψiψj(θi − θj)(ωj − ωi) [(1− α)ψi + αψj ] + (θjωjψi − θiωiψj) [(1− α)ψi + αψj ]ψj . (A.75)

Then Eqn (A.74) is equal to
Qij ≤ −Qji. (A.76)

Furthermore, we find

Qij = ψjψ̆j [αψi(θi − θj)(ωj − ωi) + θjωjψi − θiωiψj ] =
1

1− α
ψjψ̆j

[
θ̆iω̆iψi − θiωiψ̆i

]
. (A.77)

Hence Eqn (A.76) can be transformed as

ψjψ̆j

[
θ̆iω̆iψi − θiωiψ̆i

]
< −ψiψ̆i

[
θ̆jω̆jψj − θjωjψ̆j

]
(A.78)



Hence ∑
m=i,j

θ̆m

ψ̆m
ω̆m ≤

∑
m=i,j

θm
ψm

ωm. (A.79)

Thus we have proved. By this strategy, we should choose suitable α to satisfy ϕ ∈ IRΦ, namely that f(y,W ,U ,X) ∈ F̃ .

A.7.3 Discussion 3: Extension to Fig. 1(b) and 1(c)

Fig. 1(a) Our algorithm PI-SFP mainly focuses on Fig. 1(a). Moreover, ifW → Y is added, the optimization problem will
be transferred under Assumption. 1.

min f(y | U ,X = x)f(U),

subject to f(y | U ,X = x)f(U |X = x) = f(y | x),
where f(U |X = x) satisfies[
f(W | U)f(U |X = x)− f(W |X = x)
f(W |X = x)− f(W | U)f(U |X = x)

]
≥ 0,[

f(W | U)f(U)− f(W )
f(W )− f(W | U)f(U)

]
≥ 0.

(A.80)

Notice that the feasible region of f(y | U ,X = x) and f(U) is even more irregular than in (3). Nevertheless, we can still
adopt an analogous strategy to PI-SFP to approximate its optimal value. This remains a topic for future research.

Fig. 1(b) and 1(c) The double negative control via introducing auxiliary exposure Z can enhance our estimation. Due to the
fact f(y | u, x) = f(y | u, x, Z), we have:

f(Yx = y) := f(y, x) + max
Z⊆Z

min
f(y,W ,U ,X,Z)∈F̃Z

d∑
u=1

f(y, ui, x, z ∈ Z)f(ui,¬x)
f(ui, x, z ∈ Z)

.
(A.81)

The feasible region F̃Z of f(y,W ,U ,X,Z) is constructed analogously to that of F̃ . Specifically, for each subset Z ⊆ Z,
we can apply PI-SFP and select the maximum of them as the best lower bound of f(Yx = y). We will conduct a more
detailed analysis in our subsequent work, particularly in comparison to the performance of the single-proxy control.

F̃Z is identified as follows:

We denote
θi = f(y, ui, x, z ∈ Z)
ψi = f(ui, x, z ∈ Z)
ωi = f(ui,¬x)

,
θZ = (θ1, θ2, ...θd)

T

ψZ = (ψ1, ψ2, ...ψd)
T

ωZ = (ω1, ω2, ...ωd)
T
, ϕZ =

(
θZ ψZ ωZ

)
. (A.82)

where f(y,W ,U ,X,Z) ∈ F̃Z = {ϕZ ∈ IRZ , IRZ = IR1
Z ∩ IR2

Z} leads to the following constraints that we really use:

IR1
Z = {ϕZ :

[
−Id∗d
Id∗d

] f(y,W , x, z ∈ Z)T

f(W , x, z ∈ Z)T

f(W ,¬x, z ∈ Z)T

T −
[

−P (W | U)
P (W | U)

]
ϕZ ≥ 0}. (A.83)

Moreover, the set IR2
Φ indicates the natural constraints by default:

IR2
Z =

ϕZ :

 1Tθ
1Tϕ
1Tω

 =

 f(y, x, z ∈ Z)
f(x, z ∈ Z)
f(¬x, z ∈ Z)}

 ,∀i,
θi ∈ [0, f(y, x, z ∈ Z)]
ϕi ∈ (0, f(x, z ∈ Z)]
ωi ∈ [0, f(¬x, z ∈ Z)]


 . (A.84)



A.7.4 Discussion 4: the continuous confoundings

Assumption 3 (partial observability assumption for continuous confoundings) P (W | U) ∈ P , where P =

{P (W | U) :

[
P (W | U ∈ [ui−1, ui])− P (W | U ∈ [ui−1, ui])
P (W | U ∈ [ui−1, ui])− P (W | U ∈ [ui−1, ui])

]
is non-negative}.

Assumption 4 (Lipschitz condition) ∀y ∈ Y ,∀{u′
, u

′′} ∈ U , we have
∣∣∣∣ f(y,u′

,x)−f(y,u
′′
,x)

f(u′ ,x)−f(u′′ ,x)

∣∣∣∣ ≤ C1,

∣∣∣∣ f(u′
,x)−f(u

′′
,x)

u′−u′′

∣∣∣∣ ≤
C2, where C1, C2 are positive constants.

lemma 8 Suppose that Assumption. 3-4 hold. ∀i ∈ {0, 1, ...d− 1},∀u ∈ [ui, ui+1], we have

∫ ui+1

ui
f(y, u, x)du∫ ui+1

ui
f(u, x)du

≤ f(y, u, x)

f(u, x)

1

1− 1
2C2η

+
1
2C1C2η

1− 1
2C2η

. (A.85)

On the other hand, ∫ ui+1

ui
f(y, u, x)du∫ ui+1

ui
f(u, x)du

≥ f(y, u, x)

f(u, x)

1

1 + 1
2C2η

−
1
2C1C2η

1 + 1
2C2η

. (A.86)

The proof of lemma. (8) We do partition on the confounding interval [UL, UU ] as [u0, u1, u2, ..., ud−1, ud], where
u0 = UL, ud = UU . The independent variables is re-defined by

θi = f(y, U ∈ [ui, ui+1], x), ψi = f(U ∈ [ui, ui+1], x), ωi = f(U ∈ [ui, ui+1],¬x), (A.87)

∀u
′
∈ [ui, ui+1],

∫ ui+1

ui
f(y, u, x)du∫ ui+1

ui
f(u, x)du

≤

∫ ui+1

ui

[
f(y, u

′
, x) + C1

∣∣∣f(u, x)− f(u
′
, x)
∣∣∣] du∫ ui+1

ui
[f(u′ , x) + (f(u, x)− f(u′ , x))] du

≤
f(y, u

′
, x)(ui+1 − ui) + C1C2

1
2 (ui+1 − ui)

2

f(u′ , x)(ui+1 − ui)− C2
1
2 (ui+1 − ui)2

≤
f(y,u

′
,x)

f(u′ ,x)
+

1
2C1C2ηδ

f(u′ ,x)

1−
1
2C2ηδ

f(u′ ,x)

≤ f(y, u
′
, x)

f(u′ , x)

1

1− 1
2C2η

+
1
2C1C2η

1− 1
2C2η

.

(A.88)

Here i = 0, 1, ...d− 1. Analogously, we can prove the other direction. Thus we have proved the lemma.

Corollary 1 (PI-SFP’s error for continuous confoundings) Suppose that Assumption. 3-4 holds. When U is continuous, and
max

i∈{1,2,...d}
|ui − ui−1| < ηδ. Then f(Yx = y) ≤ lim

n→+∞
fnopt(Yx = y) ≤ 1

1− 1
2C2η

f(Yx = y) + C1f(¬x)−f(y,x)
2−C2η

C2η.

Then we prove this corollary. The proof of Corollary. 1 If we use f(y,U , x), f(U , x), f(U ,¬x) to denote the optimal



solution of the optimal value f(Yx = y) in the continuous case, then we have

f(Yx = y)− f(y, x)

=

∫ UU

UL

f(y, u, x)

f(u, x)
f(u,¬x)du

=

d−1∑
i=0

∫ ui+1

ui

f(y, u, x)

f(u, x)
f(u,¬x)du

≥
d−1∑
i=0

∫ ui+1

ui

[∫ ui+1

ui
f(y, u, x)du∫ ui+1

ui
f(u, x)du

−
1
2C1C2η

1− 1
2C2η

]
(1− 1

2
C2η)f(u,¬x)du

=(1− 1

2
C2η)

d−1∑
i=0

∫ ui+1

ui
f(y, u, x)du∫ ui+1

ui
f(u, x)du

∫ ui+1

ui

f(u,¬x)du− 1

2
C1C2ηf(¬x).

(A.89)

Here {
∫ ui+1

ui
f(y, u, x)du,

∫ ui+1

ui
f(u, x)du,

∫ ui+1

ui
f(u,¬x)du, i = 0, 1, ...d− 1} is within the feasible region of PI-SFP in

the discrete case. Then we have

(A.89) ≥ (1− 1

2
C2η)

(
lim

n→+∞
fnopt(Yx = y)− f(y, x)

)
− 1

2
C1C2ηf(¬x)

f(Yx = y) ≥ (1− 1

2
C2η) lim

n→+∞
fnopt(Yx = y) +

1

2
C2ηf(y, x)−

1

2
C1C2ηf(¬x)

lim
n→+∞

fnopt(Yx = y) ≤ 1

1− 1
2C2η

f(Yx = y) +
1
2C1f(¬x)− 1

2f(y, x)

1− 1
2C2η

C2η

(A.90)

On the other hand, each optimal solution by PI-SFP corresponds to a solution in the continuous case. Namely if the discrete
PI-SFP’s optimal solution is denoted as {

∫ ui+1

ui
f(y, u, x)du,

∫ ui+1

ui
f(u, x)du,

∫ ui+1

ui
f(y, u,¬x)du, i = 0, 1, ...d − 1}.

Then we can construct

fopt(y, u, x) =

∫ ui+1

ui
f(y, u, x)du

ui+1 − ui
, u ∈ [ui, ui+1).

fopt(u, x) =

∫ ui+1

ui
f(u, x)du

ui+1 − ui
, u ∈ [ui, ui+1).

fopt(u,¬x) =
∫ ui+1

ui
f(u,¬x)du

ui+1 − ui
, u ∈ [ui, ui+1)

(A.91)

as one of the solution in the continuous case. Hence lim
n→+∞

fnopt(Yx = y) ≥ f(Yx = y). We have finished the proof.

A.7.5 Comment on Theorem 1: the relationship between Ln and n

Remark 2 (Hardness of establishing functional associations between Ln and n) The worst-case scenario for Ln is
Ln = ⌊log(n)⌋+ 1. In this situation, PI-SFP is equivalent to the method of exhaustion, which exhibits slow polynomial
convergence, as shown in Theorem 1, with a rate of O(n−α), where α = 1

4d log(
2√
3
). However, empirical evidence suggests

that this scenario is rare, and in the simulation section, the convergence rate is faster than O(n−α). Additionally, pruning
strategies can be employed to further improve the convergence rate, which is discussed in Section. 7.

Despite this empirical observation, it is well beyond the scope of this paper to theoretically estimate Ln w.r.t n. During
iteration, each optimal solution (converging point) may be covered by increasing number of nested sequences11. These
sequences possess different lengths and are difficult to estimate. More seriously, the number of optimal solutions is not
necessarily finite either, namely |Φopt| < +∞ may not be guaranteed.

11Notice that it is equivalent to guarantee each converging point is covered by finite partitions. It resorts to the regularity condition of
simplices (identified in [Ciarlet, 2002]). However, whether Longest-edge bisection can promise a family of regular partitions is still a
conjecture [Korotov et al., 2016] to be solved.



Notice that Ln = O(n) when each ϕopt is partitioned via finite number of simplices and |ϕopt| < +∞ in the infinite
process. By this motivation, we aim to prove that such finiteness is true under a fairly broad assumption mentioned in Ciarlet
[2002], Korotov et al. [2016]. In fact, we address this conjecture and it is our by-contribution:

what is the maximum intersection number of regular simplicial partitions? In other words, for arbitrary point in S0, what is
the maximum number of simplices it can be affiliated with during partitioning, under fairly broad assumption?

Assumption 5
vol(S) ≥ ηh(S)

d
. (A.92)

Here vol(S) denotes the volumn of simplex S, h(S) denotes the longest edge of S, and d ≥ 2 is the dimension.

Roughly speaking, the regularity assumption guarantees the simplex would not degenerate to the hyper-plane, or else
lim

vol(S)→0

vol(S)

h(S)d
= 0. In other words, vol(S)

h(S)d
can be higher when the simplex “seems to be regular"", namely each edge keeps

the same length. In addition, the simplicial partitoins during partitioning are denoted as S0,S1,S2.... Our problem can be
summarized as follows:

Theorem 3 Suppose that Ass. 5 holds. Each point in S0 is included within at most 1
η

(
2eπ
d

) d
2 simplices.

proof For γ0 ∈ S0, we construct a ball B(γ0, r). We use A(·) to denote the surface area of sphere:

A (B (γ0, r) ∩ S0) =
∑

S∈Sk,γ0∈S
A (B (γ0, r) ∩ S) . (A.93)

On the one hand, the LHS of Eqn. A.93 can be upper bounded as:

A (B (γ0, r) ∩ S0) ≤ A (B (γ0, r)) =
2π

d
2

Γ
(
d
2

)rd−1 < +∞. (A.94)

On the other hand, we calculate the RHS of Eqn. A.93. To solve it, we take advantage of the following integral (we take γ0
as the origin): ∫

WSγ≥0

e−∥γ∥2

dγ. (A.95)

Here for each term in the right side, the sphere of the ball is cut by certain facets of each S, whose normal vector is denoted
as a set WS , whose each row denotes a 1 ∗ 4d normal vector. Without loss of generation, for any facets, we assume that its
normal vector points to the remaining supporting vector, namely their inner product is positive.

Here ∥ · ∥ also denotes the Euclidean norm. If we use the polar coordinates, we can get a new expression by differential
element method:

∫
WSγ≥0

e−∥γ∥2

dγ =

∫
WSγ≥0

dΩ

∫ +∞

0

e−l
2

ld−1dl =
A (B (γ, r) ∩ S)

rd−1

∫ +∞

0

e−l
2

ld−1dl. (A.96)

According to Eqn. A.94-A.96, we have

A (B (γ0, r) ∩ S) =
2
∫
WSγ≥0

e−∥γ∥2

dγ

Γ
(
d
2

) rd−1

∀k, A (B (γ0, r) ∩ S)
A (B (γ0, r) ∩ S0)

≥
∫
WSγ≥0

e−∥γ∥2

dγ

π
d
2

.

(A.97)

Hence we only need prove the integral is lower bounded by a constant above zero. We will do this by extracting a sub-space
from WSγ ≥ 0, which is easy to be integrated. Specifically, we consider a sub space which is an affine transformation on
WSγ ≥ 0. We introduce the diameter of simplex S as dia(S) = maxs1,s2∈S ∥s1 − s2∥.



∫
WSγ≥0

e−∥γ∥2

dγ ≥
∫
γ=tγ′,γ′∈S

e−∥γ∥2

dγ (∀t > 0, t is arbitrarily chosen )

=

∫
γ′∈S

t4de−t
2∥γ′∥2

dγ′

∗
≥ t∗ Vol(S)e−t

2dia(S)2

∗∗
≥ ηt4dh(S)4de−t

2dia(S)2

(A.98)

∗ is due to ∀γ′ ∈ S, we have ∥γ′∥ ≤ dia(S), since γl is chosen as the origin. ∗∗ is due to Ass. 5. Additionally, we further
show that in the above Formulation, h(S) = dia(S). Namely the longest edge of simplex always serves as the diameter. It is
equal to prove (Si denotes the supporting vector):

dia(S) = max
s1,s2∈S

∥s1 − s2∥

(
s2 =

∑
i

λiS
i, λi ∈ [0, 1]

)

= max
s1,s2∈S

∥∥∥∥∥
(∑

i

λi

)
s1 −

∑
i

(
λiS

i
)∥∥∥∥∥

= max
s1,s2∈S

∥∥∥∥∥∑
i

λi
(
s1 − Si

)∥∥∥∥∥
≤ max

s1∈S
max
i

∥∥s1 − Si
∥∥

∗
≤ max

i,j

∥∥Sj − Si
∥∥ ≤ h(S).

(A.99)

∗ is due to we also do the expansion on s1, namely s1 =
∑
i λ

′
iS
i, λ′i ∈ [0, 1]. On the other hand, we have h(S) ≤

maxs1,s2∈S ∥s1 − s2∥ = dia(S) by definition. Thus dia(S) = h(S). Hence

∀t,
∫
WSγ≥0

e−∥γ∥2

dγ ≥ η(tdia(S))de−(t dia(S)
2). (A.100)

Due to the arbitrary of t, we have∫
WSγ≥0

e−∥γ∥2

dγ ≥ ηmax
x

xde−x
2

= ηxde−x
2
∣∣∣
x=

√
d
2

= η(
d

2
)

d
2 e−

d
2 . (A.101)

Finally, we have

∀k, A (B (γ, r) ∩ S)
A (B (γ, r) ∩ S0)

≥ η

(
d

2eπ

) d
2

, the intersection number N ≤ 1

η

(
2eπ

d

) d
2

< +∞. (A.102)

We have finished the proof.



A.8 SIMULATIONS AND AUXILIARY EXPERIMENTS

Simulations The visualization of our PI-SFP’s performance in simulations are presented in Figure 2 and Figure 3.
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FIGURE 2: We search the minimum of f(Yx = y) in the binary case, by conducting naive linear programming on each fixed
θ1(θ2) and ψ1(ψ2) in Eqn (3).
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FIGURE 3: Results of PI-SFP. PI-SFP (blue) converges to the optimal value of f(Yx = y) with ε changing from 0.1 to 0.4.
The red line denotes the theoretical convergence rate (ground truth).

Real-world experiments We present the numerical result of real-world experiments as follows. Here semi-parametric
COCA and Doubly-robust parametric COCA method is followed by Tchetgen et al. [2023], Park and Tchetgen [2023];
moreover, the standard difference-in-difference (DID) method is followed by Card and Krueger [1993], Angrist and Pischke
[2009].

To facilitate fair comparison, we adopt the same experimental setting as in Tchetgen et al. [2023] and we refer readers to
specific details in their experimental part. Specifically, in the dataset, we set 185 and 488 municipalities as samples from two
areas Pernambuco (PE),Rio Grande do Sul (RS), as the treatment and control group, respectively. The covariate U contain
three parts: (i) municipality-level population size, (ii) population density, and (iii) proportion of females measured in 2014.
Moreover, we force “post-epidemic municipality-level birth rate” in 2016 as the outcome Y , and whether individuals are
infected by the virus as treatment control X . Finally, we choose “preepidemic municipality-level birth rates in 2013 and
2014” as the outcome proxies W1,W2, respectively, which is so-called NCO in Table 3. Our transition matrix P (W | U) is
also approximated from the observations in the public data.

In this process, we choose P (X,Y ), P (W ) and partial observed transition matrix P (W | U) as observed data, and others
as the protected feature. Our PI-SFP exhibits a narrower lower and upper bound compared with the previous literature in
most cases.



Estimator Statistic NCO
W1 W2 (W1,W2)

Semi-parametric COCA
Estimate −2.410 −2.182 −2.180

SE 0.356 0.503 0.342
95%CI (−3.107,−1.713) (−3.168,−1.196) (−2.850,−1.510)

Doubly-robust parametric COCA
Estimate −2.235 −1.833 −2.182

SE 0.502 0.519 0.415
95%CI (−3.220,−1.250) (−2.850,−0.816) (−2.996,−1.368)

Standard DiD
Estimate −1.156 −1.041 −1.041

SE 0.199 0.195 0.195
95% CI (−1.546,−0.767) (−1.424,−0.658) (−1.424,−0.658)

PI-SFP (ours) bound [−3.012,−1.201] [−2.732,−1.232] [−2.742,−1.203]

TABLE 3: Real-world experiment.
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