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ABSTRACT

Federated Recommender Systems (FRS) preserve privacy by training decentralized
models on client-specific user-item subgraphs without sharing raw data. However,
FRS faces a unique challenge: subgraph structural imbalance, where drastic
variations in subgraph scale (user/item counts) and connectivity (item degree)
misalign client representations, making it challenging to train a robust model that
respects each client’s unique structural characteristics. To address this, we propose
a Low-pass Personalized Subgraph Federated recommender system (LPSFed).
LPSFed leverages graph Fourier transforms and low-pass spectral filtering to
extract low-frequency structural signals that remain stable across subgraphs of
varying size and degree, allowing robust personalized parameter updates guided
by similarity to a neutral structural anchor. Additionally, we leverage a localized
popularity bias-aware margin that captures item-degree imbalance within each
subgraph and incorporates it into a personalized bias correction term to mitigate
recommendation bias. Supported by theoretical analysis and validated on five real-
world datasets, LPSFed achieves superior recommendation accuracy and enhances
model robustness.

1 INTRODUCTION

Federated Recommender Systems (FRS) play a crucial role in preserving privacy while maintaining
recommendation quality. For example, large e-commerce platforms (e.g., Amazon, eBay) can
treat user-item interactions via subgraphs, where each client corresponds to a specific country or
region and accesses only localized data. Under a Federated Learning (FL) framework, models
exchange parameters instead of raw user data, significantly enhancing data privacy (McMahan et al.,
2017). However, decentralized learning naturally introduces substantial heterogeneity across clients
from variations in the size and data distributions within local datasets. Heterogeneity has been
widely studied in other FL tasks. In image classification FL, it appears through differences in local
image quantities and skewed class distributions (Duan et al., 2020; Hsu et al., 2020; Wang et al.,
2020a). In graph-based node classification FL, heterogeneity arises as client subgraphs differ in class
distributions and class-driven graph topology, with some classes forming dense clusters and others
appearing isolated or sparse (Fu et al., 2024; Kong et al., 2024; Li et al., 2024a; Tan et al., 2025b).

In subgraph-based FRS, the key challenge is subgraph structural imbalance, significant variations in
client subgraph size (user/item counts) and connectivity (item degree). This divergence is problematic
for spatial Graph Neural Networks (GNNs), such as PinSage, NGCF, and LightGCN (Ying et al.,
2018; Wang et al., 2019; He et al., 2020), because their multi-hop message passing is highly sensitive
to local topology. Consequently, when client subgraphs have vastly different structures, their locally
trained models produce misaligned representations, which destabilize federated updates and degrade
the quality of recommendations. Spectral FL methods (Tan et al., 2024; Yu, 2025; Tan et al.,
2025a) have been explored as an alternative, but their direct application to FRS is challenging since
recommendation graphs are bipartite, lack informative node features, and exhibit severe degree
skewness, unlike the homogeneous graph structures typically assumed in tasks such as citation or
social networks.

Beyond representation misalignment, subgraph structural imbalance also amplifies localized popu-
larity bias in FRS. Specifically, in dense clients with high average item degree, GNN aggregations
are dominated by high-degree hub items, overshadowing the long-tail items. While in sparse clients
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Figure 1: Empirical observations from the federated recommender systems on the Amazon-Book (He et al.,
2020) dataset. (a) Subgraph size-degree variation: each point is one of 15 client subgraphs, partitioned using
spectral clustering, grouped into Large-Dense (LD), Medium-Balanced (MB), Small-Sparse (SS) by node count
and average degree. (b) Structural divergence: Laplacian eigenvalue histograms averaged over each group,
highlighting distinct spectral signals. (c) Group-wise Performance Gap: NDCG@20 for FedAvg (McMahan
et al., 2017), PFedRec (Zhang et al., 2023), FedPUB (Baek et al., 2023), and Ours across groups, showing that
performance varies significantly depending on subgraph structure. Detailed experimental results in Table 2.

with low average item degree, the scarcity of connections forces the model to rely on a narrow set of
relatively higher-degree items, leading to unstable training and poor long-tail learning (Abdollahpouri
et al., 2019; Mansoury et al., 2020; Gao et al., 2022; Zhang et al., 2024; Lin et al., 2025). This bias
fosters a feedback loop, reinforcing the dominance of popular items (Chaney et al., 2018; Klima-
shevskaia et al., 2024). Since client isolation prevents the sharing of global context that could mitigate
this bias, it is crucial to build adaptive strategies tailored to each subgraph’s structural characteristics.

Figure 1 highlights three aspects we examine on Amazon-Book (He et al., 2020) in an FL setting.
To simulate this scenario with controlled structural diversity, we partition the global graph into 15
clients using spectral clustering, yielding distinct groups. The figure illustrates how variations in
client subgraph size and degree lead to spectral divergence, resulting in a corresponding decrease
in NDCG@20 for the baselines. These observations demonstrate that structural imbalance directly
degrades FRS performance. By leveraging spectral information like Laplacian eigenvalue distribu-
tions, our method consistently improves performance across all client groups, demonstrating the
effectiveness of spectral signals under structural heterogeneity.

Motivated by these observations, we propose Low-pass Personalized Subgraph Federated Recom-
mendation (LPSFed), a robust personalized FRS framework that addresses structural imbalance
through two synergistic components. (1) We apply low-pass spectral filtering to each client subgraph
to extract its dominant low-frequency structural signal, which reflects the core connectivity pattern
with minimal sensitivity to scale and noise. These signals are used to compute personalized structural
similarities between each client and the global model, guiding adaptive parameter updates referenced
against a neutral structural anchor across heterogeneous subgraphs. (2) We incorporate a localized
popularity bias-aware margin that captures variations in item-degree distributions across subgraphs
and applies a personalized correction term during local update.

We evaluate LPSFed on five real-world datasets across diverse FRS scenarios and compare it against
representative baselines. The results demonstrate that our method consistently achieves more stable
and accurate recommendations. These findings highlight the importance of addressing structural
imbalance for improving personalized federated recommendations in subgraph-based settings.

2 RELATED WORK

FRS enhances privacy since data is kept local and only model updates are shared. The field has
evolved from federated matrix factorization methods like FedMF (Chai et al., 2020) to personalized
methods that adapt to clients, including PFedRec (Zhang et al., 2023), and graph-based models that
expand subgraphs on the server, such as FedPerGNN (Wu et al., 2022). Recent work also explores
fairness, such as F2MF (Liu et al., 2022), F2PGNN (Agrawal et al., 2024). Spectral methods like
FedSSP (Tan et al., 2024) and S2FGL (Tan et al., 2025a) have emerged in FL for graph and node
classification to handle client heterogeneity, but existing approaches have been tailored to explicitly
tackle the subgraph structural imbalance in FRS and the localized popularity bias it amplifies.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARY

3.1 FEDERATED RECOMMENDER SYSTEM

In a Federated Recommender System (FRS), user-item interactions are decentralized into C distinct
subgraphs {G1, ..., GC}. For a given client c, we denote its local subgraph as Gc = (Vc, Ec), which
consists of the node set Vc = U∪I and the edge set Ec. Here, U = {u1, ..., uM} and I = {i1, ..., iN}
represent the sets of M users and N items within that client c. The recommendation task is to predict
a preference score ŷui for unobserved user-item pairs (u, i) and generate a top-K ranked list.

3.2 GRAPH FOURIER TRANSFORM (GFT)

The Graph Fourier Transform (GFT) (Ramakrishna et al., 2020; Isufi et al., 2024) extends clas-
sical Fourier analysis to graph-structured data by leveraging the graph Laplacian matrix L =

I−D− 1
2AD− 1

2 , where the adjacency matrix A =

[
0 R
RT 0

]
with R ∈ RM×N . D is the diagonal

degree matrix with Dii =
∑
jAij , and I is the identity matrix. We define the node embeddings

Z ∈ R(M+N)×D by stacking user UM×D and item VN×D embeddings, where D represents the
embedding dimensionality. By eigendecomposition L = PΛPT, where P is the matrix of eigen-
vectors (frequency bases) and Λ = diag([λ1, λ2, . . . , λM+N ]) is the diagonal matrix of eigenvalues
(frequencies). The GFT of an embedding matrix Z is Z̃ = Fg(Z) = PTZ, while the inverse GFT
is: Z = F−1

g (Z̃) = PZ̃. Through these transforms, graph signals are decomposed into frequency
components aligned with the graph’s topology, enabling selective reconstruction or modification for
filtering and structural analysis tasks.

3.3 LOW-PASS GRAPH FILTER & CONVOLUTION

Low-pass graph filters (Nt & Maehara, 2019; Yu & Qin, 2020; Liu et al., 2023) preserve meaningful
low-frequency structures by suppressing high-frequency noise. The filter is defined by a simple

gate function, f̃ =

[
1Φ

0M+N−Φ

]
, where Φ is the cut-off frequency. The Low-pass Collaborative

Filter (LCF) (Yu et al., 2022) is applied as: LCF (Z) = F−1
g (diag(f̃) · Fg(Z)) = P̄P̄TZ, where

P̄ = P∗,1:Φ contains the first Φ eigenvectors. When Φ = M + N , the filter becomes all-pass,
retaining all frequencies. Adjusting Φ, LCF selectively preserves low-frequency signals while
minimizing the impact of high-frequency noise.

Low-pass Graph Convolutional Network (LGCN (Yu et al., 2022)) utilizes these graph filters for
efficient convolution operations, leveraging the convolution theorem (Barrett & Wilde, 1960). Given
an embedding matrix Z and convolution kernel k ∈ RM+N , graph convolution is defined as:

Z ∗g k = F−1
g (diag(k̃) · Fg(Z)) = Pdiag(k̃)PTZ, (1)

where ∗g represents graph convolution, and k̃ is the kernel in the frequency domain. Combining
graph convolution with low-pass filtering results in a low-pass convolution:

Z∗̄gk = F−1
g (diag(f̃) · diag(k̃) · Fg(Z)) = P̄diag(k̄)P̄TZ, (2)

where ∗̄g denotes low-pass graph convolution, and k̄ = k̃1:Φ represents the truncated convolution
kernel, ensuring computational efficiency by using only the first Φ eigenvectors, compared to standard
graph convolution. Its time complexity isO(nΦ2), where n denotes the number of non-zero elements
in L. In practice, Φ ≪ M +N and n≪ (M +N)2, making the computation efficient for sparse
graphs. Instead of performing a full eigendecomposition, we compute only the first Φ eigenvectors
using a Lanczos solver, which leverages graph sparsity. This computation is performed once during
the preprocessing stage, prior to training, and does not affect per-round update or communication
costs. LGCN starts with an initial embedding layer Z(0), followed by L graph convolution layers.
Each l-th layer updates feature maps as:

Z(l) = P̄diag(k̄(l))P̄TZ(l−1). (3)

After L iterations, embeddings are pooled across all layers to produce the final predictive embeddings.
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Figure 2: Overview of LPSFed - On the Client: Stage 1 applies low-pass GCN and a localized popularity
bias-aware loss to train client subgraphs. Stage 2 computes similarities between each client subgraph and a
server-provided random graph using structural signals. On the Server: Stage 3 aggregates client parameters and
distributes them based on personalized similarity scores. Colored arrows indicate stage-wise interactions.

4 METHODOLOGY

In this section, we propose the Low-pass Personalized Subgraph Federated Recommendation
(LPSFed) which encompasses three key components outlined in Figure 2 and Algorithm 1:

• [In Client] Stage 1: Training of Client Models - Applies low-pass GCN and bias-aware loss to
train subgraph models and extract structural signals, and localized popularity bias information.

• [In Client] Stage 2: Computing Structural Similarity - Computes the structural similarity by
comparing the client’s structural signals against the server-provided neutral structural anchor.

• [In Server] Stage 3: Aggregating and Distributing Parameters on the Server - Aggregates
client parameters on the server and distributes them based on personalized similarity scores.

4.1 TRAINING OF CLIENT MODELS

Client Models. (Stage 1 of Figure 2) Each client independently processes its local subgraph using
a multi-layer Low-pass Graph Convolutional Network (LGCN Yu et al. (2022)). Within this LGCN,
we insert two Multi-Layer Perceptron (MLP) modules: Pooling MLP (fθcPool

) merges per-layer user
and item node embeddings into a client-specific single vector representation:

Zc = fθcPool
({Z(l)}Ll=0), for c = 1, . . . , C, (4)

where C is the number of clients, and Z(l) (Eq. 3) represents the node embedding matrix at layer l.
Uc
u and Vc

i are the pooled user/item embeddings for client c, which is split into user embeddings
Uc = Zc1:M and item embeddings Vc = ZcM+1:M+N .

The Predictive MLP (fθcpred
) computes a preference score from the user-item pair’s pooled embeddings,

which is then converted into the final preference angle R̂ui:

R̂ui = arccos(tanh(fθcPred
([Ucu,Vci ,Ucu ⊙ Vci ]))), for c = 1, . . . , C, (5)

where fθcPred
is a client-specific MLP that outputs an unbounded scalar preference score, which is then

converted into the final preference angle R̂ui bounded in the range [0, π].

Subgraph Structural Signals Extraction. We extract each client’s denoised structural signals by
constructing a low-pass convolution kernel distribution k̄ from its subgraph’s eigenvalue spectrum:

Kc = k̄c = k̃c1:Φ = Λc ⊙ f̃1:Φ , for c = 1, . . . , C, (6)
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where Λc is the diagonal eigenvalue matrix of client c, and f̃1:Φ is a spectral filter that retains only
the first Φ components. This low-pass kernel effectively suppresses high-frequency noise while
preserving the core structural patterns of each client’s subgraph, which are critical for capturing
meaningful connectivity and mitigating the impact of structural heterogeneity across clients (Shuman
et al., 2013). By integrating Kc into federated learning, our model accurately extracts and exploits
the denoised structural signals of each client’s subgraph.

Localized Popularity Bias-aware Optimization. To address popularity bias, our framework
utilizes the bias information in two ways: (1) as an auxiliary contrastive loss to regularize the bias
embedding space, and (2) as an adaptive margin in the main recommendation loss (Zhang et al.,
2022a). First, user and item popularity scores (pu, pi) are encoded into d-dimensional embeddings
via fψbias

(pu) and fϕbias
(pi). The bias score s(·) is the cosine similarity between these embeddings,

defined as s(fψbias
(pu), fϕbias

(pi)) = cos(ξ̂ui), where the scalar ξ̂ui is the angle between the two
embedding vectors. This score is first used in an auxiliary bias contrastive loss, Lbias, designed to
train the bias encoders (fψbias

, fϕbias
):

Lbias = −
∑

(u,i)∈O+

log
exp(cos(ξ̂ui)/τ)

exp(cos(ξ̂ui)/τ) +
∑
j∈Nu

exp(cos(ξ̂uj)/τ)
, (7)

where τ is the temperature and Nu is the negative set for user u. Second, we use the same bias angle
ξ̂ui to construct an adaptive margin for the main recommendation task:

Mc
ui = min {γ · ξ̂ui, π − R̂ui}, for c = 1, . . . , C, (8)

where γ controls the margin strength and π − R̂ui enforces a monotonic decrease. This locally-
computed margin is then refined by interpolating it with a personalized global context (detailed in
(Eq. 15)), creating the refined margin M̃c

ui that is used in the Bias-aware Contrastive (BC)-loss:

LBC = −
∑

(u,i)∈O+

log
exp(cos(R̂ui + M̃c

ui)/τ)

exp(cos(R̂ui + M̃c
ui)/τ) +

∑
j∈Nu

exp(cos(R̂uj)/τ)
. (9)

This formulation adaptively penalizes over-recommended items and encourages long-tail exposure,
mitigating localized popularity bias.

Localized Popularity Bias Information Computation. Each client aggregates its popularity bias-
aware margins into a single representative value to preserve privacy and ensure effective global
utilization. The average margin for client c is computed as:

Mc =
1

M

1

N

M∑
u=1

N∑
i=1

Mc
ui, for c = 1, . . . , C, (10)

where C, M , and N are the number of clients, users, and items, respectively. This scalar Mc

represents the overall localized popularity bias information within each client’s subgraph and is
deliberately aggregated into a single non-invertible value to prevent the exposure of user- or item-level
bias characteristics, theryby minimizing privacy risks. The server then utilizesMc to construct the
global bias context, which guides inter-client bias mitigation. In contrast, sharing the bias encoder
parameters (fψbias

, fϕbias
) is avoided because they encode higly fine-grained, client-specific prefer-

ence patterns. Exchanging such detailed parameters could inadvertently exposre sensitive interaction
information and lead to instability when aggregated across heterogeneous clients. Additional details
on the procedure TRAINLOCALMODEL in Algorithm 3, line 1.

4.2 COMPUTING STRUCTURAL SIMILARITY

(Stage 2 of Figure 2) Since the server cannot access raw subgraph data, it aggregates high-level client
statistics (e.g., average node/edge counts) during initialization. Using these statistics, it generates an
informed reference graph GR via Erdos-Renyi (ER) or GNMK models (Erdős et al., 1960; Knuth,
1977) at each global epoch, providing a neutral structural anchor for similarity comparison. Under
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strict privacy constraints, this step may be omitted, allowing the server to build GR without relying
on client-specific statistics. The server performs a GCN on GR and generates a convolution kernel
distribution KR which is distributed to each client. Each client, without sharing its local kernel Kc,
computes its structural similarity by using the KL-divergence (Hershey & Olsen, 2007) between its
local kernel Kc (Eq. 6) and the reference kernel KR:

ρc = DKL(K
R ∥ Kc) =

Φ∑
i=1

KR(i) log

(
KR(i)

Kc(i)

)
, for c = 1, . . . , C. (11)

To align these scores across clients, the server normalized the similarities via min-max normalization:

ρ̄c = 1− (ρc −min(ρ))

(max(ρ)−min(ρ))
, where ρ = {ρ1, . . . , ρC}. (12)

The normalized similarity ρ̄c quantifies each client’s structural alignment to the reference graph. This
score guides the personalized FL updates and mitigates structural imbalance by reducing the impact
of highly divergent clients that would otherwise introduce misaligned representations into the global
model. Further details on the procedure COMPUTESIMILARITY in Algorithm 3.

4.3 AGGREGATING AND DISTRIBUTING PARAMETERS ON THE SERVER

Initialization. In the initial communication round, the server initializes the learning environment
by distributing global parameters θ̄ to all clients, ensuring a uniform starting point θc ← θ̄ for all
clients c. Refer to Algorithm 1, line 1.

Aggregation. (Stage 3 of Figure 2) The server aggregates two model parameters and scalar bias
signals: pooling MLP’s θcPool (Eq. 4), predictive MLP’s θcPred (Eq. 5), and averaged margin Mc

(Eq. 10). Aggregation involves computing the mean across all clients:

θ̄Pool =
1

C

C∑
c=1

θcPool, θ̄Pred =
1

C

C∑
c=1

θcPred, M̄ =
1

C

C∑
c=1

Mc. (13)

where C is the number of clients. These procedures are run every global training epoch, as described
in Global Training Loop part in Algorithm 2, line 5.

Distribution. The server distributes updated model parameters to each client by adjusting them
according to the client’s normalized similarity score ρ̄c (Eq. 12). This score balances the influence of
the global model and the client’s local model during update:

θcPool,{updated} = (θ̄Pool × ρ̄c) + (θcPool × (1− ρ̄c)),

θcPred,{updated} = (θ̄Pred × ρ̄c) + (θcPred × (1− ρ̄c)),

Mc
{updated} = (M̄ × ρ̄c) + (Mc × (1− ρ̄c)).

(14)

While the updated parameters θc{updated} are used directly, the distributed marginMc
{updated} provides

global bias context to the client’s next local training round. The client creates a refined margin M̃c
ui

by interpolating this received global value with its newly-computed local marginMc
ui (Eq. 8):

M̃c
ui = ωMc

{updated} + (1− ω)Mc
ui, (15)

where ω ∈ [0, 1] balances global guidance and local specificity. It is this refined margin that is then
fed into the BC-loss (Eq. 9), ensuring the final loss reflects both global knowledge and structural
uniqueness. For implementation details, see the procedure UPDATECLIENT in Algorithm 2, line 11.

4.4 THEORETICAL ANALYSIS

This section presents a theoretical analysis of our approach to subgraph structural imbalance. We
provide a dual justification: first, we prove that our similarity metric (based on filtered spectrum) is a
stable measure of structural similarity, and second, we analyze how our low-pass filtering method
serves as a powerful spectral regularizer. We demonstrate that both our metric and method are
fundamentally governed by the underlying graph structure. Detailed proofs in Appendix B.
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Algorithm 1 LPSFed: Low-pass Personalized Subgraph Federated Recommendation
Notations.
Client c ∈ {1, ..., C}, Server S, local/global epochs ec, eg , parameters θAll = θ̄Pool, θ̄Pred,M̄

1: Server Initialization:
2: 1) Initialize global model θ̄All 2) Distribute parameters to clients: θcAll ← θ̄All
3: 3) Aggregate statistics from all clients

Algorithm 2 Global Training Loop #[Stage 3]

1: for epoch = 1 to eg do
2: Generate a statistical random graph GR

3: Train global model with GR ⇒ KR

4: for all client c (in parallel) do
5: θcAll,Kc ← TRAINCLIENTMODEL(c)
6: ρc ← COMPUTESIM.(c,KR,Kc)
7: θ̄All ← 1

C

∑
c θ

c
All

8: Normalize: ρ̄c ← 1− ρc−min(ρ)
max(ρ)−min(ρ)

9: for all client c do
10: θcnew ← θ̄All · ρ̄c + θcAll · (1− ρ̄c)
11: UPDATECLIENT(c, θcnew)

Algorithm 3 Procedures

1: Proc. TRAINCLIENTMODEL(c) #[Stage 1]
2: for epoch = 1 to ec do
3: Train θcAll, kernel Kc with GCN
4: return θcAll,Kc

5:
6: Proc. COMPUTESIM.(c,KR,Kc) #[Stage 2]
7: Compute KL-divergence KR & Kc

8: return ρc
9:

10: Proc. UPDATECLIENT(c, θcAll)
11: Apply updated parameters to client c

Theorem 4.1 (Structural Comparison via Spectral Distributions). Let G1 = (V1, E1) and G2 =
(V2, E2) be graphs with n1 = |V1| and n2 = |V2| nodes and k communities each. E1 and E2 are sets
of edges of G1 and G2, respectively. Moreover, Φ (< n) denotes the number of eigenvalues below
the cut-off frequency λ. Let K1 and K2 be their respective low-pass filtered eigenvalue distributions:

Kj(i) =
λ
(j)
i∑Φ

q=1 λ
(j)
q

, q ≤ Φ, j ∈ {1, 2}. (16)

Under Assumption 1, let Dstruct = DKL(K
1
struct∥K2

struct) denote the KL-divergence between the
idealized distributions K1

struct and K2
struct corresponding to the k-community structures of G1 and G2,

respectively. c, ϵ > 0 are constants. Then, (1) The KL-divergence converges to a limiting value D∗

with probability:
P(|DKL(K

1∥K2)−D∗| > ϵ) ≤ 4Φ exp(−cmin(n1, n2)ϵ
2/8). (17)

(2) The structural similarity is preserved with error:

|DKL(K
1∥K2)−Dstruct| ≤

C

min(δ1, δ2)
, (18)

where C is a constant and δj is the eigengap λ
(j)
k+1 − λ

(j)
k for graph Gj .

The theorem above shows that low-pass spectral comparison stabilizes cross-graph similarity. The
KL-divergence between filtered eigenvalue distributions converges exponentially, with accuracy
bounded by the smallest eigengap, indicating that clearer community separation yields more precise
similarity. Therefore, the filtered spectral distribution provides a theoretically grounded basis for
using DKL(K

R ∥ Kc) as a principled proxy for structural divergence.
Theorem 4.2 (Spectral Regularization). Let G = (V, E) be client graph with n = |V| and the
eigengap δ = λk+1 − λk > 0, where k is the number of communities in the graph G. Denote the
client low-pass filtered node embedding by z ∈ Rn. Assume the raw user/item embeddings are
bounded by ||Uu||2, ||Vi||2 ≤ r, where r > 0 is the embedding ℓ2 norm bound.

|Var(z)−Var(z∗)| ≤ C ′

δ
, (19)

where Var(z) is the graph smoothness of z, Var(z∗) is the smoothness of the k-community subspace
embedding, and C ′ = 32

√
kr2.

Our low-pass filtering method serves as a personalized spectral regularizer that bounds representation
variance by the eigengap δ, while our similarity metric ρc is also a stable measure governed by this
same underlying graph property. This shared governance by the eigengap provides the theoretical
justification for using ρ̄c (Eq. 12) as our core personalization weight.
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Table 1: The overall performance comparison Recall@20 and NDCG@20 on five datasets, with the best scores
highlighted in bold and the second-best in underlined. The improvement row highlights the gains achieved by
our model (LPSFed) compared to the second-best-performing model.

Dataset Amazon-Book Gowalla Movielens-1M Yelp2018 Tmall-Buy
Model Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

FedAvg 0.0642 0.0312 0.1425 0.0660 0.2454 0.1240 0.0721 0.0292 0.0317 0.0164
FedPUB 0.0633 0.0322 0.1433 0.0667 0.2558 0.1209 0.0684 0.0296 0.0333 0.0180
FedMF 0.0153 0.0072 0.0765 0.0409 0.1679 0.0906 0.0318 0.0150 0.0122 0.0063
F2MF 0.0451 0.0225 0.0961 0.0565 0.1788 0.1120 0.0510 0.0247 0.0207 0.0132
PFedRec 0.0713 0.0242 0.1371 0.0478 0.1508 0.0997 0.0750 0.0225 0.0323 0.0170
FedRAP 0.0082 0.0090 0.0340 0.0458 0.0550 0.0389 0.0129 0.0249 0.0046 0.0052
FedPerGNN 0.0035 0.0026 0.0958 0.0777 0.1332 0.1124 0.0252 0.0220 0.0032 0.0019
FedHGNN 0.0647 0.0298 0.1230 0.0608 0.2163 0.1031 0.0721 0.0268 0.0362 0.0171
FedSSP 0.0649 0.0356 0.1528 0.0729 0.2564 0.1265 0.0733 0.0315 0.0370 0.0186
LPSFed (BPR) 0.0643 0.0322 0.1529 0.0711 0.2604 0.1281 0.0769 0.0301 0.0362 0.0186
LPSFed 0.0738 0.0442 0.1621 0.0909 0.2646 0.1342 0.0783 0.0379 0.0385 0.0218
Improvement ↑ 3.5% ↑ 24.2% ↑ 6.1% ↑ 17% ↑ 3.2% ↑ 6.1% ↑ 4.4% ↑ 20.3% ↑ 4.1% ↑ 17.2%

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluated our model on five real-world datasets: Amazon-Book, Gowalla (He et al.,
2020) Movielens-1M (mov), Yelp2018 (yel), and Tmall-Buy (Tma). Each dataset was split into
training, validation, and test sets in an 8:1:1 ratio.

Baselines. Nine baselines such as FedAvg, FedPUB, FedMF, F2MF, PFedRec, FedRAP, Fed-
PerGNN, FedHGNN, and FedSSP (McMahan et al., 2017; Baek et al., 2023; Chai et al., 2020; Liu
et al., 2022; Zhang et al., 2023; Li et al., 2024b; Wu et al., 2022; Yan et al., 2024; Tan et al., 2024)
are used for comparisons. These include standard FL, federated matrix factorization, personalized
FRS, fairness-aware FRS, and Spectral-based FL methods. We used Recall@20 and NDCG@20 to
measure recommendation accuracy, assessing how well the top 20 recommended items matched user
interests (Wang et al., 2019).

Implementation Details. We partitioned each client into four subgraphs using spectral cluster-
ing (Damle et al., 2019) to align with the federated recommender systems setting (Table 1, 3, 9,
10, and Figure 3). Results were averaged over six runs across two different partitions. Random
graphs were generated using the GNMK (Knuth, 1977) model, which effectively preserves degree
distribution compared to the Erdos-Renyi (ER) model (Erdős et al., 1960). Further details on dataset
statistics, baseline models, clustering methods, random graph generation, and all hyperparameter
settings are provided in Appendix D, respectively.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

(RQ1) Overall Performance Comparison. Table 1 summarizes our comparative analysis against
key graph-based FL baselines. We evaluate our framework in two settings: LPSFed(BPR), which
applies a standard BPR loss (Rendle et al., 2009), and our full model LPSFed, which applies a BC loss
(Eq. 9). As shown, LPSFed consistently outperforms all nine competing baselines, achieving state-
of-the-art performance. LPSFed(BPR), leveraging our spectral personalization, already demonstrates
strong performance by yielding robust personalized similarity measurements. LPSFed further
incorporates our proposed bias-aware margin to mitigate local popularity bias. This synergy robustly
handles both structural imbalance and localized popularity bias, delivering the significant NDCG
gains (e.g., +24.2% in Amazon-Book) through more precise top-ranked item recommendations.

(RQ2) Robustness to Subgraph Structural Imbalance. Table 2 quantifies how well each method
copes with subgraph structural imbalance on the Amazon-Book. The 15 clients are partitioned into
three groups: Large-Dense (LD, # Nodes > 40K, Avg. Degree 42.3), Medium-Balanced (MB, 10K
< # Nodes < 15K, Avg. Degree 20.4), and Small-Sparse (SS, # Nodes < 8K, Avg. Degree 12.8). For
each group, we report mean Recall@20 and NDCG@20; the last column averages over all clients.
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Table 2: Performance for measuring the impact of subgraph structural imbalance on the Amazon-Book dataset,
evaluated using Recall@20 and NDCG@20 across a 15-client partition. Clients are grouped into three categories:
Large-Dense, Medium-Balanced, Small-Sparse and Overall (averaged across all clients). The best scores are
highlighted in bold and the second-best in underlined. The improvement row shows the gains achieved by our
model (LPSFed) compared to the second-best-performing model.

Group Large-Dense Medium-Balanced Small-Sparse Overall
Model Recall NDCG Recall NDCG Recall NDCG Recall NDCG

FedAvg 0.0620 0.0280 0.0411 0.0208 0.0275 0.0117 0.0334 0.0152
FedPUB 0.0605 0.0355 0.0528 0.0267 0.0300 0.0123 0.0381 0.0177
FedMF 0.0176 0.0094 0.0127 0.0056 0.0058 0.0027 0.0084 0.0039
F2MF 0.0402 0.0231 0.0341 0.0174 0.0225 0.0085 0.0268 0.0118
PFedRec 0.0619 0.0250 0.0525 0.0185 0.0310 0.0131 0.0388 0.0153
FedRAP 0.0073 0.0082 0.0067 0.0072 0.0048 0.0065 0.0055 0.0068
FedPerGNN 0.0053 0.0037 0.0038 0.0018 0.0039 0.0012 0.0040 0.0015
FedHGNN 0.0630 0.0319 0.0455 0.0237 0.0283 0.0095 0.0352 0.0148
FedSSP 0.0669 0.0380 0.0524 0.0269 0.0317 0.0126 0.0396 0.0181
LPSFed (BPR) 0.0655 0.0375 0.0523 0.0269 0.0306 0.0131 0.0387 0.0184
LPSFed 0.0769 0.0448 0.0550 0.0295 0.0331 0.0146 0.0419 0.0206
Improvement ↑ 14.9% ↑ 17.9% ↑ 4.2% ↑ 9.7% ↑ 4.4% ↑ 11.5% ↑ 5.8% ↑ 13.8%

Table 3: Comparison of the localized popularity bias mitigation on the Amazon-Book using NDCG@20. Best
scores are in bold. Balanced data includes all data, while the imbalanced dataset excludes less active participants.
Arrows show (%) change relative to FedAvg: ↑ gain (%), ↓ loss (%).

Data Setting Balanced Dataset [NDCG@20] Imbalanced Dataset [NDCG@20]
Model Tail Mid Head Overall Tail Mid Head Overall

FedAvg 0.0017 0.0077 0.0570 0.0264 0.0040 0.0108 0.0924 0.0312
FedPUB 0.0024 ↑ 41 0.008 ↑ 16 0.0620 ↑ 9 0.0279 ↑ 6 0.0064 ↑ 60 0.0130 ↑ 20 0.0998 ↑ 8 0.0322 ↑ 3
FedMF 0.0002 ↓ 88 0.0009 ↓ 88 0.0130 ↓ 77 0.0074 ↓ 72 0.0003 ↓ 92 0.0013 ↓ 88 0.0140 ↓ 85 0.0072 ↓ 77
F2MF 0.0037 ↑ 118 0.0112 ↑ 45 0.0438 ↓ 23 0.0225 ↓ 15 0.0050 ↑ 25 0.0119 ↑ 10 0.0436 ↓ 53 0.0225 ↓ 28
PFedRec 0.0055 ↑ 224 0.0125 ↑ 62 0.0277 ↓ 51 0.0244 ↓ 8 0.0068 ↑ 70 0.0145 ↑ 34 0.0262 ↓ 72 0.0242 ↓ 22
FedRAP 0.0031 ↑ 82 0.0097 ↑ 26 0.0098 ↓ 83 0.0110 ↓ 58 0.0014 ↓ 65 0.0055 ↓ 49 0.0107 ↓ 88 0.0090 ↓ 71
FedPerGNN 0.0002 ↓ 88 0.0007 ↓ 91 0.0042 ↓ 93 0.0015 ↓ 94 0.0003 ↓ 92 0.0008 ↓ 93 0.0046 ↓ 95 0.0026 ↓ 92
FedHGNN 0.0019 ↑ 12 0.0088 ↑ 14 0.0555 ↓ 3 0.0262 ↓ 1 0.0058 ↑ 45 0.0138 ↑ 28 0.0770 ↓ 17 0.0298 ↓ 4
FedSSP 0.0038 ↑ 124 0.0117 ↑ 52 0.0640 ↑ 12 0.0317 ↑ 20 0.0067 ↑ 68 0.0167 ↑ 55 0.1019 ↑ 10 0.0356 ↑ 14
LPSFed (BPR) 0.0031 ↑ 82 0.0113 ↑ 47 0.0610 ↑ 7 0.0301 ↑ 14 0.0068 ↑ 70 0.0149 ↑ 38 0.0974 ↑ 5 0.0322 ↑ 3
LPSFed 0.0063 ↑ 271 0.0143 ↑ 86 0.0752 ↑ 32 0.0390 ↑ 48 0.0078 ↑ 95 0.0193 ↑ 79 0.1052 ↑ 14 0.0442 ↑ 42

LPSFed (BPR), which leverages only spectral personalization, shows competitive performance,
although its scores are slightly lower than the FedSSP. However, adding the bias-aware margin
(LPSFed) yields significant performance gains across all groups and demonstrates three distinct
effects. In group LD, it breaks the feedback loop, improving performance significantly over all
baselines (+14.9% Recall, +17.9% NDCG over the best baseline). In group MB, the spectral-signal
similarity effectively moderates update weights, allowing clients to benefit from the global bias
context without overfitting to popular items. In group SS, the margin reduces over-dependence on a
few popular items, enhancing long-tail recommendation quality.

(RQ3) Localized Popularity Bias Mitigation. Table 3 reports NDCG@20 on Amazon-Book under
two settings: Balanced uses the full dataset, while Imbalanced excludes users and items with fewer
than eight interactions. Users are grouped into Tail, Mid, and Head based on interaction proportions
(3:2:1 ratio). We compare against FedAvg, and arrows indicate each model’s relative change in
NDCG@20. Traditional FL models like FedMF and FedPerGNN perform poorly in the Tail group,
indicating that they are significantly affected by popularity bias. While PFedRec and FedSSP show
notable gains in the Tail, they underperform our model (LPSFed) in the head. Similarly, F2MF,
which uses auxiliary features for group-based fairness, performs better than LPSFed(BPR) in the
Tail and mid categories on the balanced data, but underperforms in the overall categories on the
Imbalanced data. However, LPSFed consistently in the overall categories on both Balanced and
Imbalanced datasets, indicating that our model’s bias-aware margin removes popularity noise and
preserves accuracy across the entire item spectrum.

(RQ4) Ablation Study of Model Components. Table 4 evaluates the contribution of each key
component. The w/o LGCN variant, where we replace our core low-pass architecture with a standard
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Table 4: Ablation study of LPSFed on five datasets, reporting Recall@20 and NDCG@20 for different model
variants Bold indicates best performance per column, and the last row shows relative improvements over the
second-best.

Dataset Amazon-Book Gowalla Movielens-1M Yelp2018 Tmall-Buy
Model Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

w/o LGCN 0.0388 0.0216 0.0965 0.0427 0.1622 0.0893 0.0471 0.0207 0.0256 0.0121
w/o bias-aware 0.0643 0.0322 0.1529 0.0711 0.2604 0.1281 0.0769 0.0301 0.0362 0.0186
w/o per 0.0652 0.0368 0.1576 0.0788 0.2625 0.1299 0.0775 0.0315 0.0370 0.0190
w/o per & bias-aware 0.0642 0.0312 0.1425 0.0660 0.2454 0.1240 0.0712 0.0292 0.0317 0.0164
w/o statistics for GR 0.0714 0.0403 0.1581 0.0856 0.2625 0.1330 0.0764 0.0372 0.0393 0.0199
LPSFed 0.0738 0.0442 0.1621 0.0909 0.2646 0.1342 0.0783 0.0379 0.0419 0.0206
Improvement ↑ 3.4% ↑ 9.7% ↑ 2.5% ↑ 6.2% ↑ 0.8% ↑ 0.9% ↑ 1.0% ↑ 1.9% ↑ 6.6% ↑ 3.5%

Figure 3: Hyperparameter sensitivity on the Amazon-Book dataset: (a) Bias-aware margin strength γ; (b) Impact
of γ on Bias Amplification in Imbalanced set; (c) Low-pass cut-off frequency Φ; (d) Loss Temperature τ .

spatial GNN (NGCF (Wang et al., 2019)), results in a catastrophic performance drop, which highlights
the inherent limitations of spatial-based methods in handling structural divergence. Removing the
personalization component, denoted w/o per, or the bias-aware margin, denoted w/o bias-aware,
significantly degrades performance, confirming both modules are essential. Notably, w/o statistics for
GR variant enforces stricter privacy by not aggregating any client statistics. Despite this, it performs
robustly, achieving the second-best results across most metrics. Only the full LPSFed achieves
consistently high Recall and precise rankings, confirming that these components enhance both broad
coverage and accurate prediction.

(RQ5) Hyperparameter Analysis. Figure 3 shows how key hyperparameters affect NDCG@20
on Amazon-Book under Balanced and Imbalanced settings. (a) Increasing the bias-aware margin
strength γ consistently raises NDCG, as a stronger margin curbs the localized popularity bias and
supports long-tail items. This indicates that maximizing the margin strength is the most effective
strategy for achieving the intended bias mitigation objective. (b) Higher γ suppresses the feedback
loop by reducing recommendation overlap, thereby limiting popularity amplification. Specifically,
γ = 1.0 yields the slowest growth in the Jaccard index, confirming that a stronger margin most
effectively disrupts the popularity-driven feedback loop. (c) For the low-pass cut-off frequency Φ,
performance improves as more informative structural signals are captured, peaking at Φ = 128,
where the cut-off preserves the most spectrally stable frequencies while excluding high-frequency
noise that would otherwise reduce robustness. (d) The BC-Loss temperature τ shows a similar pattern:
appropriate settings strike a balance between stable optimization and sufficient exploration, while
values that are too low hinder learning and those that are too high result in overfitting, both leading to
lower NDCG.

6 CONCLUSION

In this paper, we introduce Low-pass Personalized Subgraph Federated Recommendation (LPSFed), a
robust personalized FRS that simultaneously addresses subgraph structural imbalance and localized
popularity bias. Our approach leverages low-pass spectral filtering for stable personalization, while a
bias-aware margin mitigates feedback loops and improves long-tail recommendations. We provide
theoretical justification for this framework, demonstrating that our similarity metric and our spectral
filtering method are both governed by the same underlying eigengap, which validates our person-
alization strategy. Empirical evaluation on five real-world datasets confirms that this synergistic
framework achieves state-of-the-art performance and robustness, outperforming all existing baselines.
Further discussions on the limitations and LLM usage are provided in Appendix H and I.
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ETHICS STATEMENT

This research was conducted in accordance with the ICLR Code of Ethics. The focus of our work is
the development of robust, privacy-preserving federated recommender systems.

Privacy and Security. A primary ethical consideration in recommender systems is the handling
of sensitive user data. Our federated learning framework directly addresses this challenge. By
training models on decentralized, client-level subgraphs without sharing raw user-item interaction
data, our method significantly enhances user privacy and reduces the risk of data exposure inherent in
traditional centralized systems. The information shared with the server is limited to model parameters
and minimal, non-invertible scalar values (e.g., structural similarity scores), which are designed to
prevent the reconstruction of individual user data or local graph structures.

Fairness, Bias, and Discrimination. Recommender Systems can perpetuate and amplify existing
biases, leading to unfair outcomes. Our research directly confronts this issue by proposing a method
to mitigate localized popularity bias. By improving the quality of recommendations for diverse and
structurally varied client groups, our work aims to promote fairness and provide more equitable
exposure for long-tail items. This helps to counteract the feedback loops that often lead to a
narrow, popularity-driven recommendation landscape, thereby fostering a more diverse and inclusive
ecosystem.

Data Usage and Research Integrity. All experiments in this paper were conducted using publicly
available and widely adopted benchmark datasets. These datasets consist of anonymized user
interactions, and our work did not involve the collection of new data from human subjects. We are
committed to research integrity and have provided detailed descriptions of our methodology and
experimental setup to ensure reproducibility.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide our source code as supplementary mate-
rial. Our theoretical analysis is presented in Section 4.4, with detailed proofs for all theorems and
supporting lemmas provided in Appendix B. Our code is available at: https://anonymous.
4open.science/r/LPSFed_Anonymous-917D. All experimental settings are described in
Section 5.1 and Appendix D, which includes dataset statistics, the client subgraph clustering method-
ology, baseline model details, and a complete list of hyperparameters.
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APPENDIX GUIDE

The appendix includes the theoretical analysis, related work, experimental setup, training efficiency,
complexity analysis, additional experimental results, broader impacts, limitations, and LLM Usage.
This guide provides a concise overview of its sections for easy navigation.

A NOTATIONS

• Table of Notations A: List all key notations and symbols used in the paper.

B THEORETICAL ANALYSIS

• Lemma 1 (Low-pass Filter Preservation) 1: Shows low-pass filters preserve graph community
structures with an eigengap-based error bound.

• Lemma 2 (Spectral Measure Convergence) 2: Proves eigenvalue distribution convergence in
large graphs.

• Lemma 3 (Filter Stability) 3: Establishes low-pass filter stability under Laplacian perturbations.

• Assumption 1 (Idealized Distribution) 1 Formalizes the idealized low-pass spectral distributions.

• Theorem 4.1 (Structural Comparison) 4.1: Compares graph structures via KL-divergence of
eigenvalue distributions.

• Theorem 4.2 (Spectral Regularization) 4.2: Bounds variance of filtered node embeddings for
community alignment.

C RELATED WORK

• Federated Recommender Systems C.1: Reviews collaborative filtering and personalized recom-
mendation methods in federated settings.

• Personalized Federated Learning C.2: Covers approaches for handling data heterogeneity across
clients, particularly in vision and graph domains.

• Popularity Bias-aware Recommender Systems C.3: Discusses methods for mitigating popularity
bias in centralized recommendation settings.

D DATASETS AND EXPERIMENTAL SETUP

• Datasets D.1: Details Movielens-1M, Gowalla, Yelp2018, Amazon-Book, Tmall-Buy datasets
(Table 6).

• Subgraph Clustering D.2: Describes clustering methods for generating client subgraphs in the
federated setting (Table 7).

• Random Graph D.3: Describes random graph generation in a federated setting.

• Random Graph Sensitivity D.4: Random Graph Sensitivity Analysis (Table 8).

• Baselines D.5: Lists baseline models for comparison.

• Hyperparameter Settings D.6: Summarizes configuration settings.

E TRAINING EFFICIENCY & COMPLEXITY

• Model Complexity E: Show LPSFed achieves higher efficiency than baselines.

• Time Complexity:

– Low-pass Convolution E.1.1: Efficient low-pass filtering and graph convolution.
– LPSFed Framework E.1.2: Federated learning system complexity.

• Scalability E.1.2: Supports large-scale graphs.

• Costs E.1.2: Analyzes communication and computation overhead (Table 7).
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F ADDITIONAL EXPERIMENTAL RESULTS

• Bias Amplification Measurement and Effectiveness of the Bias-Aware Margin F.1: Shows bias
mitigation via Jaccard index, with higher margin strengths reducing convergence (Table 10).

• Correlation Analysis Between Eigengap and Performance F.2: Analyzes correlation, confirming
spectral stability benefits within an appropriate filtering range (Table 11).

• Effect of Client Variability on Performance F.3: Tests performance across client counts (4, 10,
20), proving robustness to heterogeneity (Table 12).

G BROADER IMPACTS

• Broader Impacts G: Summarizes societal benefits such as privacy, fairness, and collaborative
learning from our subgraph-level federated recommender systems approach.

H LIMITATIONS

• Limitations H: Discusses the limitations of this paper.

I LLM USAGE

• LLM Usage I: Details the use of an LLM for manusctipt preparation.
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Table 5: Table of Notations.

Symbol Description
General Notations

C The total number of clients
c An index for a specific client, c ∈ {1, ..., C}
u, i A user and an item, respectively
U, I The sets of all users and items in a given graph
M,N The number of users and items in a given graph
D The Dimensionality of embeddings
θ General model parameters

Graph Representation
G,Gc A global graph and a client’s local subgraph
V, E The sets of nodes and edges in a graph
A,D,L The adjacency, Degree, and Laplacian matrices of a graph
R The user-item interaction matrix
λi,Λ The i-th eigenvalue and the diagonal matrix of eigenvalues
P The matrix of eigenvectors of the Laplacian

Low-pass Graph Convolutional Network
Z,U,V The node, user, and item embedding matrices
Z(l) The node embedding matrix at the l-th layer
Φ The cut-off frequency for the low-pass filter
P̄ The truncated matrix of the first Φ eigenvectors
k̃, k̄ A convolution kernel in the frequency domain and its truncated version
fθPool

, fθPred
The pooling and Predictive MLPs

Bias Mitigation
pu, pi Popularity scores for user u and item i
fψbias

, fϕbias
Encoders for user and item popularity bias

ξ̂ui The angle between user and item popularity bias embeddings
Lbias,LBC The auxiliary bias loss and the main Bias-aware Contrastive (BC) loss
Mc

ui A locally computed adaptive margin for user u, item i on client c
M̃c

ui The refined margin after interpolation with the global context
γ, τ, ω Hyperparameters: margin strength, softmax temperature, and interpolation weight

Federated Learning (Low-pass Personalized Subgraph Federated Recommendation)
Kc,KR The low-pass convolution kernel distributions for client c and the reference graph GR

ρc The structural divergence of client c (KL-divergence)
ρ̄c The normalized similarity score of client c
Mc,M̄ A client c’s average margin and the aggregated global average margin
θcupdated Updated (personalized) parameters for client c
Mc

updated The updated (personalized) global margin for client c
Theoretical Analysis

δ The eigengap of the graph Laplacian (λk+1 − λk)
Dstruct The ideal structural divergence between theoretical k-block graphs
Var(z) The graph smoothness (Dirichlet energy) of an embedding z
z∗ The theoretical k-community subspace embedding

A NOTATIONS

Table 5 summarizes the key notations used throughout the paper.

B THEORETICAL ANALYSIS

Lemma 1 (Low-pass Filter Preservation). Let G be an undirected graph with normalized Laplacian
L = I−D−1/2AD−1/2 and k communities. For a low-pass filter hλc(L) with cut-off frequency λc
between λk and λk+1:

∥hλc(L)x−Πcommunityx∥2 ≤
8
√
k

λk+1 − λk
∥x∥2, (20)
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where Πcommunity is the projection onto community indicator vectors.

Proof. Let L = PΛPT be the eigendecomposition of L, where Λ = diag(λ1, . . . , λn) with 0 =
λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2. The proof proceeds in four steps:

First, let χ ∈ Rn×k be the matrix of true community indicators. By the variational characterization
of eigenvalues, the first k eigenvectors minimize:

min
XTX=Ik

tr(XTLX) =

k∑
i=1

λi. (21)

Second, let Pk be the matrix of first k eigenvectors. By the Davis-Kahan theorem (Davis & Kahan,
1970), when the eigengap λk+1 − λk > 0:

∥Pk − χR∥F ≤
8
√
k

λk+1 − λk
, (22)

where R is an orthogonal matrix that best aligns Pk with χ. Then, the low-pass filter hλc
(L) with

λc ∈ (λk, λk+1) acts as:

hλc(L) =

k∑
i=1

pip
T
i = PkP

T
k . (23)

Lastly, or any signal x, using the projection Πcommunity = χχT:

∥hλc(L)x−Πcommunityx∥2 = ∥PkP
T
kx− χχTx∥2 (24)

= ∥(PkP
T
k − χRRTχT)x∥2 (25)

≤ ∥Pk − χR∥F ∥x∥2 (26)

≤ 8
√
k

λk+1 − λk
∥x∥2. (27)

Lemma 2 (Spectral Measure Convergence). Let Gn be a graph with n vertices and a normalized
low-pass filtered eigenvalue distribution with cut-off frequency λc. Let Φ (< n) denote the number of
eigenvalues below λc. For this distribution:

Kn(i) =
λ
(n)
i∑Φ

q=1 λ
(n)
q

, q ≤ Φ. (28)

Then there exists a limiting distribution K∗ such that:

P(∥Kn −K∗∥∞ > ϵ) ≤ 2Φ exp(−cnϵ2), (29)
where c, ϵ > 0 are constants.

Proof. The proof proceeds in steps: By the Matrix Bernstein inequality (Tropp et al., 2015) for
normalized Laplacians:

P(∥Ln − E[Ln]∥ ≥ t) ≤ 2n exp(−nt2

4
). (30)

Second, let L∗ = E[Ln] be the limiting operator. For eigenvalues, Weyl’s inequality gives:

|λ(n)
i − λ∗

i | ≤ ∥Ln − L∗∥2. (31)

For the normalized distribution Kn:

|Kn(i)−K∗(i)| = | λ
(n)
i∑Φ

q=1 λ
(n)
q

− λ∗
i∑Φ

q=1 λ
∗
q

| (32)

≤ |λ
(n)
i − λ∗

i |∑Φ
q=1 λ

(n)
q

+
λ∗
i

(
∑Φ
q=1 λ

(n)
q )2

|
Φ∑
q=1

(λ(n)
q − λ∗

q)|. (33)
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Since eigenvalues of normalized Laplacians lie in [0, 2] and Φ is fixed:

Φ∑
q=1

λ(n)
q ≥ c1 > 0. (34)

Therefore, for any ϵ > 0:
|Kn(i)−K∗(i)| ≤ C1∥Ln − L∗∥2. (35)

By setting t = ϵ/C1 in Eq. 30 and applying the union bound over i ≤ Φ:

P(∥Kn −K∗∥∞ > ϵ) ≤ 2Φ exp(−cnϵ2), (36)

where c = 1/(4C2
1 ).

Lemma 3 (Filter Stability). For a low-pass filter hλc
(L) and perturbed Laplacian L̃ = L+E:

∥hλc
(L)− hλc

(L̃)∥2 ≤
∥E∥2
δλc

, (37)

where δλc
is the minimum gap between eigenvalues separated by λc.

Proof. We prove this in three steps using complex analysis: First, express the filter difference using
the Cauchy integral formula:

hλc
(L)− hλc

(L̃) =
1

2πi

∮
Γ

(wI− L)−1E(wI− L̃)−1dw, (38)

where Γ is a contour enclosing eigenvalues below λc.

For the resolvent norm, when w is on Γ:

∥(wI− L)−1∥2 ≤
1

dist(w, σ(L))
≤ 1

δλc

, (39)

where σ(L) is the spectrum of L. By taking operator norms:

∥hλc
(L)− hλc

(L̃)∥2 (40)

≤ 1

2π

∮
Γ

∥(wI− L)−1∥2∥E∥2∥(wI− L̃)−1∥2|dw| (41)

≤ ∥E∥2
δλc

. (42)

The final inequality uses the fact that the contour integral equals 2πi for the characteristic function of
(−∞, λc].

Assumption 1 (Idealized Low-Pass Spectral Distributions). For each graph j ∈ {1, 2}, let
Gj = (Vj , Ej) be an undirected (possibly bipartite) graph with normalized Laplacian L(j) =

I−D(j)− 1
2A(j)D(j)− 1

2 and eigenvalues 0 = λ
(j)
1 ≤ λ

(j)
2 ≤ · · · ≤ λ

(j)
nj ≤ 2. Fix a common low-pass

cut-off λc ∈ (0, 2) (for bipartite graphs choose λc < 2), and let Φ(j) := max{m : λ
(j)
m ≤ λc}.

Define the empirical low-pass eigenvalue distribution:

K(j) ∈ ∆Φ(j)−1, K(j)(i) =
λ
(j)
i∑Φ(j)

q=1 λ
(j)
q

, i ≤ Φ(j). (43)

Idealized model. We assume Gj is generated by a k-community structural model that induces an
idealized (expected) graph: either

(SBM) a k-block (bi)SBM with community proportions α(j) and block matrix B(j), with expected
adjacency A(j),⋆ = E[A(j)]; or

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(Graphon) a piecewise-constant k-block graphon Wj , with associated integral operator’s discretization
A(j),⋆.

Let L(j)
struct be the normalized Laplacian of A(j),⋆, with eigenvalues 0 = λ

(j)
struct,1 ≤ · · · ≤ λ

(j)
struct,nj

and

Φ
(j)
struct := max{m : λ

(j)
struct,m ≤ λc}. The idealized low-pass distribution is:

K
(j)
struct(i) =

λ
(j)
struct,i∑Φ

(j)
struct

q=1 λ
(j)
struct,q

, i ≤ Φ
(j)
struct. (44)

Structural divergence. The population (idealized) structural divergence between two graphs a, b is:

Dstruct := DKL

(
K

(a)
struct ∥K

(b)
struct

)
, (45)

where DKL is computed after ε-smoothing of zero coordinates in the denominator (i.e., replace any
zero qi by max{qi, ε} for a fixed ε > 0).

Theorem 4.1 (Structural Comparison via Spectral Distributions). Let G1 = (V1, E1) and G2 =
(V2, E2) be graphs with n1 = |V1| and n2 = |V2| nodes and k communities each. E1 and E2 are sets
of edges of G1 and G2, respectively. Moreover, Φ (< n) denotes the number of eigenvalues below
the cut-off frequency λ. Let K1 and K2 be their respective low-pass filtered eigenvalue distributions:

Kj(i) =
λ
(j)
i∑Φ

q=1 λ
(j)
q

, q ≤ Φ, j ∈ {1, 2}. (46)

Under Assumption 1, let Dstruct = DKL(K
1
struct∥K2

struct) denote the KL-divergence between the
idealized distributions K1

struct and K2
struct corresponding to the k-community structures of G1 and G2,

respectively. c, ϵ > 0 are constants. Then, (1) The KL-divergence converges to a limiting value D∗

with probability:

P(|DKL(K
1∥K2)−D∗| > ϵ) ≤ 4Φ exp(−cmin(n1, n2)ϵ

2/8). (47)

(2) The structural similarity is preserved with error:

|DKL(K
1∥K2)−Dstruct| ≤

C

min(δ1, δ2)
, (48)

where C is a constant and δj is the eigengap λ
(j)
k+1 − λ

(j)
k for graph Gj .

Proof. For each graph Gj , by Lemma 2:

P(∥Kj −Kj
∗∥∞ > ϵ) ≤ 2Φ exp(−cnjϵ2). (49)

Meanwhile, for the KL-divergence, we decompose:

|DKL(K
1∥K2)−DKL(K

1
∗∥K2

∗)| (50)

≤ |DKL(K
1∥K2)−DKL(K

1
∗∥K2)| (51)

+ |DKL(K
1
∗∥K2)−DKL(K

1
∗∥K2

∗)|. (52)

Then, since Kj are probability distributions bounded away from 0 (due to low-pass filtering), we can
apply the Lipschitz property of KL-divergence:

|DKL(K
1∥K2)−DKL(K

1
∗∥K2

∗)| (53)

≤ C(∥K1 −K1
∗∥∞ + ∥K2 −K2

∗∥∞). (54)

For each graph, Lemma 2 gives the probability bounds for deviations:

P(∥K1 −K1
∗∥∞ > ϵ) ≤ 2Φ exp(−cn1ϵ

2) (55)

P(∥K2 −K2
∗∥∞ > ϵ) ≤ 2Φ exp(−cn2ϵ

2). (56)
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By the union bound, the probability of either distribution deviating is bounded by:

P(∥K1 −K1
∗∥∞ > ϵ or ∥K2 −K2

∗∥∞ > ϵ) (57)

≤ 2Φ exp(−cn1ϵ
2) + 2Φ exp(−cn2ϵ

2) (58)

≤ 2Φ(exp(−cn1ϵ
2) + exp(−cn2ϵ

2)) (59)

≤ 4Φ exp(−cmin(n1, n2)ϵ
2). (60)

The final bound uses the fact that:

exp(−cn1ϵ
2) + exp(−cn2ϵ

2) ≤ 2 exp(−cmin(n1, n2)ϵ
2). (61)

For the structural preservation bound, we proceed in several steps: First, from Lemma 1, for each
graph Gj , the low-pass filter preserves community structure with error:

∥hλc
(Lj)x−Π

(j)
communityx∥2 ≤

8
√
k

λ
(j)
k+1 − λ

(j)
k

∥x∥2 =
8
√
k

δj
∥x∥2. (62)

By Lemma 3, when the Laplacian is perturbed by E, the filter output changes by at most:

∥hλc(L
j)− hλc(L̃

j)∥2 ≤
∥E∥2
δj

. (63)

Similarly, this perturbation affects the filter output by:

∥hλc(L
j)− hλc(L

j
struct)∥2 ≤

C0

δj
. (64)

For the eigenvalues, this implies:

|λ(j)
i − λstruct

i | ≤ C0

δj
. (65)

Let Kj
struct be the distribution that perfectly captures the community structure. Then:

∥Kj −Kj
struct∥∞ ≤

C1

δj
, (66)

where C1 depends on the number of communities k. For the KL-divergence between distributions:

|DKL(K
1∥K2)−DKL(K

1
struct∥K2

struct)| (67)

≤ C2(∥K1 −K1
struct∥∞ + ∥K2 −K2

struct∥∞) (68)

≤ C2(
C1

δ1
+

C1

δ2
) (69)

≤ 2C1C2

min(δ1, δ2)
. (70)

By defining Dstruct = DKL(K
1
struct∥K2

struct) and letting C = 2C1C2:

|DKL(K
1∥K2)−Dstruct| ≤

C

min(δ1, δ2)
. (71)

This bound shows that the KL-divergence between the filtered distributions approximates the true
structural similarity up to an error controlled by the minimum eigengap of the two graphs.
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Theorem 4.2 (Spectral Regularization). Let G = (V, E) be client graph with n = |V| and the
eigengap δ = λk+1 − λk > 0, where k is the number of communities in the graph G. Denote the
client low-pass filtered node embedding by z ∈ Rn. Assume the raw user/item embeddings are
bounded by ||Uu||2, ||Vi||2 ≤ r, where r > 0 is the embedding ℓ2 norm bound.

|Var(z)−Var(z∗)| ≤ C ′

δ
, (72)

where Var(z) is the graph smoothness of z, Var(z∗) is the smoothness of the k-community subspace
embedding, and C ′ = 32

√
kr2.

Proof. By Lemma 1 (Low-pass Filter Preservation), the raw embedding x ∈ Rn represents the
initial user/item embeddings with ∥x∥2 ≤ r. The k-community subspace embedding z∗ reflects the
community structure of the graph and is defined as:

z∗ = Πcommunityx, (73)

where Πcommunity is the projection onto the community subspace, spanned by the smallest k eigen-
vectors of the graph Laplacian L. Since z∗ is a projection of x, we have ∥z∗∥2 ≤ ∥x∥2 ≤ r. This
clarifies that z∗ represents x projected into the low-frequency k-community subspace.

The Low-pass filtered embedding is given by z = hλc
(L)x, where hλc

(L) is a low-pass filter that
preserves components associated with small eigenvalues of L (low frequencies) and attenuates those
with large eigenvalues (high frequencies). By Lemma 1, the approximation error is bounded as:

∥z− z∗∥2 ≤
8
√
k

δ
∥x∥2 ≤

8
√
k

δ
r, (74)

where δ = λk+1 − λk is the eigengap. This shows that z approximates the embedding z∗.

The Dirichlet energy difference is:

|Var(z)−Var(z∗)| = |z⊤Lz− (z∗)⊤Lz∗|. (75)

Let ∆ = z− z∗, with ∥∆∥2 ≤ 8
√
k
δ r.

Expanding the difference:

z⊤Lz = (z∗ +∆)⊤L(z∗ +∆) = (z∗)⊤Lz∗ + 2(z∗)⊤L∆+∆⊤L∆, (76)

so:

|Var(z)−Var(z∗)| = |2(z∗)⊤L∆+∆⊤L∆|. (77)

We bound each term:

• Cross term:

|(z∗)⊤L∆| ≤ ∥z∗∥2∥L∆∥2 ≤ ∥z∗∥2 · ∥L∥2 · ∥∆∥2. (78)

Since ∥L∥2 ≤ 2 (for a normalized Laplacian), ∥z∗∥2 ≤ r, and ∥∆∥2 ≤ 8
√
k
δ r,

|(z∗)⊤L∆| ≤ r · 2 · 8
√
k

δ
r =

16
√
kr2

δ
, (79)

2|(z∗)⊤L∆| ≤ 32
√
kr2

δ
. (80)

• Quadratic term:

|∆⊤L∆| ≤ ∥L∥2∥∆∥22 ≤ 2

(
8
√
k

δ
r

)2

=
128kr2

δ2
. (81)
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Combining these:

|Var(z)−Var(z∗)| ≤ 32
√
kr2

δ
+

128kr2

δ2
. (82)

For large δ, the 1
δ term dominates, yielding:

|Var(z)−Var(z∗)| ≤ C ′

δ
, C ′ = 32

√
kr2. (83)

C RELATED WORK

C.1 FEDERATED RECOMMENDER SYSTEMS

Federated Recommender Systems (FRS) enhance privacy by processing data locally while sharing
only model updates. Methods like FedMF (Chai et al., 2020) and LightFR (Zhang et al., 2022b) use
federated matrix factorization for global collaborative filtering without data leakage, while F2MF Liu
et al. (2022) integrates user/item features for fairness. To improve recommendation relevance,
recent research has shifted toward Personalized Federated Recommendations (PFR), which tailor
predictions to individual client preferences. For instance, PFedRec (Zhang et al., 2023) integrates
dual personalization strategies, and FedRAP (Li et al., 2024b) introduces adjustable personalized
layers. Although PFR frameworks address personalization, many treat clients(users) independently,
limiting their ability to capture high-order interactions inherent to Graph Neural Networks (GNNs).
To alleviate this, existing methods have explored ways to incorporate relational structure. Notable
examples include FedPerGNN (Wu et al., 2022), which expands subgraphs via a third-party server,
FedHGNN (Yan et al., 2024) utilizes heterogeneous GNN to handle diverse data relationships, and
SemiDEFGL (Qu et al., 2023) augments ego-graphs with synthetic common items. However, these
approaches mainly focus on augmenting the local neighborhood. Moreover, F2PGNN (Agrawal et al.,
2024) addresses the fairness problem; it relies on additional feature information beyond user-item
interactions. Moreover, neither leverage graph spectral signals, which capture fundamental structural
patterns, nor explicitly address the subgraph structural imbalance caused by variations in client
subgraph scales and connectivities.

C.2 PERSONALIZED FEDERATED LEARNING

Personalized Federated Learning (PFL) extends standard FL by incorporating client-specific adapta-
tions to handle heterogeneous data distributions. In vision tasks, heterogeneity is driven largely by
disparities in local data sizes. For example, FedVC (Hsu et al., 2020) reweights and resamples clients
to address data-size gaps, Astraea (Duan et al., 2020) employs augmentation and rescheduling to
self-balance imbalanced datasets, and q-FFL (Li et al., 2020) uses a fairness loss to reweight underrep-
resented clients. In graph-based node classification tasks, heterogeneity arises from class imbalance
and varying class-driven graph topology. FedPer (Arivazhagan et al., 2019) and FedSim (Pali-
hawadana et al., 2022) address this by using adaptive layers and similarity-guided aggregation, while
G-FML (Yang et al., 2023), FedGSL (Zhao et al., 2022), and FedCog (Lei et al., 2023) leverage
subgraph augmentation and meta-learning to align diverse local graphs. Additionally, FedPUB (Baek
et al., 2023) clusters clients based on random-graph similarity, and FedSSP (Tan et al., 2024) and
S2FGL (Tan et al., 2025a) apply low-pass filters for graph and node classification. However, existing
PFL methods for graph data have largely focused on these types of heterogeneity, whereas the core
challenge in recommender systems is the structural imbalance of interaction-only subgraphs that vary
widely in size and connectivity. As a result, they fail to address the subgraph structural imbalance
characteristics of FRS, and are ineffective at mitigating structural divergence across clients.

C.3 POPULARITY BIAS-AWARE RECOMMENDER SYSTEMS

GNN-based Recommender Systems, such as NGCF (Wang et al., 2019), DGCF (Wang et al., 2020b),
and DHCF (Ji et al., 2020), have significantly improved recommendation accuracy in centralized
systems but often struggle with popularity bias. To address this, recent methods adopt advanced

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: The statistics of datasets.

Dataset Movielens-1M Gowalla Yelp2018 Amazon-Book Tmall-Buy
Number of Users 6,040 29,858 31,668 52,643 885,759
Number of Items 3,900 40,981 38,048 91,599 1,144,124
Number of Interactions 1,000,290 1,027,370 1,561,406 2,984,108 7,592,214
Density 5.431% 0.084% 0.130% 0.062% 0.010%

Table 7: Comparison of different client construction strategies on Movielens-1M.

Method (Avg.± std) Ego-graph Random-Const. Interconnected-Const. Spectral-Clust.
Avg. Subgraph Size 141.1± 16.8 172.8± 9.8 2105.6± 135.7 196.2± 36.2
Size variance 22276.8± 6905.9 3198.5± 1039.8 85083.4± 45597.3 33370.3± 17210.8
Avg. Degree 1.97± 0.0 5.68± 0.24 7.29± 0.47 7.57± 1.07
Degree Variance 1.0± 0.0 6.34± 0.08 2.19± 1.08 30.22± 11.45
Avg. Density 0.032± 0.004 0.035± 0.001 0.003± 0.000 0.070± 0.022
Spectral Entropy 1.0± 0.0 6.34± 0.08 6.42± 0.15 5.69± 0.68
Avg. Low-Freq. Energy 0.996± 0.0 0.365± 0.010 1.0± 0.0 0.357± 0.030
Avg. Subgraphs/Iter. 100 10 8 4

loss functions that mitigate bias and enhance fairness, including DirectAU (Wang et al., 2022),
CausE (Bonner & Vasile, 2018), IPS (Saito et al., 2020), and BC-Loss (Zhang et al., 2022a), which
rely on global item-popularity statistics or direct embedding adjustments. However, in FL, such
information is inaccessible, and sharing it would break privacy guarantees, as no client has access
to the full interaction graph. Our approach introduces a privacy-preserving bias-aware margin by
having each client compress its local popularity distributions skew into a single value, which the
server aggregates into a global bias context to regularize local model updates. This process disrupts
the popularity-driven feedback loop without compromising client privacy.

D EXPERIMENTAL SETTINGS

D.1 DATASETS

We use five real-world datasets to evaluate the recommendation performance of our proposed method.

• Movielens-1M (mov) is people’s expressed preferences for movies. These preferences are
in the form of tuples, each showing a person’s rating (0-5 stars) for a specific movie at a
particular time.

• Gowalla (He et al., 2020) is a location-based social networking website where users share
their locations by checking in. The friendship network is undirected and was collected using
their public API.

• Yelp2018 (yel) is derived from the 2018 edition of the Yelp challenge. In this challenge,
local businesses such as restaurants and bars are treated as items. Yelp maintains the same
10-core setting to ensure data quality.

• Amazon-Book (He et al., 2020) is used in Amazon-Review for product recommendation
purposes.

• Tmall-Buy (Tma) is a large-scale, real-world dataset from the Tmall e-commerce platform.
It is widely used for benchmarking the performance of commercial-scale recommender
systems under conditions of extreme data sparsity.

D.2 SUBGRAPH CLUSTERING

A key challenge in FRS research is the lack of public, partitioned benchmarks with structural
imbalance. To create a rigorous and reproducible benchmark to evaluate robustness, we must simulate
client partitions. We empirically compared four common partitioning strategies on the Movielens-1M
dataset (results in Table 7) to find the one that generates the most realistic and challenging structural
heterogeneity.
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Table 8: Sensitivity analysis of the anchor graph design in LPSFed. Performance is reported using Recall@20
across five datasets. "w/o statistics for GR (GNMK)" constructs the GNMK reference solely from global
assumptions, without any client-derived statistics. Bold indicates best performance per column.

Anchor Design Amazon-Book Gowalla ML-1M Yelp2018 Tmall-Buy
ER 0.0734 0.1599 0.2631 0.0767 0.0410
GNMK 0.0738 0.1621 0.2646 0.0783 0.0419
w/o statistics forGR (GNMK) 0.0714 0.1581 0.2625 0.0764 0.0393

The strategies are: (1) Ego-graph: Each client is a 1-hop ego network of a single user. (2) Random-
Const.: Each client is formed from a random subset of users. (3) Interconnected-Const.: Each
client is a full bipartite graph induced by a group of users. (4) Spectral-Clust.: Our chosen method.
As Table 7 shows, other methods yield structurally weak or homogeneous subgraphs (e.g., low
degree variance). In contrast, Spectral-Clust. produces subgraphs with high internal connectivity
and, crucially, the highest degree variance and diverse structural statistics. Therefore, we adopted
spectral clustering (Damle et al., 2019) for our experiments, as it provides the most effective protocol
to simulate the subgraph structural imbalance this paper aims to solve. In our main experiments 1,
we applied spectral clustering to partition the entire user-item interaction graph into four distinct
subgraphs, ensuring manageable complexity and clear separations. We also introduced diversity in
edge distributions across these subgraphs (approx. ±20% variation) to ensure each captures different
degrees of user-item engagement. Furthermore, to mitigate any bias from a single partitioning
outcome, we repeated this spectral clustering process twice, and all reported results are the average
of three runs per split (a total of six runs).

D.3 RANDOM GRAPH

To construct random reference graphs, we used the average number of user nodes, item nodes,
interactions, and mean degree per subgraph to generate two types of bipartite graphs: the Erdos-Renyi
(ER) model (Erdős et al., 1960) or the GNMK model (Knuth, 1977). The ER model creates edges
between node pairs with a fixed probability, simulating purely random user-item interactions. In
contrast, the GNMK model constructs a bipartite graph with a specified number of edges, resulting in
more structured connectivity.

Both ER and GNMK models were evaluated in our experiments. The ER model, due to its high
randomness, struggles to reflect the structural properties of real-world user-item graphs. Its inherent
randomness fails to represent community-like structures or degree imbalance, leading to subopti-
mal personalization similarity measurements. Moreover, the eigenvalue spectrum of ER graphs
asymptotically converges to the free convolution of the Gaussian and Wigner semicircular distribu-
tions (Ramakrishna et al., 2020), exhibiting unclear spectral gaps. This absence of spectral separation
limits the design of effective low-pass filters, further reducing the model’s utility. In contrast, the
GNMK model, which generates graphs with a fixed number of edges, better preserves the structural
patterns and degree distribution of clustered subgraphs. This closer alignment with real-world data
characteristics resulted in the GNMK model consistently outperforming the ER model, delivering
improved performance across all metrics.

D.4 SENSITIVITY TO ANCHOR GRAPH DESIGN

To evaluate the impact of the reference graph used for structural comparison, we conduct an ablation
study using two widely adopted random graph models: Erdos-Renyi (ER) and the more structure-
aware GNMK model. As shown in Table 8, the GNMK-based anchor consistently achieves the best
performance across all datasets, confirming our motivation that GNMK better captures the structural
properties of real-world recommendation graphs. Importantly, we also evaluate a stricter privacy
setting "w/o statistics for GR", where the GNMK reference graph is constructed without using any
client-derived statistics. This variant yields performance close to the full model, demonstrating that
LPSFed remains robust even without access to client-specific structural information. These findings
validate the effectiveness of the GNMK anchor while demonstrating that our framework maintains
stability under stronger privacy constraints.
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D.5 BASELINES

We evaluate our proposed method in comparison to seven baselines:

• FedAvg (McMahan et al., 2017): is a foundational federated learning approach that transmits
parameter gradients instead of data, enhancing privacy.

• FedPUB (Baek et al., 2023): adjusts weights within community structures using random
graphs and parameter masking to protect data privacy.

• FedMF (Chai et al., 2020): applies matrix factorization within federated settings to ensure
secure and private collaborative filtering.

• F2MF (Liu et al., 2022): aims to address fairness issues in federated recommender systems
by incorporating fairness constraints into the matrix factorization process, ensuring equitable
recommendations across diverse user groups.

• PFedRec (Zhang et al., 2023): offers a lightweight, user-specific model for on-device
personalization without user embeddings.

• FedRAP (Li et al., 2024b): utilizes a dual personalized approach to manage user and item
embeddings separately, optimizing communication efficiency.

• FedPerGNN (Wu et al., 2022): creates subgraphs for users with shared interactions, utilizing
Local Differential Privacy (LDP) (Qi et al., 2020) for enhanced security during updates.

• FedHGNN (Yan et al., 2024): employs a federated heterogeneous graph neural network
to explicitly capture the diverse structural relations between users and items for privacy-
preserving recommendation.

• FedSSP (Tan et al., 2024): leverages spectral knowledge from client graphs to handle hetero-
geneity and models personalized preferences, adapted from federated graph classification.

D.6 HYPERPARAMETER SETTINGS

We configure the hyperparameters of the proposed method as follows. All user, item, and popularity
embeddings are initialized from a normal distribution, with an embedding dimension of 64. Opti-
mization is performed using the RMSProp optimizer (Ruder, 2016) with a learning rate η = 0.0005.
Each client trains locally for 5 epochs before contributing to a global update. The entire training
process runs for 40 global epochs, during which client models are updated based on the aggregated
global parameters. The network architecture consists of two graph convolution layers, followed by
two-layer MLPs used for both pooling and prediction stages (Eq. 4, 5). For the localized popularity
bias-aware contrastive loss (LBC , Eq. 9), the softmax temperature parameter is set to τ = 0.1, and
the interpolation weight for the refined margin (Eq. 15) is set to ω = 0.25. To ensure training stability,
the model freezes parameter updates during the first two global epochs.

E MODEL COMPLEXITY

E.1 TIME COMPLEXITY ANALYSIS

E.1.1 LOW-PASS GRAPH CONVOLUTION NETWORK’S TIME COMPLEXITY ANALYSIS

The propagation step in a Graph Convolution Network (GCN) can be expressed as D− 1
2 AD− 1

2 Z =
(I − L)Z = P(I − Λ)PTZ, where it is equivalent to applying a low-pass filter in the frequency
domain. The filter, represented as [1−λ1, . . . , 1−λM+N ], inherently prioritizes smaller eigenvalues,
thereby emphasizing smooth, global features. Importantly, repeated applications of the Low-pass
Collaborative Filter (LCF) are equivalent to a single application:

LCF (. . . LCF (Z)) = (P̄P̄T
)kZ = (P̄P̄T

)Z = LCF (Z),

ensuring stable feature propagation and avoiding over-smoothing.

Computing the full set of eigenvectors P for a graph with M +N nodes has a time complexity of
O((M +N)3), as eigen-decomposition scales cubically. However, most real-world recommendation
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Table 9: Comparison of training efficiency across different models. Metrics include time per epoch, number of
epochs to converge, total training time, and memory usage, with the best scores highlighted in bold.

Model Time/Epoch #Epoch Training Time Memory Usage
FedAvg 20s 90 30m 6.2GB
FedPUB 25s 90 37m 10.2GB
FedMF 23m 48s 150 59h 30m 6.2GB
F2MF 39m 12s 100 65h 20m 6.4GB
PFedRec 38m 47s 135 87h 16m 1.4GB
FedRAP 73m 29s 160 195h 56m 1.6GB
FedPerGNN 6m 38s 200 15h 29m 18.8GB
FedHGNN 36s 100 1h 0.6GB
FedSSP 20s 150 50m 6.2GB
LPSFed (BPR) 19s 130 40m 6.2GB
LPSFed 19s 130 39m 6.2GB

graphs are sparse, with the number of non-zero elements n in the Laplacian L typically scaling linearly
with M +N . By leveraging sparsity, the Lanczos algorithm computes a subset of eigenvectors P̄ for
sparse matrices with time complexity O(nΦ2), where Φ represents the cut-off frequency (i.e., the
number of retained low-frequency eigenvalues). In practice, where Φ ≪M+N and n≪ (M+N)2,
this approach ensures computational efficiency.

E.1.2 LPSFED FRAMEWORK’S COMPLEXITY ANALYSIS

In federated settings with C clients, each client independently computes the first Φ eigenvectors using
the Lanczos algorithm. The time complexity per client is O(nΦ2), where n denotes the non-zero
elements of the client’s subgraph Laplacian. The server, which generates a global random graph,
has a comparable computational complexity of O(nΦ2). Sequential execution would yield a total
complexity ofO((C+1)nΦ2). However, federated learning leverages parallel computation, allowing
clients to perform computations simultaneously. As a result, the effective time complexity for the
entire system remains O(nΦ2).

Scalability and Robustness Our approach ensures scalability and robustness, addressing challenges
in large subgraphs and imbalanced data distributions. The use of the Lanczos algorithm leverages the
sparsity of real-world recommendation graphs, making eigenvector computations efficient even for
large-scale datasets. Furthermore, pre-eigendecomposition ensures that training costs remain low, as
this computational step is required only once.

Communication and Computational Costs Communication costs in our framework depend on
the size of the exchanged parameters, which occur only at specific aggregation and distribution
epochs rather than every training iteration. This reduces the overall communication overhead. On
the computational side, the server processes a graph representing the average subgraph size of
clients, while each client processes its local subgraph, ensuring that both sides operate within their
respective resource constraints. By limiting communication frequency and leveraging sparsity, our
method balances computational and communication overheads, enabling high scalability and practical
applicability.

E.2 TRAINING EFFICIENCY ANALYSIS

We compare the training efficiency and resource utilization (computation memory, time) of our model,
LPSFed, with several other federated learning models. As shown in Table 9, we evaluate time per
epoch, number of epochs to converge (#Epoch), total training time, and memory usage.

It’s important to note that LPSFed, FedAvg, FedPUB, FedSSP are all based on the Low-pass Graph
Convolution Network (LGCN) (Yu et al., 2022). This architecture allows for pre-computation
of eigendecomposition, significantly reducing the computational burden during training. As a
result, these models achieve faster training times compared to methods that require real-time graph
convolutions. LPSFed demonstrates superior training efficiency, converging in 130 epochs with
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Table 10: Average Jaccard index for paired users over iterations, with rows corresponding to margin strengths γ
and columns to training iterations.

Iteration 20 40 60 80 100
γ = 0.0 0.0482 0.0497 0.0536 0.0568 0.0600
γ = 0.3 0.0478 0.0490 0.0529 0.0554 0.0592
γ = 0.5 0.0477 0.0489 0.0522 0.0544 0.0576
γ = 0.7 0.0476 0.0486 0.0512 0.0541 0.0570
γ = 1.0 0.0474 0.0478 0.0501 0.0522 0.0553

an average of 19 seconds per epoch, resulting in a total training time of 39 minutes and a memory
usage of 6.2 GB. This shows an improvement over other models, emphasizing the efficiency of our
approach. Leveraging the pre-computed convolution kernel allows our model to operate efficiently
in the federated learning framework, capitalizing on the advantages of LGCN while optimizing
performance through our proposed techniques, even in distributed settings.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 BIAS AMPLIFICATION MEASUREMENT AND EFFECTIVENESS OF THE BIAS-AWARE
MARGIN

Bias Amplification Measurement. To assess how our method alleviates the feedback loop caused
by popularity bias, we quantify convergence in user behavior using the Jaccard index, follow-
ing (Chaney et al., 2018). This metric captures the extent to which recommender systems drive users
to interact with increasingly similar items. For each user u, we identify the most similar user v based
on the cosine similarity of their preference vectors (θu, θv). and compute the Jaccard index over their
item interactions:

Juv(t) =
|Du(t) ∩ Dv(t)|
|Du(t) ∪ Dv(t)|

,

whereDu(t) andDv(t) denote the item sets interacted by users u and v up to time t. A higher Jaccard
index reflects a stronger feedback loop, indicating behavioral convergence due to repeated exposure
to popular items. To evaluate the impact of our localized popularity bias-aware margin, we vary the
margin strength γ and monitor changes in the Jaccard index over training. The results are presented
in Table 10.

Analysis. Table 10 demonstrates that the Jaccard index tends to increase over training iterations,
indicating a typical feedback loop where users increasingly receive similar popular items. However,
incorporating a bias-aware margin significantly mitigates this effect. As the margin strength γ
increases, the rate at which the Jaccard index grows is progressively reduced. Notably, when γ = 1.0,
the index exhibits the smallest rise, suggesting that stronger margins more effectively suppress
convergence driven by popularity.

These results suggest that the bias-aware margin provides a regularization signal that limits the rein-
forcement of frequently recommended items, thereby interrupting to progression of the feedback loop.
By doing so, our method reduces recommendation redundancy and preserves both personalization
and interaction diversity. This observation is consistent with prior findings in (Chaney et al., 2018),
which report that unregulated feedback loops tend to amplify popularity-driven bias and degrade
recommendation quality. In contrast, our approach effectively mitigates such dynamics, supporting
more equitable and stable recommendation behavior across clients.

F.2 CORRELATION ANALYSIS BETWEEN EIGENGAP AND PERFORMANCE

To examine whether spectral stability contributes to empirical performance, we computed the Pearson
correlation between the observed Recall@20 values and the corresponding eigengaps δ at varying cut-
off frequencies Φ. As shown in Table 11, the correlation coefficient is 0.5004, indicating a moderate
positive relationship. This trend is consistent with 3 3(c), where performance improves as Φ increases
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Table 11: Correlation analysis between eigengap and model performance (Movielens-1M). Recall@20 and
corresponding eigengap values are reported for different cut-off frequencies Φ. Pearson correlation quantifies
linear dependence between eigengap magnitude and model performance.

Cut-off Frequency Φ 2 4 6 8
Recall@20 0.2556 0.2614 0.2615 0.2622
Eigengap δ 1.17× 10−15 4.36× 10−3 1.61× 10−2 1.46× 10−1

Pearson Correlation (Recall↔ δ) 0.5004

Table 12: Effect of client variability on performance using the Amazoon-Book dataset. Metrics include
Recall@20 and NDCG@20, bold indicates the best results and underlined the second-best results in each setting.

# of Clients 4 10 20
Model Recall NDCG Recall NDCG Recall NDCG

FedAvg 0.0642 0.0312 0.0395 0.0186 0.0220 0.0098
FedPUB 0.0633 0.0322 0.0417 0.0180 0.0232 0.0102
FedMF 0.0153 0.0072 0.0091 0.0058 0.0033 0.0035
F2MF 0.0451 0.0225 0.0325 0.0182 0.0158 0.0078
PFedRec 0.0713 0.0242 0.0406 0.0169 0.0236 0.0100
FedRAP 0.0082 0.0090 0.0086 0.0085 0.0087 0.0074
FedPerGNN 0.0035 0.0026 0.0034 0.0026 0.0029 0.0025
FedHGNN 0.0647 0.0298 0.0415 0.0188 0.0223 0.0105
FedSSP 0.0649 0.0356 0.0450 0.0219 0.0238 0.0110
LPSFed (BPR) 0.0643 0.0322 0.0400 0.0195 0.0235 0.0107
LPSFed 0.0738 0.0442 0.0464 0.0259 0.0254 0.0115
Improvement ↑ 3.5% ↑ 24.2% ↑ 3.1% ↑ 18.3% ↑ 6.7% ↑ 4.5%

within a moderate range. The result supports our theoretical analysis; larger eigengaps δ enable more
stable low-pass filtering by separating meaningful structural components from high-frequency noise,
which contributes positively to model performance when applied within an appropriate filtering range.

F.3 EFFECT OF CLIENT VARIABILITY ON PERFORMANCE

Table 12 presents the performance trends of all models under varying numbers of clients (4, 10, and
20) using the Amazon-Book dataset. As the number of clients increases, the overall performance of
all baselines degrades. This degradation is attributed to the increasing heterogeneity among clients,
which results from heightened subgraph structural imbalance and limited user-item interactions
per client. These challenges amplify the difficulty of capturing consistent collaborative signals
across clients, making recommendations more susceptible to data sparsity and structural diversity.
Despite these challenges, LPSFed consistently maintains strong performance across all client settings.
This robustness stems from two core components: spectral similarity-guided personalization and
bias-aware margin. The former helps align model updates with each client’s structural uniqueness,
while the latter mitigates feedback loops caused by popularity bias. Together, they allow LPSFed to
adapt to heterogeneous client environments and preserve recommendation quality, even as the number
of clients grows and local data becomes more fragmented.

G BROADER IMPACTS

This research on federated recommender systems provides several positive societal impacts. By
training models on decentralized subgraph-level interaction data without exchanging raw data, it
enhances privacy protection, reduces the risk of data exposure, and builds trust in domains where
data sensitivity is critical, such as healthcare and finance. Our method also promotes fairness by
mitigating localized popularity bias and improving the quality of recommendations for diverse client
groups. Furthermore, the federated framework enables privacy-preserving collaboration across data
silos, allowing clients to jointly improve recommendation quality without disclosing proprietary
data. These outcomes contribute to improved user experience, sustainable model utility, and the
development of a more privacy-preserving recommendation ecosystem.
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H LIMITATIONS

Despite these promising advancements, our method inherently relies on spectral computations,
such as eigendecomposition, performed during a preprocessing stage. Although preprocessing
helps avoid computations during training, it still represents a scalability limitation. Future research
should therefore prioritize developing scalable spectral approximation techniques and automating
hyperparameter selection to further enhance the method’s applicability in practical scenarios.

I LLM USAGE

We utilized a Large Language Model (LLM) as an assistive tool in the preparation of this paper.
The LLM’s role was to proofread for grammar and spelling and to help refine the text for clarity,
conciseness, and word choice. The core concepts, novel methodology, theoretical proofs, and all
experimental results were conceived and generated by the human authors.
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