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Abstract

We develop and analyze robust Stochastic Frank-
Wolfe type algorithms for projection-free stochas-
tic convex optimization problems with heavy-tailed
stochastic gradients. Existing works on the oracle
complexity of such algorithms require a uniformly
bounded variance assumption, and hold only in
expectation. We develop tight high-probability
bounds for robust versions of Stochastic Frank-
Wolfe type algorithm under heavy-tailed assump-
tions, including infinite variance, on the stochas-
tic gradient. Our methodological construction of
the robust Stochastic Frank-Wolfe type algorithms
leverage techniques from the robust statistic litera-
ture. Our theoretical analysis highlights the need to
utilize robust versions of Stochastic Frank-Wolfe
type algorithm for dealing with heavy-tailed data
arising in practice.

1 INTRODUCTION

In this paper, we consider constrained stochastic optimiza-
tion problem of the form

argmin
x∈X

{f(x) = Eξ[F (x, ξ)] =

∫
F (x, ξ) dP(ξ)}, (1)

where f is a smooth convex function, X is a closed con-
vex subset of Rd, ξ is a random vector defined according
to a distribution P on the domain of ξ. We denote by x∗,
the minimizer of f(x) in (1). Problems of the form in (1)
arise frequently in modern machine learning, including
matrix completion [Davenport and Romberg, 2016, Fre-
und et al., 2017], structured linear inverse problems [Chan-
drasekaran et al., 2012, Tewari et al., 2011], multi-task learn-
ing [Sener and Koltun, 2018, Zhao et al., 2020] and parti-
cle filtering [Lacoste-Julien et al., 2015]. Stochastic Frank-
Wolfe (SFW) and Stochastic Conditional Gradient Sliding

(SCGS) algorithms are widely used iterative first-order algo-
rithm for solving (1). Each iteration of SFW/SCGS involves
performing linear minimization over the constraint set X
based on stochastic first-order (or gradient) information,
∇F (·, ξ) ∈ Rd. Depending on the geometry of the con-
straint set, SFW/SCGS is widely used in practice due to its
projection-free nature [Besançon et al., 2021]. Despite its
wide-spread usage, our understanding of the oracle com-
plexity of SFW/SCGS algorithm is limited.

As each iteration of the SFW/SCGS algorithm requires ac-
cess to a Stochastic First-order Oracle (SFO) and a Linear
Minimization Oracle (LMO), the oracle complexity is mea-
sured by the number of calls to SFO and LMO to obtain an ϵ-
optimal solution – that is, a point x̄ such that f(x̄)−f(x∗) ≤
ϵ. A majority of the existing results on the oracle complexity
of SFW/SCGS algorithm are available only in expectation,
i.e., on the metric Eξ[f(x̄) − f(x∗)] ≤ ϵ. Furthermore, to
obtain such oracle complexity results in expectation, it is as-
sumed that stochastic gradient used has uniformly bounded
variance (i.e., Eξ[∥∇F (x, ξ)−∇f(x)∥2] ≤ σ2), where ∥·∥
denotes the Euclidean norm on Rd. This characterization
of the oracle complexity provides very little understanding
regarding the behaviour of the SFW/SCGS algorithms. In
particular, the effect of the properties of the distribution P,
on the heavy-tail nature of the stochastic gradient, and con-
sequently on the oracle complexity is not characterized by
the oracle complexity results in expectation. Furthermore,
the oracle complexity of SFW/SCGS algorithm or its robust
variants under infinite variance assumption is not known.

To provide a concrete motivating example, consider the
problem of sparse linear regression: Given (a, y) ∈ Rd ×R,
consider the linear regression model y = ⟨a, x̄⟩+ ϵ, where
for two vectors c, d ∈ Rd, ⟨c, d⟩ represents the Euclidean
inner product. Here, we let ϵ ∼ N(0, 1) and the true param-
eter x̄ is assumed to be s-sparse (i.e., it has only s non-zero
coordinates out of the d coordinates). The L1-constrained
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least-squares estimator is then given by

argmin
x∈X1(s)

E[(y − ⟨a, x⟩)2], (2)

where X1(s) := {x ∈ Rd :
∑d

j=1 |xj | ≤ s} is the L1

ball of radius s. This problem fits in the setup of (1) with
ξ := (a, y) and F (x, ξ) := (y−a⊤x)2. Hence the stochastic
gradient is given by

G(x, ξ) := ∇F (x, ξ) = 2(aa⊤x− ya) ∈ Rd.

Note that as the iterates of SFW/SCGS algorithms (see, for
example, Algorithm 2 for the description of SCGS) are in
the set X1(s), we have ∥x∥ is to be always bounded for all x
along the trajectory of the algorithm. Hence, the (1 + α)-th
moment of the stochastic gradient, i.e., E[∥G(x, ξ)∥(1+α)],
is controlled by the order of E[∥a∥2(1+α)]. When the covari-
ate a is a zero-mean multivariate t-distribution with degrees
of freedom in the interval [2, 4), or is a zero-mean multivari-
ate Pareto distribution with parameter in the interval [2, 4),
the stochastic gradients have infinite variance. Hence, the
existing oracle complexity results for SFW/SCGS are not
applicable.

Focusing on the SCGS algorithm [Lan and Zhou, 2016],
in this work we develop and analyze robust versions of it,
and establish high-probability SFO and LMO complexity
bounds. First, under a sub-Gaussian tail assumption on the
stochastic gradient, we establish high-probability bounds for
the standard SCGS algorithm. However, when the stochastic
gradient is heavy-tailed or has infinite variance, the stan-
dard SCGS algorithm is sub-optimal. This is due to the
fact that each iteration of SCGS algorithm requires a sam-
ple average of mini-batch stochastic gradients. When the
stochastic gradients are heavy-tailed, it is well-known from
classical robust statistics literature that sample averages are
poor estimates of the true expectation. Hence, to deal with
the case when the stochastic gradient is heavy-tailed or has
infinite variance, we construct robust versions of mini-batch
stochastic gradient estimates which are subsequently used
in the SCGS algorithm. Our motivations for developing ro-
bust SCGS algorithms are based on the fact that data arising
from various real-world problems (for example, finance,
networks, linguistics) are modeled efficiently using heavy-
tailed distribution [Resnick, 2007, Fan et al., 2014, Taleb,
2020, Roughgarden, 2020]. We establish high-probability
bounds on the oracle complexity results on robust SCGS
algorithm by developing tight concentration inequalities for
heavy-tailed martingales, which might be of independent
interest. The established high-probability bounds on the
SFO and LMO complexity of SCGS, provide a fine-grained
characterization of the effect of the moments/tails of the dis-
tribution P on the performance of SCGS algorithms in terms
of both the level of solution accuracy and the confidence
specified by the practitioner.

1.1 RELATED WORKS

Robust statistics: Robust statistics is a classical topic with
too large a literature to summarize completely. We refer
the reader to Huber [2004] for an overview. We empha-
size that a majority of the robust estimators developed in
the statistics literature are invariably computationally in-
tractable. The revival of robust statistics in modern mathe-
matical statistics and learning theory communities arguably
started with the work of Catoni [2012]. Since then, there
has been intense work on robust mean and covariance esti-
mation [Minsker, 2015, Cardot et al., 2017, Minsker, 2018,
Lugosi and Mendelson, 2019b,a, Hopkins, 2020], and ro-
bust empirical risk minimization [Hsu and Sabato, 2016,
Diakonikolas et al., 2019, Geoffrey et al., 2020, Lecué and
Lerasle, 2020]. However, such results are mainly statisti-
cal in nature and are not directly applicable for stochastic
optimization with heavy-tailed gradients. In this work, we
leverage the classical trick of trimmed estimator from the
robust statistics literature, and the recently proposed optimal
mean-estimation technique by Cherapanamjeri et al. [2022]
in the context of projection-free stochastic optimization.

Robust stochastic optimization: Early works on robust
stochastic optimization include Krasulina [1969], Martin
and Masreliez [1975], Price and VandeLinde [1979], Chen
and Gao [1989], Nemirovskij and Yudin [1983]. Limit theo-
rems for random iterated maps and time-series with heavy-
tails were proved in Mirek [2011], Buraczewski et al. [2012],
Mikosch and Wintenberger [2016]. Such results make re-
strictive assumptions that are not satisfied by stochastic
optimization algorithms. In modern stochastic optimiza-
tion, several works consider the effect of heavy-tails on
the performance of the algorithm [Oliveira and Thompson,
2017, Nazin et al., 2019, Wang et al., 2021, Davis et al.,
2021, Bartl and Mendelson, 2022, Anantharam and Borkar,
2012, Holland, 2021]. There has also been overwhelming
theoretical and empirical evidence in the modern machine
learning literature that shows the noise in stochastic gra-
dient algorithm could easily turn out to have heavy-tails
due to the composite or product nature of the random vec-
tors/matrices in the stochastic gradient [Hodgkinson and
Mahoney, 2021, Panigrahi et al., 2019, Simsekli et al., 2019,
2020b, Gurbuzbalaban and Hu, 2021, Camuto et al., 2021,
Scaman and Malherbe, 2020, Simsekli et al., 2020a]. Fur-
thermore, recently robust mean estimation based and trim-
ming based SGD algorithms were analyzed in Prasad et al.
[2020] and Bubeck et al. [2013], Gorbunov et al. [2020],
Zhang et al. [2020b], Mai and Johansson [2021], Zhang et al.
[2020a] respectively. However the above works do not deal
with projection-free robust stochastic optimization, which
is the main focus of our work.

Frank-Wolfe Algorithms: The Frank-Wolfe method first
proposed by Frank and Wolfe [1956], Levitin and Polyak
[1966], has had a renewed interest in the past decade. We
refer the reader to Jaggi [2013], Harchaoui et al. [2015],



Lacoste-Julien and Jaggi [2015], Beck and Shtern [2017],
Garber et al. [2018], for a partial list of recent works in
the deterministic setting. Considering the stochastic con-
vex setup, Hazan and Kale [2012], Hazan and Luo [2016]
provided expected oracle complexity results for SFW algo-
rithm. The complexities were further improved by a sliding
procedure in Lan and Zhou [2016], based on a modified
Frank-Wolfe method by Nesterov’s acceleration. It is com-
mon in SFW/SCGS analysis to require an increasing batch-
size in each step, to obtain oracle complexity results. Re-
cently, Mokhtari et al. [2020], Hassani et al. [2020], Zhang
et al. [2020c] addressed this issue of increasing batch size.
But these works require restrictive assumptions, and have
sub-optimal LMO complexity. In section 4 we empirically
compare against the 1-sample SFW method from Mokhtari
et al. [2020] in the heavy-tailed setting. We also highlight
that several works [Reddi et al., 2016, Yurtsever et al., 2019,
Hazan and Luo, 2016] considered variance reduced versions
of SFW and provided expected oracle complexities. In com-
parison to the above works, we focus on high-probability
bounds on the oracle complexity in both the light-tailed and
heavy-tailed setting (including infinite variance).

1.2 OUR CONTRIBUTIONS

We now provide a list of theoretical contributions to the
literature on oracle complexity of SFW algorithm. To do so,
we first introduce the notion of optimality that we consider
for solving (1).

Definition 1.1 ((ϵ, δ)-optimal solution). We call x̄ an (ϵ, δ)-
optimal solution of the stochastic optimization problem (1),
if we have P (f(x̄)− f(x∗) ≤ ϵ(δ)) ≥ 1−δ. Here, the func-
tion ϵ(δ) stands for the target accuracy and the parameter δ
stands for the required level of confidence.

In contrast to the oracle complexity results obtained in the
literature which are only in expectation, the above definition
takes into account an user-specified level of confidence δ,
with which we could obtain an ϵ-optimal solution of the
stochastic optimization problem (1). This helps obtain a
fine-grained characterization of the moments/tails of P on
the oracle complexity of SFW algorithms. We next list the
specific notion of light and heavy-tailed assumption that we
make on the stochastic first-order oracle.

Assumption 1.2 (Sub-Gaussian). For any x ∈ Rd,
the SFO outputs an estimator G(x, ξ) of ∇f(x) such
that E[G(x, ξ)] = ∇f(x), and E[exp{∥G(x, ξ) −
∇f(x)∥2/σ2}] ≤ exp{1}, for some σ2 > 0.

Remark 1.3. The sub-Gaussian tail assumption is satisfied
by light-tailed distributions arising in practice, and hence
has been used widely in statistics and stochastic optimiza-
tion [Vershynin, 2018, Wainwright, 2019]. It should be
note Assumption 1.2 implies by Jensen’s inequality that
E[∥G(x, ξ) −∇f(x)∥2] ≤ σ2, which is used to obtain or-

acle complexity results for SFW in expectation. However,
the converse is not true.

Assumption 1.4 (Weak-exponential). For any x ∈ Rd, the
first-order oracle outputs an estimator G(x, ξ) of ∇f(x)
such that E[G(x, ξ)] = ∇f(x), and E[∥G(x, ξ)∥1+α] ≤
σ1+α where α ∈ (0, 1].

Assumption 1.5 (Weak-moment). For any x ∈ Rd, the first-
order oracle outputs an estimator G(x, ξ) of ∇f(x) such
that E[G(x, ξ)] = ∇f(x), and for all ∥v∥ = 1, we have
E[|⟨G(x, ξ)−∇f(x), v⟩|1+β ] ≤ 1 for some β ∈ (0, 1]

Remark 1.6. Firstly, we point out that both Assumptions 1.4
and 1.5 allow for the stochastic gradient to have infinite
variance (when α, β < 1). Note that in Assumption 1.5 the
vector v is normalized to 1, so β does not appear in the
RHS. Without loss of generality, we set constant on right
hand side to 1 as any finite positive constant anyway can
will absorbed in the O notation. Furthermore, even when
α, β = 1, Assumptions 1.4 and 1.5 allow for tails heavier
than the sub-Gaussian tail in Assumption 1.2. For canon-
ical problems like structured linear or multi-class logistic
regression, this assumption allows for the covariate to be
heavy-tailed including Pareto or t-distribution, which do
not satisfy Assumption 1.2. Furthermore, Assumption 1.4
is stronger than Assumption 1.5. Indeed if ζ ∈ Rd is a
random vector that satisfies Assumption 1.5, then we have
E[∥ζ∥1+β ] ≤ (π/2) d

1+β
2 .

With the above preliminaries, we now present our main
contributions in this work.
• We first characterize the SFO and LMO complexity, in

high-probability, when the standard mini-batch average of
the stochastic gradients is used, in Theorem 3.3 under the
condition that the distribution of the stochastic gradients
follows the sub-Gaussian tail Assumption 1.2.

• We next establish the SFO and LMO complexity, in high-
probability, when using the clipped gradient estimators,
under the heavy-tailed Assumptions 1.4 and 1.5 in Theo-
rem 3.6 (a) and (b) respectively.

• Next, in Theorem 3.8, we show that the high-probability
oracle complexity results under Assumption 1.5 could be
further improved by using a gradient estimator based on
a recently proposed optimal mean-estimator procedure
in [Cherapanamjeri et al., 2022], at the cost of increased
per-iteration complexity.

• Finally, we propose a computationally efficient biased-
corrected clipped gradient procedure. We show in The-
orem 3.13 that this approach obtains improved high-
probability oracle complexities (over Theorem 3.6) results
under an additional symmetry condition (see Assump-
tion 3.10) on the distribution of the stochastic gradients,
for certain regimes of ϵ and d.

A summary of our oracle complexity results is provided in
Table 1 and visual illustrations are provided in Section 2.



Mean-Estimator Tails Theorem SFO LMO

Average Asmp. 1.2 Thm. 3.3 O
((

log(1/δ)
ϵ

)2)
O
((

log(1/δ)
ϵ

))
Clipped Grad. Asmp. 1.4 Thm. 3.6 (a) O

((
(log(1/δ))

α
1+α

ϵ

) 3α+2
2α

)
O
(

(log(1/δ))
α

1+α

ϵ

)
Clipped Grad. Asmp. 1.5 Thm. 3.6 (b) O

((√
d(log(1/δ))

β
1+β

ϵ

) 3β+2
2β

)
O
(√

d(log(1/δ))
β

1+β

ϵ

)
CTBJ [Cherapanamjeri et al., 2022] Asmp. 1.5 Thm. 3.8 O

((
(log(1/δ))

β
1+β

ϵ

) 3β+2
2β

)
O
(

(log(1/δ))
β

1+β

ϵ

)
BC Clipped Grad. Asmp. 1.4 Thm. 3.13 (a) O

((
C(d,α,δ)

ϵ

) 5α+3
4α

)
O
(

C(d,α,δ)
ϵ

)
BC Clipped Grad. Asmp. 1.5 Thm. 3.13 (b) O

((
C(d,β,δ)

ϵ

) 5β+3
4β

)
O
(

C(d,β,δ)
ϵ

)
Table 1: A summary of the obtained high-probability bounds. All results corresponds to the notion of (ϵ, δ)-optimal solution
introduced in Definition 1.1. The parameters C(d, α, δ) and C(d, β, δ) are defined in Theorem 3.13. BC stands for Bias-
Corrected. The last two rows also require the symmetric condition described in Assumption 3.10.

To our knowledge, our work provides the first comprehen-
sive high-probability oracle complexity results for SCGS
algorithm with light and heavy-tailed stochastic gradients
(including infinite variance). We discuss the consequences
of our theoretical results for practice by reporting simula-
tions for heavy-tailed sparse linear regression (Section 4)
and multi-class logistic regression (Appendix–Section 1).

2 ROBUST STOCHASTIC
FRANK-WOLFE ALGORITHMS

Recall that our task is to solve constrained stochastic convex
optimization problems of the form in (1) using projection-
free Frank-Wolfe type algorithm, which involves two main
steps: the gradient evaluation step and the linear optimiza-
tion step. The gradient evaluation step is typically based
on averaging a mini-batch of gradients [Hazan and Luo,
2016, Lan and Zhou, 2016, Balasubramanian and Ghadimi,
2021]. It is well-known from classical robust statistics that
the sample average is not an accurate estimate of true expec-
tation in the heavy-tailed setting. Hence, a natural strategy
is to replace the sample average with appropriate robust ver-
sions of mean estimators, and incorporate such estimators in
Frank-Wolfe type algorithms. Specifically, we consider the
version of stochastic conditional gradient sliding algorithm
in Lan and Zhou [2016], also analyzed in Balasubramanian
and Ghadimi [2021] for the case of biased gradients. We
first state a subroutine in Algorithm 1 that we subsequently
use.

Note that Algorithm 1 is indeed the SFW algorithm for
inexactly solving the following quadratic program

PX (x, g, γ) = argmin
u∈X

{
⟨g, u⟩+ γ

2
∥u− x∥2

}
, (3)

which is the standard subproblem of stochastic first-order
methods applied to a minimization problem when g is an

Algorithm 1 Inexact Conditional Gradient (ICG) method

Input: (x, g, γ, µ).
Set ȳ0 = x, t = 1, and κ = 0..
while κ = 0 do

yt = argmin
u∈X

{hγ(u) := ⟨g + γ(ȳt−1 − x), u− ȳt−1⟩}

If hγ(yt) ≥ −µ, set κ = 1. Else ȳt = t−1
t+1 ȳt−1 +

2
t+1yt and t = t+ 1.
end while
Output ȳt−1.

Algorithm 2 Robust Stochastic Accelerated Gradient
Method with Inexact Updates

Input: z0 = x0 ∈ X , positive integer sequence mk, and
sequences αk, γk, µk and iteration limit N ≥ 1.
for k = 1, . . . , N do

1. Set wk = (1− αk)zk−1 + αkxk−1

2. Call the stochastic oracle mk times, and compute
(robust) stochastic gradients Ḡk as given by (4), (5), (6)
or (10).

3. Set xk = ICG(xk−1, Ḡk, γk, µk), where
ICG(·) is the output of Algorithm 1 with input
(xk−1, Ḡk, γk, µk).

4. Set zk = (1− αk)zk−1 + αkxk.
end for
Output: zN

unbiased stochastic gradient of the objective function at x.
We now present Algorithm 2 which applies the Frank-Wolfe
method to inexactly solve subproblems of the stochastic
accelerated gradient method. It is well known that the above
approach can significantly reduce the total number of calls to
the stochastic oracle [Lan and Zhou, 2016, Balasubramanian
and Ghadimi, 2021].



2.1 ROBUST MEAN ESTIMATORS

Note that step 2 in Algorithm 2 requires the gradient estima-
tor denoted by Ḡk. We now elaborate the robust stochastic
gradient estimators that we propose to use in this work.
Recall that standard analysis of SCGS algorithm takes the
sample average of the mini-batch of i.i.d. stochastic gradient
(obtained by querying the SFO) in each iteration. In this
case, the gradient estimator is given by

Ḡk :=
1

mk

mk∑
j=1

G(wk, ξk,j). (4)

As we will see from our analysis, the above gradient es-
timator is not robust to heavy-tails, i.e., when the vectors
G(wk, ξk,j) are heavy-tailed. Our first robust stochastic gra-
dient estimator is based on the idea of trimmed or clipped
estimators, generalized to the multivariate setting [Tukey
and McLaughlin, 1963, Bickel, 1965, Huber, 2004, Stigler,
1973]. More recently such ideas have been used in the
context of bandit optimization [Bubeck et al., 2013] and
stochastic gradient descent algorithm [Gorbunov et al.,
2020, Zhang et al., 2020a,b, Mai and Johansson, 2021].
Formally, in our setting, given i.i.d. stochastic gradients
{G(wk, ξk,j)}mk

j=1, the clipped gradient estimator is defined,
for some δ ∈ (0, 1),

Ḡk :=
1

mk

mk∑
j=1

[G(wk, ξk,j) 1 {Aj}] (5)

with Aj := ∥G(wk, ξk,j)∥ ≤
(

jσ1+α

log(1/δ)

) 1
1+α

.

Here, 1{A}, for the event A is defined as taking value 1
when the event A is true and taking value 0 otherwise. While
the above estimator handles robust stochastic gradients (in-
cluding ones with potential infinite variance condition in
Assumption 1.4), it turns out that the oracle complexities
under the even weaker condition in Assumption 1.5 with
the above clipped gradient estimator is sub-optimal. To im-
prove the oracle complexity under Assumption 1.5, we lever-
age the recent optimal robust mean estimation procedure
proposed in Cherapanamjeri et al. [2022], which we call
as the CTBJ procedure. Given i.i.d. stochastic gradients
{G(wk, ξk,j)}mk

j=1, we use CTBJ estimator is given by (see
Algorithm 1)

Ḡk := OPTIMALMEANEST
(
{G(wk, ξk,j)}mk

j=1

)
. (6)

Roughly, the idea of Cherapanamjeri et al. [2022] is to use
filtering to remove outliers and then compute the median
by gradient descent procedures. A full description of the
procedure is provided in Appendix–Section 5 for the sake of
completeness. We also emphasize that while the estimator
for the light-tailed case in (4) is unbiased, the robust gradient
estimators in (5) and (6) are biased. This is another challenge

that we handle in our analysis. Finally, we also remark that in
Section 3.4, we introduce a bias-corrected clipped gradient
procedure which achieves improved oracle complexities
under an additional symmetry assumption on the distribution
on stochastic gradients.

3 HIGH-PROBABILITY BOUNDS

We now provide our main results on high-probability bounds
on the oracle complexity of Algorithm 2. To do so, we also
make the following standard smoothness assumption about
the stochastic gradient, which is common in the literature
of smooth convex optimization [Nesterov, 2018, Lan and
Zhou, 2016, Balasubramanian and Ghadimi, 2021].

Assumption 3.1. The objective function f has Lipschitz
continuous gradient with constant L > 0, i.e., ∥∇f(y) −
∇f(x)∥ ≤ L∥y − x∥ for all x, y ∈ Rd.

We first state a preliminary result about the iterates of Algo-
rithm 2, under Assumption 3.1.

Lemma 3.2. Let {zk}k≥1 be generated by Algorithm 2
and the function f be convex. Let ∆̄k := Ḡk − ∇f(wk),
Γ̂k :=

∏k
i=2(1−αi), Γ̂1 := 1 and D0 = ∥x0−x∗∥2. Then

under Assumption 3.1, we have

f(zN )− f(x∗)

Γ̂N

≤ γ1
2
∥x0 − x∗∥2 +

N∑
i=1

αkµk

Γ̂k

+

N∑
i=1

αk

Γ̂k

⟨∆̄k, x∗ − xk−1⟩+
N∑

k=1

∥∆̄k∥2

2LΓ̂k

. (7)

For our subsequent analysis, we set

αk =
2

k + 1
, γk =

4L

k
, and µk =

LD0

kN
. (8)

The proof of Lemma 3.2 is provided in Appendix–Section 4
and is an intermediate result in the proof of Theorem 3.1 in
Balasubramanian and Ghadimi [2021] with minor change.
Our high-probability bounds are now based on developing
concentration inequalities for the various gradient estima-
tors Ḡk and bounding the terms appearing in right hand
side of (7) in high-probability. To do so, we prove novel
user-friendly concentration inequalities for (scalar-valued)
martingales with heavy-tails that are discussed in detail in
Section 3. It is worth mentioning that Lesigne and Volnỳ
[2001] and Fan et al. [2017] also consider tail bounds for
heavy-tailed martingales. However, they only provide de-
viation inequalities and their assumptions do no cover the
regimes of heavy-tails that we are interested in.



3.1 ORACLE COMPLEXITY WITH SAMPLE
AVERAGE ESTIMATOR

We now provide oracle complexity results for Algorithm 2
with the sample average gradient estimator in (4), that hold
in high-probability.

Theorem 3.3. Let Algorithm 2 be run with Ḡk as in (4), and
with parameters αk, γk and µk as in (8). If the stochastic
gradients G(x, ξ) satisfy Assumption 1.2 and 3.1, and mk =
O(N3), then

P
(
f(zN )− f(x∗) ≤

D0σ
2 log(1/δ)

N(N + 1)

)
≥ 1− δ,

and the SFO and LMO complexity are respectively bounded
by

O
(( log(1/δ)

ϵ

)2)
and O

(
log(1/δ)

ϵ

)
.

Remark 3.4. Note that [Lan and Zhou, 2016] shows that the
SFO and LMO oracle complexity for Algorithm 2 with the
sample average gradient estimator are of order O(1/ϵ2) and
O(1/ϵ) in expectation. Our results in Theorem 3.3 general-
ize this to the high-probability setting quantifying the effect
of the allowed confidence level δ precisely.

3.2 ORACLE COMPLEXITY WITH CLIPPED
GRADIENT ESTIMATOR

We first provide results on the bias, tail and moment bounds
on the clipped gradient estimator Ḡk defined in (5). Then,
we provide oracle complexity results for Algorithm 2
with the clipped gradient estimator, that hold with high-
probability.

Lemma 3.5. Let δ ∈ (0, 1) and C be a positive universal
constant. Let Ḡk be as defined in (5).

(a) If the stochastic gradients G(x, ξ) satisfy Assump-
tion 1.4, then we have∥∥E[Ḡk]−∇f(wk)

∥∥ ≤ σ

(
log(1/δ)

mk

) α
1+α

and P

(∥∥∆̄k

∥∥ ≥ 4σ

(
log(1/δ)

mk

) α
1+α

)
≤ δ.

Consequently, we also have the following moment bound

E
[
exp

{∥∥∥ ∆̄k

σ

∥∥∥ 1+α
α

mk

}]
≤ C.

(b) If the stochastic gradients G(x, ξ) satisfy Assump-
tion 1.5, then we have

∥∥E[Ḡk]−∇f(wk)
∥∥ ≤

√
d

(
log(1/δ)

mk

) β
1+β

and P

∥∆̄k∥ ≥ 4
√
d

(
log(1/δ)

mk

) β
1+β

 ≤ δ.

Consequently, we also have the following moment bound

E
[
exp

{∥∥∥ ∆̄k√
d

∥∥∥ 1+β
β

mk

}]
≤ C.

Theorem 3.6. Let Algorithm 2 be run with Ḡk as defined
in (5), and with parameters αk, γk and µk as defined in (8).

(a) Define a(δ, ω) = (log(1/ω))
ω

1+ω and hence a(δ, α) =

(log(1/δ))
α

1+α . If the stochastic gradients G(x, ξ) sat-
isfy Assumptions 1.4 and 3.1 and mk = O(N

2(α+1)
α ),

then

P

(
f(zN )− f(x∗) ≤

D0σmax
{
a(δ, α), σ

N
a(δ, α)2

}
N(N + 1)

)
≥ 1− δ,

and the SFO and LMO complexity are respectively
bounded by

O

(a(δ, α)

ϵ

) 3α+2
2α

 and O
(
a(δ, α)

ϵ

)
.

(b) If the stochastic gradients G(x, ξ) satisfy Assumptions

1.5 and 3.1 and mk = O(N
2(β+1)

β ), then

P

f(zN )− f(x∗) ≤
D0

√
dmax

{
a(δ, β),

√
d

N
a(δ, β)2

}
N(N + 1)


≥ 1− δ,

and the SFO and LMO complexity are, respectively,
bounded by

O

(√
da(δ, β)

ϵ

) 3β+2
2β

 and O

(√
da(δ, β)

ϵ

)
,

where a(δ, β) = (log(1/δ))
β

1+β .

Remark 3.7. First note that the oracle complexities under
the weaker condition in Assumption 1.5 has an additional
dimension factor

√
d. Hence, for a fixed value of δ, for

α = 1 and β = 1 (i.e., finite variance case), we have the
SFO complexity to be of order O(ϵ−5/2) and O(d5/4ϵ−5/2)
respectively. Furthermore, note that under our assumptions,
only (1 + α) or (1 + β) moment exists for the stochastic
gradients. Consequently, as α → 0 or β → 0, for a fixed
value of 0 < ϵ < 1 and δ, the SFO complexity tends to
infinity, highlighting the difficulty of the problem.

3.3 ORACLE COMPLEXITY WITH CTBJ-BASED
GRADIENT ESTIMATOR

In this section, we will use the mean estimator procedure
proposed recently in [Cherapanamjeri et al., 2022], and



show that the dimension factor
√
d appearing in the SFO

complexity in part (b) of Theorem 3.6 could be removed,
even under the weaker condition in Assumption 1.5.

Theorem 3.8. Let Algorithm 2 be run with Ḡk as defined
in (6), and with parameters αk, γk and µk as defined in (8).
If the stochastic gradients G(x, ξ) satisfy Assumptions 1.5

and 3.1, and mk = O(N
2(β+1)

β ), then with a target confi-
dence δ > 2−

mk
16000 and d ≲ log(1/δ), we have

P

(
f(zN )− f(x∗) ≤

D0 max
{
a(δ, β), 1

N
a(δ, β)2

}
N(N + 1)

)
≥ 1− δ,

and the SFO and LMO complexity are respectively bounded
by

O

(a(δ, β)

ϵ

) 3β+2
2β

 and O
(
a(δ, β)

ϵ

)
.

Remark 3.9. The proof of the above theorem is based on
a concentration result for the gradient estimator (6), es-
tablished in [Cherapanamjeri et al., 2022]. In comparison
to part (b) of Theorem 3.6, the SFO complexity in Theo-
rem 3.8 under Assumption 1.5 does not have the additional
dimensional factor

√
d, thereby demonstrating the benefits

of using the mean-estimation procedure proposed in [Chera-
panamjeri et al., 2022]. However, this improvement does not
come for free, as the per-iteration complexity of using the
robust mean-estimator (6) is significantly higher than that
of the clipped gradient based robust mean-estimator in (5),
although it has a polynomial dependency on the problem pa-
rameters. See Section 5 for details regarding the per-iteration
computational complexity of (6).

3.4 IMPROVING THE ORACLE COMPLEXITY

The above oracle complexity results based on clipped gradi-
ent based and CTBJ based robust gradient estimators have
the following drawbacks. The ϵ-dependency of the SFO
complexity in part (a) of Theorem 3.6 under Assumption 1.4
or Theorem 3.8 under Assumption 1.5 is O(ϵ−2.5) when
α = 1 and β = 1. In this section, we propose a bias-
corrected clipped gradient based robust gradient estimation
procedure with which SFO complexity of Algorithm 2 could
be improved to O(d2ϵ−2) under an additional symmetry
assumption on the distribution of the stochastic gradient.
Hence, when high-accuracy solutions in low-dimensional
settings are required, the bias-corrected clipped gradient
based robust SFW algorithm could be preferred. We now
introduce the symmetry assumption and the clipped gradient
procedure.

Assumption 3.10. Let the distribution of G(x, ξ) be con-
tinuous and symmetric about E[G(x, ξ)] = ∇f(x), for all
x ∈ Rd. Also, let the probability density function be a de-
creasing function with respect to ∥G(x, ξ) − ∇f(x)∥, for
all x ∈ Rd.

Proposition 3.11. For iteration k the i.i.d. stochastic gradi-
ents G(wk, ξk,j) are assumed to satisfy Assumptions 1.5 and
3.10. Let δ ∈ (0, 1). Consider the initial estimate defined as

Ĝk := argmin
G(wk,ξk,j):j≥

mk
2

min

{
r ≥ 0 :

mk∑
ℓ=

mk
2

1 {∥G(wk, ξk,ℓ)−G(wk, ξk,j)∥ ≤ r} ≥ 0.3mk

}
,

(9)

and consider the bias-corrected clipped gradient estimator
Ḡk defined as

Ḡk :=
2

mk

mk/2∑
t=1

min


[(

t
log(1/δ)

) 1
1+β

+ 24

]√
d

∥G(wk, ξk,t)− Ĝk∥
, 1

×

[
G(wk, ξk,t)− Ĝk)

]
+ Ĝk. (10)

Then, as long as mk ≥ 2max{50, 241+β} log(1/δ), by
recalling that ∆̄k = Ḡk −∇f(wk), we have

E[Ḡk] = ∇f(wk) and

P
{
∥∆̄k∥ ≤ 8π

√
d

(
log(1/δ)

mk

) β
1+β }

≥ 1− δ.

Remark 3.12. The initial estimate defined in (9) is the same
as that in the CTBJ estimator in (6). We show that this initial
step, along with the clipped gradient procedure for a spe-
cific choice of clipping parameter (as defined in (10)) helps
obtain an unbiased gradient estimator which is sufficiently
concentrated.

We now leverage the result in Proposition 3.11 and show
that one could obtain improved SFO complexity for certain
ranges of d and ϵ when running Algorithm 2 with the robust
gradient estimator (10).

Theorem 3.13. Let Algorithm 2 be run with Ḡk as defined
in (10), and with parameters αk, γk and µk as defined in (8).

(a) If the stochastic gradients G(x, ξ) satisfy Assumptions
1.4, 3.1 and 3.10, and mk = O(N

3(α+1)
2α ), we have for

(log(1/δ))
1

1+α ≥ [Γ( α
1+α )

1+α
α ]

1
1−α ,

P
(
f(zN )− f(x∗) ≥

C(d, α, δ)D0σ

N(N + 1)

)
≤ δ, (11)

where

C(d, α, δ) = max

{√
da(δ, α)

1
α , a(δ, α)2

}
,

and the SFO and LMO complexity are respectively
bounded by

O
((C(d, α, δ)

ϵ

) 5α+3
4α

)
and O

(
C(d, α, δ)

ϵ

)
.



Figure 1: The two left and two right columns correspond to Pareto, Student-t distributions with d = 100 and d = 500
respectively. Top row: Mean (solid lines) and Median (dotted lines) over 100 trails of iterations versus f(zN ) − f(x∗)
for N = 100. Bottom row: Histogram of f(zN )− f(x∗) for N = 100. Numbers in the legend correspond to heavy-tail
index/standard deviation.

(b) If the stochastic gradients G(x, ξ) satisfy Assumptions

1.4,3.1 and 3.10, and mk = O(N
3(β+1)

2β ), the same
conclusion in (11) holds with α replaced by β, with
C(d, β, δ) := C(d, α = β, δ), for (log(1/δ))

1
1+β ≥

[Γ( β
1+β )

1+β
β ]

1
1−β .

Remark 3.14. Note that when α = 1, for any fixed value
of δ, C(d, α, δ) is O(d). Hence, the SFO complexity is
of order O(d2ϵ−2). Hence, when d2 < o(ϵ−0.5) the SFO
complexity of part (a) of Theorem 3.13 is better than part (a)
of Theorem 3.6. A similar improvement holds for part (b). In
Figure 3 (Appendix–Section 2), we compare Theorem 3.6,
and Theorem 3.13 visually. For comparing part (a) of the
respective theorems, we set α = 1, ϵ = 10−10 and δ =
0.05 vary d from 200 to 1000 in steps of two hundred. For
comparing part (b) of the respective theorems, we set α = 1,
ϵ = 10−6 and δ = 0.05 vary d from 2000 to 10000 in steps
of two thousand.

4 CONSEQUENCES FOR PRACTICE
We now demonstrate the consequences of our theoretical
results in practice. Among the robust gradient estimators
in (5), (6) and (10), the most practical one (i.e., least per-
iteration complexity) is the clipped gradient estimator in (5).
Hence, we compare Algorithm 2 with the mini-batch aver-
age gradient in (4) and the clipped gradient estimator in (5)
via experiments on sparse linear regression and multi-class
logistic regression (presented in Appendix–Section 1 due to
space limitations) with heavy-tailed covariates.

Sparse Linear Regression: We now provide simulation re-
sults for the regression problem described in (2). For our ex-
periments, we consider the data vector a ∈ Rd to be a Pareto
distribution with the exponent being 2.2 (which is asymptot-

ically a t-distribution with degrees of freedom 2.2). We ran
Algorithm 2 with parameters as defined in (8) for 100 trails.
Here, L could be calculated analytically for our problem.
For the choice of batch size, while Theorem 3.6 suggests
mk = O(N

2(α+1)
α ), we found that in our experiments set-

ting mk = 500 works well already. In Figure 1, we report
the performance of Algorithm 2 with the clipped gradient
estimator (5) and mini-batch average estimator (4). We also
compare against the 1-sample SFW method from Mokhtari
et al. [2020]. From the top row, we see that the clipped
gradient estimator has faster convergence, i.e., it achieves
higher accuracy with lesser iterations compared to the stan-
dard mini-batch averaging or the 1-sample SFW method.
Furthermore, from the histogram in the bottom row, we see
that the distribution of the last iterate has more fluctuations
for the mini-batch average estimator and the 1-sample SFW
method, compared to the clipped gradient estimator. We
quantify this statement by reporting the standard deviation
and also the heavy-tailed index, a widely used metric to
quantify fluctuations [Hoaglin et al., 2000], which is defined
as

τ(F ) =
F−1(0.95)− F−1(0.5)

F−1(0.75)− F−1(0.5)

/
Φ−1(0.95)− Φ−1(0.5)

Φ−1(0.75)− Φ−1(0.5)
,

where Φ is the distribution of a standard normal and F is
the empirical CDF obtained from the histogram. The results
in Figure 1 confirm our theoretical results and highlight
the benefits of using robust versions of SFW algorithms
for dealing with heavy-tailed data arising practice.

Summary and Outlook: We proposed and analyzed robust
versions of stochastic Frank-Wolfe type algorithms and es-
tablished high-probability oracle complexity results. Our
theoretical results are supported by numerical experiments
on the problem of sparse linear regression and multi-class



logistic regression with heavy-tailed data. Developing oracle
complexity results for robust projection-free algorithms un-
der non-convexity, and developing more practical versions
of robust projection-free algorithms are interesting problems
that we plan to examine as future work.
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