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Abstract—This paper describes the implementation of an in-
terface connecting the two tools : the JPL SCA (Statechart
Autocoder) and TuLiP (Temporal Logic Planning Toolbox) to
enable the automatic synthesis of low level implementation
code directly from formal specifications. With system dy-
namics, bounds on uncertainty and formal specifications as
inputs, TuLiP synthesizes Mealy machines that are correct-by-
construction. An interface is built that automatically translates
these Mealy machines into UML statecharts. The SCA accepts
the UML statecharts (as XML files) to synthesize flight-certified2

implementation code. The functionality of the interface is
demonstrated through three example systems of varying com-
plexity a) a simple thermostat b) a simple speed controller for
an autonomous vehicle and c) a more complex speed controller
for an autonomous vehicle with a map-element. In the ther-
mostat controller, there is a specification regarding the desired
temperature range that has to be met despite disturbance from
the environment. Similarly, in the speed-controllers there are
specifications about safe driving speeds depending on sensor
health (sensors fail unpredictably) and the map-location. The
significance of these demonstrations is the potential circum-
venting of some of the manual design of statecharts for flight
software/controllers. As a result, we expect that less testing
and validation will be necessary. In applications where the
products of synthesis are used alongside manually designed
components, extensive testing or new certificates of correctness
of the composition may still be required.
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1. INTRODUCTION
Though algorithms for synthesizing controllers from formal
specifications have been proposed in the hybrid systems re-
search literature, the direct synthesis of implementation code
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2Certification here implies that the code output is 1) compliant with JPL
Flight Software Coding standards 2) unit tested to assure proper functional-
ity.

from formal specifications is still a nascent area. This paper
presents a demonstration of controller synthesis and code
generation that yields implementations that are representative
of flight software.

Finite-state machines (FSMs) are devices for sequencing
systems that proceed in discrete steps. FSMs provide the con-
ceptual basis for many constructions used across disciplines,
including deterministic finite automata that recognize formal
languages [1], transition systems used in model checking
[2], and transducers that map a countable sequence of inputs
to a sequence of outputs [3]. The present work is about
the synthesis of controller designs for embedded systems,
especially for applications such as flight software. One salient
feature of this domain is reactivity, which intuitively means
that the controller reacts to the occurrence of special events
and never terminates. Typically in practice these FSMs
become large and complex for practical flight applications
so they are modeled and implemented as hierarchical state-
machines rather than flat FSMs. An industry standard[4] for
representing hierarchical state-machines is UML [5] stored
in XMI files,[6]. More specifically the hierarchical state-
machines are represented as Harel statecharts [7]. At JPL,
the current, widely used tool for manual construction of UML
Statecharts is MagicDraw [8] which enables the user to create
UML Statechart diagrams and save them as XMI files.

Today, in projects at JPL, human engineers receive a list of re-
quirements that must be achieved by the final product. As part
of the design process and consistent with so-called model-
based software engineering, UML Statecharts are manually
constructed in MagicDraw to capture the discrete-event inter-
actions of the various components that will later have con-
crete implementations. Given a UML Statechart composed
in MagicDraw, the JPL Statechart Autocoder (SCA) is a
software tool that automatically generates implementations
in Python, C, C++, and other target languages from XMI file
input [9]. The state machine implementation code generated
includes infrastructure for all parts of the execution, including
processing of signal events and transitioning among states.
Though these mechanisms are nontrivial, especially for large
hierarchical state machines, the implementation provided by
SCA is not complete in the sense that an engineer must
still provide implementations for the various routines invoked
during execution of a state chart, e.g., evaluating guards and
taking actions on transitions, and performing the entry and
exit-methods for each state.

The above process of an engineer manually mapping natural
language written requirements to UML Statechart diagrams is
labor intensive, tedious and the final UML design may con-
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tain subtle errors. An approach to eliminate this is to express
requirements formally (i.e., as mathematical equations) and
synthesize designs. It is demonstrated that it is possible to
(1.) automate the generation of the UML Statechart designs,
and (2.) generate low-level, physical control generation (e.g.,
implementation of actions within the state-machine).

Synthesis algorithms have been realized in the software
TuLiP (Temporal Logic Planning Toolbox) [10]. A basic
capability provided by TuLiP is construction of a FSM that
ensures a given formal specification is met, i.e., it is correct-
by-construction. TuLiP provides methods based on current
research for automatic state-machine synthesis from linear
temporal logic (LTL) specifications, along with routines for
control input computation for several classes of dynamical
systems, e.g., linear time-invariant with disturbances. In the
present work, an interface was developed between TuLiP
and SCA that provides the automation promised above. The
interface is used to demonstrate that a real-world controller
example (someday suitable for flight software applications)
can be fully synthesized from formal specifications to im-
plementation code. No additional manual code need be
developed as with our current techniques.

The technique of synthesizing state-machine based hybrid
controllers from formal specifications is demonstrated uti-
lizing simple controller examples: a simple thermostat, and
autonomous vehicle speed controllers. The demonstrations
here are inspired by the problem of logic-planning based
on faults in the sensor system for ‘Alice’, the autonomous
vehicle developed by Caltech for the 2004–2007 DARPA
Grand Challenge [11]. Given a set of sensors and their
healths: A Stereo Camera, Lidar and Radar with some health
state of True (Healthy) or False (Faulted), our controller must
be synthesized to adequately react by changing driving mode
and adjusting speed range. Although Alice was a terrestrial
research autonomous vehicle, there are significant similarities
in behavior and logic-planning requirements (or other control
functions) between terrestrial autonomous vehicles and space
rovers. Thus, making the speed controller developed here a
prototypical example for controllers in space/flight systems.

These examples demonstrate the feasibility of combining
TuLiP control synthesis with the SCA code generation tech-
niques to synthesize implementation code for a controller di-
rectly from formal specifications. Future work could involve
experiments to demonstrate feasibility on simple real-time
embedded systems. In this paper we will explain the interface
between TuLiP and SCA, present the formal specifications
developed for the examples, discuss the results of the synthe-
sis, and conclude with a summary of the significance of this
demonstration.

2. INTERFACE SPECIFICS
This section briefly introduces the mapping between the
Mealy machines synthesized by TuLiP to the UML state-
charts that serve as an input to the Statechart Autocoder.
Every state in the Mealy machine is mapped to a state in the
UML statechart. The labels on the transitions, which have
guards that correspond to environmental inputs to the system,
are used to generate signal events. These events are triggered
when the corresponding matching inputs are supplied by the
environment. Each signal-event has a corresponding current-
cell (based on the system state and the path through which
it arrived to that state) and a target-cell (the next system
state). Inside the signal-events, a TuLiP routine determines

the control-action that transfers the system from the current-
cell to the target-cell. This control-action is then implemented
on the system. To update the current-cell given the new state,
another look up is performed from the stored partitioning of
the state-space and system dynamics. Then, the next target-
cell is decided based on the signal, and a trajectory to it is
computed, and so forth. Figures 1 and 2 demonstrate the
mapping.

Figure 1 is a Mealy machine synthesized by TuLiP for the
simple-autonomous vehicle example. It is mapped to gen-
erate the UML state chart (visualized using MagicDraw) in
Figure 2. The transition-edge from Sinit to node-4, which
has inputs stereo:0 and lidon:0, is mapped to the signal-
event ENV lidon 0 stereo 0 in the statechart where the action
ACT Sinit 4() is implemented (this is where the control-
action is implemented). Such a correspondence exists be-
tween every edge in the Mealy machine to edges in the UML
statechart. TuLiP uses a convex optimization package [12]
to generate a systems dynamics table used by the action
transition code for the continuous control updates of the
system. Figure 3 explains the file-based workflow.

3. PRELIMINARIES
Linear Temporal Logic (LTL) is used to formally specify the
desired properties of the system. A basic introduction to the
LTL terminology and notations is provided in this section.
LTL formulae have atomic propositions as the basic building
block and are grown using Boolean and temporal operators.
An LTL formula is constructed inductively as:

ϕ ::= a | ¬ϕ | ϕ1 ∨ ϕ2 | © ϕ | ϕ1Uϕ2 (1)

where ‘a’ is an atomic proposition, © is the next operator,
U is the until operator ϕ, and ϕ1, ϕ2 are LTL formulas. The
conjunction operator, ∧ can be derived as, ϕ1∧ϕ2 = ¬(¬ϕ1∨
¬ϕ2). Similarly, other crucial operators like→(implication),
↔ (bi-implication), 3 (eventually), 2 (always) can be de-
rived from ¬(negation),©(next) and U(until).

LTL formulas are useful because they have the inherent
notion of time. This lets us specify desired properties for the
desired system over time. The LTL specification (formula)
is a mathematical representation of some desired physical-
property or specification for the system. For a LTL formula,
the synthesis problem is to design a control protocol for a
given system whose execution would result in the satisfac-
tion of the LTL formula. In abstraction based synthesis,
the synthesis problem is solved by abstraction (breaking up
the problem space into finite-discrete spaces based on the
propositions and the dynamics). A finite-state model for the
system is then used to design the protocol that satisfies the
specification. A review of correct-by-construction control
protocol synthesis techniques that utilize tools from formal
methods and control theory can be found in [14]. Synthesis
for the fragment of LTL known as Generalized Reactivity(1)
(GR(1)) is computationally tractable, i.e., it has polynomial
time complexity in the number of states; however, the number
of states scales exponentially with the number of variables,
so some care should be taken when considering complexity
of particular problem instances.
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Figure 1: Finite-state machine synthesized by TuLiP for the simple autonomous vehicle demo. Edges are labeled with
particular valuations of input and output variables according to the template name:value, with a possible prefix of
/out: to indicate outputs. For example, the edge from node 0 to itself represents the transition in which the inputs
stereo and lidon both have the value 1, and the controller assigns 1 to the output variable fast.

Figure 2: The result of converting the state-machine shown in Figure 1 to a UML Statechart as visualized in MagicDraw

GR(1) formulas have the following syntax:

ϕ := (Θenv ∧
K∧

k=1

23ϕenv
k ∧2ϕe−safety)→

(Θsys ∧
J∧

j=1

23ϕsys
j ∧2ϕs−safety)

(2)

The intuition with regards to the syntax is that this is a speci-
fication for a reactive-process. The controlled system must
satisfy certain properties in the presence of an adversarial
environment that must, in turn, follow certain assumptions.
The algorithm for abstraction used in this work is described
by Wongpiromsarn [13] and [15, 16] provides a detailed
description of the GR(1) syntax and synthesis algorithm.
For the example case-studies, we write general LTL spec-

ifications which are then represented by equivalent GR(1)
specifications for which the synthesis problem is solved.
TuLiP synthesizes these finite-memory strategies represented
as Mealy machines.

4. CASE STUDIES
Example 1: Thermostat

The first example is that of a thermostat, i.e., a device that
drives ambient temperature to some desired reference value.
We model the temperature system as having the discrete-time
dynamics of

xt+1 = xt + ut + wt, (3)
where time t is a nonnegative integer. The range of temper-
atures is assumed to be a real closed interval X ⊂ R. For
each time t, xt is assumed to take a value in X, i.e., xt ∈ X.
Similarly, the control input ut ∈ U and disturbance wt ∈W.
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Figure 3: File based workflow used in producing hybrid controller designs with TuLiP and mapping them to
implementation Python code by the JPL Statechart Autocoder (SCA). TuLiP inputs shown in grey box on left. TuLiP
output files shown in blue and SCA generated code shown in green. TuLiP generates XMI (XML Model Interchange
Format File) that SCA uses to generate code. TuLiP produces Implementation Transition Actions in Python that are
normally manually coded. All Python code generated is for demonstration and easily mapped to C or C++ flight code.

Both U and W are bounded real intervals. As the names of
the various parts of this problem suggest, we are to select
a sequence of inputs u0, u1, u2, . . ., so that no matter what
sequence of disturbances w0, w1, w2, . . . occurs, the desired
behavior is achieved. For a thermostat, we regard ut as
physically being heat or cooling action, whereas wt models
deviations from expected output, e.g., due to people moving
through the room.

System specifications: Making the system described above
concrete, we choose:

1) State domain is X = [60, 85], where temperature is in
degrees Fahrenheit
2) Continuously valued controls are from U = [−1, 1],
3) Disturbance is from W = [−0.1, 0.1],
4) The task is to repeatedly reach 73 F(our goal, g) within a
tolerance of 1 degree F
5) The initial temperature is in the range 76 to 78; and
6) Temperatures below 65 or above 80 must never occur.

An input labeled bump is introduced, which serves to model
sudden large changes of temperature to somewhere outside
the specified tolerance of the goal temperature. To ensure
a small finite-state machine for instructional purposes, the
range of possible initial temperatures is restricted to 76–78
deg. F. We solve this task in two steps. First, the finite
transition system is created that provides so-called discrete
abstraction of the full dynamics. The finite transition system
is essentially an abstract machine that consists of sets of states
and transitions between states. Second, the finite transition
system is combined with the LTL formula (eq. (4)) given
below, referred to as the specification, and formal synthesis is
performed for the resulting problem. The meaning of the LTL
subformula 2¬h∧2¬l∧23g is saying “always never” enter
l and h and “eventually always” get to the goal temperature,

i.e.,

(2bump→©¬bump)→
((2bump→©¬g) ∧2¬h ∧2¬l ∧23g)

(4)

Formulae like that above are usually regarded as consisting
of two parts: an assumption, which is to the left of the central
implies-operator (→); and a guarantee, which is to the right.
The left side is saying when always (2) a bump implies that
the next state (©) will not be a bump. And the right side has
a safety conidition that “always” a bump implies “next state”
will not be at goal, g in addition to the subformula described
earlier. The above problem was expressed and solved using
TuLiP. The resulting finite-state machine that provides part
of a strategy is shown in Figure 5. There are two steps
for making this and the low-level controller available as an
implementation. First, our interface automatically generates
a UML Statechart (XMI file representation) that can be parsed
by the JPL Statechart Autocoder (Figure 6).

Second, our interface creates implementation code for tran-
sition actions that manages control inputs (small increments
of heating or air-cooling) into the dynamical system (eq.
(3)). These action transitions are typically manually coded
by the developer and inserted into an implementation file
generated by SCA, but in this technique the needed code
was automatically produced by TuLiP. The code for interface
and the thermostat example with instructions is temporarily
available here [17]. Following the inclusion of the code and
documentation for the same into TuLiP, it will be available
amongst the export routines of TuLiP [10, 18].

Example 2: Simple Autonomous Vehicle

A simple autonomous vehicle is used for the second ex-
ample case. The vehicle has multiple sensors (Lidar and
Stereo), and different driving modes (Stop/Reboot,Cautious-
Moderate Drive, Fast Drive). It assumed that a healthy Stereo
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Figure 4: The temperature range considered. It is treated as a labeled interval X, which is also called the “state
domain,” on the real line. l and h indicate regions of unsafely low and high temperatures, respectively, and g is the
goal temperature(including tolerance).

Figure 5: Finite-state machine providing the supervisory part of control. The “bump” signal indicates the occurrence of
a disturbance that moves the temperature out of the goal region.

Figure 6: The result of converting the state-machine shown in Figure 4 to a UML Statechart. The above depiction is
obtained from MagicDraw after running the built-in automatic layout routine, which organizes the states, transitions,
and labels so as to be visually appealing.
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camera can make accurate short-range measurements while
a functional Lidar can make accurate long-range measure-
ments. Each mode had a hypothetical speed range associated
with it: Stop/Reset is 0 to 10, Moderate is 10 to 15, and Fast
is 15 to 20. Based on the sensor health, the vehicle is required
to determine the control action for the vehicle to transition to
a drive-mode that is safe with regard to the current sensor
health. Dynamics similar to the previous example govern
the speed variation, but with different bounds on the control
action and noise. Here the control action is a finite change in
velocity applied in the form of acceleration over an interval
of time.

System Specifications:

a) Domain for speed of the vehicle is X = [0, 20], where
speed is in miles/hr
b) Continuously valued controls are from U = [−2, 2]
c) Disturbance is from W = [−0.01, 0.01]
d) The vehicle is initially at the Stop/Reboot state
e) Initially all sensors are off (or are not functional)
f) Two sensors do not come up or go down at the same time
g) Short-range sensing does not fail before long- range sens-
ing
h) If both long-range and short-range sensing is healthy, the
vehicle must drive fast
i) If short-range sensing is not healthy, the vehicle must
immediately stop

ϕ = ((¬lidon ∧ ¬steron) ∧2((lidon→©lidon)∨
(steron→©steron)) ∧2((¬lidon→©¬lidon)∨
(¬steron→©¬steron)) ∧2(lidon→ steron))→

(init ∧2((lidon ∧ stereo)→©fast)∧
2(¬steron→©init) ∧2((¬lidon ∧ steron)→

©(¬fast ∧ ¬init)))

(5)

Here, items g and h are ‘assumptions’ about the behavior
of the environment. Specifications of safe operation were
defined utilizing a GR(1) (eq. (5)) formula. Here ((¬lidon ∧
¬steron) ∧ ((lidon → ©lidon) ∨ (steron → ©steron)∧
(¬lidon → ©¬lidon) ∨ (¬steron → ©¬steron) ∧
(lidon→©stereo)) is the set of environmental assumptions
(specifications e,g and h). The part to the right of the
environmental assumption in the formula (after the→) is the
set of specifications for the desired behavior of the system
(specifications i,j and d). Notice that this specification already
fits into the GR(1) syntax specified above.

Most of the environments behavior has been restricted here
to prevent state-explosion and simplify the synthesized state-
machine for better understanding.

LTL Specification:

A full set of specifications was defined, subsequently a SPIN
model was developed that enabled the LTL to be checked for
correctness prior to synthesizing the demonstration. Here,
the speed of the vehicle is an internal system parameter and
the sensors-health is controlled by the environment. Most of
the environments behavior has been restricted here to prevent
state-explosion and simplify the synthesized result. The
synthesized Mealy (FSM) state machine is shown in Figure
1 , and the corresponding UML Statechart is in Figure 2.

Here, again the space for the speed is broken into polytopes
accompanied with possible sensor states. These partitions are

states that have transitions between reachable states. This
abstraction and the LTL formula are then used to perform the
synthesis.

The synthesis and autocoding for this set of specifications
is done and the controller is simulated. For a sequence of
actions from the environment, the resulting speed is recorded
and plotted. We can observe that the controller ensures that
the specifications are satisfied as desired. Initially, the car is at
stop/reboot state and the speed is 5miles/hour. First the stereo
is turned on by the environment, as we can see in Figure 2,
the system takes the edge leading into the moderate state and
the routine-determines the update control action. The control
action accelerates the vehicle to 12.5miles/hour which is in
the moderate-driving zone, meeting the specification. Next,
the lidar is turned healthy, responding to which the vehicle
accelerates to 17.5miles/hour. Figure 7 shows a plot of the
variation in speed vs time with inputs labeled across the line-
segments in the graph.

Example 3: More-complex Autonomous Vehicle

For a demonstration that is more like a real world controller
we expand the small Alice-like speed controller to a more
complex one by expanding the number of sensors. The
controller still has stereo camera and Lidar sensors but now
we add: a Radar - responsible for long range sensing, and a
map-element (i. e. Freeway Boolean) - indicates if the vehicle
is on the freeway (True) or not (False). A new ‘Slow’ driving
mode is introduced and the speed ranges are further divided
as: Stop/Reset is 0 to 5, Slow is 5 to 10, Moderate is 10 to 15,
and Fast is 15 to 20. Presence of the map-element adds more
complexity to the problem, as the control strategy must make
sure that the vehicle does not continuously travel in slow drive
mode. The assumption about the failure-order for the sensors
has also been relaxed. The assumption that no two sensors fail
at the same time is however retained but the assumption that
no two sensors come up at the same time has been relaxed.

System Specifications:

a) Domain for speed of the vehicle is X = [0, 20], where
speed is in miles/hr
b) Continuously valued controls are from U = [−2, 2]
c) Disturbance is from W = [−0.01, 0.01]
d) The vehicle is initially at the Stop/Reboot state
e) Initially all sensors are off (or are not functional)
f) If short-range sensing is on, the vehicle must not stay
stopped unless its unsafe to drive
g) Two sensors do not go down at the same time
h) If both long-range and short-range sensing is healthy, the
vehicle must drive fast or moderately fast unless the vehicle
loses sensing
i) If all sensors fail, the vehicle must come to a stop even-
tually unless a sensor comes back up that allows you drive
safely
j) If on a freeway, the vehicle must eventually drive fast or
moderately fast or stop and try to reboot

Here, the full LTL formula turns out to be more involved
than the earlier set up and has not been presented for the
sake of brevity. The formula itself does not turn out to
be one in the GR(1) format, even with the introduction of
auxiliary variables. A new formula (ϕnew) is conceived
through manual-inspection such that the satisfaction of the
new formula will imply satisfaction of the formula directly
resulting from the specifications. The synthesis problem is
then solved with this new formula. A brief description of the
new formula can be found in the appendices section.

6



Figure 7: Variation of the speed of the vehicle over based on a sequence of inputs. Inputs are mentioned over the
line-segments.

Alice
Demo

Number
Of
States

Number
Of
Transitions

Time
to
Synthesize

Time to
Generate
State
Machine
Code

Small 4 8 4.242 6.3 sec.
Large 994 13437 14.949 sec. 8 hrs 41 min.

Table 1: Table indicating number of states and transitions
synthesized for both the small and large Alice-like speed
controller demonstration cases.

Within TuLiP a state for the system corresponds to the
following five variables speed, Stereo health, Lidar health,
Radar health, and on Freeway or not. For example, a
state for the vehicle would be a speed (eg. 4.5miles/hr),
Lidar - good health (True), Radar-failed (False), Stereo -
good health (True), Freeway - on a freeway (True). TuLiPs
abstraction mechanism divides the whole space then into
proposition preserving regions and searches for a solution
that will satisfy the system linear dynamics in eq. (3), the
set of LTL specifications (defining sensor health and speed
safety requirements), and any other constraints specified. The
synthesis determines the control inputs required to transition
between states of both discrete and continuous control regions
and also the states. However, generating this demonstration
controller now required a little over 8 hours on a Caltech 8
3Ghz core cluster workstation and close to 1000 states and
about 13500 transitions were synthesized and subsequently
code generated due to state space explosion, although an
improvement in performance is not expected with multiple
cores since the computation does not exploit the concurrency.
Table 1 shows a comparison of synthesized states, transitions
and execution times for the two demonstration controllers.
Typically in practice these FSM based controllers become
large and complex so they are modeled and implemented
as hierarchical state-machines rather then flat FSMs. TuLiP
currently has no state optimization or ability to generate
hierarchical state-machines.

Figure 8 shows the execution of a sample scenario for the
synthesized controller. States that are turned on are indicated

over the line-segments. Initially when stereo is turned on,
the vehicle accelerates to the slow-mode from the stop-mode.
On turning on radar, since both long-range and short-range
sensing is turned on, it further accelerates to the fast-driving
mode. On subsequently turning off stereo, the vehicle comes
to a stop. On turning stereo back on while switching radar
off at the same time, the vehicle starts driving slow. Then
the vehicle enters a freeway which then causes the vehicle
to stop because it has no long range sensing. The vehicle
waits till long-range sensing is turned back on and then begins
to drive-fast as soon as both long and short range sensing is
available. This scenario demonstrates the functionality of the
synthesized controller is as desired.

5. CONCLUSION AND SUMMARY
Three demonstration examples were created that successfully
show the generation of implementation code for hybrid-
controllers from formal specifications. Initially a very sim-
ple temperature thermostat controller was developed that
motivated the initial implementation of the TuLiP to SCA
file based interface. Next, two autonomous vehicle speed
controllers where successfully synthesized and demonstrated.
These speed controller examples provided an opportunity to
further refine and mature the TuLiP to SCA interface.The
more complex speed controller (i. e. containing Lidar, Stereo,
Radar, and Freeway environmental inputs) showed that cou-
pling the tools was feasible even with very large numbers of
synthesized states generated. For all demonstrations, imple-
mentation code was entirely automatically generated based
on formal specifications – no manual code development was
required as is done with our traditional manually designed
UML Statechart approach.The task proved that TuLiP (for
controller design synthesis) interfaced with SCA (for state-
machine implementation code generation) produces hybrid-
controllers that are potentially suitable for real-world flight
applications.

There are inherent problems that exist with regard to using
synthesizers like TuLiP in their current form. State space
explosion results in large numbers of states executing in cer-
tain synthesized controllers as the environmental input state
space increases. The current state of the art produces designs
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Figure 8: Variation of the speed of the vehicle (complex demo) over time based on a sequence of inputs. Inputs are
mentioned over the line-segments.

that are not optimal: states and transitions are not minimized,
and no synthesis of hierarchy into the automated product is
attempted. The input formal specifications, utilizing LTL,
can be daunting and intricate to use for specifying a complex
system, as well. Utilizing LTL for the typical flight software
or controls engineer currently presents a steep learning curve
with vary complex equations that must be developed. Thus
the technology must be further developed for real-world flight
applications.

Automatic code generation from various manually designed
UML Statechart representations have been successfully
demonstrated for over a decade on various JPL projects (e.g.
InSight, SMAP, MSL, Electra-Radio, Deep Space One, Keck
Interferometer, etc.). The technique has significantly reduced
development time, improved robustness, and increased main-
tainability, but the design of state machines is still subtle
and error-prone. Currently the process involves interpretation
of informal system requirements, and the manual translation
of these into UML Statecharts, which are then automati-
cally mapped to implementation software. TuLiP produces
designs that are provably correct-by-construction (i.e. sat-
isfy a specification) and presents them as UML Statecharts.
Thus logical bugs that may exist within Statechart designs
resulting from poor translation of requirements can be elim-
inated. The traditional steps of requirements, design, and
then implementation, could someday be reduced to formal
requirements specification followed by automated mapping
to implementation FSW, thereby circumventing entirely or
partially the error prone manual design phase. The new capa-
bility to synthesize correct Statecharts could further automate
development of FSW, allowing engineers to focus on meeting
requirements and improving performance, rather than design
subtleties, increasing quality and decreasing design effort will
be achieved.

This task is a small initial step towards work in the domain of
inter-planetary spacecraft or rover development. The demon-
stration speed controllers, although not optimal, illustrate the
promise for future work in the direction of fully automated
synthesis of real-world controllers for flight applications and
FSW.

Future work could involve attempting code generation from

specifications for increasingly sophisticated systems. In pur-
suing this, we can expect challenges to arise that motivate
basic research, e.g., robustness or time semantics for dis-
tributed modules. It would also be of interest to attempt
to synthesize and test the implementation code for real-
world applications with challenges like real-time constraints,
coordination amongst asynchronous processes, uncertainity
about physical aspects such as rover location or an occupancy
grid map. The synthesis of FSMs that are optimal (with
respect to a desired cost function) and satisfy a specification is
also a relevant basic research problem. This could minimize
the number of states, thereby reducing memory needed for
storage or other desired objective functions.

Another interesting direction for future work is to explore
how automatically synthesized flight software can interact
with modules that are manually constructed by human engi-
neers at JPL. A more likely near future scenario is the partial
automation of synthesis, where only some pieces that are
sufficiently small or well understood are synthesized. This
might give rises to scenarios where we might want to consider
known methods of distributed synthesis.
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APPENDICES
This appendix contains more details about the formula used to
synthesize the FSM for the third example. As described ear-
lier, the formula used for synthesis is not a direct translation
of the specifications written above but is more conservative.
The translated specifications before being converted to GR(1)
are as follows:

• Environment Initial: (¬lidon ∧ ¬steron ∧ ¬freeway ∧
¬radon)
• System Initial: Init
• Environment Safety: ((lidon → ©lidon) ∨ (steron →
©steron))∧((lidon→©lidon)∨(radon→©radon))∧
((steron→©steron) ∨ (radon→©radon))
• System Safety 1: ((lidon ∨ radon) ∧ steron) →
((32(moderate ∨ fast ∨ init)) ∨ (3¬((lidon ∨ radon) ∧
steron)))
• System Safety 2: ((¬steron)) → ((32(init)) ∨
(3steron))
• System Safety 3: freeway → ((32(init ∨moderate ∨
fast)) ∨ (3¬(freeway)))
• System Safety 4: (steron∧¬freeway)→ ((32(¬init)∨
(3¬(steron ∧ ¬freeway))))

Note that this set of specifications as is cannot be manipulated
into GR(1) because of the presence of blocks of 32 (compare
with GR(1) syntax above to see the difference). To resolve
this, we construct a formula that can be manipulated into the
GR(1) form and satisfying that formula will ensure that this
formula is satisfied. The reader must take note that the above
specifications are not strictly ’safety’ specifications as in the
GR(1) framework, but are specifications that must always be
satisfied by the environment and the system.

The new set of specifications are:

• Environment Initial: (¬lidon ∧ ¬steron ∧ ¬freeway ∧
¬radon)
• System Initial: Init
• Environment Safety: ((lidon → ©lidon) ∨ (steron →
©steron))∧((lidon→©lidon)∨(radon→©radon))∧
((steron→©steron) ∨ (radon→©radon))
• System Safety 1: init→ ((©init) ∨ steron)
• System Safety 2: (steron ∧ ¬(radon ∧ lidon)) →
3((slow ∧ ¬freeway) ∨ (freeway ∧ init))
• System Safety 3: (moderate∨fast)→ ((©(moderate∨
fast)) ∨ ¬((lidon ∨ radon) ∧ steron))
• System Safety 4: ((init∧freeway∧(¬((lidon∨radon)∧
steron)))→ (©(init ∧ ¬(freeway))))
• System Safety 5: ((slow ∧ (¬((lidon ∨ radon) ∧
steron)))→ (©(slow ∨ init)))
• System Safety 6: ((lidon ∨ radon) ∧ steron) →
3(moderate ∨ fast ∨ ¬((lidon ∨ radon) ∧ steron)))
• System Safety 7: (¬steron→ 3(init ∨ steron))
• System Safety 8: freeway → 3(moderate∨fast∨init∨
(¬freeway))

Though this is not directly in the GR(1) form, it can be
converted into GR(1) form by introducing auxillary variables
(as done in the example in the “Discrete State Robot Motion
Planning” example on the TuLiP documentation page [10]).
Let ϕnew be transformed formula in the GR(1) form with the
auxillary variables. For this new formula it is easy to see,

ϕnew → ϕ (6)
Once synthesis is done with ϕnew, the FSM generated is
guaranteed to satisfy ϕ.
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