

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LOW-PASS PERSONALIZED SUBGRAPH FEDERATED RECOMMENDATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Federated Recommender Systems (FRS) preserve privacy by training decentralized models on client-specific user-item subgraphs without sharing raw data. However, FRS faces a unique challenge: *subgraph structural imbalance*, where drastic variations in subgraph scale (user/item counts) and connectivity (item degree) misalign client representations, making it challenging to train a robust model that respects each client’s unique structural characteristics. To address this, we propose a **Low-pass Personalized Subgraph Federated** recommender system (**LPSFed**). LPSFed leverages graph Fourier transforms and low-pass spectral filtering to extract low-frequency structural signals that remain stable across subgraphs of varying size and degree, allowing robust personalized parameter updates guided by similarity to a neutral structural anchor. Additionally, we leverage a localized popularity bias-aware margin that captures item-degree imbalance within each subgraph and incorporates it into a personalized bias correction term to mitigate recommendation bias. Supported by theoretical analysis and validated on five real-world datasets, LPSFed achieves superior recommendation accuracy and enhances model robustness.

1 INTRODUCTION

Federated Recommender Systems (FRS) play a crucial role in preserving privacy while maintaining recommendation quality. For example, large e-commerce platforms (e.g., Amazon, eBay) can treat user-item interactions via subgraphs, where each client corresponds to a specific country or region and accesses only localized data. Under a Federated Learning (FL) framework, models exchange parameters instead of raw user data, significantly enhancing data privacy (McMahan et al., 2017). However, decentralized learning naturally introduces substantial heterogeneity across clients from variations in the size and data distributions within local datasets. Heterogeneity has been widely studied in other FL tasks. In image classification FL, it appears through differences in local image quantities and skewed class distributions (Duan et al., 2020; Hsu et al., 2020; Wang et al., 2020a). In graph-based node classification FL, heterogeneity arises as client subgraphs differ in class distributions and class-driven graph topology, with some classes forming dense clusters and others appearing isolated or sparse (Fu et al., 2024; Kong et al., 2024; Li et al., 2024a; Tan et al., 2025b).

In subgraph-based FRS, the key challenge is *subgraph structural imbalance*, significant variations in client subgraph size (user/item counts) and connectivity (item degree). This divergence is problematic for spatial Graph Neural Networks (GNNs), such as PinSage, NGCF, and LightGCN (Ying et al., 2018; Wang et al., 2019; He et al., 2020), because their multi-hop message passing is highly sensitive to local topology. Consequently, when client subgraphs have vastly different structures, their locally trained models produce misaligned representations, which destabilize federated updates and degrade the quality of recommendations. Spectral FL methods (Tan et al., 2024; Yu, 2025; Tan et al., 2025a) have been explored as an alternative, but their direct application to FRS is challenging since recommendation graphs are bipartite, lack informative node features, and exhibit severe degree skewness, unlike the homogeneous graph structures typically assumed in tasks such as citation or social networks.

Beyond representation misalignment, *subgraph structural imbalance* also amplifies *localized popularity bias* in FRS. Specifically, in dense clients with high average item degree, GNN aggregations are dominated by high-degree hub items, overshadowing the long-tail items. While in sparse clients

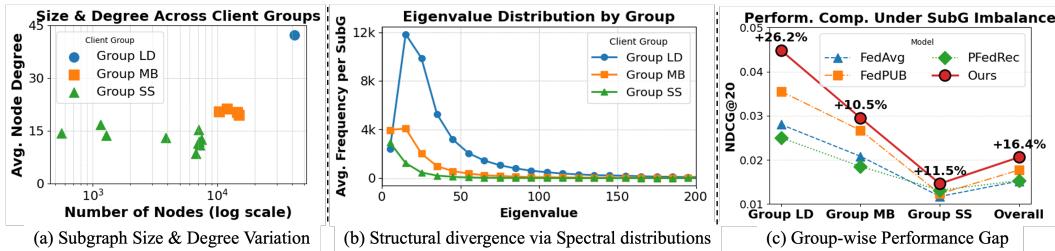


Figure 1: Empirical observations from the federated recommender systems on the *Amazon-Book* (He et al., 2020) dataset. (a) Subgraph size-degree variation: each point is one of 15 client subgraphs, partitioned using spectral clustering, grouped into **Large-Dense (LD)**, **Medium-Balanced (MB)**, **Small-Sparse (SS)** by node count and average degree. (b) Structural divergence: Laplacian eigenvalue histograms averaged over each group, highlighting distinct spectral signals. (c) Group-wise Performance Gap: NDCG@20 for FedAvg (McMahan et al., 2017), PFedRec (Zhang et al., 2023), FedPUB (Baek et al., 2023), and Ours across groups, showing that performance varies significantly depending on subgraph structure. [Detailed experimental results in Table 2](#).

with low average item degree, the scarcity of connections forces the model to rely on a narrow set of relatively higher-degree items, leading to unstable training and poor long-tail learning (Abdollahpouri et al., 2019; Mansouri et al., 2020; Gao et al., 2022; Zhang et al., 2024; Lin et al., 2025). This bias fosters a feedback loop, reinforcing the dominance of popular items (Chaney et al., 2018; Klimashewskaia et al., 2024). Since client isolation prevents the sharing of global context that could mitigate this bias, it is crucial to build adaptive strategies tailored to each subgraph’s structural characteristics.

Figure 1 highlights three aspects we examine on *Amazon-Book* (He et al., 2020) in an FL setting. To simulate this scenario with controlled structural diversity, we partition the global graph into 15 clients using spectral clustering, yielding distinct groups. The figure illustrates how variations in client subgraph size and degree lead to spectral divergence, resulting in a corresponding decrease in NDCG@20 for the baselines. These observations demonstrate that *structural imbalance* directly degrades FRS performance. By leveraging spectral information like Laplacian eigenvalue distributions, our method consistently improves performance across all client groups, demonstrating the effectiveness of spectral signals under structural heterogeneity.

Motivated by these observations, we propose **Low-pass Personalized Subgraph Federated Recommendation (LPSFed)**, a robust personalized FRS framework that addresses structural imbalance through two synergistic components. **(1)** We apply low-pass spectral filtering to each client subgraph to extract its dominant low-frequency structural signal, which reflects the core connectivity pattern with minimal sensitivity to scale and noise. These signals are used to compute personalized structural similarities between each client and the global model, guiding adaptive parameter updates referenced against a neutral structural anchor across heterogeneous subgraphs. **(2)** We incorporate a localized popularity bias-aware margin that captures variations in item-degree distributions across subgraphs and applies a personalized correction term during local update.

We evaluate LPSFed on five real-world datasets across diverse FRS scenarios and compare it against representative baselines. The results demonstrate that our method consistently achieves more stable and accurate recommendations. These findings highlight the importance of addressing structural imbalance for improving personalized federated recommendations in subgraph-based settings.

2 RELATED WORK

FRS enhances privacy since data is kept local and only model updates are shared. The field has evolved from federated matrix factorization methods like FedMF (Chai et al., 2020) to personalized methods that adapt to clients, including PFedRec (Zhang et al., 2023), and graph-based models that expand subgraphs on the server, such as FedPerGNN (Wu et al., 2022). Recent work also explores fairness, such as F2MF (Liu et al., 2022), F2PGNN (Agrawal et al., 2024). Spectral methods like FedSSP (Tan et al., 2024) and S2FGL (Tan et al., 2025a) have emerged in FL for graph and node classification to handle client heterogeneity, but existing approaches have been tailored to explicitly tackle the *subgraph structural imbalance* in FRS and the *localized popularity bias* it amplifies.

108

3 PRELIMINARY

109

3.1 FEDERATED RECOMMENDER SYSTEM

110 In a Federated Recommender System (FRS), user-item interactions are decentralized into C distinct
 111 subgraphs $\{G_1, \dots, G_C\}$. For a given client c , we denote its local subgraph as $G_c = (\mathcal{V}_c, \mathcal{E}_c)$, which
 112 consists of the node set $\mathcal{V}_c = \mathcal{U} \cup \mathcal{I}$ and the edge set \mathcal{E}_c . Here, $\mathcal{U} = \{u_1, \dots, u_M\}$ and $\mathcal{I} = \{i_1, \dots, i_N\}$
 113 represent the sets of M users and N items within that client c . The recommendation task is to predict
 114 a preference score \hat{y}_{ui} for unobserved user-item pairs (u, i) and generate a top- K ranked list.
 115

116

3.2 GRAPH FOURIER TRANSFORM (GFT)

117 The Graph Fourier Transform (GFT) (Ramakrishna et al., 2020; Isufi et al., 2024) extends clas-
 118 sical Fourier analysis to graph-structured data by leveraging the graph Laplacian matrix $\mathbf{L} =$
 119 $\mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$, where the adjacency matrix $\mathbf{A} = \begin{bmatrix} 0 & \mathbf{R} \\ \mathbf{R}^\top & 0 \end{bmatrix}$ with $\mathbf{R} \in \mathbb{R}^{M \times N}$. \mathbf{D} is the diagonal
 120 degree matrix with $\mathbf{D}_{ii} = \sum_j \mathbf{A}_{ij}$, and \mathbf{I} is the identity matrix. We define the node embeddings
 121 $\mathbf{Z} \in \mathbb{R}^{(M+N) \times D}$ by stacking user $\mathbf{U}^{M \times D}$ and item $\mathbf{V}^{N \times D}$ embeddings, where D represents the
 122 embedding dimensionality. By eigendecomposition $\mathbf{L} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^\top$, where \mathbf{P} is the matrix of eigen-
 123 vectors (frequency bases) and $\mathbf{\Lambda} = \text{diag}([\lambda_1, \lambda_2, \dots, \lambda_{M+N}])$ is the diagonal matrix of eigenvalues
 124 (frequencies). The GFT of an embedding matrix \mathbf{Z} is $\tilde{\mathbf{Z}} = \mathcal{F}_g(\mathbf{Z}) = \mathbf{P}^\top \mathbf{Z}$, while the inverse GFT
 125 is: $\mathbf{Z} = \mathcal{F}_g^{-1}(\tilde{\mathbf{Z}}) = \mathbf{P} \tilde{\mathbf{Z}}$. Through these transforms, graph signals are decomposed into frequency
 126 components aligned with the graph’s topology, enabling selective reconstruction or modification for
 127 filtering and structural analysis tasks.
 128

129

3.3 LOW-PASS GRAPH FILTER & CONVOLUTION

130 Low-pass graph filters (Nt & Maehara, 2019; Yu & Qin, 2020; Liu et al., 2023) preserve meaningful
 131 low-frequency structures by suppressing high-frequency noise. The filter is defined by a simple
 132 gate function, $\tilde{\mathbf{f}} = \begin{bmatrix} 1 & \Phi \\ 0 & M+N-\Phi \end{bmatrix}$, where Φ is the cut-off frequency. The Low-pass Collaborative
 133 Filter (LCF) (Yu et al., 2022) is applied as: $LCF(\mathbf{Z}) = \mathcal{F}_g^{-1}(\text{diag}(\tilde{\mathbf{f}}) \cdot \mathcal{F}_g(\mathbf{Z})) = \bar{\mathbf{P}} \bar{\mathbf{P}}^\top \mathbf{Z}$, where
 134 $\bar{\mathbf{P}} = \mathbf{P}_{*,1:\Phi}$ contains the first Φ eigenvectors. When $\Phi = M + N$, the filter becomes all-pass,
 135 retaining all frequencies. Adjusting Φ , LCF selectively preserves low-frequency signals while
 136 minimizing the impact of high-frequency noise.
 137

138 Low-pass Graph Convolutional Network (LGCN (Yu et al., 2022)) utilizes these graph filters for
 139 efficient convolution operations, leveraging the convolution theorem (Barrett & Wilde, 1960). Given
 140 an embedding matrix \mathbf{Z} and convolution kernel $\mathbf{k} \in \mathbb{R}^{M+N}$, graph convolution is defined as:
 141

$$\mathbf{Z} *_g \mathbf{k} = \mathcal{F}_g^{-1}(\text{diag}(\tilde{\mathbf{k}}) \cdot \mathcal{F}_g(\mathbf{Z})) = \mathbf{P} \text{diag}(\tilde{\mathbf{k}}) \mathbf{P}^\top \mathbf{Z}, \quad (1)$$

142 where $*_g$ represents graph convolution, and $\tilde{\mathbf{k}}$ is the kernel in the frequency domain. Combining
 143 graph convolution with low-pass filtering results in a low-pass convolution:
 144

$$\mathbf{Z} \bar{*}_g \mathbf{k} = \mathcal{F}_g^{-1}(\text{diag}(\tilde{\mathbf{f}}) \cdot \text{diag}(\tilde{\mathbf{k}}) \cdot \mathcal{F}_g(\mathbf{Z})) = \bar{\mathbf{P}} \text{diag}(\bar{\mathbf{k}}) \bar{\mathbf{P}}^\top \mathbf{Z}, \quad (2)$$

145 where $\bar{*}_g$ denotes low-pass graph convolution, and $\bar{\mathbf{k}} = \tilde{\mathbf{k}}_{1:\Phi}$ represents the truncated convolution
 146 kernel, ensuring computational efficiency by using only the first Φ eigenvectors, compared to standard
 147 graph convolution. Its time complexity is $\mathcal{O}(n\Phi^2)$, where n denotes the number of non-zero elements
 148 in \mathbf{L} . In practice, $\Phi \ll M + N$ and $n \ll (M + N)^2$, making the computation efficient for sparse
 149 graphs. Instead of performing a full eigendecomposition, we compute only the first Φ eigenvectors
 150 using a Lanczos solver, which leverages graph sparsity. This computation is performed once during
 151 the preprocessing stage, prior to training, and does not affect per-round update or communication
 152 costs. LGCN starts with an initial embedding layer $\mathbf{Z}^{(0)}$, followed by L graph convolution layers.
 153 Each l -th layer updates feature maps as:
 154

$$\mathbf{Z}^{(l)} = \bar{\mathbf{P}} \text{diag}(\bar{\mathbf{k}}^{(l)}) \bar{\mathbf{P}}^\top \mathbf{Z}^{(l-1)}. \quad (3)$$

155 After L iterations, embeddings are pooled across all layers to produce the final predictive embeddings.
 156

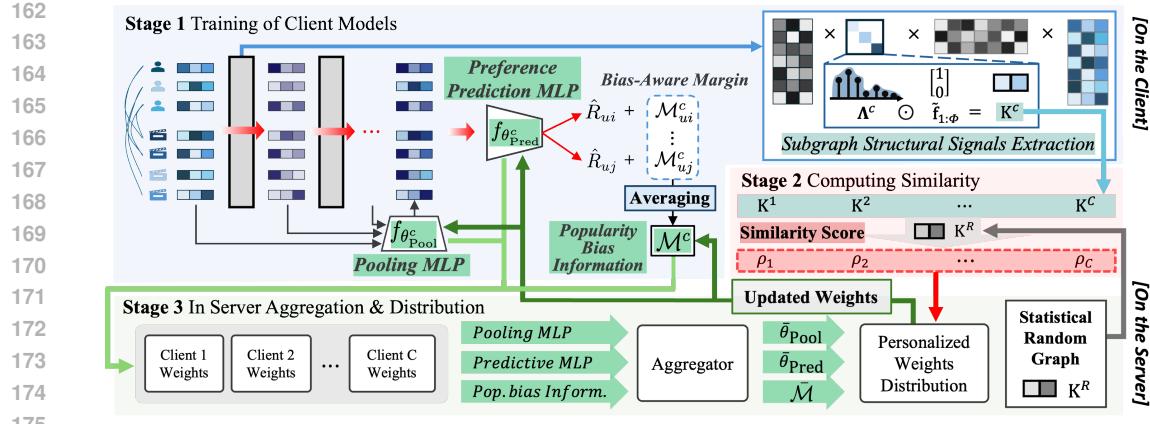


Figure 2: Overview of LPSFed - On the Client: Stage 1 applies low-pass GCN and a localized popularity bias-aware loss to train client subgraphs. Stage 2 computes similarities between each client subgraph and a server-provided random graph using structural signals. On the Server: Stage 3 aggregates client parameters and distributes them based on personalized similarity scores. Colored arrows indicate stage-wise interactions.

4 METHODOLOGY

In this section, we propose the **Low-pass Personalized Subgraph Federated Recommendation (LPSFed)** which encompasses three key components outlined in Figure 2 and Algorithm 1:

- **[In Client] Stage 1: Training of Client Models** - Applies low-pass GCN and bias-aware loss to train subgraph models and extract structural signals, and localized popularity bias information.
- **[In Client] Stage 2: Computing Structural Similarity** - Computes the structural similarity by comparing the client’s structural signals against the server-provided neutral structural anchor.
- **[In Server] Stage 3: Aggregating and Distributing Parameters on the Server** - Aggregates client parameters on the server and distributes them based on personalized similarity scores.

4.1 TRAINING OF CLIENT MODELS

Client Models. (Stage 1 of Figure 2) Each client independently processes its local subgraph using a multi-layer Low-pass Graph Convolutional Network (LGCN Yu et al. (2022)). Within this LGCN, we insert two Multi-Layer Perceptron (MLP) modules: **Pooling MLP** ($f_{\theta_{\text{pool}}^c}$) merges per-layer user and item node embeddings into a client-specific single vector representation:

$$\mathbf{Z}^c = f_{\theta_{\text{pool}}^c}(\{\mathbf{Z}^{(l)}\}_{l=0}^L), \quad \text{for } c = 1, \dots, C, \quad (4)$$

where C is the number of clients, and $\mathbf{Z}^{(l)}$ (Eq. 3) represents the node embedding matrix at layer l . \mathbf{U}_u^c and \mathbf{V}_i^c are the pooled user/item embeddings for client c , which is split into user embeddings $\mathbf{U}^c = \mathbf{Z}_{1:M}^c$ and item embeddings $\mathbf{V}^c = \mathbf{Z}_{M+1:M+N}^c$.

The **Predictive MLP** ($f_{\theta_{\text{pred}}^c}$) computes a preference score from the user-item pair’s pooled embeddings, which is then converted into the final preference angle \hat{R}_{ui} :

$$\hat{R}_{ui} = \arccos(\tanh(f_{\theta_{\text{pred}}^c}([\mathbf{U}_u^c, \mathbf{V}_i^c, \mathbf{U}_u^c \odot \mathbf{V}_i^c])), \quad \text{for } c = 1, \dots, C, \quad (5)$$

where $f_{\theta_{\text{pred}}^c}$ is a client-specific MLP that outputs an unbounded scalar preference score, which is then converted into the final preference angle \hat{R}_{ui} bounded in the range $[0, \pi]$.

Subgraph Structural Signals Extraction. We extract each client’s *denoised structural signals* by constructing a low-pass convolution kernel distribution $\bar{\mathbf{k}}$ from its subgraph’s eigenvalue spectrum:

$$\mathbf{K}^c = \bar{\mathbf{k}}^c = \tilde{\mathbf{k}}_{1:\Phi}^c = \mathbf{\Lambda}^c \odot \tilde{\mathbf{f}}_{1:\Phi}^c, \quad \text{for } c = 1, \dots, C, \quad (6)$$

216 where Λ^c is the diagonal eigenvalue matrix of client c , and $\tilde{\mathbf{f}}_{1:\Phi}$ is a spectral filter that retains only
 217 the first Φ components. This low-pass kernel effectively suppresses high-frequency noise while
 218 preserving the core structural patterns of each client’s subgraph, which are critical for capturing
 219 meaningful connectivity and mitigating the impact of structural heterogeneity across clients (Shuman
 220 et al., 2013). By integrating \mathbf{K}^c into federated learning, our model accurately extracts and exploits
 221 the *denoised structural signals* of each client’s subgraph.

222 **Localized Popularity Bias-aware Optimization.** To address *popularity bias*, our framework
 223 utilizes the bias information in two ways: (1) as an auxiliary contrastive loss to regularize the bias
 224 embedding space, and (2) as an adaptive margin in the main recommendation loss (Zhang et al.,
 225 2022a). First, user and item popularity scores (p_u, p_i) are encoded into d -dimensional embeddings
 226 via $f_{\psi_{bias}}(p_u)$ and $f_{\phi_{bias}}(p_i)$. The bias score $s(\cdot)$ is the cosine similarity between these embeddings,
 227 defined as $s(f_{\psi_{bias}}(p_u), f_{\phi_{bias}}(p_i)) = \cos(\hat{\xi}_{ui})$, where the scalar $\hat{\xi}_{ui}$ is the angle between the two
 228 embedding vectors. This score is first used in an *auxiliary bias contrastive loss*, \mathcal{L}_{bias} , designed to
 229 train the bias encoders $(f_{\psi_{bias}}, f_{\phi_{bias}})$:

$$\mathcal{L}_{bias} = - \sum_{(u,i) \in O^+} \log \frac{\exp(\cos(\hat{\xi}_{ui})/\tau)}{\exp(\cos(\hat{\xi}_{ui})/\tau) + \sum_{j \in N_u} \exp(\cos(\hat{\xi}_{uj})/\tau)}, \quad (7)$$

231 where τ is the temperature and N_u is the negative set for user u . Second, we use the *same bias angle*
 232 $\hat{\xi}_{ui}$ to construct an adaptive margin for the main recommendation task:

$$\mathcal{M}_{ui}^c = \min \{ \gamma \cdot \hat{\xi}_{ui}, \pi - \hat{R}_{ui} \}, \quad \text{for } c = 1, \dots, C, \quad (8)$$

233 where γ controls the margin strength and $\pi - \hat{R}_{ui}$ enforces a monotonic decrease. This locally-
 234 computed margin is then refined by interpolating it with a personalized global context (detailed in
 235 (Eq. 15)), creating the refined margin $\widetilde{\mathcal{M}}_{ui}^c$ that is used in the Bias-aware Contrastive (BC)-loss:

$$\mathcal{L}_{BC} = - \sum_{(u,i) \in O^+} \log \frac{\exp(\cos(\hat{R}_{ui} + \widetilde{\mathcal{M}}_{ui}^c)/\tau)}{\exp(\cos(\hat{R}_{ui} + \widetilde{\mathcal{M}}_{ui}^c)/\tau) + \sum_{j \in N_u} \exp(\cos(\hat{R}_{uj})/\tau)}. \quad (9)$$

236 This formulation adaptively penalizes over-recommended items and encourages long-tail exposure,
 237 mitigating localized popularity bias.

238 **Localized Popularity Bias Information Computation.** Each client aggregates its popularity bias-
 239 aware margins into a *single representative value* to preserve privacy and ensure effective global
 240 utilization. The average margin for client c is computed as:

$$\mathcal{M}^c = \frac{1}{M} \frac{1}{N} \sum_{u=1}^M \sum_{i=1}^N \mathcal{M}_{ui}^c, \quad \text{for } c = 1, \dots, C, \quad (10)$$

241 where C , M , and N are the number of clients, users, and items, respectively. This scalar \mathcal{M}^c
 242 represents the overall *localized popularity bias information* within each client’s subgraph and is
 243 deliberately aggregated into a single non-invertible value to prevent the exposure of user- or item-level
 244 bias characteristics, thereby minimizing privacy risks. The server then utilizes \mathcal{M}^c to construct the
 245 *global bias context*, which guides inter-client bias mitigation. In contrast, sharing the bias encoder
 246 parameters $(f_{\psi_{bias}}, f_{\phi_{bias}})$ is avoided because they encode highly fine-grained, client-specific prefer-
 247 ence patterns. Exchanging such detailed parameters could inadvertently expose sensitive interaction
 248 information and lead to instability when aggregated across heterogeneous clients. Additional details
 249 on the procedure TRAINLOCALMODEL in Algorithm 3, line 1.

250 4.2 COMPUTING STRUCTURAL SIMILARITY

251 (Stage 2 of Figure 2) Since the server cannot access raw subgraph data, it aggregates high-level client
 252 statistics (e.g., average node/edge counts) during initialization. Using these statistics, it generates an
 253 informed reference graph G_R via Erdos-Renyi (ER) or GNMK models (Erdős et al., 1960; Knuth,
 254 1977) at each global epoch, providing a *neutral structural anchor* for similarity comparison. Under

strict privacy constraints, this step may be omitted, allowing the server to build G_R without relying on client-specific statistics. The server performs a GCN on G_R and generates a convolution kernel distribution \mathbf{K}^R which is distributed to each client. Each client, without sharing its local kernel \mathbf{K}^c , computes its **structural similarity** by using the KL-divergence (Hershey & Olsen, 2007) between its local kernel \mathbf{K}^c (Eq. 6) and the reference kernel \mathbf{K}^R :

$$\rho_c = D_{KL}(\mathbf{K}^R \parallel \mathbf{K}^c) = \sum_{i=1}^{\Phi} \mathbf{K}^R(i) \log \left(\frac{\mathbf{K}^R(i)}{\mathbf{K}^c(i)} \right), \quad \text{for } c = 1, \dots, C. \quad (11)$$

To align these scores across clients, the server normalized the similarities via min-max normalization:

$$\bar{\rho}_c = 1 - \frac{(\rho_c - \min(\rho))}{(\max(\rho) - \min(\rho))}, \quad \text{where } \rho = \{\rho_1, \dots, \rho_C\}. \quad (12)$$

The normalized similarity $\bar{\rho}_c$ quantifies each client's structural alignment to the reference graph. This score guides the personalized FL updates and mitigates *structural imbalance* by reducing the impact of highly divergent clients that would otherwise introduce misaligned representations into the global model. Further details on the procedure COMPUTESIMILARITY in Algorithm 3.

4.3 AGGREGATING AND DISTRIBUTING PARAMETERS ON THE SERVER

Initialization. In the initial communication round, the server initializes the learning environment by distributing global parameters $\bar{\theta}$ to all clients, ensuring a uniform starting point $\theta^c \leftarrow \bar{\theta}$ for all clients c . Refer to Algorithm 1, line 1.

Aggregation. (Stage 3 of Figure 2) The server aggregates two model parameters and scalar bias signals: pooling MLP's θ_{Pool}^c (Eq. 4), predictive MLP's θ_{Pred}^c (Eq. 5), and averaged margin \mathcal{M}^c (Eq. 10). Aggregation involves computing the mean across all clients:

$$\bar{\theta}_{\text{Pool}} = \frac{1}{C} \sum_{c=1}^C \theta_{\text{Pool}}^c, \quad \bar{\theta}_{\text{Pred}} = \frac{1}{C} \sum_{c=1}^C \theta_{\text{Pred}}^c, \quad \bar{\mathcal{M}} = \frac{1}{C} \sum_{c=1}^C \mathcal{M}^c. \quad (13)$$

where C is the number of clients. These procedures are run every global training epoch, as described in **Global Training Loop** part in Algorithm 2, line 5.

Distribution. The server distributes updated model parameters to each client by adjusting them according to the client's normalized similarity score $\bar{\rho}_c$ (Eq. 12). This score balances the influence of the global model and the client's local model during update:

$$\begin{aligned} \theta_{\text{Pool}, \{\text{updated}\}}^c &= (\bar{\theta}_{\text{Pool}} \times \bar{\rho}_c) + (\theta_{\text{Pool}}^c \times (1 - \bar{\rho}_c)), \\ \theta_{\text{Pred}, \{\text{updated}\}}^c &= (\bar{\theta}_{\text{Pred}} \times \bar{\rho}_c) + (\theta_{\text{Pred}}^c \times (1 - \bar{\rho}_c)), \\ \mathcal{M}_{\{\text{updated}\}}^c &= (\bar{\mathcal{M}} \times \bar{\rho}_c) + (\mathcal{M}^c \times (1 - \bar{\rho}_c)). \end{aligned} \quad (14)$$

While the updated parameters $\theta_{\{\text{updated}\}}^c$ are used directly, the distributed margin $\mathcal{M}_{\{\text{updated}\}}^c$ provides global bias context to the client's next local training round. The client creates a refined margin $\tilde{\mathcal{M}}_{ui}^c$ by interpolating this received global value with its newly-computed local margin \mathcal{M}_{ui}^c (Eq. 8):

$$\tilde{\mathcal{M}}_{ui}^c = \omega \mathcal{M}_{\{\text{updated}\}}^c + (1 - \omega) \mathcal{M}_{ui}^c, \quad (15)$$

where $\omega \in [0, 1]$ balances global guidance and local specificity. It is this *refined margin* that is then fed into the BC-loss (Eq. 9), ensuring the final loss reflects both global knowledge and structural uniqueness. For implementation details, see the procedure UPDATECLIENT in Algorithm 2, line 11.

4.4 THEORETICAL ANALYSIS

This section presents a theoretical analysis of our approach to *subgraph structural imbalance*. We provide a dual justification: first, we prove that our similarity metric (based on filtered spectrum) is a stable measure of structural similarity, and second, we analyze how our low-pass filtering method serves as a powerful spectral regularizer. We demonstrate that both our metric and method are fundamentally governed by the underlying graph structure. Detailed proofs in Appendix B.

324

325 **Algorithm 1** LPSFed: Low-pass Personalized Subgraph Federated Recommendation326 **Notations.**327 Client $c \in \{1, \dots, C\}$, Server S , local/global epochs e_c, e_g , parameters $\theta_{\text{All}} = \bar{\theta}_{\text{Pool}}, \bar{\theta}_{\text{Pred}}, \bar{\mathcal{M}}$ 328 1: **Server Initialization:**329 2: 1) Initialize global model $\bar{\theta}_{\text{All}}$ 330 2) Distribute parameters to clients: $\theta_{\text{All}}^c \leftarrow \bar{\theta}_{\text{All}}$

331 3: Aggregate statistics from all clients

332 **Algorithm 2** Global Training Loop # [Stage 3]

```

333 1: for epoch = 1 to  $e_g$  do
334   2:   Generate a statistical random graph  $G_R$ 
335   3:   Train global model with  $G_R \Rightarrow \mathbf{K}^R$ 
336   4:   for all client  $c$  (in parallel) do
337     5:      $\theta_{\text{All}}^c, \mathbf{K}^c \leftarrow \text{TRAINCLIENTMODEL}(c)$ 
338     6:      $\rho_c \leftarrow \text{COMPUTESIM.}(c, \mathbf{K}^R, \mathbf{K}^c)$ 
339     7:      $\bar{\theta}_{\text{All}} \leftarrow \frac{1}{C} \sum_c \theta_{\text{All}}^c$ 
340     8:     Normalize:  $\bar{\rho}_c \leftarrow 1 - \frac{\rho_c - \min(\rho)}{\max(\rho) - \min(\rho)}$ 
341     9:     for all client  $c$  do
342       10:     $\theta_{\text{new}}^c \leftarrow \bar{\theta}_{\text{All}} \cdot \bar{\rho}_c + \theta_{\text{All}}^c \cdot (1 - \bar{\rho}_c)$ 
343       11:    UPDATECLIENT( $c, \theta_{\text{new}}^c$ )

```

Algorithm 3 Procedures

```

1: Proc. TRAINCLIENTMODEL( $c$ ) # [Stage 1]
2:   for epoch = 1 to  $e_c$  do
3:     Train  $\theta_{\text{All}}^c$ , kernel  $\mathbf{K}^c$  with GCN
4:   return  $\theta_{\text{All}}^c, \mathbf{K}^c$ 
5:
6: Proc. COMPUTESIM.( $c, \mathbf{K}^R, \mathbf{K}^c$ ) # [Stage 2]
7:   Compute  $KL$ -divergence  $\mathbf{K}^R$  &  $\mathbf{K}^c$ 
8:   return  $\rho_c$ 
9:
10: Proc. UPDATECLIENT( $c, \theta_{\text{All}}^c$ )
11:   Apply updated parameters to client  $c$ 

```

343

344 **Theorem 4.1** (Structural Comparison via Spectral Distributions). *Let $G_1 = (\mathcal{V}_1, \mathcal{E}_1)$ and $G_2 =$* 345 *($\mathcal{V}_2, \mathcal{E}_2$) be graphs with $n_1 = |\mathcal{V}_1|$ and $n_2 = |\mathcal{V}_2|$ nodes and k communities each. \mathcal{E}_1 and \mathcal{E}_2 are sets*346 *of edges of G_1 and G_2 , respectively. Moreover, $\Phi (< n)$ denotes the number of eigenvalues below*347 *the cut-off frequency λ . Let \mathbf{K}^1 and \mathbf{K}^2 be their respective low-pass filtered eigenvalue distributions:*

348
$$\mathbf{K}^j(i) = \frac{\lambda_i^{(j)}}{\sum_{q=1}^{\Phi} \lambda_q^{(j)}}, \quad q \leq \Phi, j \in \{1, 2\}. \quad (16)$$

349 *Under Assumption 1, let $D_{\text{struct}} = D_{KL}(\mathbf{K}_{\text{struct}}^1 \| \mathbf{K}_{\text{struct}}^2)$ denote the KL -divergence between the*350 *idealized distributions $\mathbf{K}_{\text{struct}}^1$ and $\mathbf{K}_{\text{struct}}^2$ corresponding to the k -community structures of G_1 and G_2 ,*351 *respectively. $c, \epsilon > 0$ are constants. Then, (1) The KL -divergence converges to a limiting value D^** 352 *with probability:*

353
$$\mathbb{P}(|D_{KL}(\mathbf{K}^1 \| \mathbf{K}^2) - D^*| > \epsilon) \leq 4\Phi \exp(-c \min(n_1, n_2) \epsilon^2 / 8). \quad (17)$$

354 (2) The structural similarity is preserved with error:

355
$$|D_{KL}(\mathbf{K}^1 \| \mathbf{K}^2) - D_{\text{struct}}| \leq \frac{C}{\min(\delta_1, \delta_2)}, \quad (18)$$

356 where C is a constant and δ_j is the eigengap $\lambda_{k+1}^{(j)} - \lambda_k^{(j)}$ for graph G_j .

357

358 The theorem above shows that low-pass spectral comparison stabilizes cross-graph similarity. The

359 KL -divergence between filtered eigenvalue distributions converges exponentially, with accuracy

360 bounded by the smallest eigengap, indicating that clearer community separation yields more precise

361 similarity. **Therefore, the filtered spectral distribution provides a theoretically grounded basis for**362 **using $D_{KL}(\mathbf{K}^R \| \mathbf{K}^c)$ as a principled proxy for structural divergence.**363 **Theorem 4.2** (Spectral Regularization). *Let $G = (\mathcal{V}, \mathcal{E})$ be client graph with $n = |\mathcal{V}|$ and the*364 *eigengap $\delta = \lambda_{k+1} - \lambda_k > 0$, where k is the number of communities in the graph G . Denote the*365 *client low-pass filtered node embedding by $\mathbf{z} \in \mathbb{R}^n$. Assume the raw user/item embeddings are*366 *bounded by $\|\mathbf{U}_u\|_2, \|\mathbf{V}_i\|_2 \leq r$, where $r > 0$ is the embedding ℓ_2 norm bound.*

367
$$|\text{Var}(\mathbf{z}) - \text{Var}(\mathbf{z}^*)| \leq \frac{C'}{\delta}, \quad (19)$$

368 where $\text{Var}(\mathbf{z})$ is the graph smoothness of \mathbf{z} , $\text{Var}(\mathbf{z}^*)$ is the smoothness of the k -community subspace369 embedding, and $C' = 32\sqrt{kr^2}$.

370

371 Our low-pass filtering method serves as a personalized spectral regularizer that bounds representation

372 variance by the eigengap δ , while our similarity metric ρ_c is also a stable measure governed by this

373 same underlying graph property. This shared governance by the eigengap provides the theoretical

374 justification for using $\bar{\rho}_c$ (Eq. 12) as our core personalization weight.

378 **Table 1:** The overall performance comparison Recall@20 and NDCG@20 on five datasets, with the best scores
 379 highlighted in *bold* and the second-best in *underlined*. The *improvement* row highlights the gains achieved by
 380 our model (**LPSFed**) compared to the second-best-performing model.

Dataset	Amazon-Book		Gowalla		Movielens-1M		Yelp2018		Tmall-Buy	
	Model	Recall	NDCG	Recall	NDCG	Recall	NDCG	Recall	NDCG	Recall
FedAvg	0.0642	0.0312	0.1425	0.0660	0.2454	0.1240	0.0721	0.0292	0.0317	0.0164
FedPUB	0.0633	0.0322	0.1433	0.0667	0.2558	0.1209	0.0684	0.0296	0.0333	0.0180
FedMF	0.0153	0.0072	0.0765	0.0409	0.1679	0.0906	0.0318	0.0150	0.0122	0.0063
F2MF	0.0451	0.0225	0.0961	0.0565	0.1788	0.1120	0.0510	0.0247	0.0207	0.0132
PFedRec	<u>0.0713</u>	0.0242	0.1371	0.0478	0.1508	0.0997	<u>0.0750</u>	0.0225	0.0323	0.0170
FedRAP	0.0082	0.0090	0.0340	0.0458	<u>0.0550</u>	0.0389	0.0129	0.0249	0.0046	0.0052
FedPerGNN	0.0035	0.0026	0.0958	<u>0.0777</u>	0.1332	0.1124	0.0252	0.0220	0.0032	0.0019
FedHGNN	0.0647	0.0298	0.1230	0.0608	0.2163	0.1031	0.0721	0.0268	0.0362	0.0171
FedSSP	0.0649	0.0356	0.1528	0.0729	0.2564	0.1265	0.0733	0.0315	0.0370	0.0186
LPSFed (BPR)	0.0643	0.0322	0.1529	0.0711	0.2604	0.1281	0.0769	0.0301	0.0362	0.0186
LPSFed	0.0738	0.0442	0.1621	0.0909	0.2646	0.1342	0.0783	0.0379	0.0385	0.0218
Improvement	↑ 3.5%	↑ 24.2%	↑ 6.1%	↑ 17%	↑ 3.2%	↑ 6.1%	↑ 4.4%	↑ 20.3%	↑ 4.1%	↑ 17.2%

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluated our model on five real-world datasets: *Amazon-Book*, *Gowalla* (He et al., 2020) *Movielens-1M* (mov), *Yelp2018* (yel), and *Tmall-Buy* (Tma). Each dataset was split into training, validation, and test sets in an 8:1:1 ratio.

Baselines. Nine baselines such as FedAvg, FedPUB, FedMF, F2MF, PFedRec, FedRAP, FedPerGNN, FedHGNN, and FedSSP (McMahan et al., 2017; Baek et al., 2023; Chai et al., 2020; Liu et al., 2022; Zhang et al., 2023; Li et al., 2024b; Wu et al., 2022; Yan et al., 2024; Tan et al., 2024) are used for comparisons. These include standard FL, federated matrix factorization, personalized FRS, fairness-aware FRS, and Spectral-based FL methods. We used *Recall*@20 and *NDCG*@20 to measure recommendation accuracy, assessing how well the top 20 recommended items matched user interests (Wang et al., 2019).

Implementation Details. We partitioned each client into four subgraphs using spectral clustering (Damle et al., 2019) to align with the federated recommender systems setting (Table 1, 3, 9, 10, and Figure 3). Results were averaged over six runs across two different partitions. Random graphs were generated using the GNMK (Knuth, 1977) model, which effectively preserves degree distribution compared to the Erdos-Renyi (ER) model (Erdős et al., 1960). Further details on dataset statistics, baseline models, clustering methods, random graph generation, and all hyperparameter settings are provided in Appendix D, respectively.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

(RQ1) Overall Performance Comparison. Table 1 summarizes our comparative analysis against key graph-based FL baselines. We evaluate our framework in two settings: LPSFed(BPR), which applies a standard BPR loss (Rendle et al., 2009), and our full model LPSFed, which applies a BC loss (Eq. 9). As shown, LPSFed consistently outperforms all nine competing baselines, achieving state-of-the-art performance. LPSFed(BPR), leveraging our spectral personalization, already demonstrates strong performance by yielding robust personalized similarity measurements. LPSFed further incorporates our proposed bias-aware margin to mitigate local popularity bias. This synergy robustly handles both *structural imbalance* and *localized popularity bias*, delivering the significant NDCG gains (e.g., +24.2% in *Amazon-Book*) through more precise top-ranked item recommendations.

(RQ2) Robustness to Subgraph Structural Imbalance. Table 2 quantifies how well each method copes with *subgraph structural imbalance* on the *Amazon-Book*. The 15 clients are partitioned into three groups: **Large-Dense (LD**, # Nodes > 40K, Avg. Degree 42.3), **Medium-Balanced (MB**, 10K < # Nodes < 15K, Avg. Degree 20.4), and **Small-Sparse (SS**, # Nodes < 8K, Avg. Degree 12.8). For each group, we report mean *Recall*@20 and *NDCG*@20; the last column averages over all clients.

Table 2: Performance for measuring the impact of subgraph structural imbalance on the *Amazon-Book* dataset, evaluated using Recall@20 and NDCG@20 **across a 15-client partition**. Clients are grouped into three categories: **Large-Dense**, **Medium-Balanced**, **Small-Sparse** and **Overall** (averaged across all clients). The best scores are highlighted in **bold** and the second-best in underlined. The *improvement* row shows the gains achieved by our model (**LPSFed**) compared to the second-best-performing model.

Group	Large-Dense		Medium-Balanced		Small-Sparse		Overall	
Model	Recall	NDCG	Recall	NDCG	Recall	NDCG	Recall	NDCG
FedAvg	0.0620	0.0280	0.0411	0.0208	0.0275	0.0117	0.0334	0.0152
FedPUB	0.0605	<u>0.0355</u>	<u>0.0528</u>	0.0267	0.0300	0.0123	0.0381	0.0177
FedMF	0.0176	0.0094	0.0127	0.0056	0.0058	0.0027	0.0084	0.0039
F2MF	0.0402	0.0231	0.0341	0.0174	0.0225	0.0085	0.0268	0.0118
PFedRec	0.0619	0.0250	0.0525	0.0185	0.0310	<u>0.0131</u>	0.0388	0.0153
FedRAP	0.0073	0.0082	0.0067	0.0072	0.0048	0.0065	0.0055	0.0068
FedPerGNN	0.0053	0.0037	0.0038	0.0018	0.0039	0.0012	0.0040	0.0015
FedHGNN	0.0630	0.0319	0.0455	0.0237	0.0283	0.0095	0.0352	0.0148
FedSSP	0.0669	<u>0.0380</u>	0.0524	<u>0.0269</u>	<u>0.0317</u>	0.0126	<u>0.0396</u>	<u>0.0181</u>
LPSFed (BPR)	0.0655	0.0375	0.0523	0.0269	0.0306	0.0131	0.0387	0.0184
LPSFed	0.0769	0.0448	0.0550	0.0295	0.0331	0.0146	0.0419	0.0206
Improvement	↑ 14.9%	↑ 17.9%	↑ 4.2%	↑ 9.7%	↑ 4.4%	↑ 11.5%	↑ 5.8%	↑ 13.8%

Table 3: Comparison of the localized popularity bias mitigation on the *Amazon-Book* using NDCG@20. Best scores are in **bold**. Balanced data includes all data, while the imbalanced dataset excludes less active participants. Arrows show (%) change relative to FedAvg: \uparrow gain (%), \downarrow loss (%).

Data Setting	Balanced Dataset [NDCG@20]				Imbalanced Dataset [NDCG@20]			
	Model	Tail	Mid	Head	Overall	Tail	Mid	Head
FedAvg	0.0017	0.0077	0.0570	0.0264	0.0040	0.0108	0.0924	0.0312
FedPUB	0.0024 \uparrow 41	0.008 \uparrow 16	0.0620 \uparrow 9	0.0279 \uparrow 6	0.0064 \uparrow 60	0.0130 \uparrow 20	0.0998 \uparrow 8	0.0322 \uparrow 3
FedMF	0.0002 \downarrow 88	0.0009 \downarrow 88	0.0130 \downarrow 77	0.0074 \downarrow 72	0.0003 \downarrow 92	0.0013 \downarrow 88	0.0140 \downarrow 85	0.0072 \downarrow 77
F2MF	0.0037 \uparrow 118	0.0112 \uparrow 45	0.0438 \downarrow 23	0.0225 \downarrow 15	0.0050 \uparrow 25	0.0119 \uparrow 10	0.0436 \downarrow 53	0.0225 \downarrow 28
PFedRec	0.0055 \uparrow 224	0.0125 \uparrow 62	0.0277 \downarrow 51	0.0244 \downarrow 8	0.0068 \uparrow 70	0.0145 \uparrow 34	0.0262 \downarrow 72	0.0242 \downarrow 22
FedRAP	0.0031 \uparrow 82	0.0097 \uparrow 26	0.0098 \downarrow 83	0.0110 \downarrow 58	0.0014 \downarrow 65	0.0055 \downarrow 49	0.0107 \downarrow 88	0.0090 \downarrow 71
FedPerGNN	0.0002 \downarrow 88	0.0007 \downarrow 91	0.0042 \downarrow 93	0.0015 \downarrow 94	0.0003 \downarrow 92	0.0008 \downarrow 93	0.0046 \downarrow 95	0.0026 \downarrow 92
FedHGNN	0.0019 \uparrow 12	0.0088 \uparrow 14	0.0555 \downarrow 3	0.0262 \downarrow 1	0.0058 \uparrow 45	0.0138 \uparrow 28	0.0770 \downarrow 17	0.0298 \downarrow 4
FedSSP	0.0038 \uparrow 124	0.0117 \uparrow 52	0.0640 \uparrow 12	0.0317 \uparrow 20	0.0067 \uparrow 68	0.0167 \uparrow 55	0.1019 \uparrow 10	0.0356 \uparrow 14
LPSFed (BPR)	0.0031 \uparrow 82	0.0113 \uparrow 47	0.0610 \uparrow 7	0.0301 \uparrow 14	0.0068 \uparrow 70	0.0149 \uparrow 38	0.0974 \uparrow 5	0.0322 \uparrow 3
LPSFed	0.0063 \uparrow 271	0.0143 \uparrow 86	0.0752 \uparrow 32	0.0390 \uparrow 48	0.0078 \uparrow 95	0.0193 \uparrow 79	0.1052 \uparrow 14	0.0442 \uparrow 42

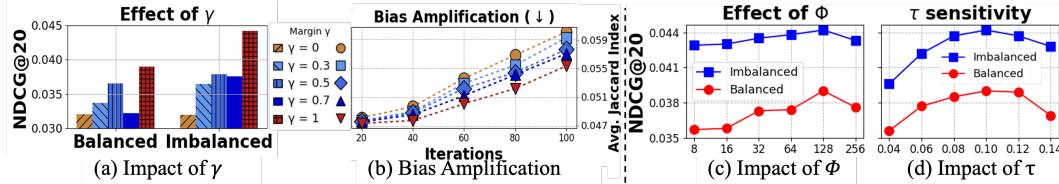
LPSFed (BPR), which leverages only spectral personalization, shows competitive performance, although its scores are slightly lower than the FedSSP. However, adding the bias-aware margin (LPSFed) yields significant performance gains across all groups and demonstrates three distinct effects. In group **LD**, it breaks the feedback loop, improving performance significantly over all baselines (+14.9% Recall, +17.9% NDCG over the best baseline). In group **MB**, the spectral-signal similarity effectively moderates update weights, allowing clients to benefit from the *global bias context* without overfitting to popular items. In group **SS**, the margin reduces over-dependence on a few popular items, enhancing long-tail recommendation quality.

(RQ3) Localized Popularity Bias Mitigation. Table 3 reports NDCG@20 on *Amazon-Book* under two settings: **Balanced** uses the full dataset, while **Imbalanced** excludes users and items with fewer than eight interactions. Users are grouped into **Tail**, **Mid**, and **Head** based on interaction proportions (3:2:1 ratio). We compare against FedAvg, and arrows indicate each model’s relative change in NDCG@20. Traditional FL models like FedMF and FedPerGNN perform poorly in the Tail group, indicating that they are significantly affected by popularity bias. While PFedRec and FedSSP show notable gains in the Tail, they underperform our model (LPSFed) in the head. Similarly, F2MF, which uses auxiliary features for group-based fairness, performs better than LPSFed(BPR) in the Tail and mid categories on the balanced data, but underperforms in the overall categories on the Imbalanced data. However, LPSFed consistently in the overall categories on both Balanced and Imbalanced datasets, indicating that our model’s bias-aware margin removes popularity noise and preserves accuracy across the entire item spectrum.

(RQ4) Ablation Study of Model Components. Table 4 evaluates the contribution of each key component. The **w/o LGCN** variant, where we replace our core low-pass architecture with a standard

486 **Table 4:** Ablation study of LPSFed on five datasets, reporting Recall@20 and NDCG@20 for different model
 487 variants *Bold* indicates best performance per column, and the last row shows relative *improvements* over the
 488 second-best.

489	Dataset	Amazon-Book		Gowalla		Movielens-1M		Yelp2018		Tmall-Buy	
490	Model	Recall	NDCG								
491	w/o LGCN	0.0388	0.0216	0.0965	0.0427	0.1622	0.0893	0.0471	0.0207	0.0256	0.0121
492	w/o bias-aware	0.0643	0.0322	0.1529	0.0711	0.2604	0.1281	0.0769	0.0301	0.0362	0.0186
493	w/o per	0.0652	0.0368	0.1576	0.0788	0.2625	0.1299	0.0775	0.0315	0.0370	0.0190
494	w/o per & bias-aware	0.0642	0.0312	0.1425	0.0660	0.2454	0.1240	0.0712	0.0292	0.0317	0.0164
495	w/o statistics for G_R	0.0714	0.0403	0.1581	0.0856	0.2625	0.1330	0.0764	0.0372	0.0393	0.0199
496	LPSFed	0.0738	0.0442	0.1621	0.0909	0.2646	0.1342	0.0783	0.0379	0.0419	0.0206
497	Improvement	↑ 3.4%	↑ 9.7%	↑ 2.5%	↑ 6.2%	↑ 0.8%	↑ 0.9%	↑ 1.0%	↑ 1.9%	↑ 6.6%	↑ 3.5%



504 **Figure 3:** Hyperparameter sensitivity on the *Amazon-Book* dataset: (a) Bias-aware margin strength γ ; (b) Impact
 505 of γ on Bias Amplification in Imbalanced set; (c) Low-pass cut-off frequency Φ ; (d) Loss Temperature τ .

506 spatial GNN (NGCF (Wang et al., 2019)), results in a catastrophic performance drop, which highlights
 507 the inherent limitations of spatial-based methods in handling structural divergence. Removing the
 508 personalization component, denoted **w/o per**, or the bias-aware margin, denoted **w/o bias-aware**,
 509 significantly degrades performance, confirming both modules are essential. Notably, **w/o statistics for**
 510 G_R variant enforces stricter privacy by not aggregating any client statistics. Despite this, it performs
 511 robustly, achieving the second-best results across most metrics. Only the full LPSFed achieves
 512 consistently high Recall and precise rankings, confirming that these components enhance both broad
 513 coverage and accurate prediction.

515 **(RQ5) Hyperparameter Analysis.** Figure 3 shows how key hyperparameters affect NDCG@20
 516 on *Amazon-Book* under **Balanced** and **Imbalanced** settings. **(a)** Increasing the bias-aware margin
 517 strength γ consistently raises NDCG, as a stronger margin curbs the localized popularity bias and
 518 supports long-tail items. **This indicates that maximizing the margin strength is the most effective**
 519 **strategy for achieving the intended bias mitigation objective.** **(b)** Higher γ suppresses the feedback
 520 loop by reducing recommendation overlap, thereby limiting popularity amplification. **Specifically,**
 521 $\gamma = 1.0$ yields the slowest growth in the Jaccard index, confirming that a stronger margin most
 522 effectively disrupts the popularity-driven feedback loop. **(c)** For the low-pass cut-off frequency Φ ,
 523 performance improves as more informative structural signals are captured, peaking at $\Phi = 128$,
 524 where the cut-off preserves the most spectrally stable frequencies while excluding high-frequency
 525 noise that would otherwise reduce robustness. **(d)** The BC-Loss temperature τ shows a similar pattern:
 526 appropriate settings strike a balance between stable optimization and sufficient exploration, while
 527 values that are too low hinder learning and those that are too high result in overfitting, both leading to
 528 lower NDCG.

530 6 CONCLUSION

532 In this paper, we introduce Low-pass Personalized Subgraph Federated Recommendation (LPSFed), a
 533 robust personalized FRS that simultaneously addresses *subgraph structural imbalance* and *localized*
 534 *popularity bias*. Our approach leverages low-pass spectral filtering for stable personalization, while a
 535 bias-aware margin mitigates feedback loops and improves long-tail recommendations. We provide
 536 theoretical justification for this framework, demonstrating that our similarity metric and our spectral
 537 filtering method are both governed by the same underlying eigengap, which validates our personaliza-
 538 tion strategy. Empirical evaluation on five real-world datasets confirms that this synergistic
 539 framework achieves state-of-the-art performance and robustness, outperforming all existing baselines.
 Further discussions on the limitations and LLM usage are provided in Appendix H and I.

540
541 ETHICS STATEMENT542
543 This research was conducted in accordance with the ICLR Code of Ethics. The focus of our work is
544 the development of robust, privacy-preserving federated recommender systems.545
546 **Privacy and Security.** A primary ethical consideration in recommender systems is the handling
547 of sensitive user data. Our federated learning framework directly addresses this challenge. By
548 training models on decentralized, client-level subgraphs without sharing raw user-item interaction
549 data, our method significantly enhances user privacy and reduces the risk of data exposure inherent in
550 traditional centralized systems. The information shared with the server is limited to model parameters
551 and minimal, non-invertible scalar values (e.g., structural similarity scores), which are designed to
552 prevent the reconstruction of individual user data or local graph structures.553
554 **Fairness, Bias, and Discrimination.** Recommender Systems can perpetuate and amplify existing
555 biases, leading to unfair outcomes. Our research directly confronts this issue by proposing a method
556 to mitigate localized popularity bias. By improving the quality of recommendations for diverse and
557 structurally varied client groups, our work aims to promote fairness and provide more equitable
558 exposure for long-tail items. This helps to counteract the feedback loops that often lead to a
559 narrow, popularity-driven recommendation landscape, thereby fostering a more diverse and inclusive
560 ecosystem.561
562 **Data Usage and Research Integrity.** All experiments in this paper were conducted using publicly
563 available and widely adopted benchmark datasets. These datasets consist of anonymized user
564 interactions, and our work did not involve the collection of new data from human subjects. We are
565 committed to research integrity and have provided detailed descriptions of our methodology and
566 experimental setup to ensure reproducibility.567
568 REPRODUCIBILITY STATEMENT569
570 To ensure the reproducibility of our work, we provide our source code as supplementary mate-
571 rial. Our theoretical analysis is presented in Section 4.4, with detailed proofs for all theorems and
572 supporting lemmas provided in Appendix B. Our code is available at: https://anonymous.4open.science/r/LPSFed_Anonymous-917D. All experimental settings are described in
573 Section 5.1 and Appendix D, which includes dataset statistics, the client subgraph clustering method-
574 ology, baseline model details, and a complete list of hyperparameters.575
576 REFERENCES577
578 Tmall-buy dataset. <https://tianchi.aliyun.com/dataset/53>. Accessed: 2025-09-20.579
580 MovieLens 1m dataset. <https://grouplens.org/datasets/movielens/1m/>. Accessed:
581 2025-09-20.582
583 Yelp dataset challenge. <https://www.yelp.com/dataset/challenge>. Accessed: 2025-
584 09-20.585
586 Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Managing popularity bias in recom-
587 mender systems with personalized re-ranking. *FLAIRS*, 2019.588
589 Nimesh Agrawal, Anuj Kumar Sirohi, Sandeep Kumar, et al. No prejudice! fair federated graph
590 neural networks for personalized recommendation. In *AAAI*, 2024.591
592 Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Feder-
593 ated learning with personalization layers. *arXiv preprint arXiv:1912.00818*, 2019.594
595 Jinheon Baek, Wonyong Jeong, Jiongdao Jin, Jaehong Yoon, and Sung Ju Hwang. Personalized
596 subgraph federated learning. In *ICML*, 2023.

594 Louis C Barrett and Carroll Wilde. A power series development of the convolution theorem. *The*
 595 *American Mathematical Monthly*, 1960.

596

597 Stephen Bonner and Flavian Vasile. Causal embeddings for recommendation. In *RecSys*, 2018.

598

599 Di Chai, Leye Wang, Kai Chen, and Qiang Yang. Secure federated matrix factorization. *IEEE*
 600 *Intelligent Systems*, 2020.

601

602 Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. How algorithmic confounding in
 603 recommendation systems increases homogeneity and decreases utility. In *RecSys*, 2018.

604

605 Anil Damle, Victor Minden, and Lexing Ying. Simple, direct and efficient multi-way spectral
 606 clustering. *Information and Inference: A Journal of the IMA*, 2019.

607

608 Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. iii.
 609 *SINUM*, 1970.

610

611 Morning Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yujuan Tan, and Liang Liang. Self-balancing
 612 federated learning with global imbalanced data in mobile systems. *TPDS*, 2020.

613

614 Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. *Publ. math. inst. hung. acad. sci.*,
 615 1960.

616

617 Xingbo Fu, Zihan Chen, Binchi Zhang, Chen Chen, and Jundong Li. Federated graph learning with
 618 structure proxy alignment. In *KDD*, 2024.

619

620 Chongming Gao, Shijun Li, Wenqiang Lei, Jiawei Chen, Biao Li, Peng Jiang, Xiangnan He, Ji-
 621 axin Mao, and Tat-Seng Chua. KuaiRec: A fully-observed dataset and insights for evaluating
 622 recommender systems. In *CIKM*, 2022.

623

624 Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgen:
 625 Simplifying and powering graph convolution network for recommendation. In *SIGIR*, 2020.

626

627 John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between gaussian
 628 mixture models. In *ICASSP*, 2007.

629

630 Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world
 631 data distribution. In *ECCV*, 2020.

632

633 Elvin Isufi, Fernando Gama, David I Shuman, and Santiago Segarra. Graph filters for signal
 634 processing and machine learning on graphs. *TSP*, 2024.

635

636 Shuyi Ji, Yifan Feng, Rongrong Ji, Xibin Zhao, Wanwan Tang, and Yue Gao. Dual channel hypergraph
 637 collaborative filtering. In *KDD*, 2020.

638

639 Anastasiia Klimashevskaya, Dietmar Jannach, Mehdi Elahi, and Christoph Trattner. A survey on
 640 popularity bias in recommender systems. *UMUAI*, 2024.

641

642 Donald E Knuth. Algorithms. *Scientific American*, 1977.

643

644 Xiangjie Kong, Haopeng Yuan, Guojiang Shen, Hanlin Zhou, Weiyao Liu, and Yao Yang. Mitigating
 645 data imbalance and generating better prototypes in heterogeneous federated graph learning. *KBS*,
 646 2024.

647

648 Runze Lei, Pinghui Wang, Junzhou Zhao, Lin Lan, Jing Tao, Chao Deng, Junlan Feng, Xidian Wang,
 649 and Xiaohong Guan. Federated learning over coupled graphs. *TPDS*, 2023.

650

651 Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in federated
 652 learning. *ICLR*, 2020.

653

654 Xunkai Li, Zhengyu Wu, Wentao Zhang, Yinlin Zhu, Rong-Hua Li, and Guoren Wang. Fedgta:
 655 Topology-aware averaging for federated graph learning. *VLDB*, 2024a.

656

657 Zhiwei Li, Guodong Long, and Tianyi Zhou. Federated recommendation with additive personalization.
 658 In *ICLR*, 2024b.

648 Siyi Lin, Chongming Gao, Jiawei Chen, Sheng Zhou, Binbin Hu, Yan Feng, Chun Chen, and Can
 649 Wang. How do recommendation models amplify popularity bias? an analysis from the spectral
 650 perspective. In *WSDM*, 2025.

651 Jiahao Liu, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, Li Shang, and Ning Gu. Personalized
 652 graph signal processing for collaborative filtering. In *WWW*, 2023.

653 Shuchang Liu, Yingqiang Ge, Shuyuan Xu, Yongfeng Zhang, and Amelie Marian. Fairness-aware
 654 federated matrix factorization. In *RecSys*, 2022.

655 Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, and Robin
 656 Burke. Feedback loop and bias amplification in recommender systems. In *CIKM*, 2020.

657 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 658 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence
 659 and statistics*, 2017.

660 Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
 661 *arXiv preprint arXiv:1905.09550*, 2019.

662 Chamath Palihawadana, Nirmalie Wiratunga, Anjana Wijekoon, and Harsha Kalutarage. Fedsim:
 663 Similarity guided model aggregation for federated learning. *Neurocomputing*, 2022.

664 Tao Qi, Fangzhao Wu, Chuhan Wu, Yongfeng Huang, and Xing Xie. Privacy-preserving news
 665 recommendation model learning. In *EMNLP*, 2020.

666 Liang Qu, Ningzhi Tang, Ruiqi Zheng, Quoc Viet Hung Nguyen, Zi Huang, Yuhui Shi, and Hongzhi
 667 Yin. Semi-decentralized federated ego graph learning for recommendation. In *WWW*, 2023.

668 Raksha Ramakrishna, Hoi-To Wai, and Anna Scaglione. A user guide to low-pass graph signal
 669 processing and its applications: Tools and applications. *IEEE Signal Processing Magazine*, 2020.

670 Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
 671 personalized ranking from implicit feedback. In *UAI*, 2009.

672 Sebastian Ruder. An overview of gradient descent optimization algorithms. *arXiv preprint
 673 arXiv:1609.04747*, 2016.

674 Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata. Unbiased
 675 recommender learning from missing-not-at-random implicit feedback. In *WSDM*, 2020.

676 D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of
 677 signal processing on graphs: Extending high-dimensional data analysis to networks and other
 678 irregular domains. *Signal Processing*, 2013.

679 Zihan Tan, Guancheng Wan, Wenke Huang, and Mang Ye. FedSSP: Federated graph learning with
 680 spectral knowledge and personalized preference. *NeurIPS*, 2024.

681 Zihan Tan, Suyuan Huang, Guancheng Wan, Wenke Huang, He Li, and Mang Ye. S2fgl: Spatial
 682 spectral federated graph learning. In *AAAI*, 2025a.

683 Zihan Tan, Guancheng Wan, Wenke Huang, He Li, Guibin Zhang, Carl Yang, and Mang Ye. Fedspa:
 684 Generalizable federated graph learning under homophily heterogeneity. In *CVPR*, 2025b.

685 Joel A Tropp et al. An introduction to matrix concentration inequalities. *Foundations and Trends in
 686 Machine Learning*, 2015.

687 Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu, and Shaoping Ma.
 688 Towards representation alignment and uniformity in collaborative filtering. In *KDD*, 2022.

689 Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
 690 inconsistency problem in heterogeneous federated optimization. *NeurIPS*, 2020a.

691 Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
 692 filtering. In *SIGIR*, 2019.

702 Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua. Disentangled
 703 graph collaborative filtering. In *SIGIR*, 2020b.

704

705 Chuhuan Wu, Fangzhao Wu, Lingjuan Lyu, Tao Qi, Yongfeng Huang, and Xing Xie. A federated
 706 graph neural network framework for privacy-preserving personalization. *Nature Communications*,
 707 2022.

708 Bo Yan, Yang Cao, Haoyu Wang, Wenchuan Yang, Junping Du, and Chuan Shi. Federated heteroge-
 709 neous graph neural network for privacy-preserving recommendation. In *WWW*, 2024.

710

711 Lei Yang, Jiaming Huang, Wanyu Lin, and Jiannong Cao. Personalized federated learning on non-iid
 712 data via group-based meta-learning. *TKDD*, 2023.

713 Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
 714 Graph convolutional neural networks for web-scale recommender systems. In *KDD*, 2018.

715

716 Wenhui Yu and Zheng Qin. Graph convolutional network for recommendation with low-pass
 717 collaborative filters. In *ICML*, 2020.

718 Wenhui Yu, Zixin Zhang, and Zheng Qin. Low-pass graph convolutional network for recommendation.
 719 In *AAAI*, 2022.

720

721 Wentao Yu. Homophily heterogeneity matters in graph federated learning: A spectrum sharing and
 722 complementing perspective. *arXiv preprint arXiv:2502.13732*, 2025.

723

724 An Zhang, Wenchang Ma, Xiang Wang, and Tat-Seng Chua. Incorporating bias-aware margins into
 725 contrastive loss for collaborative filtering. *NeurIPS*, 2022a.

726

727 An Zhang, Wenchang Ma, Pengbo Wei, Leheng Sheng, and Xiang Wang. General debiasing for
 728 graph-based collaborative filtering via adversarial graph dropout. In *WWW*, 2024.

729

730 Chunxu Zhang, Guodong Long, Tianyi Zhou, Peng Yan, Zijian Zhang, Chengqi Zhang, and Bo Yang.
 731 Dual personalization on federated recommendation. In *IJCAI*, 2023.

732

733 H Zhang, F Luo, J Wu, X He, and Y LightFR Li. Lightweight federated recommendation with
 734 privacy-preserving matrix factorization. *TOIS*, 2022b.

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 APPENDIX GUIDE
757758 The appendix includes the theoretical analysis, related work, experimental setup, training efficiency,
759 complexity analysis, additional experimental results, broader impacts, limitations, and LLM Usage.
760 This guide provides a concise overview of its sections for easy navigation.
761762 A NOTATIONS
763764 • **Table of Notations A:** List all key notations and symbols used in the paper.
765766 B THEORETICAL ANALYSIS
767768 • **Lemma 1 (Low-pass Filter Preservation) 1:** Shows low-pass filters preserve graph community
769 structures with an eigengap-based error bound.
770 • **Lemma 2 (Spectral Measure Convergence) 2:** Proves eigenvalue distribution convergence in
771 large graphs.
772 • **Lemma 3 (Filter Stability) 3:** Establishes low-pass filter stability under Laplacian perturbations.
773 • **Assumption 1 (Idealized Distribution) 1** Formalizes the idealized low-pass spectral distributions.
774 • **Theorem 4.1 (Structural Comparison) 4.1:** Compares graph structures via KL-divergence of
775 eigenvalue distributions.
776 • **Theorem 4.2 (Spectral Regularization) 4.2:** Bounds variance of filtered node embeddings for
777 community alignment.
778780 C RELATED WORK
781782 • **Federated Recommender Systems C.1:** Reviews collaborative filtering and personalized recom-
783 mendation methods in federated settings.
784 • **Personalized Federated Learning C.2:** Covers approaches for handling data heterogeneity across
785 clients, particularly in vision and graph domains.
786 • **Popularity Bias-aware Recommender Systems C.3:** Discusses methods for mitigating popularity
787 bias in centralized recommendation settings.
788789 D DATASETS AND EXPERIMENTAL SETUP
790791 • **Datasets D.1:** Details MovieLens-1M, Gowalla, Yelp2018, Amazon-Book, Tmall-Buy datasets
792 (Table 6).
793 • **Subgraph Clustering D.2:** Describes clustering methods for generating client subgraphs in the
794 federated setting (Table 7).
795 • **Random Graph D.3:** Describes random graph generation in a federated setting.
796 • **Random Graph Sensitivity D.4:** Random Graph Sensitivity Analysis (Table 8).
797 • **Baselines D.5:** Lists baseline models for comparison.
798 • **Hyperparameter Settings D.6:** Summarizes configuration settings.
799
800801 E TRAINING EFFICIENCY & COMPLEXITY
802803 • **Model Complexity E:** Show LPSFed achieves higher efficiency than baselines.
804 • **Time Complexity:**
805 – **Low-pass Convolution E.1.1:** Efficient low-pass filtering and graph convolution.
806 – **LPSFed Framework E.1.2:** Federated learning system complexity.
807 • **Scalability E.1.2:** Supports large-scale graphs.
808 • **Costs E.1.2:** Analyzes communication and computation overhead (Table 7).
809

810 F ADDITIONAL EXPERIMENTAL RESULTS
811

- 812 • **Bias Amplification Measurement and Effectiveness of the Bias-Aware Margin** **F.1:** Shows bias
813 mitigation via Jaccard index, with higher margin strengths reducing convergence (Table 10).
- 814 • **Correlation Analysis Between Eigengap and Performance** **F.2:** Analyzes correlation, confirming
815 spectral stability benefits within an appropriate filtering range (Table 11).
- 816 • **Effect of Client Variability on Performance** **F.3:** Tests performance across client counts (4, 10,
817 20), proving robustness to heterogeneity (Table 12).

819 G BROADER IMPACTS
820

- 821 • **Broader Impacts G:** Summarizes societal benefits such as privacy, fairness, and collaborative
822 learning from our subgraph-level federated recommender systems approach.

824 H LIMITATIONS
825

- 826 • **Limitations H:** Discusses the limitations of this paper.

828 I LLM USAGE
829

- 830 • **LLM Usage I:** Details the use of an LLM for manusctipt preparation.

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 5: Table of Notations.

Symbol	Description
<i>General Notations</i>	
C	The total number of clients
c	An index for a specific client, $c \in \{1, \dots, C\}$
u, i	A user and an item, respectively
U, I	The sets of all users and items in a given graph
M, N	The number of users and items in a given graph
D	The Dimensionality of embeddings
θ	General model parameters
<i>Graph Representation</i>	
G, G_c	A global graph and a client's local subgraph
\mathcal{V}, \mathcal{E}	The sets of nodes and edges in a graph
$\mathbf{A}, \mathbf{D}, \mathbf{L}$	The adjacency, Degree, and Laplacian matrices of a graph
\mathbf{R}	The user-item interaction matrix
λ_i, Λ	The i -th eigenvalue and the diagonal matrix of eigenvalues
\mathbf{P}	The matrix of eigenvectors of the Laplacian
<i>Low-pass Graph Convolutional Network</i>	
$\mathbf{Z}, \mathbf{U}, \mathbf{V}$	The node, user, and item embedding matrices
$\mathbf{Z}^{(l)}$	The node embedding matrix at the l -th layer
Φ	The cut-off frequency for the low-pass filter
$\tilde{\mathbf{P}}$	The truncated matrix of the first Φ eigenvectors
$\tilde{\mathbf{k}}, \bar{\mathbf{k}}$	A convolution kernel in the frequency domain and its truncated version
$f_{\theta_{\text{Pool}}}, f_{\theta_{\text{Pred}}}$	The pooling and Predictive MLPs
<i>Bias Mitigation</i>	
p_u, p_i	Popularity scores for user u and item i
$f_{\psi_{\text{bias}}}, f_{\phi_{\text{bias}}}$	Encoders for user and item popularity bias
$\hat{\xi}_{ui}$	The angle between user and item popularity bias embeddings
$\mathcal{L}_{\text{bias}}, \mathcal{L}_{\text{BC}}$	The auxiliary bias loss and the main Bias-aware Contrastive (BC) loss
\mathcal{M}_{ui}^c	A locally computed adaptive margin for user u , item i on client c
$\tilde{\mathcal{M}}_{ui}^c$	The refined margin after interpolation with the global context
γ, τ, ω	Hyperparameters: margin strength, softmax temperature, and interpolation weight
<i>Federated Learning (Low-pass Personalized Subgraph Federated Recommendation)</i>	
$\mathbf{K}^c, \mathbf{K}^R$	The low-pass convolution kernel distributions for client c and the reference graph G_R
ρ_c	The structural divergence of client c (KL-divergence)
$\bar{\rho}_c$	The normalized similarity score of client c
$\mathcal{M}^c, \bar{\mathcal{M}}$	A client c 's average margin and the aggregated global average margin
$\theta_c^{\text{updated}}$	Updated (personalized) parameters for client c
$\mathcal{M}_{\text{updated}}^c$	The updated (personalized) global margin for client c
<i>Theoretical Analysis</i>	
δ	The eigengap of the graph Laplacian ($\lambda_{k+1} - \lambda_k$)
D_{struct}	The ideal structural divergence between theoretical k -block graphs
$\text{Var}(\mathbf{z})$	The graph smoothness (Dirichlet energy) of an embedding \mathbf{z}
\mathbf{z}^*	The theoretical k -community subspace embedding

A NOTATIONS

Table 5 summarizes the key notations used throughout the paper.

B THEORETICAL ANALYSIS

Lemma 1 (Low-pass Filter Preservation). *Let G be an undirected graph with normalized Laplacian $\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ and k communities. For a low-pass filter $h_{\lambda_c}(\mathbf{L})$ with cut-off frequency λ_c between λ_k and λ_{k+1} :*

$$\|h_{\lambda_c}(\mathbf{L})\mathbf{x} - \Pi_{\text{community}}\mathbf{x}\|_2 \leq \frac{8\sqrt{k}}{\lambda_{k+1} - \lambda_k} \|\mathbf{x}\|_2, \quad (20)$$

918 where $\Pi_{\text{community}}$ is the projection onto community indicator vectors.
919

920 *Proof.* Let $\mathbf{L} = \mathbf{P}\Lambda\mathbf{P}^\top$ be the eigendecomposition of \mathbf{L} , where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ with $0 = \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n \leq 2$. The proof proceeds in four steps:
921
922

923 First, let $\chi \in \mathbb{R}^{n \times k}$ be the matrix of true community indicators. By the variational characterization
924 of eigenvalues, the first k eigenvectors minimize:
925

$$\min_{\mathbf{X}^\top \mathbf{X} = \mathbf{I}_k} \text{tr}(\mathbf{X}^\top \mathbf{L} \mathbf{X}) = \sum_{i=1}^k \lambda_i. \quad (21)$$

928 Second, let \mathbf{P}_k be the matrix of first k eigenvectors. By the Davis-Kahan theorem (Davis & Kahan,
929 1970), when the eigengap $\lambda_{k+1} - \lambda_k > 0$:
930

$$\|\mathbf{P}_k - \chi \mathbf{R}\|_F \leq \frac{8\sqrt{k}}{\lambda_{k+1} - \lambda_k}, \quad (22)$$

933 where \mathbf{R} is an orthogonal matrix that best aligns \mathbf{P}_k with χ . Then, the low-pass filter $h_{\lambda_c}(\mathbf{L})$ with
934 $\lambda_c \in (\lambda_k, \lambda_{k+1})$ acts as:
935

$$h_{\lambda_c}(\mathbf{L}) = \sum_{i=1}^k \mathbf{P}_i \mathbf{P}_i^\top = \mathbf{P}_k \mathbf{P}_k^\top. \quad (23)$$

938 Lastly, or any signal \mathbf{x} , using the projection $\Pi_{\text{community}} = \chi \chi^\top$:
939

$$\|h_{\lambda_c}(\mathbf{L})\mathbf{x} - \Pi_{\text{community}}\mathbf{x}\|_2 = \|\mathbf{P}_k \mathbf{P}_k^\top \mathbf{x} - \chi \chi^\top \mathbf{x}\|_2 \quad (24)$$

$$= \|(\mathbf{P}_k \mathbf{P}_k^\top - \chi \mathbf{R} \mathbf{R}^\top \chi^\top) \mathbf{x}\|_2 \quad (25)$$

$$\leq \|\mathbf{P}_k - \chi \mathbf{R}\|_F \|\mathbf{x}\|_2 \quad (26)$$

$$\leq \frac{8\sqrt{k}}{\lambda_{k+1} - \lambda_k} \|\mathbf{x}\|_2. \quad (27)$$

946 \square

947 **Lemma 2** (Spectral Measure Convergence). *Let G_n be a graph with n vertices and a normalized
948 low-pass filtered eigenvalue distribution with cut-off frequency λ_c . Let $\Phi (< n)$ denote the number of
949 eigenvalues below λ_c . For this distribution:*

$$\mathbf{K}^n(i) = \frac{\lambda_i^{(n)}}{\sum_{q=1}^{\Phi} \lambda_q^{(n)}}, \quad q \leq \Phi. \quad (28)$$

953 Then there exists a limiting distribution \mathbf{K}^* such that:
954

$$\mathbb{P}(\|\mathbf{K}^n - \mathbf{K}^*\|_\infty > \epsilon) \leq 2\Phi \exp(-cn\epsilon^2), \quad (29)$$

956 where $c, \epsilon > 0$ are constants.
957

958 *Proof.* The proof proceeds in steps: By the Matrix Bernstein inequality (Tropp et al., 2015) for
959 normalized Laplacians:
960

$$\mathbb{P}(\|\mathbf{L}^n - \mathbb{E}[\mathbf{L}^n]\| \geq t) \leq 2n \exp\left(-\frac{nt^2}{4}\right). \quad (30)$$

962 Second, let $\mathbf{L}^* = \mathbb{E}[\mathbf{L}^n]$ be the limiting operator. For eigenvalues, Weyl's inequality gives:
963

$$|\lambda_i^{(n)} - \lambda_i^*| \leq \|\mathbf{L}^n - \mathbf{L}^*\|_2. \quad (31)$$

965 For the normalized distribution \mathbf{K}_n :
966

$$|\mathbf{K}^n(i) - \mathbf{K}^*(i)| = \left| \frac{\lambda_i^{(n)}}{\sum_{q=1}^{\Phi} \lambda_q^{(n)}} - \frac{\lambda_i^*}{\sum_{q=1}^{\Phi} \lambda_q^*} \right| \quad (32)$$

$$\leq \frac{|\lambda_i^{(n)} - \lambda_i^*|}{\sum_{q=1}^{\Phi} \lambda_q^{(n)}} + \frac{\lambda_i^*}{(\sum_{q=1}^{\Phi} \lambda_q^{(n)})^2} \left| \sum_{q=1}^{\Phi} (\lambda_q^{(n)} - \lambda_q^*) \right|. \quad (33)$$

972 Since eigenvalues of normalized Laplacians lie in $[0, 2]$ and Φ is fixed:
 973

$$974 \quad \sum_{q=1}^{\Phi} \lambda_q^{(n)} \geq c_1 > 0. \quad (34)$$

975
 976

977 Therefore, for any $\epsilon > 0$:

$$978 \quad |\mathbf{K}^n(i) - \mathbf{K}^*(i)| \leq C_1 \|\mathbf{L}^n - \mathbf{L}^*\|_2. \quad (35)$$

979

980 By setting $t = \epsilon/C_1$ in Eq. 30 and applying the union bound over $i \leq \Phi$:

$$982 \quad \mathbb{P}(\|\mathbf{K}^n - \mathbf{K}^*\|_\infty > \epsilon) \leq 2\Phi \exp(-cn\epsilon^2), \quad (36)$$

983 where $c = 1/(4C_1^2)$. \square
 984

985 **Lemma 3** (Filter Stability). *For a low-pass filter $h_{\lambda_c}(\mathbf{L})$ and perturbed Laplacian $\tilde{\mathbf{L}} = \mathbf{L} + \mathbf{E}$:*

986

$$987 \quad \|h_{\lambda_c}(\mathbf{L}) - h_{\lambda_c}(\tilde{\mathbf{L}})\|_2 \leq \frac{\|\mathbf{E}\|_2}{\delta_{\lambda_c}}, \quad (37)$$

988 where δ_{λ_c} is the minimum gap between eigenvalues separated by λ_c .
 989

990 *Proof.* We prove this in three steps using complex analysis: First, express the filter difference using
 991 the Cauchy integral formula:
 992

$$994 \quad h_{\lambda_c}(\mathbf{L}) - h_{\lambda_c}(\tilde{\mathbf{L}}) = \frac{1}{2\pi i} \oint_{\Gamma} (\mathbf{w}\mathbf{I} - \mathbf{L})^{-1} \mathbf{E} (\mathbf{w}\mathbf{I} - \tilde{\mathbf{L}})^{-1} d\mathbf{w}, \quad (38)$$

995 where Γ is a contour enclosing eigenvalues below λ_c .
 996

997 For the resolvent norm, when \mathbf{w} is on Γ :

$$999 \quad \|(\mathbf{w}\mathbf{I} - \mathbf{L})^{-1}\|_2 \leq \frac{1}{\text{dist}(\mathbf{w}, \sigma(\mathbf{L}))} \leq \frac{1}{\delta_{\lambda_c}}, \quad (39)$$

1000 where $\sigma(\mathbf{L})$ is the spectrum of \mathbf{L} . By taking operator norms:
 1001

$$1003 \quad \|h_{\lambda_c}(\mathbf{L}) - h_{\lambda_c}(\tilde{\mathbf{L}})\|_2 \quad (40)$$

$$1005 \quad \leq \frac{1}{2\pi} \oint_{\Gamma} \|(\mathbf{w}\mathbf{I} - \mathbf{L})^{-1}\|_2 \|\mathbf{E}\|_2 \|(\mathbf{w}\mathbf{I} - \tilde{\mathbf{L}})^{-1}\|_2 d\mathbf{w} \quad (41)$$

$$1007 \quad \leq \frac{\|\mathbf{E}\|_2}{\delta_{\lambda_c}}. \quad (42)$$

1008

1009 The final inequality uses the fact that the contour integral equals $2\pi i$ for the characteristic function of
 1010 $(-\infty, \lambda_c]$. \square
 1011

1012 **Assumption 1** (Idealized Low-Pass Spectral Distributions). *For each graph $j \in \{1, 2\}$, let
 1013 $G_j = (\mathcal{V}_j, \mathcal{E}_j)$ be an undirected (possibly bipartite) graph with normalized Laplacian $\mathbf{L}^{(j)} =$
 1014 $\mathbf{I} - \mathbf{D}^{(j)-\frac{1}{2}} \mathbf{A}^{(j)} \mathbf{D}^{(j)-\frac{1}{2}}$ and eigenvalues $0 = \lambda_1^{(j)} \leq \lambda_2^{(j)} \leq \dots \leq \lambda_{n_j}^{(j)} \leq 2$. Fix a common low-pass
 1015 cut-off $\lambda_c \in (0, 2)$ (for bipartite graphs choose $\lambda_c < 2$), and let $\Phi^{(j)} := \max\{m : \lambda_m^{(j)} \leq \lambda_c\}$.
 1016 Define the empirical low-pass eigenvalue distribution:
 1017*

$$1018 \quad \mathbf{K}^{(j)} \in \Delta^{\Phi^{(j)}-1}, \quad \mathbf{K}^{(j)}(i) = \frac{\lambda_i^{(j)}}{\sum_{q=1}^{\Phi^{(j)}} \lambda_q^{(j)}}, \quad i \leq \Phi^{(j)}. \quad (43)$$

1019
 1020

1022 **Idealized model.** We assume G_j is generated by a k -community structural model that induces an
 1023 idealized (expected) graph: either

1024 (SBM) a k -block (bi)SBM with community proportions $\alpha^{(j)}$ and block matrix $B^{(j)}$, with expected
 1025 adjacency $\mathbf{A}^{(j),*} = \mathbb{E}[\mathbf{A}^{(j)}]$; or

1026 (Graphon) a piecewise-constant k -block graphon W_j , with associated integral operator's discretization
 1027 $\mathbf{A}^{(j),\star}$.
 1028

1029 Let $\mathbf{L}_{\text{struct}}^{(j)}$ be the normalized Laplacian of $\mathbf{A}^{(j),\star}$, with eigenvalues $0 = \lambda_{\text{struct},1}^{(j)} \leq \dots \leq \lambda_{\text{struct},n_j}^{(j)}$ and
 1030 $\Phi_{\text{struct}}^{(j)} := \max\{m : \lambda_{\text{struct},m}^{(j)} \leq \lambda_c\}$. The idealized low-pass distribution is:
 1031

$$1032 \quad \mathbf{K}_{\text{struct}}^{(j)}(i) = \frac{\lambda_{\text{struct},i}^{(j)}}{\sum_{q=1}^{\Phi_{\text{struct}}^{(j)}} \lambda_q^{(j)}}, \quad i \leq \Phi_{\text{struct}}^{(j)}. \quad (44)$$

1035 **Structural divergence.** The population (idealized) structural divergence between two graphs a, b is:
 1036

$$1037 \quad D_{\text{struct}} := D_{\text{KL}}(\mathbf{K}_{\text{struct}}^{(a)} \parallel \mathbf{K}_{\text{struct}}^{(b)}), \quad (45)$$

1039 where D_{KL} is computed after ε -smoothing of zero coordinates in the denominator (i.e., replace any
 1040 zero \mathbf{q}_i by $\max\{\mathbf{q}_i, \varepsilon\}$ for a fixed $\varepsilon > 0$).
 1041

1042 **Theorem 4.1** (Structural Comparison via Spectral Distributions). Let $G_1 = (\mathcal{V}_1, \mathcal{E}_1)$ and $G_2 =$
 1043 $(\mathcal{V}_2, \mathcal{E}_2)$ be graphs with $n_1 = |\mathcal{V}_1|$ and $n_2 = |\mathcal{V}_2|$ nodes and k communities each. \mathcal{E}_1 and \mathcal{E}_2 are sets
 1044 of edges of G_1 and G_2 , respectively. Moreover, $\Phi (< n)$ denotes the number of eigenvalues below
 1045 the cut-off frequency λ . Let \mathbf{K}^1 and \mathbf{K}^2 be their respective low-pass filtered eigenvalue distributions:
 1046

$$1047 \quad \mathbf{K}^j(i) = \frac{\lambda_i^{(j)}}{\sum_{q=1}^{\Phi} \lambda_q^{(j)}}, \quad q \leq \Phi, j \in \{1, 2\}. \quad (46)$$

1049 Under Assumption 1, let $D_{\text{struct}} = D_{\text{KL}}(\mathbf{K}_{\text{struct}}^1 \parallel \mathbf{K}_{\text{struct}}^2)$ denote the KL-divergence between the
 1050 idealized distributions $\mathbf{K}_{\text{struct}}^1$ and $\mathbf{K}_{\text{struct}}^2$ corresponding to the k -community structures of G_1 and G_2 ,
 1051 respectively. $c, \epsilon > 0$ are constants. Then, (1) The KL-divergence converges to a limiting value D^*
 1052 with probability:
 1053

$$1054 \quad \mathbb{P}(|D_{\text{KL}}(\mathbf{K}^1 \parallel \mathbf{K}^2) - D^*| > \epsilon) \leq 4\Phi \exp(-c \min(n_1, n_2) \epsilon^2 / 8). \quad (47)$$

1055 (2) The structural similarity is preserved with error:
 1056

$$1057 \quad |D_{\text{KL}}(\mathbf{K}^1 \parallel \mathbf{K}^2) - D_{\text{struct}}| \leq \frac{C}{\min(\delta_1, \delta_2)}, \quad (48)$$

1059 where C is a constant and δ_j is the eigengap $\lambda_{k+1}^{(j)} - \lambda_k^{(j)}$ for graph G_j .
 1060

1061 *Proof.* For each graph G_j , by Lemma 2:
 1062

$$1063 \quad \mathbb{P}(\|\mathbf{K}^j - \mathbf{K}_*^j\|_\infty > \epsilon) \leq 2\Phi \exp(-cn_j \epsilon^2). \quad (49)$$

1064 Meanwhile, for the KL-divergence, we decompose:
 1065

$$1066 \quad |D_{\text{KL}}(\mathbf{K}^1 \parallel \mathbf{K}^2) - D_{\text{KL}}(\mathbf{K}_*^1 \parallel \mathbf{K}_*^2)| \quad (50)$$

$$1067 \quad \leq |D_{\text{KL}}(\mathbf{K}^1 \parallel \mathbf{K}^2) - D_{\text{KL}}(\mathbf{K}_*^1 \parallel \mathbf{K}^2)| \quad (51)$$

$$1069 \quad + |D_{\text{KL}}(\mathbf{K}_*^1 \parallel \mathbf{K}^2) - D_{\text{KL}}(\mathbf{K}_*^1 \parallel \mathbf{K}_*^2)|. \quad (52)$$

1070 Then, since \mathbf{K}^j are probability distributions bounded away from 0 (due to low-pass filtering), we can
 1071 apply the Lipschitz property of KL-divergence:
 1072

$$1073 \quad |D_{\text{KL}}(\mathbf{K}^1 \parallel \mathbf{K}^2) - D_{\text{KL}}(\mathbf{K}_*^1 \parallel \mathbf{K}_*^2)| \quad (53)$$

$$1075 \quad \leq C(\|\mathbf{K}^1 - \mathbf{K}_*^1\|_\infty + \|\mathbf{K}^2 - \mathbf{K}_*^2\|_\infty). \quad (54)$$

1076 For each graph, Lemma 2 gives the probability bounds for deviations:
 1077

$$1078 \quad \mathbb{P}(\|\mathbf{K}^1 - \mathbf{K}_*^1\|_\infty > \epsilon) \leq 2\Phi \exp(-cn_1 \epsilon^2) \quad (55)$$

$$1079 \quad \mathbb{P}(\|\mathbf{K}^2 - \mathbf{K}_*^2\|_\infty > \epsilon) \leq 2\Phi \exp(-cn_2 \epsilon^2). \quad (56)$$

1080 By the union bound, the probability of either distribution deviating is bounded by:
 1081

$$\mathbb{P}(\|\mathbf{K}^1 - \mathbf{K}_*^1\|_\infty > \epsilon \text{ or } \|\mathbf{K}^2 - \mathbf{K}_*^2\|_\infty > \epsilon) \quad (57)$$

$$\leq 2\Phi \exp(-cn_1\epsilon^2) + 2\Phi \exp(-cn_2\epsilon^2) \quad (58)$$

$$\leq 2\Phi(\exp(-cn_1\epsilon^2) + \exp(-cn_2\epsilon^2)) \quad (59)$$

$$\leq 4\Phi \exp(-c \min(n_1, n_2)\epsilon^2). \quad (60)$$

1088 The final bound uses the fact that:
 1089

$$\exp(-cn_1\epsilon^2) + \exp(-cn_2\epsilon^2) \leq 2 \exp(-c \min(n_1, n_2)\epsilon^2). \quad (61)$$

1092 For the structural preservation bound, we proceed in several steps: First, from Lemma 1, for each
 1093 graph G_j , the low-pass filter preserves community structure with error:
 1094

$$\|h_{\lambda_c}(\mathbf{L}_j)\mathbf{x} - \Pi_{\text{community}}^{(j)}\mathbf{x}\|_2 \leq \frac{8\sqrt{k}}{\lambda_{k+1}^{(j)} - \lambda_k^{(j)}} \|\mathbf{x}\|_2 = \frac{8\sqrt{k}}{\delta_j} \|\mathbf{x}\|_2. \quad (62)$$

1098 By Lemma 3, when the Laplacian is perturbed by \mathbf{E} , the filter output changes by at most:
 1099

$$\|h_{\lambda_c}(\mathbf{L}^j) - h_{\lambda_c}(\tilde{\mathbf{L}}^j)\|_2 \leq \frac{\|\mathbf{E}\|_2}{\delta_j}. \quad (63)$$

1103 Similarly, this perturbation affects the filter output by:
 1104

$$\|h_{\lambda_c}(\mathbf{L}^j) - h_{\lambda_c}(\mathbf{L}_{\text{struct}}^j)\|_2 \leq \frac{C_0}{\delta_j}. \quad (64)$$

1108 For the eigenvalues, this implies:
 1109

$$|\lambda_i^{(j)} - \lambda_i^{\text{struct}}| \leq \frac{C_0}{\delta_j}. \quad (65)$$

1113 Let $\mathbf{K}_{\text{struct}}^j$ be the distribution that perfectly captures the community structure. Then:
 1114

$$\|\mathbf{K}^j - \mathbf{K}_{\text{struct}}^j\|_\infty \leq \frac{C_1}{\delta_j}, \quad (66)$$

1118 where C_1 depends on the number of communities k . For the KL-divergence between distributions:
 1119

$$|D_{KL}(\mathbf{K}^1\|\mathbf{K}^2) - D_{KL}(\mathbf{K}_{\text{struct}}^1\|\mathbf{K}_{\text{struct}}^2)| \quad (67)$$

$$\leq C_2(\|\mathbf{K}^1 - \mathbf{K}_{\text{struct}}^1\|_\infty + \|\mathbf{K}^2 - \mathbf{K}_{\text{struct}}^2\|_\infty) \quad (68)$$

$$\leq C_2\left(\frac{C_1}{\delta_1} + \frac{C_1}{\delta_2}\right) \quad (69)$$

$$\leq \frac{2C_1C_2}{\min(\delta_1, \delta_2)}. \quad (70)$$

1127 By defining $D_{\text{struct}} = D_{KL}(\mathbf{K}_{\text{struct}}^1\|\mathbf{K}_{\text{struct}}^2)$ and letting $C = 2C_1C_2$:
 1128

$$|D_{KL}(\mathbf{K}^1\|\mathbf{K}^2) - D_{\text{struct}}| \leq \frac{C}{\min(\delta_1, \delta_2)}. \quad (71)$$

1132 This bound shows that the KL-divergence between the filtered distributions approximates the true
 1133 structural similarity up to an error controlled by the minimum eigengap of the two graphs. \square

Theorem 4.2 (Spectral Regularization). Let $G = (\mathcal{V}, \mathcal{E})$ be client graph with $n = |\mathcal{V}|$ and the eigengap $\delta = \lambda_{k+1} - \lambda_k > 0$, where k is the number of communities in the graph G . Denote the client low-pass filtered node embedding by $\mathbf{z} \in \mathbb{R}^n$. Assume the raw user/item embeddings are bounded by $\|\mathbf{U}_u\|_2, \|\mathbf{V}_i\|_2 \leq r$, where $r > 0$ is the embedding ℓ_2 norm bound.

$$|\text{Var}(\mathbf{z}) - \text{Var}(\mathbf{z}^*)| \leq \frac{C'}{\delta}, \quad (72)$$

where $\text{Var}(\mathbf{z})$ is the graph smoothness of \mathbf{z} , $\text{Var}(\mathbf{z}^*)$ is the smoothness of the k -community subspace embedding, and $C' = 32\sqrt{kr^2}$.

Proof. By Lemma 1 (Low-pass Filter Preservation), the raw embedding $\mathbf{x} \in \mathbb{R}^n$ represents the initial user/item embeddings with $\|\mathbf{x}\|_2 \leq r$. The k -community subspace embedding \mathbf{z}^* reflects the community structure of the graph and is defined as:

$$\mathbf{z}^* = \Pi_{\text{community}} \mathbf{x}, \quad (73)$$

where $\Pi_{\text{community}}$ is the projection onto the community subspace, spanned by the smallest k eigenvectors of the graph Laplacian \mathbf{L} . Since \mathbf{z}^* is a projection of \mathbf{x} , we have $\|\mathbf{z}^*\|_2 \leq \|\mathbf{x}\|_2 \leq r$. This clarifies that \mathbf{z}^* represents \mathbf{x} projected into the low-frequency k -community subspace.

The Low-pass filtered embedding is given by $\mathbf{z} = h_{\lambda_c}(\mathbf{L})\mathbf{x}$, where $h_{\lambda_c}(\mathbf{L})$ is a low-pass filter that preserves components associated with small eigenvalues of \mathbf{L} (low frequencies) and attenuates those with large eigenvalues (high frequencies). By Lemma 1, the approximation error is bounded as:

$$\|\mathbf{z} - \mathbf{z}^*\|_2 \leq \frac{8\sqrt{k}}{\delta} \|\mathbf{x}\|_2 \leq \frac{8\sqrt{k}}{\delta} r, \quad (74)$$

where $\delta = \lambda_{k+1} - \lambda_k$ is the eigengap. This shows that \mathbf{z} approximates the embedding \mathbf{z}^* .

The Dirichlet energy difference is:

$$|\text{Var}(\mathbf{z}) - \text{Var}(\mathbf{z}^*)| = |\mathbf{z}^\top \mathbf{L} \mathbf{z} - (\mathbf{z}^*)^\top \mathbf{L} \mathbf{z}^*|. \quad (75)$$

Let $\Delta = \mathbf{z} - \mathbf{z}^*$, with $\|\Delta\|_2 \leq \frac{8\sqrt{k}}{\delta} r$.

Expanding the difference:

$$\mathbf{z}^\top \mathbf{L} \mathbf{z} = (\mathbf{z}^* + \Delta)^\top \mathbf{L} (\mathbf{z}^* + \Delta) = (\mathbf{z}^*)^\top \mathbf{L} \mathbf{z}^* + 2(\mathbf{z}^*)^\top \mathbf{L} \Delta + \Delta^\top \mathbf{L} \Delta, \quad (76)$$

so:

$$|\text{Var}(\mathbf{z}) - \text{Var}(\mathbf{z}^*)| = |2(\mathbf{z}^*)^\top \mathbf{L} \Delta + \Delta^\top \mathbf{L} \Delta|. \quad (77)$$

We bound each term:

- **Cross term:**

$$|(\mathbf{z}^*)^\top \mathbf{L} \Delta| \leq \|\mathbf{z}^*\|_2 \|\mathbf{L} \Delta\|_2 \leq \|\mathbf{z}^*\|_2 \cdot \|\mathbf{L}\|_2 \cdot \|\Delta\|_2. \quad (78)$$

Since $\|\mathbf{L}\|_2 \leq 2$ (for a normalized Laplacian), $\|\mathbf{z}^*\|_2 \leq r$, and $\|\Delta\|_2 \leq \frac{8\sqrt{k}}{\delta} r$,

$$|(\mathbf{z}^*)^\top \mathbf{L} \Delta| \leq r \cdot 2 \cdot \frac{8\sqrt{k}}{\delta} r = \frac{16\sqrt{kr^2}}{\delta}, \quad (79)$$

$$2|(\mathbf{z}^*)^\top \mathbf{L} \Delta| \leq \frac{32\sqrt{kr^2}}{\delta}. \quad (80)$$

- **Quadratic term:**

$$|\Delta^\top \mathbf{L} \Delta| \leq \|\mathbf{L}\|_2 \|\Delta\|_2^2 \leq 2 \left(\frac{8\sqrt{k}}{\delta} r \right)^2 = \frac{128kr^2}{\delta^2}. \quad (81)$$

1188 Combining these:
 1189

$$1190 \quad |\text{Var}(\mathbf{z}) - \text{Var}(\mathbf{z}^*)| \leq \frac{32\sqrt{kr^2}}{\delta} + \frac{128kr^2}{\delta^2}. \quad (82)$$

1192 For large δ , the $\frac{1}{\delta}$ term dominates, yielding:
 1193

$$1194 \quad |\text{Var}(\mathbf{z}) - \text{Var}(\mathbf{z}^*)| \leq \frac{C'}{\delta}, \quad C' = 32\sqrt{kr^2}. \quad (83)$$

1196 \square
 1197

1198 C RELATED WORK

1201 C.1 FEDERATED RECOMMENDER SYSTEMS

1203 Federated Recommender Systems (FRS) enhance privacy by processing data locally while sharing
 1204 only model updates. Methods like FedMF (Chai et al., 2020) and LightFR (Zhang et al., 2022b) use
 1205 federated matrix factorization for global collaborative filtering without data leakage, while F2MF Liu
 1206 et al. (2022) integrates user/item features for fairness. To improve recommendation relevance,
 1207 recent research has shifted toward Personalized Federated Recommendations (PFR), which tailor
 1208 predictions to individual client preferences. For instance, PFedRec (Zhang et al., 2023) integrates
 1209 dual personalization strategies, and FedRAP (Li et al., 2024b) introduces adjustable personalized
 1210 layers. Although PFR frameworks address personalization, many treat clients(users) independently,
 1211 limiting their ability to capture high-order interactions inherent to Graph Neural Networks (GNNs).
 1212 To alleviate this, existing methods have explored ways to incorporate relational structure. Notable
 1213 examples include FedPerGNN (Wu et al., 2022), which expands subgraphs via a third-party server,
 1214 FedHGNN (Yan et al., 2024) utilizes heterogeneous GNN to handle diverse data relationships, and
 1215 SemiDEFGL (Qu et al., 2023) augments ego-graphs with synthetic common items. However, these
 1216 approaches mainly focus on augmenting the local neighborhood. **Moreover, F2PGNN (Agrawal et al.,**
 1217 **2024) addresses the fairness problem; it relies on additional feature information beyond user-item**
 1218 **interactions.** Moreover, neither leverage *graph spectral signals*, which capture fundamental structural
 1219 patterns, nor explicitly address the *subgraph structural imbalance* caused by variations in client
 subgraph scales and connectivities.

1220 C.2 PERSONALIZED FEDERATED LEARNING

1222 Personalized Federated Learning (PFL) extends standard FL by incorporating client-specific adapta-
 1223 tions to handle heterogeneous data distributions. In vision tasks, heterogeneity is driven largely by
 1224 disparities in local data sizes. For example, FedVC (Hsu et al., 2020) reweights and resamples clients
 1225 to address data-size gaps, Astraea (Duan et al., 2020) employs augmentation and rescheduling to
 1226 self-balance imbalanced datasets, and q-FFL (Li et al., 2020) uses a fairness loss to reweight underrep-
 1227 resented clients. In graph-based node classification tasks, heterogeneity arises from class imbalance
 1228 and varying class-driven graph topology. FedPer (Arivazhagan et al., 2019) and FedSim (Pali-
 1229 hawadana et al., 2022) address this by using adaptive layers and similarity-guided aggregation, while
 1230 G-FML (Yang et al., 2023), FedGSL (Zhao et al., 2022), and FedCog (Lei et al., 2023) leverage
 1231 subgraph augmentation and meta-learning to align diverse local graphs. Additionally, FedPUB (Baek
 1232 et al., 2023) clusters clients based on random-graph similarity, and **FedSSP (Tan et al., 2024) and**
 1233 **S2FGL (Tan et al., 2025a) apply low-pass filters for graph and node classification.** However, existing
 1234 PFL methods for graph data have largely focused on these types of heterogeneity, whereas the core
 1235 challenge in recommender systems is the structural imbalance of interaction-only subgraphs that vary
 1236 widely in size and connectivity. As a result, they fail to address the *subgraph structural imbalance*
 1237 characteristics of FRS, and are ineffective at mitigating structural divergence across clients.

1238 C.3 POPULARITY BIAS-AWARE RECOMMENDER SYSTEMS

1239 GNN-based Recommender Systems, such as NGCF (Wang et al., 2019), DGCF (Wang et al., 2020b),
 1240 and DHCF (Ji et al., 2020), have significantly improved recommendation accuracy in centralized
 1241 systems but often struggle with popularity bias. To address this, recent methods adopt advanced

Table 6: The statistics of datasets.

Dataset	Movielens-1M	Gowalla	Yelp2018	Amazon-Book	Tmall-Buy
Number of Users	6,040	29,858	31,668	52,643	885,759
Number of Items	3,900	40,981	38,048	91,599	1,144,124
Number of Interactions	1,000,290	1,027,370	1,561,406	2,984,108	7,592,214
Density	5.431%	0.084%	0.130%	0.062%	0.010%

Table 7: Comparison of different client construction strategies on *Movielens-1M*.

Method (Avg. \pm std)	Ego-graph	Random-Const.	Interconnected-Const.	Spectral-Clust.
Avg. Subgraph Size	141.1 ± 16.8	172.8 ± 9.8	2105.6 ± 135.7	196.2 ± 36.2
Size variance	22276.8 ± 6905.9	3198.5 ± 1039.8	85083.4 ± 45597.3	33370.3 ± 17210.8
Avg. Degree	1.97 ± 0.0	5.68 ± 0.24	7.29 ± 0.47	7.57 ± 1.07
Degree Variance	1.0 ± 0.0	6.34 ± 0.08	2.19 ± 1.08	30.22 ± 11.45
Avg. Density	0.032 ± 0.004	0.035 ± 0.001	0.003 ± 0.000	0.070 ± 0.022
Spectral Entropy	1.0 ± 0.0	6.34 ± 0.08	6.42 ± 0.15	5.69 ± 0.68
Avg. Low-Freq. Energy	0.996 ± 0.0	0.365 ± 0.010	1.0 ± 0.0	0.357 ± 0.030
Avg. Subgraphs/Iter.	100	10	8	4

loss functions that mitigate bias and enhance fairness, including DirectAU (Wang et al., 2022), CausE (Bonner & Vasile, 2018), IPS (Saito et al., 2020), and BC-Loss (Zhang et al., 2022a), which rely on global item-popularity statistics or direct embedding adjustments. However, in FL, such information is inaccessible, and sharing it would break privacy guarantees, as no client has access to the full interaction graph. Our approach introduces a privacy-preserving bias-aware margin by having each client compress its local popularity distributions skew into a single value, which the server aggregates into a *global bias context* to regularize local model updates. This process disrupts the popularity-driven feedback loop without compromising client privacy.

D EXPERIMENTAL SETTINGS

D.1 DATASETS

We use five real-world datasets to evaluate the recommendation performance of our proposed method.

- *Movielens-1M* (*mov*) is people’s expressed preferences for movies. These preferences are in the form of tuples, each showing a person’s rating (0-5 stars) for a specific movie at a particular time.
- *Gowalla* (He et al., 2020) is a location-based social networking website where users share their locations by checking in. The friendship network is undirected and was collected using their public API.
- *Yelp2018* (*yel*) is derived from the 2018 edition of the Yelp challenge. In this challenge, local businesses such as restaurants and bars are treated as items. Yelp maintains the same 10-core setting to ensure data quality.
- *Amazon-Book* (He et al., 2020) is used in Amazon-Review for product recommendation purposes.
- *Tmall-Buy* (*Tma*) is a large-scale, real-world dataset from the Tmall e-commerce platform. It is widely used for benchmarking the performance of commercial-scale recommender systems under conditions of extreme data sparsity.

D.2 SUBGRAPH CLUSTERING

A key challenge in FRS research is the lack of public, partitioned benchmarks with structural imbalance. To create a rigorous and reproducible benchmark to evaluate robustness, we must simulate client partitions. We empirically compared four common partitioning strategies on the *Movielens-1M* dataset (results in Table 7) to find the one that generates the most realistic and challenging structural heterogeneity.

1296 **Table 8: Sensitivity analysis of the anchor graph design in LPSFed.** Performance is reported using Recall@20
 1297 across five datasets. "w/o statistics for G_R (GNMK)" constructs the GNMK reference solely from global
 1298 assumptions, without any client-derived statistics. Bold indicates best performance per column.

Anchor Design	Amazon-Book	Gowalla	ML-IM	Yelp2018	Tmall-Buy
ER	0.0734	0.1599	0.2631	0.0767	0.0410
GNMK	0.0738	0.1621	0.2646	0.0783	0.0419
w/o statistics for G_R (GNMK)	0.0714	0.1581	0.2625	0.0764	0.0393

1305 The strategies are: (1) **Ego-graph**: Each client is a 1-hop ego network of a single user. (2) **Random-
 1306 Const.**: Each client is formed from a random subset of users. (3) **Interconnected-Const.**: Each
 1307 client is a full bipartite graph induced by a group of users. (4) **Spectral-Clust.**: Our chosen method.
 1308 As Table 7 shows, other methods yield structurally weak or homogeneous subgraphs (e.g., low
 1309 degree variance). In contrast, **Spectral-Clust.** produces subgraphs with high internal connectivity
 1310 and, crucially, the **highest degree variance** and diverse structural statistics. Therefore, we adopted
 1311 spectral clustering (Damle et al., 2019) for our experiments, as it provides the most effective protocol
 1312 to simulate the *subgraph structural imbalance* this paper aims to solve. In our main experiments 1,
 1313 we applied spectral clustering to partition the entire user-item interaction graph into four distinct
 1314 subgraphs, ensuring manageable complexity and clear separations. We also introduced diversity in
 1315 edge distributions across these subgraphs (approx. $\pm 20\%$ variation) to ensure each captures different
 1316 degrees of user-item engagement. Furthermore, to mitigate any bias from a single partitioning
 1317 outcome, we repeated this spectral clustering process twice, and all reported results are the average
 1318 of three runs per split (a total of six runs).

D.3 RANDOM GRAPH

1322 To construct random reference graphs, we used the average number of user nodes, item nodes,
 1323 interactions, and mean degree per subgraph to generate two types of bipartite graphs: the Erdos-Renyi
 1324 (ER) model (Erdős et al., 1960) or the GNMK model (Knuth, 1977). The ER model creates edges
 1325 between node pairs with a fixed probability, simulating purely random user-item interactions. In
 1326 contrast, the GNMK model constructs a bipartite graph with a specified number of edges, resulting in
 1327 more structured connectivity.

1328 Both ER and GNMK models were evaluated in our experiments. The ER model, due to its high
 1329 randomness, struggles to reflect the structural properties of real-world user-item graphs. Its inherent
 1330 randomness fails to represent community-like structures or degree imbalance, leading to suboptimal
 1331 personalization similarity measurements. Moreover, the eigenvalue spectrum of ER graphs
 1332 asymptotically converges to the free convolution of the Gaussian and Wigner semicircular distributions
 1333 (Ramakrishna et al., 2020), exhibiting unclear spectral gaps. This absence of spectral separation
 1334 limits the design of effective low-pass filters, further reducing the model’s utility. In contrast, the
 1335 GNMK model, which generates graphs with a fixed number of edges, better preserves the structural
 1336 patterns and degree distribution of clustered subgraphs. This closer alignment with real-world data
 1337 characteristics resulted in the GNMK model consistently outperforming the ER model, delivering
 1338 improved performance across all metrics.

D.4 SENSITIVITY TO ANCHOR GRAPH DESIGN

1341 To evaluate the impact of the reference graph used for structural comparison, we conduct an ablation
 1342 study using two widely adopted random graph models: Erdos-Renyi (ER) and the more structure-
 1343 aware GNMK model. As shown in Table 8, the GNMK-based anchor consistently achieves the best
 1344 performance across all datasets, confirming our motivation that GNMK better captures the structural
 1345 properties of real-world recommendation graphs. Importantly, we also evaluate a stricter privacy
 1346 setting "w/o statistics for G_R ", where the GNMK reference graph is constructed without using any
 1347 client-derived statistics. This variant yields performance close to the full model, demonstrating that
 1348 LPSFed remains robust even without access to client-specific structural information. These findings
 1349 validate the effectiveness of the GNMK anchor while demonstrating that our framework maintains
 stability under stronger privacy constraints.

1350
1351

D.5 BASELINES

1352
1353

We evaluate our proposed method in comparison to seven baselines:

1354
1355

- **FedAvg** (McMahan et al., 2017): is a foundational federated learning approach that transmits parameter gradients instead of data, enhancing privacy.
- **FedPUB** (Baek et al., 2023): adjusts weights within community structures using random graphs and parameter masking to protect data privacy.
- **FedMF** (Chai et al., 2020): applies matrix factorization within federated settings to ensure secure and private collaborative filtering.
- **F2MF** (Liu et al., 2022): aims to address fairness issues in federated recommender systems by incorporating fairness constraints into the matrix factorization process, ensuring equitable recommendations across diverse user groups.
- **PFedRec** (Zhang et al., 2023): offers a lightweight, user-specific model for on-device personalization without user embeddings.
- **FedRAP** (Li et al., 2024b): utilizes a dual personalized approach to manage user and item embeddings separately, optimizing communication efficiency.
- **FedPerGNN** (Wu et al., 2022): creates subgraphs for users with shared interactions, utilizing Local Differential Privacy (LDP) (Qi et al., 2020) for enhanced security during updates.
- **FedHGNN** (Yan et al., 2024): employs a federated heterogeneous graph neural network to explicitly capture the diverse structural relations between users and items for privacy-preserving recommendation.
- **FedSSP** (Tan et al., 2024): leverages spectral knowledge from client graphs to handle heterogeneity and models personalized preferences, adapted from federated graph classification.

1356
13571358
13591360
13611362
13631364
13651366
13671368
13691370
13711372
13731374
13751376
1377
D.6 HYPERPARAMETER SETTINGS
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

We configure the hyperparameters of the proposed method as follows. All user, item, and popularity embeddings are initialized from a normal distribution, with an embedding dimension of 64. Optimization is performed using the RMSProp optimizer (Ruder, 2016) with a learning rate $\eta = 0.0005$. Each client trains locally for 5 epochs before contributing to a global update. The entire training process runs for 40 global epochs, during which client models are updated based on the aggregated global parameters. The network architecture consists of two graph convolution layers, followed by two-layer MLPs used for both pooling and prediction stages (Eq. 4, 5). For the localized popularity bias-aware contrastive loss (\mathcal{L}_{BC} , Eq. 9), the softmax temperature parameter is set to $\tau = 0.1$, and the interpolation weight for the refined margin (Eq. 15) is set to $\omega = 0.25$. To ensure training stability, the model freezes parameter updates during the first two global epochs.

E MODEL COMPLEXITY

E.1 TIME COMPLEXITY ANALYSIS

E.1.1 LOW-PASS GRAPH CONVOLUTION NETWORK'S TIME COMPLEXITY ANALYSIS

The propagation step in a Graph Convolution Network (GCN) can be expressed as $\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \mathbf{Z} = (\mathbf{I} - \mathbf{L}) \mathbf{Z} = \mathbf{P}(\mathbf{I} - \mathbf{\Lambda}) \mathbf{P}^T \mathbf{Z}$, where it is equivalent to applying a low-pass filter in the frequency domain. The filter, represented as $[1 - \lambda_1, \dots, 1 - \lambda_{M+N}]$, inherently prioritizes smaller eigenvalues, thereby emphasizing smooth, global features. Importantly, repeated applications of the Low-pass Collaborative Filter (LCF) are equivalent to a single application:

$$LCF(\dots LCF(\mathbf{Z})) = (\bar{\mathbf{P}}^T)^k \mathbf{Z} = (\bar{\mathbf{P}}^T) \mathbf{Z} = LCF(\mathbf{Z}),$$

ensuring stable feature propagation and avoiding over-smoothing.

Computing the full set of eigenvectors \mathbf{P} for a graph with $M + N$ nodes has a time complexity of $\mathcal{O}((M + N)^3)$, as eigen-decomposition scales cubically. However, most real-world recommendation

1404 **Table 9:** Comparison of training efficiency across different models. Metrics include time per epoch, number of
 1405 epochs to converge, total training time, and memory usage, with the best scores highlighted in *bold*.

Model	Time/Epoch	#Epoch	Training Time	Memory Usage
FedAvg	20s	90	30m	6.2GB
FedPUB	25s	90	37m	10.2GB
FedMF	23m 48s	150	59h 30m	6.2GB
F2MF	39m 12s	100	65h 20m	6.4GB
PFedRec	38m 47s	135	87h 16m	1.4GB
FedRAP	73m 29s	160	195h 56m	1.6GB
FedPerGNN	6m 38s	200	15h 29m	18.8GB
FedHGNN	36s	100	1h	0.6GB
FedSSP	20s	150	50m	6.2GB
LPSFed (BPR)	19s	130	40m	6.2GB
LPSFed	19s	130	39m	6.2GB

1418
 1419 graphs are sparse, with the number of non-zero elements n in the Laplacian \mathbf{L} typically scaling linearly
 1420 with $M + N$. By leveraging sparsity, the Lanczos algorithm computes a subset of eigenvectors $\bar{\mathbf{P}}$ for
 1421 sparse matrices with time complexity $\mathcal{O}(n\Phi^2)$, where Φ represents the cut-off frequency (i.e., the
 1422 number of retained low-frequency eigenvalues). In practice, where $\Phi \ll M + N$ and $n \ll (M + N)^2$,
 1423 this approach ensures computational efficiency.

1425 E.1.2 LPSFED FRAMEWORK’S COMPLEXITY ANALYSIS

1427 In federated settings with C clients, each client independently computes the first Φ eigenvectors using
 1428 the Lanczos algorithm. The time complexity per client is $\mathcal{O}(n\Phi^2)$, where n denotes the non-zero
 1429 elements of the client’s subgraph Laplacian. The server, which generates a global random graph,
 1430 has a comparable computational complexity of $\mathcal{O}(n\Phi^2)$. Sequential execution would yield a total
 1431 complexity of $\mathcal{O}((C+1)n\Phi^2)$. However, federated learning leverages parallel computation, allowing
 1432 clients to perform computations simultaneously. As a result, the effective time complexity for the
 1433 entire system remains $\mathcal{O}(n\Phi^2)$.

1434 **Scalability and Robustness** Our approach ensures scalability and robustness, addressing challenges
 1435 in large subgraphs and imbalanced data distributions. The use of the Lanczos algorithm leverages the
 1436 sparsity of real-world recommendation graphs, making eigenvector computations efficient even for
 1437 large-scale datasets. Furthermore, pre-eigendecomposition ensures that training costs remain low, as
 1438 this computational step is required only once.

1439 **Communication and Computational Costs** Communication costs in our framework depend on
 1440 the size of the exchanged parameters, which occur only at specific aggregation and distribution
 1441 epochs rather than every training iteration. This reduces the overall communication overhead. On
 1442 the computational side, the server processes a graph representing the average subgraph size of
 1443 clients, while each client processes its local subgraph, ensuring that both sides operate within their
 1444 respective resource constraints. By limiting communication frequency and leveraging sparsity, our
 1445 method balances computational and communication overheads, enabling high scalability and practical
 1446 applicability.

1448 E.2 TRAINING EFFICIENCY ANALYSIS

1449 We compare the training efficiency and resource utilization (computation memory, time) of our model,
 1450 LPSFed, with several other federated learning models. As shown in Table 9, we evaluate time per
 1451 epochs, number of epochs to converge (#Epoch), total training time, and memory usage.

1452 It’s important to note that LPSFed, FedAvg, FedPUB, FedSSP are all based on the Low-pass Graph
 1453 Convolution Network (LGCN) (Yu et al., 2022). This architecture allows for pre-computation
 1454 of eigendecomposition, significantly reducing the computational burden during training. As a
 1455 result, these models achieve faster training times compared to methods that require real-time graph
 1456 convolutions. LPSFed demonstrates superior training efficiency, converging in 130 epochs with

1458 **Table 10:** Average Jaccard index for paired users over iterations, with rows corresponding to margin strengths γ
 1459 and columns to training iterations.

Iteration	20	40	60	80	100
$\gamma = 0.0$	0.0482	0.0497	0.0536	0.0568	0.0600
$\gamma = 0.3$	0.0478	0.0490	0.0529	0.0554	0.0592
$\gamma = 0.5$	0.0477	0.0489	0.0522	0.0544	0.0576
$\gamma = 0.7$	0.0476	0.0486	0.0512	0.0541	0.0570
$\gamma = 1.0$	0.0474	0.0478	0.0501	0.0522	0.0553

1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469 an average of 19 seconds per epoch, resulting in a total training time of 39 minutes and a memory
 1470 usage of 6.2 GB. This shows an improvement over other models, emphasizing the efficiency of our
 1471 approach. Leveraging the pre-computed convolution kernel allows our model to operate efficiently
 1472 in the federated learning framework, capitalizing on the advantages of LGCN while optimizing
 1473 performance through our proposed techniques, even in distributed settings.

1474 F ADDITIONAL EXPERIMENTAL RESULTS

1475 F.1 BIAS AMPLIFICATION MEASUREMENT AND EFFECTIVENESS OF THE BIAS-AWARE 1476 MARGIN

1477 **Bias Amplification Measurement.** To assess how our method alleviates the feedback loop caused
 1478 by popularity bias, we quantify convergence in user behavior using the Jaccard index, following
 1479 (Chaney et al., 2018). This metric captures the extent to which recommender systems drive users
 1480 to interact with increasingly similar items. For each user u , we identify the most similar user v based
 1481 on the cosine similarity of their preference vectors (θ_u, θ_v) , and compute the Jaccard index over their
 1482 item interactions:

$$1483 \mathbf{J}_{uv}(t) = \frac{|\mathcal{D}_u(t) \cap \mathcal{D}_v(t)|}{|\mathcal{D}_u(t) \cup \mathcal{D}_v(t)|},$$

1484 where $\mathcal{D}_u(t)$ and $\mathcal{D}_v(t)$ denote the item sets interacted by users u and v up to time t . A higher Jaccard
 1485 index reflects a stronger feedback loop, indicating behavioral convergence due to repeated exposure
 1486 to popular items. To evaluate the impact of our localized popularity bias-aware margin, we vary the
 1487 margin strength γ and monitor changes in the Jaccard index over training. The results are presented
 1488 in Table 10.

1489 **Analysis.** Table 10 demonstrates that the Jaccard index tends to increase over training iterations,
 1490 indicating a typical feedback loop where users increasingly receive similar popular items. However,
 1491 incorporating a bias-aware margin significantly mitigates this effect. As the margin strength γ
 1492 increases, the rate at which the Jaccard index grows is progressively reduced. Notably, when $\gamma = 1.0$,
 1493 the index exhibits the smallest rise, suggesting that stronger margins more effectively suppress
 1494 convergence driven by popularity.

1495 These results suggest that the bias-aware margin provides a regularization signal that limits the rein-
 1496 forcement of frequently recommended items, thereby interrupting the progression of the feedback loop.
 1497 By doing so, our method reduces recommendation redundancy and preserves both personalization
 1498 and interaction diversity. This observation is consistent with prior findings in (Chaney et al., 2018),
 1499 which report that unregulated feedback loops tend to amplify popularity-driven bias and degrade
 1500 recommendation quality. In contrast, our approach effectively mitigates such dynamics, supporting
 1501 more equitable and stable recommendation behavior across clients.

1502 F.2 CORRELATION ANALYSIS BETWEEN EIGENGAP AND PERFORMANCE

1503 To examine whether spectral stability contributes to empirical performance, we computed the Pearson
 1504 correlation between the observed Recall@20 values and the corresponding eigengaps δ at varying cut-
 1505 off frequencies Φ . As shown in Table 11, the correlation coefficient is 0.5004, indicating a moderate
 1506 positive relationship. This trend is consistent with 3 3(c), where performance improves as Φ increases

1512 **Table 11:** Correlation analysis between eigengap and model performance (Movielens-1M). Recall@20 and
 1513 corresponding eigengap values are reported for different cut-off frequencies ϕ . Pearson correlation quantifies
 1514 linear dependence between eigengap magnitude and model performance.

Cut-off Frequency ϕ	2	4	6	8
Recall@20	0.2556	0.2614	0.2615	0.2622
Eigengap δ	1.17×10^{-15}	4.36×10^{-3}	1.61×10^{-2}	1.46×10^{-1}
Pearson Correlation (Recall $\leftrightarrow \delta$)	0.5004			

1520 **Table 12:** Effect of client variability on performance using the *Amazon-Book* dataset. Metrics include
 1521 Recall@20 and NDCG@20, **bold** indicates the best results and underlined the second-best results in each setting.
 1522

# of Clients	4		10		20	
	Model	Recall	NDCG	Recall	NDCG	Recall
FedAvg	0.0642	0.0312	0.0395	0.0186	0.0220	0.0098
FedPUB	0.0633	0.0322	0.0417	0.0180	0.0232	0.0102
FedMF	0.0153	0.0072	0.0091	0.0058	0.0033	0.0035
F2MF	0.0451	0.0225	0.0325	0.0182	0.0158	0.0078
PFedRec	<u>0.0713</u>	0.0242	0.0406	0.0169	0.0236	0.0100
FedRAP	0.0082	0.0090	0.0086	0.0085	0.0087	0.0074
FedPerGNN	0.0035	0.0026	0.0034	0.0026	0.0029	0.0025
FedHGNN	0.0647	0.0298	0.0415	0.0188	0.0223	0.0105
FedSSP	0.0649	0.0356	0.0450	0.0219	0.0238	0.0110
LPSFed (BPR)	0.0643	0.0322	0.0400	0.0195	0.0235	0.0107
LPSFed	0.0738	0.0442	0.0464	0.0259	0.0254	0.0115
Improvement	↑ 3.5%	↑ 24.2%	↑ 3.1%	↑ 18.3%	↑ 6.7%	↑ 4.5%

1536
 1537 within a moderate range. The result supports our theoretical analysis; larger eigengaps δ enable more
 1538 stable low-pass filtering by separating meaningful structural components from high-frequency noise,
 1539 which contributes positively to model performance when applied within an appropriate filtering range.
 1540

1541 F.3 EFFECT OF CLIENT VARIABILITY ON PERFORMANCE

1542 Table 12 presents the performance trends of all models under varying numbers of clients (4, 10, and
 1543 20) using the *Amazon-Book* dataset. As the number of clients increases, the overall performance of
 1544 all baselines degrades. This degradation is attributed to the increasing heterogeneity among clients,
 1545 which results from heightened *subgraph structural imbalance* and limited user-item interactions
 1546 per client. These challenges amplify the difficulty of capturing consistent collaborative signals
 1547 across clients, making recommendations more susceptible to data sparsity and structural diversity.
 1548 Despite these challenges, LPSFed consistently maintains strong performance across all client settings.
 1549 This robustness stems from two core components: spectral similarity-guided personalization and
 1550 bias-aware margin. The former helps align model updates with each client’s structural uniqueness,
 1551 while the latter mitigates feedback loops caused by popularity bias. Together, they allow LPSFed to
 1552 adapt to heterogeneous client environments and preserve recommendation quality, even as the number
 1553 of clients grows and local data becomes more fragmented.
 1554

1556 G BROADER IMPACTS

1557 This research on federated recommender systems provides several positive societal impacts. By
 1558 training models on decentralized subgraph-level interaction data without exchanging raw data, it
 1559 enhances privacy protection, reduces the risk of data exposure, and builds trust in domains where
 1560 data sensitivity is critical, such as healthcare and finance. Our method also promotes fairness by
 1561 mitigating localized popularity bias and improving the quality of recommendations for diverse client
 1562 groups. Furthermore, the federated framework enables privacy-preserving collaboration across data
 1563 silos, allowing clients to jointly improve recommendation quality without disclosing proprietary
 1564 data. These outcomes contribute to improved user experience, sustainable model utility, and the
 1565 development of a more privacy-preserving recommendation ecosystem.

1566
1567

H LIMITATIONS

1568
1569
1570
1571
1572

Despite these promising advancements, our method inherently relies on spectral computations, such as eigendecomposition, performed during a preprocessing stage. Although preprocessing helps avoid computations during training, it still represents a scalability limitation. Future research should therefore prioritize developing scalable spectral approximation techniques and automating hyperparameter selection to further enhance the method’s applicability in practical scenarios.

1573

1574
1575

I LLM USAGE

1576
1577
1578
1579

We utilized a Large Language Model (LLM) as an assistive tool in the preparation of this paper. The LLM’s role was to proofread for grammar and spelling and to help refine the text for clarity, conciseness, and word choice. The core concepts, novel methodology, theoretical proofs, and all experimental results were conceived and generated by the human authors.

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619