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Hunting Blemishes: Language-guided High-fidelity Face
Retouching Transformer with Limited Paired Data
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‘Pimples and acne on the 
side face’

‘Reflection on the cheek 
and forehead’

‘Pimples on the face;
Forehead wrinkles’

‘Pimples on the face;
Fragmented hair on the 
forehead’

‘Pores on the face;
Dark circle under the eyes’

Figure 1: Examples to illustrate the effectiveness of LangBRT in facial blemish removal. LangBRT is able to handle multiple
types of blemishes in a variety of scenarios, while at the same time preserving non-blemish content as much as possible.

ABSTRACT
The prevalence of multimedia applications has led to increased con-
cerns and demand for auto face retouching. Face retouching aims
to enhance portrait quality by removing blemishes. However, the
existing auto-retouching methods rely heavily on a large amount
of paired training samples, and perform less satisfactorily when
handling complex and unusual blemishes. To address this issue, we
propose a Language-guided Blemish Removal Transformer for auto-
matically retouching face images, while at the same time reducing
the dependency of the model on paired training data. Our model
is referred to as LangBRT, which leverages vision-language pre-
training for precise facial blemish removal. Specifically, we design a
text-prompted blemish detection module that indicates the regions
to be edited. The priors not only enable the transformer network
to handle specific blemishes in certain areas, but also reduce the re-
liance on retouching training data. Further, we adopt a target-aware
cross attention mechanism, such that the blemish-like regions are
edited accurately while at the same time maintaining the normal
skin regions unchanged. Finally, we adopt a regularization approach
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to encourage the semantic consistency between the synthesized
image and the text description of the desired retouching outcome.
Extensive experiments are performed to demonstrate the superior
performance of LangBRT over competing auto-retouching meth-
ods in terms of dependency on training data, blemish detection
accuracy and synthesis quality.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
face retouching, transformer, vision-language pre-training, blemish
detection

1 INTRODUCTION
The rapid development of social media leads to the fast-growing
demand for automatic face retouching in various scenarios, includ-
ing portrait photos, film and television productions, and so on. The
primary objective of face retouching is to achieve natural-looking
and realistic results, which maintains crucial characteristics while
at the same time eliminating blemishes such as dark circles, acne
scars and wrinkles [31, 46]. However, this is still a challenging task
due to variations in lighting conditions, skin tones, and the complex
nature of blemishes themselves.

Different from generic face enhancement tasks, there are typi-
cally a small percentage of image pixels that need to be edited in
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face retouching, and the existing methods perform less satisfac-
torily due to lack of effective distinction between blemishes and
normal skin. On the other hand, face retouching methods are built
upon the observation that normal skin exhibits local smoothness.
Many attempts have beenmade to design effective smoothing filters
[1] to remove blemishes by leveraging the contextual information
surrounding them. To handle diverse blemishes, deep convolutional
neural networks are applied to learn the mapping from blemishes to
normal skin [20, 30, 31, 44]. Further, generative models are trained
to synthesize clean face images, conditioned on the ones with blem-
ishes [14, 46]. These methods are trained on specific paired training
data, thus limiting their generalization performance across differ-
ence domains where the appearance of blemishes and skin features,
such as blemishes on different skin can vary significantly. Consider-
ing that the large-scale vision-language pre-training, such as CLIP
[28], has strong capability of zero/few-shot object recognition, We
perform an effective attempt for language-guided face retouching,
and the resulting model can well generalize to diverse types of
blemishes.

More specifically, we propose a Language-guided Blemish Re-
moval Transformer (LangBRT) to facilitate face retouching. The
key idea behind LangBRT is to perform textual prompt-conditional
blemish detection and thus spatially regularize the cross-attention
computation in transformer blocks to remove blemishes in a fea-
ture space, consequently generating a realistically retouched image
corresponding to the prompt, as shown in Figure 1. To achieve
this, we adopt the Contrastive Language-Image Pre-training model
(CLIP) [28] to associate natural language with image content, and
incorporate a Text-prompted Blemish Detection module (TBD),
since a textual description can be used to effectively express rich
visual concepts. TBD learns to perform pixel-wise recognition from
the encoder features of an input face image. The prior knowledge
encapsulated in CLIP enables TBD to distinguish blemishes from
normal skin. On the other hand, We find that the prior is also useful
for reducing the reliance of our model on paired training data. By in-
jecting the resulting blemish feature maps as side information into
the transformer, we can perform target-aware cross-attention com-
putation, which aims to edit the blemish-like regions. We further
impose the semantic consistency regularization on the synthesized
images, given the textual description of the desired retouching out-
come. Extensive experiments on both public and in-the-wild data
are performed to verify the effectiveness of the design elements as
well as the superior performance over state-of-the-art face retouch-
ing methods. In summary, the main contributions of this work are
as follows:

• Different from the existing face retouching methods adopt-
ing generic image-to-image translation frameworks, the
proposed LangBRT has a language-guided transformer ar-
chitecture with target-aware cross-attention computation.

• Blemish detection is conditioned on the textual descrip-
tions, which enable a wider range of blemish types to be
effectively handled. Another benefit is to effectively reduce
the dependency of LangBRT on paired training data.

• By injecting the blemish features into transformer blocks,
the main feature transformations are limited in the blemish-
like regions, which leads to precise retouching results.

2 RELATEDWORK
2.1 Image-to-image Translation
Image-to-image translation can be viewed as a special case of con-
ditional image generation, and there have been many attempts to
facilitate this task. Given paired training data, a typical strategy
is to train a convolutional neural network by minimizing a vari-
ety of regularization functions between the synthesized images
and the ground truth [6, 16, 18, 49, 51]. In [6], a pixel-wise con-
sistency loss to the ground truth was used for training an image
translation network. To ensure semantic correctness, Johnson et
al. [16] employed a pre-trained VGG-19 network [34] to measure
the perceptual consistency, which leads to a better alignment with
human perception in terms of image semantics. Similarly, Zhang
et al. [49] proposed the Learnt Perceptual Image Patch Similarity
(LPIPS) measure, which had been widely used in various image-to-
image translation tasks. However, in many real-world scenarios,
it is expensive and infeasible to collect a large amount of paired
training data. Unsupervised image translation methods, like Cy-
cleGAN [51] and DiscoGAN [18], achieved impressive generation
performance by minimizing the reconstruction loss of two-way
mapping. By combining GAN [13] and VAE [19], UNIT [23] learnt
to disentangle style and content in feature spaces, such that the
images from different domains can be transferred by exchanging
the style features.

To control the synthesis content, an additional attribute classifier
was incorporated to guide the generation process by measuring the
semantics encapsulated in the synthesized images [12]. StarGAN
[7, 8] learnt a generation network to realize efficient cross-domain
transformation, conditioned on domain label. Another effective
way is to inject constraint information into the generation network,
such as edges [15], sketches [2] and label maps [43]. Since the latent
space of a well-trained StyleGAN [17] has a semantically mean-
ingful organization, image-to-image translation can be performed
by projecting a source image back into the latent space and learn-
ing a task-specific latent transformation. InterfaceGAN [32] was
proposed to discover global latent directions associated with a num-
ber of pre-set attributes. To handle unlabeled data, Shen et al. [33]
performed factorization on the weights of the generation network
and found a set of latent directions associated with well-defined
attributes.

2.2 Vision Transformer
Motivated by the great success of the transformer architectures
in natural language processing [39], researchers have explored
diverse applications of transformer in the computer vision area
[10, 24, 38, 45]. The important characteristics of transformer lie
in its attention mechanisms, which enable effective modeling of
inherent relationships within sequences. In particular, ViT [10]
extended the transformer’s success to visual tasks. To further en-
hance the ViT’s capabilities in handling high resolution images,
Wu et al. [45] proposed a convolutional vision transformer, which
incorporated convolutional layers into transformer blocks. On the
other hand, SwinTransformer [24] adopted the shifted windowing
scheme, which limited attention calculation to non-overlapping
windows while allowing cross-window connection. Transformer
architectures were also successfully applied to object detection,

2
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Figure 2: An Overview of the proposed LangBRT. An image encoder 𝐸 and the pre-trained Alpha-CLIP [35] text encoder 𝐸𝑇𝑒𝑥𝑡
are used to extract features from the input image and the textual description of blemishes, respectively. TBD aims to detect the
specific blemishes associated with the textual prompts. The detectionmaps are integrated and then fed into a latent transformer
𝑇 , in which we perform TCA in each block to progressively transform the features associated with the blemishes. Finally, the
decoder 𝐷 is used to generate a clean face image from the transformed features.
such as DETR and variants [4, 52]. Inspired by DETR, Wang et
al. [41] proposed an end-to-end segmentation transformer to di-
rectly predict masks with class labels. Contrastive Language-Image
Pre-Training (CLIP) [28] was designed to understand and associate
images and textual descriptions, and had gained significant atten-
tion due to its versatility and effectiveness. The CLIP’s capability
of performing cross-modal understanding together with transform-
ers had been widely used in various applications, such as image
generation [29], image classification[5], retrieval[25], semantic seg-
mentation [21], video caption [36], video action recognition [42]
and object localization [9]. To apply CLIP on downstream tasks,
Gao et al. proposed CLIP-Adapter[11] to conduct fine-tuning with
feature adapters on either visual or language branch. Furthermore,
Sun et al. [35] proposed Alpha-CLIP to enhance CLIP with an aux-
iliary alpha channel to suggest attentive regions, which enables
Alpha-CLIP to focus more on the regions of interest.

The objective of face retouching is to enhance the appearance of
input images while preserving the key facial characteristics. The
traditional methods, like nonlinear digital filtering [1], applied a
uniform operation to address different types of flaws. In [3], Batool
et al. detected facial wrinkles and imperfections using Gabor filters.
In addition, Velusamy et al. [40] proposed a wavelet band manip-
ulation method to restore the underlying skin texture. However,
these methods lacked adaptive retouching capabilities. To address
this issue, Lipowezky et al. [22] performed freckle detection and
retouching separately. Based on the concept of facial attractiveness,

the face retouching process could be guided by an aesthetic en-
hancement model [37]. Recently, AutoRetouch [31] was an effective
attempt to perform end-to-end face retouching. In addition, Zamir
et al. [48] proposed a multi-stage approach to progressively restore
spatial details and high-level contextualized information. These
methods primarily focus on global retouching while neglecting the
importance of the local region. Instead, ABPN [20] performed fast
local retouching on high-resolution photos through an adaptive
blend pyramid network. To guide precise blemish removal while
preserving the semantic information of an input image, Hong et al.
incorporated a pre-trained face parsing model in HQRetouch [14].
In contrast, BPFRe[46] was a multi-stage approach for face retouch-
ing, which divided the retouching process into blemish detection,
retouching and refinement phases, and adopted different strategies
to utilize unpaired training data to regularize each stage.

The main differences between our proposed LangBRT and the
above existing face retouching methods are summarized as fol-
lows: (1) LangBRT facilitates face retouching by utilizing textual
descriptions of blemishes, and it is the first attempt to leverage
vision-language pre-training for the task. LangBRT is able to ad-
dress diverse blemish types, and allows user-defined retouching.
This has not been considered by the above methods. (2) Different
from the existing methods [14, 20, 46] which directly suppressed
features of blemish-like regions, LangBRT limited main feature
transformations in blemish-like regions via target-aware cross at-
tention, which ensures precise blemish removal.

3
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3 METHODOLOGY
3.1 Overview
It is promising to integrate the description of blemishes together
with desired retouching outcome into our image editing process.
As shown in Figure 2, the proposed framework mainly consists of
five components, including an encoder 𝐸 extracting the features
from a source image, a latent transformer 𝑇 performing feature
transformation, a decoder 𝐷 generating a clean face image, a dis-
criminator 𝑆 distinguishing manually retouched images from the
synthesized ones, and a Text-prompted Blemish Detection module
(TBD). Given the blemish descriptions involving dark circle, acne,
wrinkle and so on in specific area, TBD leverages a pre-trained
vision-language model to obtain the textual prompts together with
an image encoder to extract features from a source image, and pro-
duces the corresponding maps to indicate the blemishes associated
with the descriptions, respectively. Further, we inject the blemish
information into the transformer blocks in 𝑇 via Target-specific
Cross-Attention mechanism (TCA) to limit the main feature trans-
formations in the blemish-like regions, and the transformer blocks
are guided to progressively restore clean skin in the regions.

3.2 Text-prompted Blemish Detection
In LangBRT, prompt is defined as the combination of blemish type
and its corresponding location. To streamline model training, we
delineate two categories of prompts: (1) The first category is pre-
defined prompt, such as ‘dark circles under the eyes’, ‘forehead
wrinkles’, ‘acne on the right cheek’. Pre-defined prompts encap-
sulate common blemishes and cater to the general needs of face
retouching. To enhance the localization accuracy of these blemishes
across diverse inputs, we incorporate dedicated mapping layers for
each pre-defined prompt. (2) The second category is user-defined
prompt, which is tailored to accommodate users’ personalized pref-
erences for precision retouching. Given the variability in refinement
requisites among users, these prompts provide users with added
control over the retouching process.

Let [𝒑𝒕1,𝒑𝒕2, . . . ,𝒑𝒕𝑃 ] denote a set of pre-defined prompts, and
[𝒖𝒕1, 𝒖𝒕2, . . . , 𝒖𝒕𝑈 ] denote a set of user-defined prompts. We adopt
the CLIP text encoder 𝐸𝑇𝑒𝑥𝑡 of the pre-trained Alpha-CLIP[35]
to generate corresponding embeddings [𝑭𝒑𝒕1 , 𝑭𝒑𝒕2 , . . . , 𝑭𝒑𝒕𝑃 ] and
[𝑭𝒖𝒕1 , 𝑭𝒖𝒕2 , . . . , 𝑭𝒖𝒕𝑈 ]. Let the mapping layer𝜓𝒑𝒕𝑖 to learn the pre-
cise text features corresponding to the pre-defined prompt. Let
𝒙 denote a source image, which is passed through the image en-
coder 𝐸 to extract the feature 𝑭 (0)

𝒙 . The manually retouched image
denoted as 𝒚 serves as the ground truth. To detect the blemishes
associated with the specified prompts, 𝐸 is encouraged to capture
the blemish information from the image, and the detection map 𝒎
is derived by measuring the relevancy between the image features
and each prompt as follows:

𝒎 =

𝑈∑︁
𝑗=1

𝑭 (0)
𝒙 ⊙ E(𝑭𝒖𝒕 𝑗 ) +

𝑃∑︁
𝑖=1

𝑭 (0)
𝒙 ⊙𝜓𝒑𝒕𝑖 (E(𝑭𝒑𝒕𝑖 )), (1)

where ⊙ represents the dot product operation, E denotes the op-
eration to expand the dimensionality of the text embedding to
match that of the image feature, and 𝑭𝒙 ⊙ E(𝑭𝒖𝒕 𝑗 ) refers to the
blemish map associated with the 𝑗-th user-defined prompt 𝒖𝒕 𝑗 ,

“dark circle”

“acne on the right cheek”

……

“forehead wrinkle”

Alpha-CLIP 
Image

Encoder I𝑬 

Alpha-CLIP 
Text

Encoder 𝑻𝑬 

𝓛local

……

𝓛local

wrinkle

non-blemish

dark circle

acne

……

Figure 3: An example to illustrate the Alpha-CLIP-based se-
mantic regularization. The training goal is to maximize the
dissimilarity between the generated image and the textual
prompts of blemishes in the Alpha-CLIP embedding space.
𝑭 (0)
𝒙 ⊙𝜓𝒑𝒕𝑖 (E(𝑭𝒑𝒕𝑖 )) refers to the blemish map associated with the

𝑖-th pre-defined prompt 𝒑𝒕𝑖 , U and P represents the number of user-
defined prompt and pre-defined prompt, respectively. We consider
that the CLIP embedding space encapsulates rich knowledge on
blemishes, and the prompt is an effective representation to retrieve
the useful priors for our detection task. This design also helps to
reduce the dependency on large amounts of manually retouched
data.

3.3 Target-aware Cross Attention
We realize blemish removal by progressively replacing the blem-
ishes with the synthesized content. Toward this end, we adopt
a target-specific cross attention mechanism in each transformer
block. Different from generic self-attention computation over all
pixel positions, our mechanism limits the main feature transforma-
tions in blemish-like regions, while at the same time ensuring that
the features in normal skin regions remain unchanged.

The blemish detection maps provide the spatial information on
the regions to be edited. In each transformer block, the maps play
two different roles in constructing the query and key-value vectors
for attention computation. Specifically, the image features contain
crucial visual details and patterns, and serve as the input of query
mapping. The maps are used as the weight to suppress the features
in the blemish-like regions. On the other hand, we directly learn key
and value vectors from the maps, such that the blemish-like regions
will be filled with the content synthesized from scratch. Since the
features of blemishes are continuously discarded in the forward
process, the learnt key and value vectors are associated with the
features of normal skin to ensure clean face synthesis. Formally,
we define the cross attention computation in the 𝑖-th transformer
block as follows:

𝑸 (𝑖 ) = 𝜑
(𝑖 )
q (𝑭 (𝑖−1)

𝒙 ⊙ (1 −𝒎)), (2)

𝑲 (𝑖 ) = 𝜑
(𝑖 )
k (𝒎) , 𝑽 (𝑖 ) = 𝜑

(𝑖 )
v (𝒎), (3)

𝑭 (𝑖 )
𝒙 = 𝜙

(
𝑲 (𝑖 ) · 𝑸 (𝑖 )T

𝛼

)
· 𝑽 (𝑖 ) , (4)
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Figure 4: Visualizing the distributions of source FFHQR im-
ages, ground-truth retouching images and images synthe-
sized by LangBRT.

where 𝑭 (𝑖 )
𝒙 denotes the image features in the 𝑖-th transformer block

for 𝑖 = 1, 2, . . . , 𝑁 , {𝑸 (𝑖 ) ,𝑲 (𝑖 ) , 𝑽 (𝑖 ) } represent the query, key and
value features, {𝜑 (𝑖 )

q , 𝜑
(𝑖 )
k , 𝜑

(𝑖 )
v } are the corresponding linear map-

ping functions, 𝜙 is the sigmoid activation function, and 𝛼 is a
learnable scaling parameter to control the magnitude of the multi-
plication result. To reduce the computational complexity, we adopt
the sliding window strategy of SwinTransformer [24]. The final
output of the transformer is fed into the decoder to synthesize a
retouched image denoted as �̂�.

3.4 Model Training
The training goal of the proposed LangBRT consists of two aspects:
precise blemish detection and high-fidelity retouched image syn-
thesis. Due to the lack of blemish annotations, we compute the
difference map between each pair of raw image and manually re-
touched one, which is used as the ground truth of blemish detection.
Conditioned on the textual prompts, our detection model produces
a set of detection maps, and their combination is required to be
consistent with the ground truth. The detection loss function can
be defined as follows:

L𝑑𝑒𝑡𝑐 = E𝒙 [| |𝒎 − 𝜏 ( |𝒙 −𝒚 |) | |1], (5)

where 𝜏 is an activation function to normalize the difference map.
Minimizing L𝑑𝑒𝑡𝑐 encourages the encoder to capture the informa-
tion on blemishes. Furthermore, for the blemishes in the particular
domain, we roughly segment the face based on existing face pars-
ing model [50] , as an auxiliary method for the model to refine
the region-specific retouching. We obtained coarse segmentation
of facial regions such as the forehead, left cheek, and periocular
area. Subsequently, we applied component-aware consistency loss
exclusively to these regions’ blemishes, which is defined as follows:

L𝑐𝑜𝑚𝑝 = E𝒙

[ 𝑃∑︁
𝑚𝑝𝑡𝑖

( | |𝑚𝑝𝑡𝑖 (𝒎 − 𝜏 ( |𝒙 −𝒚 |)) | |1)
]
, (6)

where𝑚𝑝𝑡𝑖 refers to the mask corresponding to pre-defined prompt
𝑝𝑡𝑖 , P is the number of pre-defined prompt.

To ensure high-fidelity image synthesis, we adopt an adversar-
ial training approach to optimize the constituent networks. The

synthesized image �̂� is expected to be identified as a manually
retouched one, and the discriminator aims to identify them as accu-
rately as possible. We define the adversarial training loss functions
as follows:

L𝐺
adv = E𝒙 [𝑙𝑜𝑔(1 − 𝑆 (�̂�)], (7)

L𝑆
adv = E𝒚 [𝑙𝑜𝑔(𝒚)] + E𝒙 [𝑙𝑜𝑔(1 − 𝑆 (�̂�)], (8)

where 𝑆 (·) denotes the probability of an input image being re-
touched manually.

Considering that deceiving the discriminator cannot guaran-
tee the retouching quality, we further measure the pixel-wise and
perceptual consistency between the synthesized result �̂� and the
manually retouching image 𝒚, and the corresponding loss function
is defined as follows:

L𝑐𝑜𝑛𝑠 = E𝒙 [| |�̂� −𝒚 | |1] + 𝛽E𝒙

[∑︁
𝑙

| |Φ𝑙 (𝒚) − Φ𝑙 (�̂�) | |1
]
, (9)

where | | ∗ | |𝑝 represents ℓ𝑝 norm, Φ𝑙 denotes the features associated
with the 𝑙-th layer of a pre-trained VGG-19 [34] network, and 𝛽

is the weighting factor to balance the two types of consistency
measurements.

In addition to leveraging the textual prompts for blemish detec-
tion, we can also use the textual descriptions of desired retouch
outcomes to regularize the generation process by measuring the
semantic similarity between the synthesized results, specific region
and the descriptions in the Alpha-CLIP [35] embedding space. For
simplicity, we still use the blemish descriptions and train the model
by maximizing the prior-based dissimilarity to the synthesized
results as follows:

L𝑙𝑜𝑐𝑎𝑙 = E𝒙

[ 𝑃∑︁
𝑖

𝜚𝛼𝐶𝐿𝐼𝑃 (�̂�,𝑚𝑝𝑡𝑖 ,𝒑𝒕𝑖 )
]

+E𝒙
[ 𝑈∑︁

𝑗

𝜚𝛼𝐶𝐿𝐼𝑃 (�̂�,𝑚𝑢𝑡 𝑗 , 𝒖𝒕 𝑗 )
]
,

(10)

where 𝜚𝛼𝐶𝐿𝐼𝑃 is pre-trained Alpha-CLIP.As shown in Figure 3, the
prior-based dissimilarity loss function is useful for guiding the
generation process.

By integrating the above training loss functions, the optimization
formulation of LangBRT can be expressed as follows:

min
𝐸,𝑇 ,𝐷

L𝐺
adv + Lcons − 𝛾L𝑙𝑜𝑐𝑎𝑙 + 𝜂 (Ldetc + L𝑐𝑜𝑚𝑝 ),

max
𝑆

L𝑆
adv,

(11)

where𝛾 and𝜂 are the weighting factors to achieve a trade-off among
the regularization terms. Note that the constituent networks are
jointly optimized from scratch. The training procedure is summa-
rized in Appendix.

4 EXPERIMENTS
In this section, extensive experiments are performed to assess the
retouching performance of the proposed LangBRT on both public
and in-the-wild data. We first introduce the training and test data,
implementation details, and evaluation protocol. Next, we compare
LangBRT with state-of-the-art face image editing methods. Finally,
we perform ablation study to verify the effectiveness of the main
components.
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Table 1: Quantitative comparison between LangBRT and competing methods on FFHQR. Boldface indicates the best results.

Method FFHQR-1% FFHQR-5% FFHQR-10% FFHQR-20% FFHQR-100%
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Pix2PixHD[43] 25.59 0.7711 0.1585 26.68 0.7963 0.1501 27.13 0.8008 0.1427 28.88 0.8526 0.1054 29.38 0.9181 0.0766
GPEN[47] 42.70 0.9872 0.0311 42.92 0.9884 0.0223 42.98 0.9895 0.0169 43.04 0.9901 0.0143 43.12 0.9903 0.0141

SwinTransformer[24] 41.92 0.9840 0.0353 42.10 0.9845 0.0309 42.29 0.9851 0.0235 42.53 0.9863 0.0199 43.19 0.9878 0.0130
AutoRetouch[31] 38.49 0.9728 0.0161 39.64 0.9780 0.0144 41.11 0.9791 0.0140 42.22 0.9801 0.0135 44.18 0.9804 0.0133
MPRNet[48] 42.12 0.9874 0.0311 42.57 0.9889 0.0242 43.29 0.9901 0.0144 43.52 0.9901 0.0137 44.35 0.9907 0.0129

RestoreFormer[44] 39.87 0.9791 0.0178 41.12 0.9802 0.0164 42.47 0.9879 0.0155 42.86 0.9900 0.0132 42.95 0.9904 0.0129
ABPN[20] 42.09 0.9862 0.0329 42.78 0.9887 0.0259 43.28 0.9895 0.0234 43.66 0.9903 0.0121 44.41 0.9918 0.0169
BPFRe[46] 43.19 0.9889 0.0129 44.22 0.9895 0.0125 44.50 0.9901 0.0110 45.01 0.9906 0.0109 45.29 0.9935 0.0092

LangBRT 44.51 0.9930 0.0113 45.07 0.9936 0.0101 45.30 0.9937 0.0096 45.41 0.9938 0.0092 45.72 0.9941 0.0086
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Figure 5: Visual comparison between LangBRT and competing methods on FR-wild dataset. (Left) The retouching results of the
models optimized on 1% of the FFHQR training data. (Right) The retouching results of the models optimized on the whole
FFHQR training data. LangBRT is able to achieve stable retouching performance.
4.1 Experimental settings
4.1.1 Datasets. Themain experiments are performed on the FFHQR
dataset [31], which is the first large-scale public dataset created
through professional retouching techniques. It contains 70,000 pairs
of “Before” and “After” retouched images with the resolution of
1024*1024, involving various facial characteristics such as age and
race. The dataset is partitioned into a training, validation, and test
set, containing 56,000, 7,000, and 7,000 images respectively. We
follow the setting [31], in which both training and test images are
resized to 512*512. Furthermore, the proposed method is also eval-
uated on the FaceRetouch-wild (FR-wild) dataset, which contains
700 in-the-wild face images with a large diversity of poses, races,
and blemish types.

4.1.2 Implementation Details. In LangBRT, the latent transformer
contains 7 blocks, and the configurations are the same as Swin-
Transformer [24]. The architecture information of the transformer
together with the other constituent networks are provided in Ap-
pendix. We implement LangBRT using PyTorch with a NVIDIA
GeForce RTX 3090. There are a total of 25,000 training iterations
with a batch size of 1. The number of user-defined prompt and
pre-defined prompt, U and P in Eq.(1) is set to 17 and 3, respectively.
The weighting factors: 𝛽 in Eq.(9) and {𝛾, 𝜂} in Eq.(11) are set to 10,
1 and 1, respectively. Our model is optimized through Adam, and

the learning rate is initialized as 0.0002 and modified according to
a cosine decay schedule.

4.2 Quantitative Comparison
We compare the proposed LangBRTwith a number of representative
face image editing methods, including Pix2PixHD [43], GPEN [47],
SwinTransformer [24], MPRNet [48], RestoreFormer, [44], AutoRe-
touch [31], ABPN [20], and BPFRe [46]. Note that SwinTransformer
serves as the base model of our LangBRT. Pix2PixHD is a typical
image-to-image translation method. MPRNet and RestoreFormer
(GPEN) are designed for (face) image restoration. AutoRetouch,
ABPN and BPFRe focus on face retouching. We follow the settings
of BPFRe to perform quantitative evaluation in terms of Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM),
and Learnt Perceptual Image Patch Similarity (LPIPS).

We implement all the competing methods using the open source
codes, and they are trained on the same data as our LangBRT for
a fair comparison. In addition to using the full training data, we
also randomly sample 1%, 5%, 10%, and 20% of the training data to
evaluate the performance stability of the competing method in the
situations of limited training data. The results are summarized in
Table 1. We can observe that LangBRT consistently outperforms
the competing methods in terms of all the metrics. When using
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Figure 6: Representative retouching results of LangBRT and
BPFRe. LangBRT is capable of producing more satisfactory
retouching results in removing different types of blemishes,
compared to BPFRe.

only 1% of the training data, the advantage of LangBRT becomes
more significant. In particular, LangBRT achieves the PSNR score
of 44.51 dB, which is higher than that of BPFRe by about 1.32 dB.
The SSIM and LPIPS scores of LangBRT are better than the second
best methods: BPFRe, by about 0.41 and 0.16 percentage points. In
addition, we additionally adopted the structure of the Temporary
Patch GAN model [27], trained a classifier for source and ground
truth images of FFHQR dataset, and visualized the features of the
intermediate layer using PCA [26], as shown in Figure 4. Notably,
it can be seen that the refined results of LangBRT are similar to
the ground truth, but there are significant differences from the
source images, which also proves the effectiveness of LangBRT.
We consider that our model benefits from the vision-language pre-
training, and thus has a lower dependence on the training data than
the competingmethods. This is also confirmed by the representative
retouching results shown in Figure 5.

4.3 Qualitative Comparison
According to the above quantitative comparison result, BPFRe per-
forms better than the other competing methods. To highlight the
LangBRT’s capability of handling diverse blemishes, we further
compare with the state-of-the-art face retouching method BPFRe in
Figure 6. One can find that LangBRT is able to remove dark circles
and acne, reduce reflections, smooth skin, while preserving the orig-
inal tone. In contrast, BPFRe performs less satisfactorily, and the
blemishes are only partially removed. This result suggests that Lang-
BRT has better generalization performance in real-world scenarios.
We further perform user study to assess the retouching performance
of the methods in human perception. We randomly sample 30 face
images from the in-the-wild data, and ask 50 volunteers to rank
the synthesized results of LangBRT and the competing methods.
All the models are trained on 1% of the training data in FFHQR.
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Figure 7: The voting result (%) of user study on FR-wild.

We provide a visual representation of the comparative preferences
expressed by the participants in Figure 7. The result suggests that
LangBRT receives the most votes as the best retouching method,
and this is consistent with the results obtained from the previous
experiments, further validating the superiority of LangBRT in our
task.

4.4 Ablation study
To investigate the contribution of the main components in LangBRT,
we build a number of variants using 1% of the training data and
perform ablative experiments in this subsection. (1) “ LangBRT
w/o Prior”: the vision-language pre-training is not used for blemish
detection and semantic regularization. (2) “ LangBRT w/o TBD”: the
text-prompted blemish detection module is disabled. (3) “ LangBRT
w/o TCA”: the target-specific cross attention is replaced with the
generic self-attention mechanism in each transformer block. (4)
“ LangBRT w/o L𝑙𝑜𝑐𝑎𝑙 ”: the loss function L𝑙𝑜𝑐𝑎𝑙 is disabled. The
retouching performance of the variants are summarized in Table
2 and Figures 8, 9 & 10. Table 2 shows that the removal of the
vision-language pre-training results in a significant increase in
LPIPS by over 9 times. We consider that the pre-trained model
plays an important role in providing useful priors of blemishes in
the limited data case. Without accurate blemish detection or target-
specific cross attention, “ LangBRT w/o TBD” or “ LangBRT w/o
TCA” cannot limit the main feature transformations in blemish-
like regions, such that the information from non-blemish regions
cannot be effectively utilized for filling the blemish-like regions,
and the retouching performance thus becomes less satisfactory as
shown in Figure 8. In addition, we confirm that L𝑙𝑜𝑐𝑎𝑙 is useful for
boosting the performance by 0.72dB in terms of PSNR (Table 2). We
plot the PSNR curve of the model with and without L𝑙𝑜𝑐𝑎𝑙 during
the training propose, and find that the loss function consistently
leads to higher PSNR values(Figure 9). Furthermore, we visualize the
feature changes of representative images before and after processed
by Transformer𝑇 , the results shown in Figure 10 suggest thatL𝑙𝑜𝑐𝑎𝑙

enhances the transformer’s precision in refining defect areas.

4.5 Customized Prompts for Blemish Removal
LangBRT has the capability of detecting and removing the blem-
ishes associated with the user-defined textual descriptions. To illus-
trate the effectiveness of the text-prompted blemish detection mod-
ule, we visualize the detection maps involving different prompts
in Figure 11. It can be observed that the module produces different
detection maps when using the prompts: “dark circle”, “forehead
wrinkles” and “pimple on the right cheek”. Furthermore, LangBRT
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the final retouching performance of LangBRT.
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Figure 10: Visualization of the feature changes before and
after processed by Transformer 𝑇 for the cases of with and
without L𝑙𝑜𝑐𝑎𝑙 . Brighter regions indicate larger feature alter-
ations, while darker regions indicate minor changes.

Table 2: Quantitative results of LangBRT and ablative models
on FFHQR-1%.

Method PSNR↑ SSIM↑ LPIPS↓
LangBRT w/o Prior 42.61 0.9904 0.0985
LangBRT w/o TBD 42.80 0.9911 0.0129
LangBRT w/o TCA 43.64 0.9921 0.0128
LangBRT w/o L𝑙𝑜𝑐𝑎𝑙 43.19 0.9919 0.0122

LangBRT 44.51 0.9930 0.0113

is able to remove the blemishing accordingly. In Figure 12, we com-
pare with BPFRe and human retouchers, and find that the detection
maps of our model are more consistent with the manual results.

5 CONCLUSION
This paper presents a text-driven latent transformer for precise
facial blemish detection and removal. To handle diverse blemish
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Figure 11: The representative results of blemish detection
conditioned on different textual prompts.
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Figure 12: Visual comparison between LangBRT and BPFRe
in blemish detection.

types, we incorporate the vision-language pre-training and lever-
age the prior knowledge encapsulated in the embedding space.
By providing the textual prompts of blemishes, we design an ef-
fective detection module to measure the association between the
encoder features and textual prompts, and produce the maps to
highlight the spatial information of specific blemishes. This design
not only improves the generalization performance on a wide range
of blemishes, but also reduces the dependence of the model on the
paired training data. To precisely remove blemishes while preserv-
ing non-blemish content, we further inject the blemish map into
each transformer block to perform target-aware attention compu-
tation. In the forward process, the features of blemish-like regions
are replaced with the synthesis content progressively. Extensive
experiments demonstrate the superiority of the proposed method
over the state-of-the-arts, especially in the case where a limited
amount of paired training data is available.
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