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ABSTRACT

Vision-language models (VLMs) have demonstrated strong performance in 2D
scene understanding and generation, but extending this unification to the physi-
cal world remains an open challenge. Existing 3D and 4D approaches typically
embed scene geometry into autoregressive model for semantic understanding and
diffusion model for content generation. This paradigm gap prevents a single
model from jointly handling both tasks, especially in dynamic 4D settings where
spatiotemporal modeling is critical. We propose Uni4D-LLM, the first unified
VLM framework with spatiotemporal awareness for 4D scene understanding and
generation. Our design is guided by two key insights: 1) Unification requires a
shared representation. We extract semantic and noisy-injected appearance fea-
tures, incorporate 4D geometric cues, and fuse them into a spatiotemporal-aware
visual representation through adaptive cross-attention. 2) Unification requires a
shared architecture. Both autoregression and diffusion are built on Transformer
backbones, and this enables integration into a single LLM with task-specific heads.
By aligning visual and linguistic representations, our Uni4D-LLM produces pre-
dictions for both understanding and generation within one Transformer-based
framework. We further apply instruction fine-tuning on diverse 4D vision-language
datasets to improve generalization across tasks. Extensive experiments on multiple
benchmarks demonstrate that Uni4D-LLM achieves competitive or superior results
compared to state-of-the-art models and offers the first true unification of 4D scene
understanding and generation. Our code will be released upon acceptance.

1 INTRODUCTION

Vision-language models (VLMs) (Alayrac et al., 2022; Liu et al., 2023) have achieved significant
progress in scene understanding and generation, but these advances are mainly realized in separate
models. In 2D vision, recent works (Fan et al., 2025; Chen et al., 2025) attempt unification by
formulating both tasks as next-token prediction. The image patches are discretized into text-like
tokens for a large language model (LLM) (Touvron et al., 2023), and task unification is achieved
through autoregressive (Wu et al., 2024b) or discrete diffusion (Xie et al., 2024) strategies (cf.
Fig. 1(a)). Despite being effective for 2D images, these approaches lack explicit spatial and geometric
representations and thus cannot generalize to the physical world. To address spatial reasoning, 3D
methods (Zhu et al., 2024a; Chen et al., 2024; Zhao et al., 2024; Gao et al., 2024) embed 3D geometry
into visual representations. They then use autoregressive models for understanding and diffusion
models for generation. Although strong on individual 3D tasks, these methods still treat understanding
and generation as separate paradigms.

Extending to spatiotemporal reasoning, 4D approaches (Zhou & Lee, 2025; Zhang et al., 2024a)
incorporate temporal cues into 3D geometry. However, they also adopt disjoint solutions: autoregres-
sion for understanding and diffusion for generation. Attempts to bridge the gap by coupling LLMs
and diffusion models through cross-modal token mapping (Liu et al., 2024a) or geometric-semantic
projection (Xu et al., 2025) remain fragmented with separated representation spaces and independent
modules. Consequently, no existing framework provides a true unification of 4D scene understanding
and generation. This motivates us to propose Uni4D-LLM, the first unified VLM framework with
spatiotemporal geometry awareness for 4D scene understanding and generation (cf. Fig. 1(a–c)).

The design of our Uni4D-LLM is guided by two key insights: 1) Effective unification requires a
shared visual representation. A 4D scene combines 3D spatial structure with temporal dynamics,
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(a) 2D/3D/4D Paradigms for Understanding and Generation (b) Comparison on Multiple Benchmarks

(c) Task Visualization of Uni4D-LLM
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Figure 1: Illustration of 2D/3D/4D paradigms for scene understanding and generation. (a) 2D VLMs
unify tasks but lack spatial grounding; 3D/4D extensions add geometry and temporal cues but remain
fragmented. Our Uni4D-LLM provides a unified framework for 4D understanding and generation.
(b) Benchmark comparison of 3D and 4D paradigms. (c) Results of Uni4D-LLM on diverse tasks.

which demands explicit spatiotemporal modeling. Additionally, scene understanding depends on
high-level semantics, and generation reconstructs content from low-level features. These factors
motivate a unified visual representation that integrates multi-level features with spatiotemporal
awareness. 2) Unification also depends on the model architecture. Although understanding and
generation follow different paradigms of autoregression versus denoising diffusion, both are built on
Transformer backbones. This structural commonality enables us to unify AR- and diffusion-based
reasoning within a single LLM architecture.

As illustrated in Fig. 2, our Uni4D-LLM is built on two key components: a spatiotemporal-aware
visual representation and a hybrid LLM architecture. For visual representation, we extract semantic
features for understanding and appearance features with injected noise for generation. We further
incorporate 1D temporal information into the 3D geometric latent to obtain 4D geometric features.
These complementary features are fused through an adaptive cross-attention mechanism to produce
a unified visual representation with spatiotemporal awareness. For hybrid LLM, we design a
shared Transformer-based architecture that supports both autoregressive reasoning and 4D diffusion
denoising. Task distinction is realized through attention masks and multi-task heads, and multi-task
predictions are achieved through the alignment of visual and linguistic representations. These designs
unify the paradigms of understanding and generation for 4D scenes. Finally, we integrate diverse 4D
vision-language datasets and apply instruction fine-tuning to enhance performance on both tasks.

Our main contributions are summarized as follows:
• We present Uni4D-LLM, the first general and unified 4D vision-language large multimodal

model. Our Uni4D-LLM integrates both scene understanding and generation by combining a
spatiotemporal-aware visual representation with a dual-paradigm reasoning architecture.

• We design a unified visual representation with explicit spatiotemporal awareness. An adaptive
cross-attention mechanism fuses semantic features, noisy appearance features, and 4D geometric
features for stronger multi-task perception on 4D scenes.

• We propose a unified hybrid LLM architecture that supports both autoregressive reasoning and 4D
diffusion denoising through attention masks and multi-task heads. This design creates a tighter
connection between understanding and generation tasks.

• We incorporate diverse 4D vision-language datasets and apply instruction fine-tuning. Extensive
experiments demonstrate that our framework achieves state-of-the-art performance in both 4D
scene understanding and generation.

2 RELATED WORK

2D Scene Understanding and Generation. With the strong reasoning capabilities of large language
models (Brown et al., 2020; Touvron et al., 2023), many vision-language models (Liu et al., 2024b;
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Lin et al., 2024; Li et al., 2025) have been developed for cross-modal tasks such as understanding and
generation. Recently, unifying these two tasks has become an important but challenging direction.
Several works (Chen et al., 2025; Wu et al., 2024b; Fan et al., 2025; Xie et al., 2024) address this by
formulating both tasks as next-token prediction. They discretize 2D image patches into text-like tokens
and feed them into an LLM with a single autoregressive model or a hybrid autoregressive–diffusion
model. Although effective for 2D images, these approaches fall short in real-world applications due
to the lack of explicit spatial and geometric representations of 3D scenes. This limitation motivates
us to enhance visual representations for the physical world, and unifies scene understanding and
generation within a single VLM framework.

3D Scene Understanding and Generation. A central challenge in extending scene understanding
and generation to the physical world is representing spatial characteristics. Existing methods (Deng
et al., 2025; Zhu et al., 2024a; Chen et al., 2024; Zhao et al., 2024; Gao et al., 2024) address this by
embedding 3D spatial geometry in visual representations. They then adopt autoregressive models for
understanding and diffusion models for generation. Although effective for individual tasks, these
approaches struggle to unify the two paradigms due to their heterogeneous nature. Some works
attempt to pair LLMs with diffusion models through cross-modal token mapping (Liu et al., 2024a) or
geometric-semantic conditional projection (Xu et al., 2025). However, these solutions face two major
limitations: 1) They are restricted to static scenes and cannot model dynamic temporal variations. 2)
Their pipeline-based designs remain disjoint with separated representation spaces and independent
trainable modules that prevent true unification. In contrast, we move beyond static 3D and investigate
a unified visual representation and model architecture for 4D scene understanding and generation.

4D Scene Understanding and Generation. Unlike 3D scenes, 4D scenes require explicit modeling
of spatiotemporal characteristics. Existing methods (Zhou & Lee, 2025; Huang et al., 2025; Zhang
et al., 2024a; Liang et al., 2024; Wu et al., 2025) follow the 3D paradigm: they embed spatiotemporal
geometric features into visual representations, then adopt autoregressive models for understanding
and diffusion models for generation. For example, Zhou et al. (Zhou & Lee, 2025) encode 3D
positions and 1D time into a learnable spatiotemporal prompt, which is fused with video features and
fed into an LLM for 4D scene understanding. However, a unified model architecture for simultaneous
4D scene understanding and generation remains unexplored. We thus take the first step toward such
unification. We propose a spatiotemporal-aware visual representation for 4D scenes and integrate
autoregressive reasoning with 4D diffusion into a single LLM architecture to bridge understanding
and generation within one framework.

3 OUR UNI4D-LLM
Overview. Fig. 2 shows the architecture of our Uni4D-LLM. Given a (multi-view) video sequence,
our Uni4D-LLM unifies 4D scene understanding and generation through the following three stages:
1) Unified Spatiotemporal-Aware Visual Representation (cf. Sec. 3.1). We construct unified task

representations through 4D scene modeling. A video sequence is encoded into visual and geomet-
ric latents. The visual latent zv produces semantic features fs = SE(zv) for understanding and
appearance features: fa = NE(zv + ϵ) with injected noise ϵ for generation. The geometric latent
z3D is combined with time t to produce 4D geometric features f4D = STE(z3D, t), where SE(·),
NE(·), and STE(·) denote semantic, noise, and spatiotemporal embeddings, respectively. These
features are fused through adaptive cross-attention to produce a unified spatiotemporal-aware
visual representation: f4D

v = Ad_CAtt([fs, fa], f4D, ftask), which is dynamically modulated
by the task prompt ftask to differentiate between understanding and generation.

2) Unified Hybrid LLM Architecture (cf. Sec. 3.2). We unify different task paradigms within a
single Transformer backbone T (·). Given input xin and attention mask M, we obtain hidden
features h = T (xin,M). An autoregressive head produces yAR = HU (h) for understanding,
and a diffusion head outputs yDiff = HG(h) for generation. The unified hybrid architecture is
thus written as LLM : {T ;M} 7→ {yAR, yDiff}, where M is a predefined attention mask to
control the task-specific information flow.

3) Multimodal Alignment and Multi-Task Optimization (cf. Sec. 3.3). We align visual and lin-
guistic representations to enable joint optimization. The unified visual representation is projected
into the language embedding space: τ4Dv = Proj(f4D

v ), where τ4Dv is aligned with linguistic
tokens τl. The unified LLM consumes these tokens to produce multi-task outputs, which are
decoded into texts and multi-view images/videos. Training is guided by joint objectives for both
understanding and generation.
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Figure 2: Uni4D-LLM unifies 4D scene understanding and generation via three stages: 1) Unified
visual representation. Equip unified task representations with 4D scene modeling via adaptive
cross-attention fusion. 2) Unified model architecture. Integrate various task paradigms into a single
LLM. 3) Multi-task optimization. Achieve multimodal alignment and joint task optimization.

Remarks. The output texts and images/videos denote the results of 4D scene understanding and
generation, respectively. Our framework unifies 4D scene understanding and generation from three
perspectives: visual representation, model architecture, and task optimization.

3.1 UNIFIED SPATIOTEMPORAL-AWARE VISUAL REPRESENTATION

4D VLMs face two key challenges in visual representation for 4D scene understanding and generation:
heterogeneous task representation and 4D scene modeling. In this section, we construct multi-task
features and model the spatiotemporal characteristics of the scene, and further integrate them into a
unified visual representation for both 4D scene understanding and generation.

Task-Specific Visual Representation. The task representations for understanding and generation
differ fundamentally. Understanding requires modeling contextual and logical knowledge, while
generation focuses on reconstructing visual content. This distinction motivates us to adopt a divide-
and-conquer strategy for feature modeling. Consider multi-view videos as an example. We first
employ a VAE (Kingma & Welling, 2013) as the vision encoder to map video sequences into a visual
latent zv indexed by view and time. For the understanding task, we use SigLIP (Zhai et al., 2023) as
the semantic embedding SE and fine-tune it to extract high-level semantic features from the visual
latent, i.e. fs = SigLIP(zv). For the generation task, we design a noise embedding NE with a linear
layer and a noise scheduler. The linear layer maps the visual latent to the appearance features, and
the noise scheduler randomly injects noise with varying intensity. Formally, the appearance features
are given by fa = (1 −m) ⊙Wazv +m ⊙ (Wazv + αtϵ), where m is a random mask, αt is the
step-dependent noise intensity, and ϵ ∼ N (0, I) is Gaussian noise.

Spatiotemporal Geometric Representation. Unlike 2D scenes, effective reasoning in 4D VLMs
requires explicit spatiotemporal awareness. For the spatial dimension, we adopt MonST3R (Zhang
et al., 2024b) as a geometry encoder for dynamic scenes. It transforms video sequences into a
geometric latent: z3D = {zpose3D , zposi3D }, which captures both camera poses and 3D scene positions.
For the temporal dimension, we extract timestamps from the videos. These are encoded using a
Fourier-based strategy F(·) (Li et al., 2021), which converts time into learnable feature patterns.
Finally, we introduce a spatiotemporal embedding STE that concatenates the geometric 3D features
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with the encoded 1D time and maps them into a 4D representation through a linear layer: f4D =
W4D · [z3D ∥ F(t)]. The resulting f4D represents the spatiotemporal characteristics of the scene.
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Figure 3: Illustration of adaptive cross-attention fusion.

Adaptive Cross-Attention Fusion.
We propose an adaptive cross-
attention mechanism to achieve a
unified representation that supports
multiple tasks and captures 4D
scene structure. As illustrated in
Fig. 3, this mechanism fuses seman-
tic features, appearance/noise fea-
tures, and 4D geometric features.
The fusion process consists of two
steps: task fusion and 4D fusion.
In task fusion, we introduce a task
prompt ftask that distinguishes between understanding and generation. It serves as a modulation
parameter that dynamically balances semantic and appearance/noise features through weighted fusion:
f̂v = αfs + (1− α)fa, where α = MLP(ftask). In 4D fusion, task-specific visual features f̂v are
used as queries. We adaptively combine geometric information by weighting spatial positions and
poses as: ˆf4D = αfposi

4D +(1−α)fpose
4D . We then apply cross-attention, where q = wq f̂v , k = wk

ˆf4D,
and v = wv

ˆf4D. The fusion output is computed as funi = softmax(qk⊤/
√
d)v. Finally, the unified

visual representation is obtained as f4D
v = {α, funi}. This representation integrates the task prompt

with task-specific visual features and enriches them with 4D spatiotemporal geometry.

3.2 UNIFIED HYBRID LLM ARCHITECTURE

Although the unified visual representation encompasses task-specific features for both understanding
and generation in 4D scenes, the modeling paradigms of these two tasks are fundamentally different.
This raises an important question: “Can a unified architecture be devised to simultaneously learn
heterogeneous task paradigms?"

Shared Transformer Backbone. Both understanding and generation baselines (Wu et al., 2024b;
Zhang et al., 2024a) are built on similar Transformer structures. However, instead of concatenation of
separate task-specific models with different weights, the key to unification is a single Transformer that
shares weights across tasks. To this end, we construct a shared Transformer as the LLM backbone as
shown in Fig. 4(a). Additionally, we design an autoregressive head for understanding and a diffusion
head for generation. The shared backbone follows a standard Transformer block that includes multi-
head self-attention, a feed-forward network, and layer normalization with residual connections. We
introduce predefined attention masks to account for paradigm differences between tasks. These
masks dynamically control the information flow within each block for the same backbone to adapt to
different tasks. Finally, multiple blocks are stacked to form the shared Transformer backbone T .

Autoregressive Model. The autoregressive model is typically a feed-forward LLM designed for
classification-based prediction. This motivates us to adopt the shared Transformer backbone T as the
vision-language model, and append an understanding head composed of a linear layer and a softmax
layer. The output is given by yAR = Softmax(Wu · T (xin,MU )). For the predefined mask MU in
Fig. 4(b), we configure three types of attention: 1) Full attention across all visual tokens for global
contextual association; 2) Asymmetric attention between linguistic and visual tokens for conditional
autoregressive understanding; 3) Causal attention among linguistic tokens.

4D Diffusion Model. The generative model is typically formulated as an iterative denoising diffusion
process, which can be viewed as a regression-based fitting model. To this end, we reuse the shared
Transformer backbone T to simulate the multi-step diffusion process and append an MLP-based
generation head. The process is defined as: ϵ̂(t) = MLP(T (x(t),MG)) with initialization xT = xin

and denoising iteration x(t−1) = x(t) − αtϵ̂
(t) for t ∈ {1, . . . , T}, where T is the total number of

diffusion steps. The final output is yDiff = x(0). For the predefined mask MG in Fig. 4(c), we
adopt a spatiotemporal alternating attention strategy, i.e. view–time–view sequence to ensure spatial
consistency and temporal continuity. At the view level with time fixed, we configure: i) Full attention
among noisy visual tokens from different views; ii) Full attention between noise-free visual tokens
and linguistic tokens for multimodal association; iii) Asymmetric attention between noisy tokens and
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Figure 4: Architecture of unified hybrid LLM. (a) Shared transformer serves as the LLM backbone
to support (b) autoregressive model and (c) 4D diffusion model via attention masks and task heads.

noise-free/linguistic tokens for conditional generation; iv) causal attention among linguistic tokens.
Time-level attention follows the same design as view-level attention.

3.3 MULTIMODAL ALIGNMENT AND MULTI-TASK OPTIMIZATION

The unified visual representation and the unified LLM architecture essentially integrate understanding
and generation tasks for 4D scenes at the levels of feature modeling and model inference. However,
the simultaneous optimization of these two tasks remains a critical challenge.

Vision-Language Alignment. Considering that the input of a large language model requires text-like
tokens, we first introduce a multi-layer perceptron as the projection function Proj(·) to map the
unified visual representation into the language embedding space: τ4Dv = MLP(f4D

v ). Next, we
tokenize the input instruction into the language embedding space to obtain the linguistic tokens τl,
where the textual position and time are enhanced by a special token embedding (Li et al., 2025). In
this way, we ensure a preliminary alignment between visual and linguistic representations.

Joint Optimization. We concatenate the unified visual and linguistic tokens and feed them into the
hybrid LLM. Guided by the task prompt, the model uses the autoregressive pathway for linguistic
outputs and the 4D diffusion pathway for visual outputs. For optimization, we apply cross-entropy
loss on predicted linguistic tokens: LAR = −

∑
i log p̂θ(τ̂l,i | τl,<i, τ

4D
v ), and MSE loss on predicted

noise: LDiff = Et

[
∥ϵ̂(t)− ϵ∥2

]
, which is applied only to tokens derived from noisy inputs. The total

objective: L = λARLAR + λDiffLDiff . Finally, linguistic tokens are de-tokenized into text, and
visual tokens are decoded into multi-view/time images. Optionally, Gaussian Splatting (GS) (Kerbl
et al., 2023) can be applied to refine the details of the image.

4 TRAINING PIPELINE

To ensure the stability of the training process and improve the performance of our model for 4D
understanding and generation, we divide the entire training process into three stages as follows:

Stage 1: Fundamental Representation Learning. This stage equips the model with multi-task
visual and linguistic representations using large-scale 2D image/video–text datasets for captioning
(ImageNet-1K (Deng et al., 2009), WebVid-10M (Bain et al., 2021)) and visual QA (GranD (Rasheed
et al., 2024), ANet-RTL (Huang et al., 2024a)). Captions also serve as conditional text for scene
generation to align visual and linguistic features as the foundation for both tasks. We update the
embeddings, projector, lower LLM layers, and multi-task heads, and freeze the remaining modules.

Stage 2: Multimodal Spatiotemporal Alignment. This stage enhances spatiotemporal awareness
and adapts the model to the physical world. We use 3D scene understanding datasets for captioning,
QA, and grounding (Scan2Cap (Chen et al., 2021), ScanQA (Azuma et al., 2022), ScanRef (Chen
et al., 2020)), a small 4D captioning dataset (Chat4D (Zhou & Lee, 2025)), and 3D generation datasets
(CO3D (Reizenstein et al., 2021), RealEstate10k (Zhou et al., 2018)). These hybrid datasets align
fine-grained spatiotemporal information across modalities. We update the spatiotemporal embedding,
adaptive cross-attention fusion, higher LLM layers, multi-task heads, and freezing other modules.

Stage 3: 4D Task Instruction Fine-Tuning. This stage improves generalization to complex 4D
scene understanding and generation. We use 4D vision-language datasets (Chat4D (Zhou & Lee,
2025), DyCheck (Gao et al., 2022)) and apply instruction fine-tuning to adapt the model to dynamic
4D environments. All trainable parameters are optimized with LoRA adapters (Hu et al., 2022), and
the vision encoder-decoder and geometry encoder remain frozen.
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Table 1: Quantitative results for scene understanding tasks on different 3D and 4D datasets.

Methods
3D Benchmark 4D Benchmark

Scan2Cap ScanQA Multi3DRefer ScanRef Chat4D
C@0.5↑ B-4@0.5↑ M@0.5↑ C↑ B-4↑ M↑ F1@0.5↑ SAcc@0.5↑ C↑ B-4↑ M↑ SAcc@0.5↑ TAcc↑

3D

3D-LLM – – – 69.4 12.0 14.5 – – 61.6 11.5 12.3 31.4 –
Chat-3D v2 63.9 31.8 – 87.6 14.0 – 41.6 38.4 81.8 13.7 – 39.5 –
3D-LLaVA 78.8 36.9 27.1 92.6 17.1 18.4 – – 85.1 16.0 18.2 52.0 –

PQ3D 80.3 36.0 29.1 87.8 – 17.8 50.1 51.2 84.7 14.3 17.5 51.5 –
LLaVA-3D 79.2 41.1 30.2 91.7 14.5 20.7 – 42.2 87.4 14.8 19.4 45.6 –

Video-3D LLM 83.8 42.4 28.9 102.1 16.2 19.8 52.7 51.7 89.4 16.1 19.2 52.8 –

4D
LLaVA-4D 85.3 45.7 31.3 97.8 17.9 21.2 54.3 53.2 93.5 17.2 21.0 58.9 54.6

Uni4D-LLM (Ours) 85.1 45.4 31.0 100.5 17.4 21.2 53.9 53.0 93.8 17.1 20.6 58.2 54.6

Table 2: Quantitative results for scene generation tasks on different 3D and 4D datasets.

Methods
3D Benchmark 4D Benchmark

CO3D RealEstate10 DyCheck VBench
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ LPIPS↓ FVD↓ CLIP-C↑ Cons↑ Dyn↑ Aes↑ T-Ali↑

3D

3D-GS 19.28 0.61 0.54 22.65 0.76 0.35 12.70 0.55 – – – – – –
ImageDream 21.95 0.71 0.35 29.87 0.94 0.10 15.26 0.43 – – 88.3% – 49.2% 21.5%
D-Craft3D 20.35 0.68 0.42 27.74 0.90 0.17 15.52 0.44 – – 87.4% – 48.0% 20.6%

CAT3D 22.79 0.73 0.30 31.07 0.95 0.09 – – – – – – – –

4D

4D-GS 19.57 0.65 0.52 22.70 0.79 0.33 16.54 0.35 462.5 0.89 – – – –
4D-fy 22.62 0.71 0.30 28.11 0.91 0.15 17.92 0.31 255.2 0.92 91.6% 53.3% 54.5% 25.7%

4Diffusion 23.55 0.79 0.24 31.62 0.95 0.08 20.36 0.19 182.7 0.96 94.5% 53.6% 57.2% 25.8%
Free4D 23.70 0.81 0.22 31.90 0.97 0.07 21.55 0.16 140.6 0.97 96.9% 54.1% 61.9% 26.0%

Uni4D-LLM w/o GS 23.04 0.75 0.26 29.94 0.94 0.10 20.23 0.20 197.1 0.96 94.1% 53.7% 57.8% 25.9%
Uni4D-LLM w/ GS 23.61 0.80 0.22 31.75 0.96 0.07 21.38 0.17 152.3 0.97 96.5% 53.9% 61.1% 26.2%

5 EXPERIMENTS

Implements Details. Our Uni4D-LLM model utilizes the pre-trained weights of Qwen2.5-7B-
Instruct (Bai et al., 2025), the vision encoder-decoder of VAE proposed in Wan2.1 (Wan et al., 2025)
and the geometry encoder of MonST3R (Zhang et al., 2024b). The adaptive cross-attention fusion
module is a Transformer-based network architecture. The whole model is trained on 8 RTX 4090
GPUs using AdamW as the optimizer. In training stage 1, we set the learning rate to 1.0e− 4 with a
batch size of 16. In training stage 2, we set the learning rate to 5.0e− 5 with a batch size of 8. We
use a learning rate of 1.0e− 5 with a batch size of 12 in training stage 3.

Comparison Methods. Since Uni4D-LLM is a multi-task model for 4D scenes, we construct a
comprehensive set of baselines across both task types: understanding and generation, and scene dimen-
sions: 3D and 4D. For scene understanding, we compare with 3D VLMs including 3D-LLM (Hong
et al., 2023), Chat-3D v2 (Huang et al., 2023), 3D-LLaVA (Deng et al., 2025), PQ3D (Zhu et al.,
2024b), LLaVA-3D (Zhu et al., 2024a), and Video-3D LLM (Zheng et al., 2024), as well as the 4D
VLM LLaVA-4D (Zhou & Lee, 2025). For scene generation, we compare against 3D diffusion models
including ImageDream (Wang & Shi, 2023), DreamCraft3D (Sun et al., 2023), and CAT3D (Gao
et al., 2024); 4D diffusion models including 4D-fy (Bahmani et al., 2024), 4Diffusion (Zhang et al.,
2024a), and Free4D (Liu et al., 2025); and Gaussian splatting models in both 3D and 4D, including
3D-GS (Kerbl et al., 2023) and 4D-GS (Wu et al., 2024a).

Evaluation Metric. We compare methods on multiple 3D&4D understanding and generation
benchmarks. For understanding, we evaluate on Scan2Cap (Chen et al., 2021), ScanQA (Azuma
et al., 2022), ScanRef (Chen et al., 2020), Multi3DRefer (Zhang et al., 2023), and Chat4D (Zhou &
Lee, 2025), using CiDEr (C), BLEU-4 (B-4), METEOR (M), F1 for the quality of text response, and
spatial/temporal IoU grounding accuracy (S/TAcc). For generation, we adopt CO3D (Reizenstein
et al., 2021), RealEstate10 (Zhou et al., 2018), DyCheck (Gao et al., 2022), and VBench (Huang
et al., 2024b), reporting PSNR, SSIM, LPIPS for spatial consistency, FVD for video quality, CLIP-
C for temporal consistency, and VBench metrics (Consistency, Dynamic Degree, Aesthetic, Text
Alignment). Experiments in Sec. 5.2 are conducted on 4D datasets.

5.1 COMPARISON WITH STATE-OF-THE-ART MODELS

Quantitative Results on Understanding. Table 1 reports comparisons between 3D and 4D VLMs
on both 3D and 4D understanding tasks. Our Uni4D-LLM consistently surpasses most 3D methods
and achieves performance on par with several state-of-the-art models. We demonstrate clear temporal
advantages over 3D VLMs on 4D benchmarks and remain broadly competitive with the latest 4D
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One person is gripping their opponent, rotating their body, and lifting them into the air. The opponent is flipping 

over the hip, spinning mid-air, and landing as the thrower maintains balance and control. At 0.5s, they are at [2.34, 

1.87, -1.78, 3.25, 0.21, -1.27]. ... At 1.3s, they are at [0.85, 1.84, -1.46, 2.53, 0.12, 0.25].

0.5s 0.7s 0.9s 1.1s 1.3s

User 

LLaVA-4D

Uni4D-LLM

What are the two persons doing in this scene? Please provide their coordinates.

LLaVA-3D One person is flipping another over the hip during a judo throw. They are at [2.18, 1.35, -1.30, 3.01, 0.22, -1.29].

V
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View 1 View 2
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One person is gripping and lifting their opponent, while the opponent is flipping over the hip, spinning through 

the air, and landing on the mat, as the thrower is maintaining stability and control throughout the motion. At 0.5s, 

they are at [2.31, 1.85, -1.80, 3.19, 0.18, -1.25]. ... At 1.3s, they are at [0.82, 1.81, -1.49, 2.50, 0.17, 0.23].

Figure 5: Visual comparison on 4D scene understanding.

Free4D Uni4D-LLM (Ours)

A lemur hold-
ing and drink-
ing boba.

A man is stir-fry-
ing vegetables in 
a kitchen.

4D-fyInput (Text/Image)

time

view

Figure 6: Visual comparison on 4D scene generation, e.g., text-to-4D and text/image-to-4D.

VLMs with only minor gaps on a few metrics. These results confirm the strong effectiveness and
overall superiority of Uni4D-LLM across diverse benchmarks.

Quantitative Results on Generation. In Table 2, we present comparisons with 3D and 4D diffusion
models, and 3D and 4D Gaussian splatting (GS) models. We also evaluate GS as a post-processing
strategy for our framework. Our Uni4D-LLM outperforms most existing diffusion and GS models
on both 3D and 4D generation tasks. Without GS, it performs slightly below the latest 4D diffusion
models equipped with GS. However, our model achieves comparable or superior results on several
metrics when combined with GS. Generally, our Uni4D-LLM delivers strong generation performance
in both 3D and 4D settings, and GS further enhances the visual detail and quality of the outputs.

Qualitative Results. Figures 5 and 6 show representative 4D scenes comparing Uni4D-LLM with
both 3D and 4D models. In 4D understanding, 3D VLMs struggle to capture temporal dynamics,
while our model demonstrates strong spatiotemporal reasoning on par with recent 4D VLMs. In 4D
generation, our Uni4D-LLM produces sharp and coherent results that rival those of advanced 4D
diffusion models. These results demonstrate the superiority of Uni4D-LLM in 4D understanding and
generation, underscoring its potential as a unified multi-task framework for the physical world.

5.2 ABLATION STUDY AND DISCUSSION

Table 3: Impact of spatiotemporal embedding.
Embedding

type
Chat4D DyCheck

C↑ SAcc@0.5↑ TAcc↑ PSNR↑ FVD↓ CLIP-C↑
w/o Embedding 75.3 12.4 10.4 19.40 260.1 0.93

w/ Spatial 91.0 56.5 10.4 20.95 213.6 0.94
w/ SpatioTemp. 93.8 58.2 54.6 21.38 152.3 0.97

Role of Spatiotemporal Embedding. Table 3
analyzes the impact of spatiotemporal embed-
ding on 4D understanding and generation. The
model maintains reasonable performance on sev-
eral understanding metrics upon removal of the
embedding, but fails at fine-grained reasoning
and suffers degraded generation quality. Spatial embedding improves spatial understanding and
fidelity, and temporal embedding enhances temporal reasoning and generative consistency.

Effectiveness of Unified Representation & Architecture. Figure 7 analyzes the impact of unified
representation and architecture on 4D understanding and generation. Models with separate represen-
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Figure 7: Effectiveness of unified representation and architecture. The understanding and generation
scores are obtained by weighted aggregation of the corresponding task-specific normalized metrics.

tations and architectures perform well on only single tasks. Combining separate representations with
a unified architecture degrades performance due to feature mismatch. Unified representations with
separate architectures improve results but incur large parameter costs. Unified representation and
architecture achieve strong multi-task performance without excess parameters.

Table 4: Choice of representation fusion strategy.
Fusion Chat4D DyCheck
strategy C↑ SAcc@0.5↑ TAcc↑ PSNR↑ FVD↓ CLIP-C↑
Concat 88.4 54.1 51.4 20.75 185.4 0.95

Weighting 89.6 54.5 52.0 21.02 169.1 0.96
Attention 93.8 58.2 54.6 21.38 152.3 0.97

Choice of Visual Representation Fusion Strat-
egy. Table 4 compares fusion strategies for vi-
sual representation. Attention-based fusion out-
performs concatenation and weighting, which
rely on fixed global weights and ignore task-
specific differences. In contrast, attention-based
fusion adaptively balances task-specific and 4D features for stronger multi-task modeling.

Table 5: Discussion on attention mask.
Attention for LLM

Chat4D DyCheck
C↑ SAcc@0.5↑ TAcc↑ PSNR↑ FVD↓ CLIP-C↑

w/o Mask 89.4 53.9 50.8 19.81 232.4 0.93
w/ Mask 93.8 58.2 54.6 21.38 152.3 0.97

Importance of Attention Mask. We evaluate
the role of the attention mask in our unified
model. As shown in Table 5, it significantly
improves both understanding and generation per-
formance. The attention mask works by dynami-
cally controlling and modulating the information
flow based on the task setting, which enables more effective reasoning across different paradigms.

Table 6: Role of attention sampling for generation.
Sampling strategy PSNR↑ FVD↓ CLIP-C↑

w/o Sampling 20.27 194.2 0.95
w/ View-only 20.95 187.9 0.95
w/ Time-only 20.86 161.3 0.96
w/ Alternating 21.38 152.3 0.97

Impact of Spatiotemporal Alternating Strat-
egy. Table 6 compares different attention mask
sampling strategies for 4D generation. The over-
all performance is acceptable without sampling,
but the spatial and temporal consistency remain
weak. View-only sampling improves spatial co-
herence and time-only sampling strengthens temporal continuity. Our spatiotemporal alternating
strategy achieves the best results across all metrics with both spatial fidelity and temporal stability.

Limitation. Despite strong performance in short-term scene understanding and generation, our
Uni4D-LLM struggles with long-term dynamics. Capturing such variations requires memory-based
reasoning to model cross-spatiotemporal interactions and causal relations. For future work, we plan
to integrate a world model (Ha & Schmidhuber, 2018) to enable long-term spatiotemporal reasoning
and extend scene understanding and generation to longer temporal horizons.

6 CONCLUSION

In this work, we introduce Uni4D-LLM, the first general vision–language model that unifies 4D scene
understanding and generation. Our framework builds a spatiotemporal-aware visual representation for
multi-task 4D perception and designs a hybrid LLM architecture that supports both autoregressive and
4D diffusion models to bridge understanding and generation. Through multimodal alignment between
visual and linguistic representations, our unified LLM produces effective multi-task predictions under
joint optimization. By integrating visual representation, model architecture, and task optimization,
our Uni4D-LLM achieves a comprehensive unification of 4D scene understanding and generation.
We further fine-tune on diverse 4D vision-language datasets and validate the effectiveness of our
approach through extensive experiments. We believe that this work paves the way toward unified
multi-task multimodal models for the physical world.
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