
Published in Transactions on Machine Learning Research (08/2023)

Task Weighting in Meta-learning with Trajectory Optimisa-
tion

Cuong Nguyen cuong.nguyen@adelaide.edu.au
Australian Institute for Machine Learning
The University of Adelaide

Thanh-Toan Do toan.do@monash.edu
Department of Data Science and AI
Monash University

Gustavo Carneiro g.carneiro@surrey.ac.uk
Centre for Vision, Speech and Signal Processing
University of Surrey

Reviewed on OpenReview: https: // openreview. net/ forum? id= SSkTBUyJip

Abstract

Developing meta-learning algorithms that are un-biased toward a subset of training tasks
often requires hand-designed criteria to weight tasks, potentially resulting in sub-optimal
solutions. In this paper, we introduce a new principled and fully-automated task-weighting
algorithm for meta-learning methods. Specifically, we frame the task-weighting problem
as a trajectory optimization problem, where the weights of tasks within a mini-batch are
treated as an action, and the meta-parameter of interest is viewed as the system state. Such
a modelling allows us to employ the iterative linear quadratic regulator to determine the
optimal task weights. We theoretically show that the proposed algorithm converges to an
ϵ0-stationary point, and empirically demonstrate that the proposed approach out-performs
common hand-engineering weighting methods on two few-shot learning benchmarks.

1 Introduction

Meta-learning has been studied from the early 1990s (Schmidhuber, 1987; Naik & Mammone, 1992; Thrun
& Pratt, 1998) and recently gained a renewed interest with the use of deep learning methods that achieves
remarkable state-of-art results in several few-shot learning benchmarks (Vinyals et al., 2016; Finn et al.,
2017; Snell et al., 2017; Nichol et al., 2018; Ravi & Beatson, 2019; Allen et al., 2019; Khodak et al., 2019;
Baik et al., 2020; Flennerhag et al., 2020). However, the majority of existing meta-learning algorithms simply
minimise the average loss evaluated on validation subsets of training tasks, implicitly assuming that testing
tasks come from the same distribution (over family of tasks) as training tasks (analogous to class-imbalance
in single-task learning). This assumption is hardly true in practice, and potentially biases the trained meta-
learning models toward tasks observed more frequently during training, and consequently, resulting in a large
variation of performance when evaluating on different subsets of testing tasks as shown in (Dhillon et al.,
2019, Figure 1) and (Nguyen et al., 2021, Figure 1).

One way to address such issue is to exploit the diversity of training tasks, so that the trained meta-learning
models can generalise to a wider range of testing tasks. In fact, various studies in task relatedness or
task similarity have shown that learning from certain tasks may facilitate the generalisation of meta-learning
models (Thrun & O’Sullivan, 1996; Zamir et al., 2018; Achille et al., 2019; Nguyen et al., 2021). This suggests
the design of a re-weighting mechanism to diversify the contribution of each training task when training a
meta-learning model of interest. Existing re-weighting methods mostly rely on either hand-crafted criteria to
determine those weights (Collins et al., 2020), or additional validation tasks to learn the re-weighting factors

1

https://openreview.net/forum?id=SSkTBUyJip

Published in Transactions on Machine Learning Research (08/2023)

of interest (Xu et al., 2021). Such ad-hoc development of re-weighting mechanisms motivates us to design a
more principled approach to re-weight tasks for meta-learning. We note that there are also studies learning
to balance the contribution of each training task, e.g., learning to balance (L2B) (Lee et al., 2020). However,
L2B focuses on the task-adaptation step (also known as inner loop), while our interest is to explicitly weight
the contribution of each task at the meta-learning step (also known as outer-loop).

In this paper, we present a new principled and fully-automated task-weighting algorithm, called trajectory
optimisation based task weighting for meta-learning (TOW). In particular, we regard the iterative update of
the meta-parameter of interest as a trajectory, where the meta-parameter is the state and the task weighting
vector is the corresponding action. This formulation casts the task-weighting problem in meta-learning
as a trajectory optimisation problem, with the gradient-based update for the meta-parameter as the state
transition dynamics and the weighted validation loss as the cost function. We then employ the techniques of
trajectory optimisation to determine the optimal action (i.e., weighting vector) w.r.t. the cost (i.e., weighted
validation loss) to train the meta-parameter. We note that TOW is not a meta-learning method, but a
task weighting framework that can be integrated into existing meta-learning algorithms to circumvent the
problematic assumption about the even distribution of training tasks. Our contributions can be summarised
as follows:

• We propose to cast the task-weighting problem in meta-learning to a finite-horizon discrete-time
trajectory optimisation with its state denoted by the meta-parameter and action denoted by the
re-weight factors of tasks, and solve such problem using the iterative linear quadratic regulator.

• We prove that under the conditions of boundedness and smoothness of the loss function used, TOW
converges to a particular ϵ0-stationary point.

We also demonstrate TOW’s functionality by incorporating it into two common meta-learning algorithms,
namely MAML (Finn et al., 2017) and Prototypical Networks (Snell et al., 2017), and showing that TOW
enables meta-learning methods to converge with fewer number of iterations and achieves higher prediction
accuracy than some common task re-weighting mechanisms in the literature.

2 Background

2.1 Trajectory optimisation

Given a continuous D-dimensional vector x as a state and an M -dimensional vector u as an action, the
objective of a trajectory optimisation is to find an optimal sequence of actions {u∗

t }T
t=1 as follows:

{u∗
t }T

t=1 = arg min
{ut}T

t=1

T∑
t=1

c(xt, ut) s.t. xt+1 = f(xt, ut), (1)

where: c(xt, ut) and f(xt, ut) are the cost function and the state-transition dynamics evaluated at time step
t, respectively. These functions are assumed to be twice differentiable. In addition, the initial state x1 is
assumed to be given, and trajectory optimisation means finding the optimal sequence of actions {u∗

t }T
t=1 for

a particular x1, not for all possible initial states.

In trajectory optimisation, the finite-horizon discrete-time problem shown in (1) can be solved approximately
by iterative methods, such as differential dynamic programming (DDP) (Jacobson & Mayne, 1970) or iter-
ative linear quadratic regulator (iLQR) (Todorov & Li, 2005; Tassa et al., 2012). These methods rely on a
local approximation of the state-transition dynamics and cost function using Taylor series about a nominal
trajectory {x̂t, ût}T

t=1. In DDP, both the state-transition dynamics and cost function are approximated to
the second order of their Taylor series, while in iLQR – a “simplified” version of DDP, the state-transition
dynamics is approximated up to the first order. In a loose sense, DDP is analogy to the Newton’s method,
while iLQR is analogous to a quasi-Newton’s method. In this paper, we employ iLQR to solve for the task
weights of interest due to its efficiency in terms of computation compared to DDP.

2

Published in Transactions on Machine Learning Research (08/2023)

The main idea of iLQR is to cast a general non-linear trajectory optimisation problem shown in (1) to a linear
quadratic problem (LQP) by linearising the state-transition dynamics and quadraticising the cost function
about a nominal trajectory {(x̂t, ût)}T

t=1 via Taylor’s series. In particular:

f(xt, ut) ≈ f(x̂t, ût) + ∇xf(x̂t, ût)︸ ︷︷ ︸
Fxt

(xt − x̂t) + ∇uf(x̂t, ût)︸ ︷︷ ︸
Fut

(ut − ût), (2)

where Fxt and Fut denote the first gradients of the transition dynamics f(xt, ut) w.r.t. xt and ut, respec-
tively. Similarly, one can obtain the Taylor’s series for the cost function c(xt, ut) with cxt and cut as the
first gradients of the cost function, and Cxt,xt

, Cxt,ut
, Cut,xt

and Cut,ut
as the second gradients w.r.t. the

variables specified in their corresponding subscripts (see Appendix A for more details).

The approximate LQP can then be solved exactly by the linear quadratic regulator (LQR) (Anderson &
Moore, 2007). Subsequently, the newly obtained trajectory is used as the nominal trajectory for the next
iteration. This process is repeated until the cost function is converged. The detailed derivation of iLQR
can be found in Appendix B. Further details of iLQR can be referred to (Todorov & Li, 2005; Tassa et al.,
2012). To our best knowledge, there are no previous works that provide a proof on the convergence of
iLQR. Therefore, for a complete analysis, we provide the proof of convergence for iLQR adopted from
DDP (Yakowitz & Rutherford, 1984) in Appendix C.

2.2 Meta-learning

We follow the task environment (Baxter, 2000), where tasks are i.i.d. sampled from an unknown distribution
p(T) over a family of tasks, to formulate the meta-learning problem. Each task Ti is associated with two
data subsets: training (or support) subset S(s)

i = {(s(s)
ij , y

(s))
ij }

m
(s)
i

j=1 , where s(s)
ij denotes a training input and

y
(s)
ij denotes the corresponding training label, i ∈ {1, . . . , M}, and validation (or query) subset S(q)

i which
is similarly defined. For training tasks {Ti}M

i=1, both data subsets have labels, while for testing tasks TM+1,
only the data in S(s)

M+1 is labelled. The aim is to learn a D-dimensional meta-parameter x shared across
all tasks, so that x can be efficiently fine-tuned on S(s)

i to produce a task-specific parameter for predicting
the unlabelled data in S(q)

i . One of the simplest forms of meta-learning is analogous to an extension of
hyper-parameter optimisation in single-task learning, where the shared meta-parameter x is learnt from
many tasks. The objective of meta-learning can generally be expressed as:

x∗ = arg min
x

u⊤Li(x) with : Li(x) = 1
m

(q)
i

m
(q)
i∑

j=1
ℓ
(

s(q)
ij , y

(q)
ij ; ϕi(x)

)

s.t.: ϕ∗
i (x) ∈ arg min

ϕi

1
m

(s)
i

m
(s)
i∑

k=1

[
ℓ
(

s(s)
ik , y

(s)
ik ; ϕi(x)

)]
,∀i ∈ {1, . . . , M}

u ∈ U , (3)

where ℓ(.) is the loss function that is non-negative and twice differentiable, u is an M -dimensional vector
that re-weights the influence of M training tasks, U is the set of feasible weights defined by some weighting
criterion, and ϕ(x) is the parameter fine-tuned on task Ti (also known as task-specific parameter).

The task adaptation in the lower-level optimisation of (3) varies depending on the type of meta-learning
algorithm used. For example, it can be a gradient descent update with x being the initialisation of the
neural network of interest (Finn et al., 2017). In metric-based meta-learning (Snell et al., 2017), that task
adaptation step is slightly different where the class prototypes of training data are embedded into a latent
space by the meta-model, and the validation loss is based on the distance between the class prototypes to each
data-point in S(q)

i . There are also other extensions of (3) using probabilistic approaches (Yoon et al., 2018;
Ravi & Beatson, 2019; Nguyen et al., 2020). Nevertheless, our approach proposed in Section 3 can generally
be integrated into any of these meta-learning algorithms. In addition, our attention is on weighting tasks,
corresponding to the upper-level in equation (3). As a result, we exclude the discussion of the lower-level
optimisation for ϕ∗(x) in the rest of this paper to simplify the analysis.

3

Published in Transactions on Machine Learning Research (08/2023)

Remark 1. The task-weighting problem in (3) is carried out at the meta level (also known as “outer-
loop”). It is, therefore, different from some recent meta-learning methods (Khodak et al., 2019; Baik et al.,
2020; Flennerhag et al., 2020; Lee et al., 2020) that design different learning strategies for ϕi(x) at the
task adaptation step (also known as “inner-loop”) to estimate the meta-parameters with a uniform weighting
U = {1/M}M .

For the feasible weighting set U , the most widely-used weighting criterion is uniform: U = {1/M}M , which
resembles the conventional meta-learning. Another popular criterion is to select difficult tasks – tasks
that have the largest validation losses – for training to optimise the performance on the worst-case sce-
narios (Collins et al., 2020). However, such difficult tasks may not always be preferred when outliers and
noise are present. That leads to another weighting approach which favours the most familiar data-points in
single-task learning (Kumar et al., 2010; Bengio et al., 2009; Wang et al., 2017) – often referred as curriculum
learning. The two latter task-weighting approaches can be considered as the “exploration” and “exploita-
tion” strategies used in reinforcement learning (RL), respectively. Similar to the exploration and exploitation
dilemma in RL, we hypothesise that the optimality for task weighting is formed by a balance between these
two approaches. In the following section, we propose a principled approach to automate re-weighting tasks
through an optimisation on a sequence of many mini-batches rather than relying on manually-designed
criteria as the previous studies.

3 Methodology

3.1 Task-weighting as a trajectory optimisation

The upper-level optimisation in (3) can also be written as: x∗ = f(x, u), where f is a function denoting
an optimiser, e.g., stochastic gradient descent (SGD) (Robbins & Monro, 1951). Such an update can be
considered as a state-transition dynamics where the meta-parameter x is the state and the weighting vector
u is the action. In addition, the set of feasible re-weighting vectors, U , can be written as a result of an
optimisation that minimises some cost function c, i.e.,:

U =
{
{u∗

t }T
t=1 : {u∗

t }T
t=1 = arg min

{u}T
t=1

T∑
t=1

c(xt, ut) s.t.: xt+1 = f(xt, ut) and x1is given
}

, (4)

where x1 is the initialisation of the meta-learning parameter, and the subscript denotes the time step.

Since our interest is the convergence speed and the generalisation of the learnt meta-model, we define the cost
function as an un-discounted sum of uniformly-weighted validation losses of a sequence of T mini-batches,
each has M tasks, plus a penalisation on the action u, i.e., a Gaussian prior with mean µu and precision βu.
For the state-transition dynamics f , it is assumed to be the SGD to simplify the analysis. Such assumptions
result in the following state-transition dynamics and cost function:

f(xt, ut) = xt − α∇xt

[
u⊤

t L(xt)
]

and c(xt, ut) = 111⊤
M L(xt) + βu/2∥ut − µu111M∥2

, (5)

where: L(x) is an M -dimensional vector containing M validation losses Li(x) defined in (3), 111M is an
M -dimensional vector with all elements equal to 1 and ∥.∥ denotes the ℓ2-norm.

Note that the action ut is not necessarily normalised to 1, as this constraint may not be effective in certain
scenarios. For example, consider a mini-batch consisting entirely of familiar tasks and another consisting
entirely of unfamiliar tasks. Our hypothesis is to assign small weights to the familiar tasks in the former
mini-batch and large weights to the unfamiliar tasks in the latter mini-batch to encourage diverse learning.
However, normalizing ut to 1 would be disadvantageous as it would make the contribution of tasks in both
mini-batches equal, thereby further biasing the meta-learning model towards familiar tasks in the first mini-
batch. To address this, we allow the weights to be automatically determined by the optimisation in equation
(4) with a Gaussian prior. Nonetheless, one can choose to normalize ut to 1 by simply replacing it with
softmax(ut).

In general, the solution in (4) cannot be solved exactly, but approximately using iterative methods such as
DDP or iLQR. Given the state-transition dynamics f(xt) follows the formulation of a first-order gradient-

4

Published in Transactions on Machine Learning Research (08/2023)

based optimiser (see Eq. (5)), f(xt) consists of the first gradient of the weighted loss u⊤
t L(xt) w.r.t. xt.

Hence, applying DDP will result in an intractable solution since DDP requires the second gradient of f(xt),
corresponding to the third gradient of the weighted loss u⊤

t L(xt). In contrast, iLQR needs only the first
gradient of f(xt), which corresponds to the second gradient of the weighted loss u⊤

t L(xt). Although this
means that iLQR no longer exhibits the quadratic convergence rate as DDP, in the context of meta-learning,
the significant reduction in computation out-weights the speed of convergence for the task weighting vector
u. In this paper, we use iLQR to solve for the re-weighting vectors {u∗

t }T
t=1 in (4).

3.2 Practical task-weighting method based on trajectory optimisation

The approximation using Taylor’s series on the state-transition dynamics and cost function is shown in
Appendix A. This approximation leads to the calculation of two Hessian matrices: Fxt

in the transition
dynamics, and Cxt,xt

in the cost function (see their definitions in Eq. (2)). In addition, while performing
recursive backward iLQR (see Algorithm 2 in Appendix D), we need to calculate another intermediate matrix
of the cost-to-go in (28) (please refer to Appendix B), denoted as Vt, which is analogous to an inverse Hessian
matrix in Newton’s method. Naively calculating these Hessian matrices comes at the quadratic complexity
O
(
D2) (D is the dimension of x) in terms of running time and storage, resulting in an intractable solution for

large-scaled models. To address such issue, the two Hessian matrices Fxt
and Cxt,xt

may be approximated
by their diagonals which can be efficiently computed using the Hutchinson’s method (Bekas et al., 2007).
However, as the size of the model increases, using a few samples from the uniform Rademacher distribution
produces noisy estimations of the Hessian diagonals, resulting in a poor approximation (Yao et al., 2021).
Instead of calculating the Hessian diagonals, we use the Gauss-Newton diagonals as replacements. As the
Gauss-Newton matrix is known to be a good approximation of the Hessian matrix (Martens, 2010; Botev
et al., 2017), this, therefore, results in a good approximation for the Hessian operator. In addition, Gauss-
Newton diagonals can be efficiently calculated using a single backward pass (Dangel et al., 2020). For the
matrix Vt, we approximate it by its diagonal matrix. Since matrix Vt is analogous to the inverse Hessian
matrix in Newton’s method, approximating it by its diagonal means performing Newton’s method separately
for each coordinate, which holds when the diagonal of Vt is dominant. We also provide some additional
results using full matrix Vt in Appendix H. In general, we do not observe any significant difference in
terms of accuracy evaluated on the validation set between the diagonal approximation and the one with
full Gauss-Newton matrix. Nevertheless, these approximation increases the tractability of our proposed
method, allowing to implement the proposed method for very large models, such as deep neural networks.
The complete algorithm of the proposed task-weighting meta-learning approach is outlined in Algorithm 1.

To simplify the implementation and convergence analysis, we select the nominal actions that coincide with the
uniform weighting, meaning that: ûti = 1/M,∀t ∈ {1, . . . , T}, i ∈ {1, . . . , M}. In addition, we constrain that
all elements of the weighting vector or action u are non-negative since each task would either contribute more
or less or even not contribute to the learning for x. This constraint is incorporated into the stopping condition
for iLQR shown in step 16 of Algorithm 1. If there is at least one element uti, t ∈ {1, . . . , T}, i ∈ {1, . . . , M}
being negative, the backtracking line search will iterate one more time with ε decaying toward 0, forcing
ut to stay close to the nominal ût. Thus, in the worst-case, ε is reduced to 0, making ut coincide with ût,
which is the uniform weighting. We also provide a complexity analysis of Algorithm 1 in Appendix E.

4 Convergence analysis

We prove that the training process using TOW to weight tasks converges to an ϵ0-stationary point where
ϵ0 is greater than some positive constant. Before analysing the convergence of TOW, we state a lemma
bounding the norm of the weighting vector (or action) ut obtained from iLQR:
Lemma 1. If ut is a stationary action of a nominal action ût obtained from iLQR, then:

∃δ > 0 : ∥ut − ût∥ ≤ δ.

Proof. Please refer to Appendix F.2.1 for the detailed proof.

5

Published in Transactions on Machine Learning Research (08/2023)

Algorithm 1 Task-weighting for meta-learning
1: procedure TOW training(x1, niLQR)
2: ▷ x1: initial meta-parameter ◁
3: ▷ niLQR: number of iterations in iLQR ◁
4: while x is not converged do
5: get T mini-batches, each consists of M tasks
6: ût ← 1/M111M ,∀t ∈ {1, . . . , T}
7: x̂t+1 ← f(x̂t, ût),∀t ∈ {1, . . . , T}
8: for n = 1, . . . , niLQR do
9: {Kt, kt}T

t=1, θ1 ← iLQRbackward({x̂t, ût}T
t=1) ▷ Algorithm 2 (Appendix D)

10: ε = 2
11: repeat ▷ Backtracking line search
12: ε← 1

2 ε
13: for t = 1 : T do ▷ iLQR forward pass
14: ut = Kt (xt − x̂t) + εkt + ût

15: xt+1 = f(xt, ut)
16: until J(u1:N)− J(û1:N) ≤ 1

2 εθ1 and uti ≥ 0 ▷ Eq. (40)
17: {x̂t}T

t=1 ← {xt}T
t=1 ▷ Update nominal state

18: {ût}T
t=1 ← {ut}T

t=1
19: x1 ← xT ▷ Update meta-parameter
20: return x1

4.1 Assumptions on the boundedness and smoothness of the loss function and its gradients

To analyse the convergence of a general non-convex function, one typically assumes that the loss function,
its first derivative and second derivative are bounded and Lipschitz-continuous (Collins et al., 2020; Fallah
et al., 2020) as shown in the following Assumptions 1 to 3, respectively.

4.1.1 Boundedness and smoothness of the loss function

Assumption 1. The loss function of interest, ℓ, mentioned in (3) is B-bounded and L-Lipschitz.

Formally, Assumption 1 means that the loss function ℓ has the following properties:

• Boundedness: ∃B > 0 : ∀x ∈ RD, |ℓ(sij , yij ; x)| ≤ B,

• Lipschitz continuity: ∃L > 0 : ∀x̃, x ∈ RD, |ℓ(sij , yij ; x̃)− ℓ(sij , yij ; x)| ≤ L∥x̃− x∥.

The boundedness assumption is to bound the second moment of the loss function, while the Lipschitz-
continuity assumption of the loss function ℓ implies that the gradient norm of ℓ w.r.t. x is bounded above
(see Lemma 14 in Appendix F.4):

∥∇xℓ(s, y; x)∥ ≤ L. (6)

4.1.2 Smoothness of the Jacobian and Hessian

We then state the assumptions about the gradient and Hessian of the loss function ℓ as follows:
Assumption 2. The gradient of the loss function ℓ(s, y; x) w.r.t. x is S-Lipschitz.

Assumption 2 means that:

∃S > 0 : ∀x̃, x ∈ RD, ∥∇xℓ(sij , yij ; x̃)−∇xℓ(sij , yij ; x)∥≤ S∥x̃− x∥.

Assumption 3. The Hessian matrix ∇2
xℓ(s, y; x) is ρ-Lipschitz.

6

Published in Transactions on Machine Learning Research (08/2023)

Assumption 3 implies that:

∃ρ > 0 : ∀x̃, x ∈ RD,
∥∥∇2

xℓ(sij , yij ; x̃)−∇2
xℓ(sij , yij ; x)

∥∥ ≤ ρ∥x̃− x∥.

These assumptions are used to bound the gradient of the “true” validation loss of task Ti (see Lemma 12 in
Appendix F.2.3), which is defined as follows:

L̄i(x) = ED(q)
i

[
ℓ
(

s(q)
ij , y

(q)
ij ; ϕ(x)

)]
, (7)

where ED(q)
i

indicates the expectation over all data pairs {(s(q)
ij , y

(q)
ij)}+∞

j=1 sampled from the true (validation)

probability distribution D(q)
i .

Given the above assumptions and lemmas, the convergence of TOW can be shown in Theorem 2. We also
provide two examples of loss functions satisfying Assumptions 1 to 3 in Appendix I.

4.2 The convergence of the proposed method

Theorem 2 (Main result). If Assumptions 1 to 3 hold, the learning rate α < 2/S̃(δ
√

M+1), and z is randomly
sampled from {xt}Titer

t=1 returned by Algorithm 1, then:

Ez∼{xt}Titer
t=1

[
E(

D(q)
1:t

)M

[∥∥∇zu⊤
t L̄1:M (z)

∥∥2]] ≤ ϵ0 + κ

Titer
,

where:

ϵ0 =
4δB
√

M + α2σ̃2S̃
(

δ
√

M + 1
)

α
[
2− αS̃

(
δ
√

M + 1
)] > 0, κ = 2u⊤

1 L̄1:M (x1)
α
[
2− αS̃

(
δ
√

M + 1
)] ,

with Titer as the number of gradient-update for the meta-parameter, and E(
D(q)

1:t

)M as the expectation taken
over all query data sampled from t mini-batches.

Proof. Please refer to Appendix F.3 for the detailed proof.

Theorem 2 shows that the expectation of squared gradient norm of the weighted validation loss is upper-
bounded by a monotonically reducing function w.r.t. the number of iterations Titer. This implies that
Algorithm 1 converges in expectation to an ϵ0-stationary point.
Remark 2. The result in Theorem 2 agrees with previous studies on task-weighting for meta-learning, e.g.,
(Collins et al., 2020, Ineq. (75)) where the gradient norm is bounded above by some positive constant. The
tightness of the bound in Theorem 2 mostly depends on how small the value of ϵ0 is. In fact, we can observe
that limδ→0 ϵ0 = 0. Thus, to ensure that ϵ0 is small, δ needs to be small. We can make δ small by imposing
a strong prior of u, i.e., setting a large value of βu in Eq. (5), e.g., βu = 10 in our experiments presented
in Section 5. In addition, the integrated the backtracking line search in Algorithm 1 forces u to stay close
to the uniform weighting û, making δ very small. Another factor contributes to the small value of ϵ0 is the
inverse of the number of tasks in a mini-batch, 1/M, as seen in (2). In practice, M cannot be too large and
often in the range of 5 to 10 to fit into the memory of a processing unit, e.g., GPU. And since we can impose
constraints to make δ tiny, we can guarantee to obtain a small ϵ0 to make the bound in Theorem 2 tight.

5 Experiments

5.1 N-way k-shot classification

In this section, we evaluate the performance of the proposed trajectory optimisation task weighting (TOW)
approach with three baselines: one with uniform weighting, denoted as uniform, one with higher weights on

7

Published in Transactions on Machine Learning Research (08/2023)

0 5 10 15 20
80

85

90

95

№ of iterations (×1,000)

A
cc

ur
ac

y
(%

)

uniform
exploration
exploitation
TOW

(a) MAML on Omniglot

0 2 4 6 8
90

92

94

96

98

№ of iterations (×1,000)

A
cc

ur
ac

y
(%

)

(b) Protonet on Omniglot

10 20 30 40

36

38

40

42

44

№ of iterations (×1,000)

A
cc

ur
ac

y
(%

)

(c) MAML on mini-ImageNet

10 20 30
№ of iterations (×1,000)

(d) Protonet on mini-ImageNet

10 20 30 40
№ of iterations (×1,000)

(e) MAML with Resnet-10

Figure 1: Validation accuracy exponential moving average (with smoothing factor 0.1) of different task-weighting
strategies evaluated on: (a) and (b) Omniglot, and (c), (d) and (e) mini-ImageNet.

difficult tasks (or tasks with higher losses), denoted as exploration, and the other one with higher weights
on easier tasks (or tasks with lower losses), denoted as exploitation. The experiments are based on n-way
k-shot classification setting used in few-shot learning with tasks formed from Omniglot (Lake et al., 2015)
and mini-ImageNet (Vinyals et al., 2016) – the two most widely-used datasets in meta-learning.

Baselines Naively implementing the two baselines, exploration and exploitation, will easily lead to trivial
solutions where only the task with largest or smallest loss within a mini-batch is selected. Thus, only one
task in each mini-batch is used for learning, and consequently, making the learning noisy and unstable. We,
therefore, introduce a prior, denoted as p(u), as a regularisation to prevent many tasks within the same
mini-batch from being discarded. Formally:

u∗ =

arg min
u
−u⊤ℓℓℓ(x)− ln p(u) for exploration

arg min
u

u⊤ℓℓℓ(x)− ln p(u) for exploitation.
(8)

In general, the prior p(u) can be any distribution that has support in (0, +∞) such as Beta, Gamma or
Cauchy distribution. For simplicity, p(u) is selected as a Dirichlet distribution with a concentration κ > 1
to constrain the weight vector within a probability simplex. One can then use a non-linear optimisation
solver to solve (8) to obtain an optimal u∗ for one of the two baselines. In the implementation, we use
Sequential Least SQuares Programming (SLSQP) to obtain u∗. Note that the definition of the exploration
baseline above resembles TR-MAML (Collins et al., 2020), but is applicable for common few-shot learning
benchmarks where the number of tasks is large. Similarly, the exploitation is an analogy to robust Bayesian
data re-weighting (Wang et al., 2017) or curriculum learning in single-task learning.

8

Published in Transactions on Machine Learning Research (08/2023)

Table 1: The classification accuracy averaged on 1,000 random testing tasks generated from Omniglot and 600 tasks
from mini-ImageNet with 95 percent confident interval; the bold numbers denote their statistically differences from
the ones in the same column.

Weighting
method Omniglot Mini-ImageNet

4 layer CNN Resnet-10

MAML

Uniform 94.86 ±0.43 48.70 ±1.841 49.12 ±0.76
Exploration 92.64 ±0.52 48.80 ±0.72 48.72 ±0.74
Exploitation 95.34 ±0.42 49.22 ±0.74 48.44 ±0.76
TOW 95.94 ±0.40 51.55 ±0.75 52.32 ±0.80

Protonet

Uniform 95.21 ±0.37 49.42 ±0.782 _
Exploration 94.57 ±0.38 48.56 ±0.77 _
Exploitation 95.78 ±0.40 48.39 ±0.79 _
TOW 96.84 ±0.37 51.05 ±0.80 _

Table 2: Running time (in GPU-hour) of different task-weighting methods based on MAML.

Omniglot mini-ImageNet
CNN Resnet-10

Exploration 1.55 5.24 7.18
Exploitation 1.55 5.24 7.18
Uniform 1.35 5.03 7.16
TOW 7.50 38.12 67.78

Datasets Omniglot and mini-ImageNet are used in the evaluation. For Omniglot, we follow the original
train-test split (Lake et al., 2015) by using 30 alphabets for training and 20 alphabets for testing. We
also utilise the hierarchy structure of alphabet-character to form finer-grained classification tasks to make
the classification more difficult than the random train-test split. For mini-ImageNet, we follow the standard
train-test split that uses 64 classes for training, 16 classes for validation and 20 for testing (Ravi & Larochelle,
2017) in our evaluation.

Models used The base model used across the experiments is the 4 CNN module network that is widely
used in few-shot image classification (Vinyals et al., 2016; Finn et al., 2017). Two common meta-learning
algorithms considered in this section include MAML (Finn et al., 2017) and Prototypical Networks (Snell
et al., 2017). In MAML, the flattened features are passed to a linear fully-connected layer to classify, while
in Prototypical Networks, the classification is based on Euclidean distances to the prototypes of each class.

Hyper-parameters Please refer to Appendix G for the details of hyper-parameters used.

Results Figures 1a to 1d plot the testing accuracy evaluated on 100 validation tasks drawn from Omniglot
and mini-ImageNet following the 5-way 1-shot setting. The validation accuracy curves along the training
process show that TOW can achieve higher performance comparing to the three baselines on various datasets
and meta-learning methods. We also carry out an experiment using Resnet-10 (He et al., 2016) on mini-
ImageNet to demonstrate the scalability of TOW. The results on Resnet-10 in Figure 1e shows a a similar
observation that TOW out-performs other task-weighting methods. We note that the validation accuracy
curves of Resnet-10 fluctuates due to our injected dropout to regularise the network from overfitting since it is
known that larger networks, such as Resnet-10 or Resnet-18, severely overfit in the few-shot setting (Nguyen
et al., 2020). For the evaluation on testing sets, we follow the standard setting in few-shot learning by
measuring the prediction accuracy on 1,000 and 600 testing tasks formed from Omniglot and mini-ImageNet,

1reported in (Finn et al., 2017)
2reported in (Snell et al., 2017)

9

Published in Transactions on Machine Learning Research (08/2023)

0 20 40 60 80
50

55

60

65

70

№ of training tasks (×10,000)

A
cc

ur
ac

y
(%

)

uniform
exploration
exploitation
TOW

(a) MAML

0 5 10 15 20 25
55

60

65

70

№ of training tasks (×10,000)

A
cc

ur
ac

y
(%

)

(b) Protonet

Figure 2: Exponential moving average with smoothing factor 0.1 of the prediction accuracy evaluated on validation
tasks formed from the any-shot setting of mini-ImageNet dataset mentioned in Section 5.2 where the base model is
a 4-module CNN.

respectively (Vinyals et al., 2016; Finn et al., 2017). The results in Table 1 show that TOW can be at least
2 percent more accurate than the best baseline among Uniform, Exploration, and Exploitation. Note that
there a difference between the results shown in Figure 1 and Table 1 due to their differences in terms of (i) the
tasks form: one from validation set, while the other from testing set, and (ii) the number of tasks evaluated.
Despite the promising results, the downside of TOW is the overhead caused by approximating the cost and
state-transition dynamics over T mini-batches of tasks to determine the locally-optimal {u∗

t }T
t=1. As shown

in Table 2, TOW is about 7 to 9 times slower than the three baselines. We also provide a visualisation of
the weights ut in Section 5.3.

5.2 Any-shot classification

We also follow the realistic task distribution (Lee et al., 2020) to evaluate further the performance of TOW.
The new setting is mostly similar to N -way k-shot, except k is not fixed and might be different for each class
within a task. Specifically, with a probability of 0.5, the number of shots for each class is sampled from a
uniform distribution: k ∼ Uniform(1, 50) to simulate class imbalance. With the other 0.5 probability, the
same number of shots k ∼ Uniform(1, 50) is used for all classes within that task. The number of validation
(or query) samples is kept at 15 samples per class.

Similar to the experiments carried out in Section 5.1, TOW demonstrates a higher performance compared to
the three baselines: exploitation, exploration and uniform along the training process, as shown in Figure 2.
In general, TOW can achieve the state-of-the-art results when evaluating on 3,000 testing tasks formed from
mini-ImageNet, as shown in Table 3, compared to common meta-learning methods. To further evaluate
TOW, we follow the same setting and use the models trained on mini-ImageNet to test on 50 classes of
bird images split from CUB dataset. The results in the last column of Table 3 show that TOW can also
work well on out-of-distribution tasks formed from CUB compared to most of the methods in the literature.
The main reason that explains the worse performance of TOW, compared with Bayesian TAML, is that
the meta-learning based methods used by TOW are MAML and Protonet, which have a smaller number of
meta-parameters to model tasks than Bayesian TAML.

5.3 Weight visualisation

To further understand how the weight ut varies along the training process, we conduct a study to monitor
the weights ut of a set of pre-defined Omniglot tasks. In the first setting, we fix T = 5 mini-batches of
tasks, each consisting of M = 5 tasks formed from the same alphabet. In the second case, the configuration
is similar, but each mini-batch contains M = 5 tasks formed from 5 different alphabets. For each case, we

10

Published in Transactions on Machine Learning Research (08/2023)

Table 3: Prediction results on any-shot classification evaluated on 3,000 testing tasks with 95 percent confident
interval; the bold numbers denote the results that are statistically significant. The results of previous methods are
reported in (Lee et al., 2020).

Training set mini-ImageNet
Testing set mini-ImageNet CUB
MAML (Finn et al., 2017) 66.64 ±0.22 65.77 ±0.24
Meta-SGD (Li et al., 2017) 69.95 ±0.20 65.94 ±0.22
MT-net (Lee & Choi, 2018) 67.63 ±0.23 66.09 ±0.23
ABML (Ravi & Beatson, 2019) 56.91 ±0.19 57.88 ±0.20
Protonet (Snell et al., 2017) 69.11 ±0.19 60.80 ±0.19
Proto-MAML (Triantafillou et al., 2020) 68.96 ±0.18 61.77 ±0.19
Bayesian TAML (Lee et al., 2020) 71.46 ±0.19 71.71 ±0.21
TOW-MAML 70.02 ±0.24 68.34 ±0.25
TOW-Protonet 72.12 ±0.21 64.79 ±0.25

0 5 10 15 20

0.18

0.2

0.22

0.24

№ of meta-updates (×10,000)

W
ei

gh
t

va
lu

e

train-same train-different
test-same test-different

(a) Omniglot

0 10 20 30 40
0.18

0.2

0.22

№ of meta-updates (×10,000)

W
ei

gh
t

va
lu

e

train
test

(b) Mini-ImageNet

Figure 3: Visualisation of the weight values associated with (a) Omniglot and (b) mini-ImageNet. For the Omniglot
dataset, the tasks are drawn from the same Omniglot alphabet (either training or testing set), and the notation same
means that all tasks in a mini-batch are formed from one alphabet, while different indicates the mini-batch consists
of tasks formed from different alphabets.

also run with tasks drawn from training and testing sets. Our desire is to observe how the weight changes
and whether there is a difference between training and testing tasks. We plot the weight for a single task
belonging to the “controlled” 5-task mini-batch of interest in Figure 3. The results show the variation of the
weights of the tasks of interest with a common trend among all the tasks considered, in which the weights
are large at the beginning and gradually reduce when training progresses. This is, indeed, expected since
most tasks are unfamiliar to the model at the early state, and gradually becomes more familiar. In addition,
we observe that the weights for testing tasks are slightly larger than the ones for training tasks.

We also conduct the same ablation study for mini-ImageNet tasks. Since in mini-ImageNet, we do not
have any information regarding to the hierarchical structure of classes, we carry out the experiment on
training and testing tasks only. One could, of course, utilise the word-net structure to categorise classes
into “alphabet” as Omniglot, but for the sake of simplicity, we proceed without including such information.
Figure 3b shows the weight values of some tasks at each training checkpoint, which also has a similar but
noisier trend as the ones in Omniglot.

11

Published in Transactions on Machine Learning Research (08/2023)

0 20 40 60 80 100
30

35

40

№ of iterations (× 1,000)

A
cc

ur
ac

y
(%

)

niLQR=10
niLQR=2

(a) Number of iLQR iterations niLQR

0 20 40 60 80 100
30

35

40

45

№ of iterations (× 1,000)

A
cc

ur
ac

y
(%

)

T = 2
T = 10

(b) Length of trajectory T

Figure 4: Ablation studies on 5-way 1-shot mini-ImageNet with different values of (a) number of iterations niLQR
in iLQR (with smoothing factor 0.1), and (b) the length of trajectory T (without smoothing).

5.4 Ablation studies

We carry out ablation studies to analyse the effect of each hyper-parameter to the performance of the
proposed method, TOW. In particular, we follow the experiment setting of 5-way 1-shot tasks formed from
the mini-ImageNet dataset as shown in Section 5.1. Specifically, the model is the 4 convolutional neural
network, where the mini-batch size M is set to 5, the number of iLQR iterations niLQR is set to 2, T = 2,
βu = 10 and µu = 1/M.

5.4.1 Number of iLQR iterations

We carry out an ablation study about the effect of the number of iterations used in iLQR, niLQR, by analysing
the validation accuracy on two different settings: one with 2 iterations and the other with 10 iterations. The
qualitative result between the two settings in Figure 4a agrees with our intuition that the larger the number of
iterations in iLQR, the more accurate the weighting and hence, the larger the validation accuracy. However,
the trade-off is the significant increase in terms of training time, which is approximately 6 times larger than
the one with 2 iterations.

5.4.2 The length of the trajectory T

As the proposed method, TOW, is based on iLQR, it also shares some of the properties of iLQR. According
to the iLQR paper (Tassa et al., 2012, Section IV. A), the value of the horizon T is a problem-dependent
quantity which must be found by trial-and-error. The optimal value of T is, therefore, chosen by further fine-
tuning. However, as our aim is to connect the trajectory optimisation and task-weighting in meta-learning
and analyse the convergence of the proposed method theoretically, we select the value of T specified in the
paper for demonstration purposes. As shown in Figure 4b, increasing T might not always result in the
best performance. It is due to the approximation nature of iLQR where the transition dynamics f and the
cost function c are linearised and quadraticised via Taylor series. Such approximations are, however, only
accurate for a short trajectory (small T). For a long trajectory, the future states predicted by iLQR would
be deviated further away, making the optimisation sub-optimal. Even if we assume that we have enough
computational power to treat the entire training set of tasks as one trajectory and optimise that by iLQR,
the result might not be better than a short trajectory.

5.4.3 Hyper-parameters of the prior of u

We also present two ablation studies to understand the impact of the Gaussian prior of u on the performance
of TOW. In this case, we vary either βu or µu introduced in Eq. (5), while fixing other hyper-parameters.

12

Published in Transactions on Machine Learning Research (08/2023)

0 20 40 60 80 100
30

35

40

45

№ of iterations (× 1,000)

A
cc

ur
ac

y
(%

)

βu = 1
βu = 10

(a) Prior precision βu

0 10 20 30 40 50

30

35

40

№ of iterations (× 1,000)

A
cc

ur
ac

y
(%

)

µu = 0.05
µu = 0.2
µu = 0.5

(b) Prior mean µu

Figure 5: Ablation studies on the prior of the weighting vector u introduced in Eq. (5) (without smoothing).

0 10 20 30 40

30

35

40

№ of iterations (× 1,000)

A
cc

ur
ac

y
(%

)

uniform
exploration
exploitation
TOW

Figure 6: Comparison between TOW and the three baselines where each of the baselines is trained 5 times more
than TOW, where the additional tasks used to train the baselines are randomly sampled from the training task
distribution.

For βu, we run on two different values: βu = 1 and βu = 10 and show the result in Figure 5a. For µu,
we run an experiment with µu = 0.05 and µu = 0.5 with a mini-batch size of 5 tasks (corresponding to
uuniform = 0.2× 111) and show the result in Figure 5b.

According to this ablation study, a smaller βu results in a slightly better performance compared to one with
a larger βu, while the signal in Figure 5b is unclear. In the case of βu, we hypothesise that a larger value
would place a stronger regularisation, forcing the weighting value to be close to a uniform one. Reducing
βu would allow the weighting values to fluctuate and easily overfit. In case of µu, TOW seems to work well
with different values of µu.

5.4.4 Train the baselines more

To provide a fairer comparison against competing approaches, instead of performing one iteration for each
baseline, we increase the number of iterations when training the baselines. In particular, each of the baselines
is trained on five times more tasks compared with the number of tasks for training TOW. To compensate for
this larger number iterations, we also reduce by five folds the learning rate, so the comparison is fair. The
results in Figure 6 show that TOW qualitatively out-performs the three baselines in this fairer setting.

13

Published in Transactions on Machine Learning Research (08/2023)

6 Related work

Our study directly relates to re-weighting tasks in meta-learning. One recent work is TR-MAML (Collins
et al., 2020) which places higher weights on tasks with larger validation losses to optimise performance for
worst-case scenarios. However, when the number of training tasks is large, e.g.,

(1000
5
)
≈ 8.25 × 1012 5-way

classification tasks formed from 1000 characters in Omniglot dataset (Lake et al., 2015), learning weight
for each training task is intractable. TR-MAML circumvents such issue by clustering tasks into a small
number of clusters based on some ad-hoc intuition and learn the weight for each cluster. This, however,
reduces the practicability of TR-MAML. Another work, α-MAML (Cai et al., 2020), provides an upper-
bound on the distance between the weighted risk evaluated on training tasks to the expected risk on testing
tasks. The re-weight factors can then be obtained to minimise that upper-bound, reducing the variance
between training and testing tasks. Note that α-MAML follows a transductive setting where labelled data of
testing tasks are available in the training phase, while we follow the inductive setting where no information
about testing is available during training. In reinforcement learning (RL), MWL-MAML (Xu et al., 2021)
is recently proposed to employ meta-learning to learn the local optimal re-weight factor of each trajectory
using a few gradient descent steps. The downside of MWL-MAML is the need of validation trajectories
(or validation tasks in meta-learning) that are representative enough to learn those weights. In addition,
MWL-MAML also requires to store the weight value of each task as in TR-MAML, making the approach
intractable in our setting. Furthermore, TR-MAML, α-MAML and MWL-MAML rely on a single mini-batch
of tasks to determine the weights without considering the effect of sequence of mini-batches when training a
meta-model, potentially rendering sub-optimal solutions. In contrast, our proposed method does not need to
cluster tasks nor require additional set of validation tasks. In addition, our proposed method automates the
calculation of task-weighting through an optimisation over a sequence of mini-batches, allowing to obtain
better local-optimal solutions outside of a single mini-batch of tasks. There are also other studies about task
balancing, such as Learn to Balance (L2B) (Lee et al., 2020). However, L2B introduces additional parameters
in the task adaptation step (inner-loop), while our method explicitly introduces a weighting vector at the
meta-parameter update step (outer-loop).

Our study is also similar to task-weighting in multi-task learning (Chen et al., 2018; Sener & Koltun, 2018;
Guo et al., 2018; Liu et al., 2021) where the goal is to obtain an optimal re-weighting vector u for all tasks.
Such modelling can, therefore, work well with a small number of tasks, but potentially fall short when the
number of tasks is very large, e.g. in the magnitude of 1012 training tasks for 5-way Omniglot classification,
due to the poor scalability of the computational and storage complexities of that modelling. In comparison,
our proposed approach does not explicitly learn the weighting vector for all training tasks, but determines the
weighting vector for tasks in current and some following mini-batches via a trajectory optimisation technique.
In a loose sense, the multi-task learning approaches can be considered as an analogy to a “batch” learning
setting w.r.t. the weighting vector u, while ours is analogous to an “online” learning setting which can scale
well to the number of training tasks. There is also a concurrent work – Auto-Lambda (Liu et al., 2022) –
that is designed to use meta-learning to learn how to weight tasks in the multi-task setting. However, Auto-
Lambda is similar to TR-MAML, which is designed for a fixed number of tasks in the multi-task learning,
while being intractable when the number of tasks is large. Furthermore, Auto-Lambda is also similar to
MWL-MAML since Auto-Lambda employs validation subsets of training tasks to meta-learn the weighting
of tasks.

This paper is motivated from the observation of large variation in terms of prediction performance made by
meta-learning algorithms on various testing tasks (Dhillon et al., 2019, Figure 1), implying that the trained
meta-model may be biased toward certain training tasks. Such observation may be rooted in task relatedness
or task similarity which is a growing research topic in the field of transfer learning. Existing works include
task-clustering using k-nearest neighbours (Thrun & O’Sullivan, 1996) or using convex optimisation (Jacob
et al., 2009), learning task relationship through task covariance matrices (Zhang & Yeung, 2012), or the-
oretical guarantees to learn similarity between tasks (Shui et al., 2019). Recently, a large-scale empirical
study, known as Taskonomy (Zamir et al., 2018), investigated the relationship between 26 computer vision
tasks. Another promising direction to quantify task similarity is to employ task representation, notably
Task2Vec (Achille et al., 2019), which is based on Fisher Information matrix to embed tasks into a latent
space. One commonality among those studies is that learning from certain training tasks may be beneficial

14

Published in Transactions on Machine Learning Research (08/2023)

to generalise to unseen tasks. This suggests the design of a mechanism to re-weight the contribution of each
training task to improve the performance of the meta-model of interest.

7 Discussion and conclusion

We propose a principled approach based on trajectory optimisation to mitigate the issue of non-uniform
distribution of training tasks in meta-learning. The idea is to model the training process in meta-learning
by trajectory optimisation with state as meta-parameter and action as the weights of training tasks. The
local optimal weights obtained from iLQR – a trajectory optimiser are then used to re-weight tasks to train
the meta-parameter of interest. We demonstrate that the proposed approach converges with less number
of training tasks and has a final prediction accuracy that out-performs some common hand-crafted task-
weighting baselines.

Our proposed method also has some limitations that could be addressed in future work. TOW relies on iLQR
which is not ideal for large-scale systems with high dimensional state space such as deep neural networks.
Despite the approximation of Hessian matrices to use only diagonals as mentioned in Section 3.1, the lineari-
sation of the state-transition dynamics and quadraticisation of the cost function are still time-consuming,
and consequently, reduce TOW’s efficiency. Future work might find a faster approximation to optimise the
running time for TOW as well as evaluate on large-scaled datasets, such as meta-dataset (Triantafillou et al.,
2020).

Furthermore, our method is local in nature due to the Taylor’s series approximation about a nominal tra-
jectory used in iLQR. One way to improve further is to define a “global” or “stationary” policy πθ(xt, ut),
which is similar to Guided Policy Search (Levine & Koltun, 2013; 2014). This policy can then be trained on
multiple local optimal trajectories obtained from iLQR. While this approach may offer a superior generali-
sation for the policy, scalability is an issue since the policy needs to process the high-dimensional state xt.
As a result, a very large model may be required to implement such policy.

Acknowledgments

This work was funded by the Australian Research Council through grant FT190100525. The computation
performed in this paper was managed and supported by the Deep Purple service at the Australian Institute
for Machine Learning and the Phoenix HPC service at the University of Adelaide.

References
Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C

Fowlkes, Stefano Soatto, and Pietro Perona. TASK2VEC: Task embedding for meta-learning. In In-
ternational Conference on Computer Vision, pp. 6430–6439, 2019.

Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua Tenenbaum. Infinite mixture prototypes for few-shot
learning. In International Conference on Machine Learning, pp. 232–241. PMLR, 2019.

Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods. Courier Corporation,
2007.

Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon Kim, and Kyoung Mu Lee. Meta-learning with
adaptive hyperparameters. In Advances in Neural Information Processing Systems, 2020.

Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 12:149–198,
2000.

Costas Bekas, Effrosyni Kokiopoulou, and Yousef Saad. An estimator for the diagonal of a matrix. Applied
numerical mathematics, 57(11-12):1214–1229, 2007.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Interna-
tional Conference on Machine Learning, pp. 41–48, 2009.

15

Published in Transactions on Machine Learning Research (08/2023)

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep learning.
In International Conference on Machine Learning, pp. 557–565. PMLR, 2017.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015.

Diana Cai, Rishit Sheth, Lester Mackey, and Nicolo Fusi. Weighted meta-learning. In ICML Workshop on
Automated Machine Learning, 2020.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient normal-
ization for adaptive loss balancing in deep multitask networks. In International Conference on Machine
Learning, pp. 794–803. PMLR, 2018.

Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. Task-robust model-agnostic meta-learning. In Ad-
vanced Neural Information System Process, 2020.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. BackPACK: Packing more into backprop. In Inter-
national Conference on Learning Representations, 2020.

Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for few-shot
image classification. In International Conference on Learning Representations, 2019.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-based model-
agnostic meta-learning algorithms. In International Conference on Artificial Intelligence and Statistics,
pp. 1082–1092. PMLR, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, pp. 1126–1135, 2017.

Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia Hadsell.
Meta-learning with warped gradient descent. In International Conference on Learning Representation,
2020.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task prioritization for
multitask learning. In European Conference on Computer Vision (ECCV), 9 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Laurent Jacob, Jean-philippe Vert, and Francis R Bach. Clustered multi-task learning: A convex formulation.
In Advances in Neural Information Processing Systems, pp. 745–752, 2009.

David H Jacobson and David Q. Mayne. Differential dynamic programming. Elsevier, 1970.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
Advances in Neural Information Processing Systems, 26:315–323, 2013.

M Khodak, M Balcan, and A Talwalkar. Adaptive gradient-based meta-learning methods. In Advances in
Neural Information Processing Systems, 2019.

M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. In
Advances in Neural Information Processing Systems, volume 1, pp. 2, 2010.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Hae Beom Lee, Hayeon Lee, Donghyun Na, Saehoon Kim, Minseop Park, Eunho Yang, and Sung Ju Hwang.
Learning to balance: Bayesian meta-learning for imbalanced and out-of-distribution tasks. In International
Conference on Learning Representations, 2020.

16

Published in Transactions on Machine Learning Research (08/2023)

Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric and subspace.
In International Conference on Machine Learning, pp. 2927–2936. PMLR, 2018.

Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on machine learning,
pp. 1–9. PMLR, 2013.

Sergey Levine and Vladlen Koltun. Learning complex neural network policies with trajectory optimization.
In International Conference on Machine Learning, pp. 829–837. PMLR, 2014.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-shot learning.
arXiv preprint arXiv:1707.09835, 2017.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne
Zhang. Towards impartial multi-task learning. In International Conference on Learning Representations,
2021.

Shikun Liu, Stephen James, Andrew Davison, and Edward Johns. Auto-lambda: Disentangling dynamic
task relationships. Transactions on Machine Learning Research, 2022. URL https://openreview.net/
forum?id=KKeCMim5VN.

James Martens. Deep learning via hessian-free optimization. In International Conference on Machine
Learning, volume 27, pp. 735–742, 2010.

Devang K Naik and RJ Mammone. Meta-neural networks that learn by learning. In International Joint
Conference on Neural Networks, volume 1, pp. 437–442. IEEE, 1992.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2003.

Cuong Nguyen, Thanh-Toan Do, and Gustavo Carneiro. Uncertainty in model-agnostic meta-learning using
variational inference. In Winter Conference on Applications of Computer Vision, pp. 3090–3100, 2020.

Cuong C Nguyen, Thanh-Toan Do, and Gustavo Carneiro. Probabilistic task modelling for meta-learning.
In Conference on Uncertainty in Artificial Intelligence, pp. 781–791. PMLR, 2021.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Elijah Polak. Computational methods in optimization: a unified approach, volume 77. Academic press, 1971.

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International Conference on Learning
Representations, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International Conference
on Learning Representations, 2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning (On learning how to learn: the
meta-meta-... hook). Diploma thesis, Technische Universität München, 1987.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Advances in Neural
Information Processing Systems, 2018.

Changjian Shui, Mahdieh Abbasi, Louis-Emile Robitaille, Boyu Wang, and Christian Gagné. A principled
approach for learning task similarity in multitask learning. In International Joint Conference on Artificial
Intelligence, pp. 3446–3452, 2019.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In Advances in
Neural Information Processing Systems, pp. 4077–4087, 2017.

17

https://openreview.net/forum?id=KKeCMim5VN
https://openreview.net/forum?id=KKeCMim5VN

Published in Transactions on Machine Learning Research (08/2023)

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors through
online trajectory optimization. In International Conference on Intelligent Robots and Systems, pp. 4906–
4913. IEEE, 2012.

Sebastian Thrun and Joseph O’Sullivan. Discovering structure in multiple learning tasks: The TC algorithm.
In International Conference on Machine Learning, volume 96, pp. 489–497, 1996.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 1998.

Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal feedback control of
constrained nonlinear stochastic systems. In American Control Conference, pp. 300–306. IEEE, 2005.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset of datasets for
learning to learn from few examples. In International Conference on Learning Representations, 2020.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning.
In Advances in Neural Information Processing Systems, pp. 3630–3638, 2016.

Yixin Wang, Alp Kucukelbir, and David M Blei. Robust probabilistic modeling with bayesian data reweight-
ing. In International Conference on Machine Learning, pp. 3646–3655. PMLR, 2017.

Zhixiong Xu, Xiliang Chen, Wei Tang, Jun Lai, and Lei Cao. Meta weight learning via model-agnostic
meta-learning. Neurocomputing, 432:124–132, 2021.

Sidney Yakowitz and Brian Rutherford. Computational aspects of discrete-time optimal control. Applied
Mathematics and Computation, 15(1):29–45, 1984.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney. ADA-
HESSIAN: an adaptive second order optimizer for machine learning. In AAAI Conference on Artificial
Intelligence, pp. 10665–10673, 2021.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn. Bayesian
model-agnostic meta-learning. In Advances in Neural Information Processing Systems, pp. 7332–7342,
2018.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In Conference on Computer Vision and Pattern Recog-
nition, pp. 3712–3722, 2018.

Yu Zhang and Dit-Yan Yeung. A convex formulation for learning task relationships in multi-task learning.
In Conference on Uncertainty in Artificial Intelligence, 2012.

18

Published in Transactions on Machine Learning Research (08/2023)

Appendix A Approximation of state-transition dynamics and cost function

A.1 Linearise the state-transition dynamics

In this section, we present the explicit form of the linearisation for the state-transition dynamics f . In
particular, the main purpose is to obtain the first gradient of the state-transition dynamics f w.r.t. x and
u defined in Eq. (2). We consider two cases of f : stochastic gradient descent (SGD) and Adam.

A.1.1 Stochastic gradient descent (SGD)

The transition dynamics is given as:

xt+1 = f(xt, ut) = xt − α∇xt

[
u⊤

t L(xt)
]

. (9)

Applying Taylor’s expansion to the first order around a state-action pair (x̂t, ût) gives:

xt+1 = x̂t+1 +
(
ID − α∇2

x
[
û⊤

t L(x̂t)
])

(xt − x̂t)− α∇⊤
x [L(x̂t)] (ut − ût) . (10)

If δxt = xt − x̂t (similar for δut), then:

δxt+1 =
(
ID − α∇2

x
[
û⊤

t L(x̂t)
])

δxt +
(
−α∇⊤

x [L(x̂t)]
)

δut. (11)

Hence, the coefficient matrices of the Taylor’s series for the state-transition dynamics following the SGD
update can be expressed as:

Fxt = ID − α∇2
x
[
û⊤

t L(x̂t)
]

Fut = −α∇⊤
x [L(x̂t)] .

(12a)
(12b)

A.1.2 Adam

The gradient-based update for the parameter of interest using Adam keeps track of the mean and variance:{
mt = β1mt−1 + (1− β1)J⊤

t ut

vt = β2vt−1 + (1− β2)
(
J⊤

t ut

)
⊙
(
J⊤

t ut

)
,

(13)

where:

• m0 = 000, v0 = 000,

• Jt is the Jacobian matrix of the validation losses for tasks in a minibatch t-th:

Jt = ∇x [L(xt)] . (14)

• ⊙ is the elementwise multiplication.

The corrected-bias estimators are then defined as:
m̂t = mt

1− βt
1

v̂t = vt

1− βt
2

.
(15)

The update or state-transition dynamics is then given as:

xt+1 = f(xt, ut) = xt − α
m̂t√
v̂t + ϵ

. (16)

19

Published in Transactions on Machine Learning Research (08/2023)

The update for a new state of the model parameter can also be written by substitution:

xt+1 = xt − α
mt

1− βt
1

1√
vt

1−βt
2

+ ϵ
. (17)

The approximation using Taylor’s expansion up to the first order will result with the following matrices:

Fxt = ID −
α

1− βt
1

∇xt

 mt√
vt

1−βt
2

+ ϵ

 ∣∣∣∣∣∣
x̂t,ût

Fut
= − α

1− βt
1

∇ut

 mt√
vt

1−βt
2

+ ϵ

 ∣∣∣∣∣∣
x̂t,ût

.

(18a)

(18b)

In the following, we determine the gradient terms in each of the expressions for Fxt
and Fut

. For simplicity,
we assume that mt−1 and vt−1 are constant w.r.t. both xt−1 and ut−1.

The gradient w.r.t. ut on mt and vt can be expressed as:

∇ut [mt] = (1− β1)J⊤
t

∇ut
[vt] = 2(1− β2)J⊤

t ⊙
(
J⊤

t ut

)
. (19)

Note that given two functions f (a notation for a general function, not the state-transition dynamic) and g

∇ut

[
f

g

]
= ∇ut

[
f ⊙ 1

g

]
= ∇ut

[f]⊙ 1
g

+ f ⊙∇ut

[
1
g

]
= ∇ut

[f]⊙ 1
g
− f ⊙ 1

g2 ⊙∇ut
[g] . (20)

Hence:

∇ut

 mt√
vt

1−βt
2

+ ϵ

 = ∇ut [mt]√
vt

1−βt
2

+ ϵ
− mt(√

vt

1−βt
2

+ ϵ

)2 ⊙
∇ut [vt]

2
√

(1− βt
2)vt

. (21)

To calculate the gradient w.r.t. xt, the update of Adam is rewritten as:{
mt = β1mt−1 + (1− β1)∇xt

[
u⊤

t L(xt)
]

vt = β2vt−1 + (1− β2)∇xt

[
u⊤

t L(xt)
]
⊙∇xt

[
u⊤

t L(xt)
]

.
(22)

The gradient w.r.t. xt on mt and vt can be expressed as:

∇xt
[mt] = (1− β1)∇2

xt

[
u⊤

t L(xt)
]

∇xt
[vt] = 2(1− β2)∇xt

[
u⊤

t L(xt)
]
⊙∇2

xt

[
u⊤

t L(xt)
]

. (23)

Hence:

∇xt

 mt√
vt

1−βt
2

+ ϵ

 = ∇xt
[mt]√

vt

1−βt
2

+ ϵ
− mt(√

vt

1−βt
2

+ ϵ

)2 ⊙
∇xt

[vt]
2
√

(1− βt
2)vt

. (24)

20

Published in Transactions on Machine Learning Research (08/2023)

A.2 Quadraticise cost function

The cost function consists of two terms: validation loss on the query subset and penalisation of the action
ut. Since the cost function itself is already in the second-order function w.r.t. the re-weighting vector u, we
only need to quadraticise the function using Taylor’s series w.r.t. the meta-parameter x.

A.2.1 Quadraticise validation loss

The loss term in (5) can be approximated to second order as:

111⊤
M L(xt) ≈ 111⊤

M L(x̂t) + (xt − x̂t)⊤ ∇xt

[
111⊤

M L(x̂t)
]

+ 1
2 (xt − x̂t)⊤ ∇2

xt

[
111⊤

M L(x̂t)
]

(xt − x̂t) . (25)

A.2.2 Quadraticise the penalisation of the action ut

The penalisation term is already in the quadratic form. Here, it is rewritten following the Taylor’s series as
follows:

βu

2 (ut − µu111M)⊤ (ut − µu111M) = βu

2 [(ut − ût) + ût − µu111M]⊤ [(ut − ût) + ût − µu111M]

= 1
2 (ut − ût)⊤ (βuIM) (ut − ût) + (ut − ût)⊤

βu (ût − µu111M) . (26)

Given the locally-quadratic approximation of the cost function in (25) and (26), the coefficient matrices and
vector of the quadratic form of the cost function can be written as:

Cxt,xt
= ∇2

xt

[
111⊤

M L(x̂t)
]

Cxt,ut
= Cut,xt

= 0
Cut,ut

= βuIM

cxt
= ∇xt

[
111⊤

M L(x̂t)
]

cut
= βu (ût − µu111M) .

(27a)
(27b)
(27c)
(27d)
(27e)

21

Published in Transactions on Machine Learning Research (08/2023)

Appendix B Derivation of iLQR

This section presents the derivation for one iteration of iLQR adopted from the original iLQR papers (Todorov
& Li, 2005; Tassa et al., 2012). One difference is at the backtracking line-search where we employ a similar
acceptance criterion as in DDP.

For brevity, the finite-horizon discrete-time optimal control problem in (1) is restated as follows:

{u∗
t }T

t=1 = arg min
{ut}T

t=1

T∑
t=1

c(xt, ut) s.t. xt+1 = f(xt, ut), (1)

Let Qt be the cost-to-go defined as:

Qt(xt:T , ut:T) =
T∑

j=t

c(xj , uj), (28)

and Vt be the value function at time step t. In other words, Vt is the cost-to-go given the local optimal
action sequence:

Vt(xt) = min
ut:T

Qt(xt:T , ut:T). (29)

According to the Dynamic Programming Principle, the objective function that minimises the cost function
over an entire sequence of actions ut:T can be reduced to a sequence of minimisation over a single action ut,
proceeding backwards in time:

Vt(xt) = min
ut:T

T∑
j=t

c(xj , uj) (according to the definition of Q defined in Eq. (28))

= min
ut

c(xt, ut) + min
u(t+1):T

T∑
j=t+1

c(xj , uj)

= min

ut

[c(xt, ut) + V (xt+1)]

= min
ut

[c(xt, ut) + V (f(xt, ut))] . (30)

By applying the Taylor’s series to the first order for the state-transition dynamics f and to the second order
for the cost function c about a nominal trajectory (x̂t, ût), the term inside the minimisation in (30) can be
approximated to:

c(xt, ut) + V (f(xt, ut)) ≈
1
2

 1
δxt

δut

⊤ 0 q⊤
xt

q⊤
ut

qxt
Qxt,xt

Qxt,ut

qut Qut,xt Qut,ut

 1
δxt

δut

 , (31)

where:
δxt = xt − x̂t, δut = ut − ût, (32)

and
qxt

= cxt
+ F⊤

xt
vt+1 qut

= cut
+ F⊤

ut
vt+1

Qxt,xt
= Cxt,xt

+ F⊤
xt

Vt+1Fxt
Qut,ut

= Cut,ut
+ F⊤

ut
Vt+1Fut

Qxt,ut
= Q⊤

ut,xt
= Cxt,ut

+ F⊤
xt

Vt+1Fut
, (33)

with Fxt
and Fut

are the first gradients of the state-transtition dynamics f w.r.t. the variable in the
subscripts, c(.) and C(.) are the first and second gradients of the cost function c w.r.t. the variables in the
subscripts (please refer to Eq. (2) for details), and vt+1 and Vt+1 are the first and second gradients of the
value function V w.r.t. the state xt+1.

22

Published in Transactions on Machine Learning Research (08/2023)

Minimising the quadratic problem in (31) w.r.t. δut results in:

δu∗
t = Ktδxt + kt, (34)

where:
Kt = −Q−1

ut,ut
Qut,xt

kt = −Q−1
ut,ut

qut
, (35)

Substituting the action δut obtained in (34) into (31) gives a quadratic model:

Vt(xt) ≈
1
2δx⊤

t Vtδxt + δx⊤
t vt + const., (36)

where Vt and vt are the second and first gradients of the value function Vt w.r.t. the state xt, which can be
expressed as:

Vt = Qxt,xt
+ Qxt,ut

Kt vt = qxt
+ Qxt,ut

kt. (37)

Hence, one can recursively calculate the local quadratic model {Vt, vt} of the value function Vt, and the
linear controller {Kt, kt} backward through time. Once it is completed, a new trajectory can be calculated
using the forward pass with the general non-linear state-transition dynamics f as follows:

x̂1 = x1

ut = Kt (xt − x̂t) + kt + ût

xt+1 = f (xt, ut) . (38)

Although the trajectory obtained in (38) converges to a local minimum for the approximate model of the
value function Vt, it does not guarantee the convergence for general non-linear models such as the one in
(1). The reason is that the new trajectory might deviate too far from the nominal trajectory, resulting in
a poor Taylor approximation of the true model. To overcome, a backtracking linear-search with parameter
ε ∈ (0, 1] is introduced:

ut = Kt (xt − x̂t) + εkt + ût. (39)

The criterion to accept the trajectory produced in the iteration with backtracking line-search is similar to
the one in DDP:

J(u1:T)− J(û1:T) <
1
2εθ1, (40)

where

J(u1:T) =
T∑

t=1
c(xt, ut) (41)

θt = θt+1 − q⊤
ut

Qut,ut
qut

. (42)

Hence, in the worst case when the new trajectory strays too far from the model’s region of validity, then ε→ 0
and the trajectory is the same as the nominal trajectory. The procedure of one iLQR iteration is outlined
in Algorithm 2 in Appendix D. In addition, the convergence proof for iLQR adapted from DDP (Yakowitz
& Rutherford, 1984) is provided in Appendix C to complete the analysis.

23

Published in Transactions on Machine Learning Research (08/2023)

Appendix C Convergence of iLQR

To prove the convergence of iLQR algorithm, we rely on Theorem 3 in (Polak, 1971, p. 14), which is re-stated
in Theorem 3 in Appendix C.1

C.1 Auxiliary to prove convergence

Definition 1 (Algorithm model). Given a : T → T is an algorithm, and c : T → R is a function used as
stopping criterion, the algorithm model can be described as:

1. Compute a z0 ∈ T .

2. Set i = 0.

3. Compute a(zi) .

4. Set zi+1 = a(zi).

5. If c(zi+1) ≥ c(zi), stop;3 else set i = i + 1 and go to step 3.

Theorem 3 will show what such an algorithm will compute.
Theorem 3 ((Polak, 1971, Theorem 3, p. 14)). Suppose that:

(i) c(.) is either continuous at all non-desirable points z ∈ T , or else c(z) is bounded from below for
z ∈ T ;

(ii) for every z ∈ T which is not desirable, there exist an ε(z) > 0 and a δ(z) < 0 such that:

c(a(z′))− c(z′) ≤ δ(z) < 0,∀z′ ∈ B(z, ε(z)) = {z ∈ T : ∥z′ − z∥B ≤ ε(z)}. (43)

Then, either the sequence {zi} constructed by algorithm defined in Definition 1 is finite and its next to last
element is desirable, or else it is infinite and every accumulation point of {zi} is desirable.

C.2 Proof of iLQR convergence

Since iLQR is an algorithm model as described in Definition 1, to prove its convergence property, one needs
to assert that the 2 conditions in Theorem 3 are met.

First condition is satisfied since the cost J(u1:T) is continuous, and twice differentiable. We will prove that
iLQR satisfies the second condition of Theorem 3.

From (39) and (42), the sequence of actions obtained from iLQR u1:T and θ1 depend on the nominal
trajectory. Hence, we explicitly denote them as u(ε, û) and θ1(û). In addition, since the loss function ℓ(.) is
assumed to be twice differentiable, the cost function and state-transition dynamics are continuous. Hence,
both u(ε, û) and θ1(û) are also continuous.

The convergence proof for iLQR is presented in Appendix C.2.2. The proof requires some auxiliary lemmas
in Appendix C.2.1.

C.2.1 Auxiliary lemmas

Lemma 4. If u(ε, ū) is a non-stationary sequence of actions, then θ1 < 0.
3A direct test for determining if zi is desirable may be substituted for the test c(zi+1) ≥ c(zi).

24

Published in Transactions on Machine Learning Research (08/2023)

Proof. It is apparent from the derivation of iLQR that qut
= 0,∀t ∈ {1, . . . , T} if and only if û is a stationary

sequence of actions. Hence, by negation, if û is a non-stationary sequence of actions, qut ̸= 0 for some time
steps t ∈ {1, . . . , T}.

Also note that, if u(ε, ū) is non-stationary, then û is also non-stationary. In addition, if the Hessian matrix
w.r.t. action u is assumed to be positive-definite (PSD), then from the construction, Qut,ut and its inverse
are also PSD.

Th PSD of Q−1
ut,ut

combining with (42) leads to the fact that θ1(û) < 0 for any non-stationary sequence of
actions û.

Lemma 5. If u(ε, ū) is a non-stationary sequence of actions, then:

J(u(ε, ū))− J(ū) = εθ1(ū) +O(ε2). (44)

Proof. If we define ∆Qt as the resulting incremental change in the cost-to-go Q from the perturbation ∆ut

using Taylor expansion, then:

∆Qt = Qt(xt, ut + ∆ut)−Qt(xt, ut) = q⊤
ut

∆ut +O(∥∆ut∥2). (45)

Note that:
J(u(ε, û))− J(û) = J(u1:N + ∆u1:N)− J(u1:N)

=
T∑

t=1
∆Qt =

N∑
t=1

q⊤
ut

∆ut +O
(
∥∆u1:N∥2) . (46)

Taking the derivative w.r.t. ε gives:
∂J(u(ε))

∂ε
=

T∑
t=1

q⊤
ut

dut

dε
. (47)

From (39), ut is a linear function w.r.t. ε, resulting in:

dut

dε
= kt = −Qut,ut

qut
. (48)

Hence:
∂J(u(ε))

∂ε
= −

T∑
t=1

q⊤
ut

Qut,ut
qut

= θ1(û), (49)

which implies (44).

Lemma 6. If u(ε, ū) is a non-stationary sequence of actions, then there exists ε1 such that:

J(u(ε, ū))− J(û) ≤ ηεθ1(û),∀ε ∈ [0, ε1],∀η ∈ (0.5, 1). (50)

Proof. The result in Lemma 5 can be re-written as:

J(u(ε, û))− J(û) = ηεθ1(û) + (1− η)εθ1(û) +O(ε2),∀η ∈ (0.5, 1). (51)

Hence, there must exist a value ε = ε1 ≥ 0 such that: (1− η)θ1(û) +O(ε2) < 0. This leads to:

J(u(ε, û))− J(û) ≤ ηε1θ1(û) ≤ ηεθ1(û),∀ε ∈ [0, ε1]. (52)

Note that the second inequality holds due to the negativity of θ1 proved in Lemma 4. This completes the
proof.

25

Published in Transactions on Machine Learning Research (08/2023)

Lemma 7. Given that θ1 and any action sequence u are continuous, and for any δ > 0 such that ∥û−u∥ < δ,
there exists ε2 > 0 such that:

θ1(u)− ε2 < θ1(û) < θ1(u) + ε2.

Proof. Since θ1 is assumed to be continuous, and the variable u is also continuous, we can employ the
definition of continuity of function θ1 at u to obtain the following:

∀ε2 > 0 =⇒ ∃δ > 0 : |θ1(û)− θ1(u)| < ε2,∀û ∈ {û ∈ U : ∥û− u∥ < δ}. (53)

The negation form of the statement in (53) can be expressed as:

∀δ > 0 =⇒ ∃ε2 > 0 : |θ1(û)− θ1(u)| < ε2,∀û ∈ {û ∈ U : ∥û− u∥ < δ}. (54)

Solving the inequation above completes the proof.

C.2.2 Convergence of iLQR

Theorem 8. Let the state-transition dynamics f and the cost function c have continuous second partial
derivatives w.r.t the continuous state x and action u. If u(ε, û) denotes the successive application of iLQR,
then any accumulation point of u(ε, û) is stationary w.r.t the finite-horizon cost J(u1:T).

Proof. We first determine the condition that u(ε, û) calculated in (39) is the successor of iLQR at û. Ac-
cording to iLQR algorithm, u(ε, û) = iLQR(û) only if:

J(u(ε, û))− J(û) ≤ ε

2θ1(û). (55)

Note that from Lemma 6:

J(u(ε, û))− J(û) ≤ ηεθ1(û) <
ε

2θ1(û),∀η ∈ (0.5, 1),∀ε ∈ [0, ε1] (56)

which indicates that u(ε, û) is a successor of iLQR when ε ∈ [0, ε1].

If u(ε, û) is a successor of iLQR, the acceptance criterion combining with the result in Lemma 7 leads to:

J(iLQR(û))− J(û) ≤ ε

2θ1(û) <
ε

2 [θ1(u) + ε2] ,∀û ∈ {û ∈ U : ∥û− u∥ < δ}. (57)

Note that if δ is set to be small enough, then ε2 is also very small, resulting in θ1(u) + ε2 < 0. If we set
δ(û) = δ and ε(û) = ε

2 [θ1(u) + ε2], then iLQR satisfies the second condition in Theorem 3.

26

Published in Transactions on Machine Learning Research (08/2023)

Appendix D Trajectory optimisation algorithm(s)

Algorithm 2 Implementation of iLQR backward to determine the controller of interest.
1: procedure iLQRbackward({x̂t, ût}T

t=1)
2: VT +1 = 0, and vT +1 = 0 ▷ Quadratic matrix and vector of cost-to-go
3: θT +1 = 0 ▷ Stopping criterion for a nominal trajectory
4: for t = T : 1 do ▷ Backward through time
5: Fxt

, Fut
= linearise dynamics ▷ see Appendix A.1

6: Cxt,xt
, Cxt,ut

, Cut,xt
, Cut,ut

, cxt
, cut

= quadraticise cost function ▷ see Appendix A.2

7: Qxt,xt = Cxt,xt + F⊤
xt

Vt+1Fxt ▷ 2nd derivatives of cost-to-go
8: Qxt,ut

= F⊤
xt

Vt+1Fut

9: Qut,xt
= F⊤

ut
Vt+1Fxt

10: Qut,ut
= Cut,ut

+ F⊤
ut

Vt+1Fut

11: qxt = cxt + F⊤
xt

vt+1 ▷ 1st derivatives of cost-to-go
12: qut = cut + F⊤

ut
vt+1

13: Kt = −Q−1
ut,ut

Qut,xt
▷ Linear controller

14: kt = −Q−1
ut,ut

qut

15: Vt = Qxt,xt + Qxt,utKt ▷ 2nd derivatives of value function
16: vt = qxt + Qxt,utkt ▷ 1st derivatives of value function

17: θt = θt+1 − q⊤
ut

Qut,ut
qut

18: return {Kt, kt}T
t=1, θ1

27

Published in Transactions on Machine Learning Research (08/2023)

Appendix E Complexity analysis

Before analysing the complexity of the proposed method presented in Algorithm 1, we provide a detail
description of the annotations used for brevity in Table 4.

Table 4: Detailed description of the notations used in the paper.

Notation Description
O((T0)) Time complexity to train a meta-learning method fol-

lowing a uniform weighting strategy
D Dimension of meta-parameter x
M Number of tasks within a “meta” mini-batch
m0 = maxi∈{1,...,M} m

(q)
i Total number of validation samples within a task

niLQR Number of iterations used in iLQR to calculate the re-
weighting vector u

nls Number of iterations performing line-search
η Number of arithmetic operations in the model of interest

The downside of TOW is the overhead due to the linearisation and quadraticisation for the state-transition
dynamics and cost function, and the calculation to obtain the controller Kt and kt shown in Algorithm 1. If
O(T0) is the time complexity to train a meta-learning method following a uniform weighting strategy, then
the time complexity required by TOW will consist of the following:

• nominal trajectory to obtain (x̂t, ût): O(T0)

• linearisation and quadraticisation using Gauss-Newton matrices: O(niLQRm0ηD)

• iLQR backward: O(niLQRMD)

• iLQR forward with back-tracking line search: O(niLQRnlsT0).

Thus, the final complexity of TOW is: O((niLQRnls + 1)T0 + niLQR(m0η + M)D)) comparing to O(T0) in
the conventional meta-learning.

28

Published in Transactions on Machine Learning Research (08/2023)

Appendix F Convergence analysis for trajectory optimisation based task weighting
meta-learning

F.1 Notations

The following notations are used throughout the paper:

• ∥x∥ is the L2 norm of a vector x ∈ RD, e.g.
√

x⊤x

• ∥A∥ is the matrix norm of a matrix A ∈ RM×D induced by a vector norm:

∥A∥ = sup ∥Ax∥
∥x∥ ,∀x ∈ RD : ∥x∥ ≠ 0.

Given the vector and matrix norm, two common inequalities used in this section are:

• Triangle inequality: ∥A + B∥ ≤ ∥A∥+ ∥B∥,∀A, B ∈ RM×D

• Sub-multiplication: ∥Ax∥ ≤ ∥A∥∥x∥.

F.2 Auxiliary lemmas

F.2.1 Boundedness of action (or weighting vector) u

Lemma 1. If ut is a stationary action of a nominal action ût obtained from iLQR, then:

∃δ > 0 : ∥ut − ût∥ ≤ δ.

Proof. According to the procedure of iLQR shown in (39):

ut − ût = Kt (xt − x̂t) + εkt. (58)

Since the matrix K, vectors k, x and x̂ are well-defined, the norm of u− û is also well-defined.

In addition, δ is implicitly related to the Gaussian prior N (ut; µu111, 1/βuIM). A larger value of βu in (5)
would result in a smaller value for δ.

Corollary 9. If ut1 and ut2 are stationary actions of two nominal actions ût1 = ût2 = ûuniform = 1/M 111
obtained from iLQR at time steps t1 and t2, respectively, then the followings hold:

∥ut1 − ut2∥ ≤ 2δ (bounded L2 norm of difference between 2 actions)

∥ut1∥ ≤ δ + 1√
M

(bounded L2 norm)

111⊤ut1 ≤ δ
√

M + 1. (bounded L1 norm)

(59a)

(59b)

(59c)

Proof. The first inequality (59a) can be proved by simply applying triangle inequality on the ℓ2 norm and
employing the result in Lemma 1:

∥ut1 − ut2∥ = ∥(ut1 − ûuniform) + (ûuniform − ut2)∥
≤ ∥ut1 − ûuniform∥+ ∥ut2 − ûuniform∥
≤ ∥ut1 − ût1∥+ ∥ut2 − ût2∥
≤ 2δ. (60)

The second inequality (59b) can similarly be proved using triangle inequality:

∥ut1∥ = ∥(ut1 − ûuniform) + ûuniform∥ ≤ ∥ut1 − ûuniform∥+ ∥ûuniform∥ ≤ δ + 1√
M

. (61)

29

Published in Transactions on Machine Learning Research (08/2023)

The last inequality (59c) can be proved by the Cauchy-Schwarz inequality:

111⊤ut1 ≤
∣∣111⊤ut1

∣∣ ≤ √M∥ut1∥ (Cauchy-Schwarz inequality)

≤ δ
√

M + 1. (due to Ineq. (59b)) (62)

F.2.2 Bounded variances of the loss’ gradient and the weighted validation loss

The bounded gradient norm in (6) (see Assumption 1) also implies that the variance of gradient of the loss
function w.r.t. training samples is bounded as shown in Lemma 10.

Lemma 10 (Bounded variance of loss’ gradient). If Assumption 1 holds, then the variance of gradient of
the loss function is σ2-bounded:

∃σ > 0 : E(sij ,y)∼Di

[∥∥∇xℓ(sij , yij ; x)− E(sij ,y)∼Di
[∇xℓ(sij , yij ; x)]

∥∥2
]
≤ σ2, ∀x ∈ RD

Proof. The term inside the expectation in the left-hand side can be written as:∥∥∇xℓ(sij , yij ; x)− E(sij ,y)∼Di
[∇xℓ(sij , yij ; x)]

∥∥
≤ ∥∇xℓ(sij , yij ; x)∥+

∥∥E(sij ,y)∼Di
[∇xℓ(sij , yij ; x)]

∥∥ (triangle inequality)
≤ ∥∇xℓ(sij , yij ; x)∥+ E(sij ,y)∼Di

[∥∇xℓ(sij , yij ; x)∥] (Jensen’s inequality)
≤ 2L (Boundedness of gradient in (6), which is proved in Lemma 14). (63)

Selecting σ = 2L completes the proof.

The result in Lemma 10 also leads to the boundedness of the variance of the weighted validation loss as
shown in Lemma 11.

Lemma 11 (Bounded variance of weighted loss). Given Lemma 10, the variance of ∇x
[
u⊤

t L(xt)
]

is bounded
above by σ̃2 = σ2 (δ + M−0.5)2.

Proof. We use the following well-known inequality for variance as a part of the proof.

If Xi,∀i ∈ {1, . . . , n}, are random variables with finite variance: Var (Xi) < +∞, then:

Var
(

n∑
i=1

Xi

)
≤ n

n∑
i=1

Var (Xi) .

Note that the validation loss Li(xt) defined in (3) is the empirical expected values of loss ℓ evaluated on task
i-th. Hence, applying the above inequality for variance gives:

Var (∇xLi(xt)) = Var

 1
mq

mq∑
j=1

∇xℓ

(
s(q)

ij , y
(q)
ij ; x− γ

ms

ms∑
k=1

∇x

[
ℓ
(

s(s)
ik , y

(s)
ik ; xt

)])
≤ 1

mq

mq∑
j=1

Var
(

∇xℓ

(
s(q)

ij , y
(q)
ij ; x− γ

ms

ms∑
k=1

∇x

[
ℓ
(

s(s)
ik , y

(s)
ik ; xt

)]))
≤ σ2. (due to Lemma 10) (64)

30

Published in Transactions on Machine Learning Research (08/2023)

The variance of the weighted validation loss ∇xu⊤
t L(xt) can be written as:

Var
(
∇xu⊤

t L(xt)
)

= Var
(

M∑
i=1

uti∇xLi(xt)
)

=
M∑

i=1
u2

tiVar (∇xLi(xt))

≤ σ2
M∑

i=1
u2

ti = σ2∥ut∥2 (due to the result in (64))

≤ σ2 (δ + M−0.5)2 (Corollary 9). (65)

F.2.3 Smoothness of validation loss

In this subsubsection, we prove Lemma 12 about the smoothness of validation loss. To make the subsub-
section self-contained, we re-state the definition of the task-specific parameter ϕi(x) and the true validation
loss L̄i(x) as follows:

ϕi(x) = x− γ

m
(s)
i

m
(s)
i∑

k=1
∇x

[
ℓ
(

s(s)
ik , y

(s)
ik ; x

)]
(66)

L̄i(x) = E(s(q)
ij

,y
(q)
ij

)
∼D(q)

i

[
ℓ
(

s(q)
ij , y

(q)
ij ; ϕ(x)

)]
. (7)

Note that in (3), the task-specific parameter is defined as:

ϕ∗
i (x) ∈ arg min

ϕi

1
m

(s)
i

m
(s)
i∑

k=1

[
ℓ
(

s(s)
ik , y

(s)
ik ; ϕi(x)

)]
.

Here, we approximate that lower-level optimisation by one step of gradient descent as shown in Eq. (66).

Lemma 12 and its proof are shown as follows:
Lemma 12. If the conditions in Assumptions 1 to 3 hold, then the gradient of the true validation loss L̄i(x)
defined in Eq. (7) is S̃-Lipschitz, where: S̃ = S(1 + γS)2 + γρL.

Proof. Before starting the proof, we exploit the notation of gradient of the loss function at a point x = v as
follows:

∇xℓ(s, y; v) = ∇xℓ(s, y; x)
∣∣∣∣
x=v.

(67)

Given the definition of the true validation loss in Eq. (7), its gradient w.r.t. x can be calculated using chain
rule as follows:

∇xL̄i(x) = ∇xE(s(q)
ij

,y
(q)
ij

)
∼D(q)

i

[
ℓ
(

s(q)
ij , y

(q)
ij ; ϕi(x)

)]
= E(s(q)

ij
,y

(q)
ij

)
∼D(q)

i

[
∇xϕi(x)×∇xℓ

(
s(q)

ij , y
(q)
ij ; ϕi(x)

)]
. (68)

And since ϕi(x) obtained by gradient descent does not depends on validation (or query) samples, we can,
therefore, rewrite the above gradient as:

∇xL̄i(x) = ∇xϕi(x)× E(s(q)
ij

,y
(q)
ij

)
∼D(q)

i

[
∇xℓ

(
s(q)

ij , y
(q)
ij ; ϕi(x)

)]
=
{

I− γE(s(s)
ij

,y
(s)
ij

)
∼S(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x

)]}
× E(s(q)

ij
,y

(q)
ij

)
∼D(q)

i

[
∇xℓ

(
s(q)

ij , y
(q)
ij ; ϕi(x)

)]
. (69)

31

Published in Transactions on Machine Learning Research (08/2023)

Note that we abuse the notation and use E(s(s)
ij

,y
(s)
ij

)
∼S(s)

i

to indicate the average evaluated on all data points

in set S(s)
i .

In the following, we omit sample (s, y) from the expectation to simplify the notations. In particular, the
above gradient can be re-written as:

∇xL̄i(x) =
{

I− γES(s)
i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x

)]}
ED(q)

i

[
∇xℓ

(
s(q)

ij , y
(q)
ij ; ϕi(x)

)]
. (70)

Thus, we can calculate the difference of the gradient evaluated on the same task Ti but with two different
meta-parameters:∥∥∇xL̄i (x̄)−∇xL̄i (x̃)

∥∥
=
∥∥∥{I− γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]}
ED(q)

i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̄)

)]
−
{

I− γES(s)
i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̃

)]}
ED(q)

i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)]∥∥∥
=
∥∥∥{I− γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]}
ED(q)

i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̄)

)]
−
{

I−γES(s)
i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]
+ γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]
−γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̃

)]}
× ED(q)

i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)]∥∥∥ (adding and substract the green terms)

=
∥∥∥{I− γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]}
ED(q)

i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̄)

)
−∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)]
−γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)
−∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̃

)]
ED(q)

i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)]∥∥∥ .

(71)

Applying the triangle inequality gives:∥∥∇xL̄i (x̄)−∇xL̄i (x̃)
∥∥

≤
∥∥∥{I− γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]}
ED(q)

i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̄)

)
−∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)]∥∥∥
+
∥∥∥γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)
−∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̃

)]
ED(q)

i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)]∥∥∥ . (72)

Next, we upper-bound the two terms in the right-hand side of Ineq. (72). The first term can be upper-
bounded as:

First term

=
∥∥∥{I− γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]}
ED(q)

i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̄)

)
−∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)]∥∥∥
≤
∥∥∥I− γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥ · ∥∥∥ED(q)
i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̄)

)
−∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)]∥∥∥ (73)

Applying Jensen’s inequality on the L2 norm of the expectation in the right-hand side of the above inequality
to bring the expectation outside of the L2 norm, then employing the smoothness of ℓ in Assumption 2 to
obtain the following:

First term ≤
∥∥∥I− γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥× ED(q)
i

∥∥∥∇xℓ
(

s(q)
ik , y

(q)
ik ; ϕi(x̄)

)
−∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)∥∥∥
≤
∥∥∥I− γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥× S ∥ϕi(x̄)− ϕi(x̃)∥ . (∇xℓ is S-Lipschitz – Assumption 2)
(74)

32

Published in Transactions on Machine Learning Research (08/2023)

Given the definition of ϕ(x) in Eq. (66), we can obtain the following:

∥ϕi(x̄)− ϕi(x̃)∥ =
∥∥∥(x̄− x̃)− γES(s)

i

[
∇xℓ

(
s(s)

ik , y
(s)
ij ; x̄

)
−∇xℓ

(
s(s)

ik , y
(s)
ij ; x̃

)]∥∥∥
≤ ∥x̄− x̃∥+ γ

∥∥∥ES(s)
i

[
∇xℓ

(
s(s)

ik , y
(s)
ij ; x̄

)
−∇xℓ

(
s(s)

ik , y
(s)
ij ; x̃

)]∥∥∥ (triangle inequality)

≤ ∥x̄− x̃∥+ γES(s)
i

∥∥∥∇xℓ
(

s(s)
ik , y

(s)
ij ; x̄

)
−∇xℓ

(
s(s)

ik , y
(s)
ij ; x̃

)∥∥∥ (Jensen’s inequality)

≤ ∥x̄− x̃∥+ γS ∥x̄− x̃∥ (Assumption 2)
(75)

Thus, one can upper-bound further Ineq. (74) as follows:

First term ≤ S(1 + γS)
∥∥∥I− γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥ · ∥x̄− x̃∥. (76)

If {λd}D
d=1 are the eigenvalues of the Hessian matrix ES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]
, then due to Lemma 13,

the eigenvalues of I − γES(s)
i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]
are {1 − γλd}D

d=1. In addition, since I −

γES(s)
i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]
is symmetric and positive semi-definite, its norm equals to the largest eigen-

value (refer to Lemma 15):∥∥∥I− γES(s)
i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥ = max
d
|1− γλd| ≤ 1 + γ max

d
|λd|. (77)

According to Assumption 2 and the result in (Bubeck et al., 2015, section 3.2, page 266), the eigenvalues of
the Hessian matrix ES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]
are smaller than S, implying:

∥∥∥I− γES(s)
i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥ ≤ 1 + γS. (78)

Therefore, the first term on the right-hand side of (72) is upper-bounded by:

First term ≤ S (1 + γS)2 ∥x̄− x̃∥ . (79)

The second term in the right-hand side of (72) can be upper-bounded as:

Second term =
∥∥∥γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)
−∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̃

)]
ED(q)

i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)]∥∥∥
≤
∥∥∥γES(s)

i

[
∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)
−∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̃

)]∥∥∥ · ∥∥∥ED(q)
i

[
∇xℓ

(
s(q)

ik , y
(q)
ik ; ϕi(x̃)

)]∥∥∥
≤ γES(s)

i

∥∥∥∇2
xℓ
(

s(s)
ik , y

(s)
ik ; x̄

)
−∇2

xℓ
(

s(s)
ik , y

(s)
ik ; x̃

)∥∥∥× ED(q)
i

∥∥∥∇xℓ
(

s(q)
ik , y

(q)
ik ; ϕi(x̃)

)∥∥∥
(Jensen’s inequality)

≤ γρL ∥x̄− x̃∥ (Eq. (6) and Assumption 3). (80)

Combining the results in (72), (79) and (80) gives:∥∥∇xL̄i (x̄)−∇xL̄i (x̃)
∥∥ ≤ [S(1 + γS)2 + γρL

]
∥x̄− x̃∥ . (81)

This completes the proof.

33

Published in Transactions on Machine Learning Research (08/2023)

F.3 Convergence of TOW

Theorem 2 (Main result). If Assumptions 1 to 3 hold, the learning rate α < 2/S̃(δ
√

M+1), and z is randomly
sampled from {xt}Titer

t=1 returned by Algorithm 1, then:

Ez∼{xt}Titer
t=1

[
E(

D(q)
1:t

)M

[∥∥∇zu⊤
t L̄1:M (z)

∥∥2]] ≤ ϵ0 + κ

Titer
,

where:

ϵ0 =
4δB
√

M + α2σ̃2S̃
(

δ
√

M + 1
)

α
[
2− αS̃

(
δ
√

M + 1
)] > 0, κ = 2u⊤

1 L̄1:M (x1)
α
[
2− αS̃

(
δ
√

M + 1
)] ,

with Titer as the number of gradient-update for the meta-parameter, and E(
D(q)

1:t

)M as the expectation taken
over all query data sampled from t mini-batches.

Proof. According to Eq. (7), L̄i(x) ∈ R is the expected validation loss of task i-th using meta-parameter

x. In addition, the notation
(
D(q)

t

)M

indicates the data probability that generates query data pairs for M

tasks in a mini-batch at time step t.

For convenience, we also denote L̄(x) ∈ RM is the vector consisting of expected validation losses on M tasks
in a mini-batch of tasks:

L̄(x) =
[
L̄1(x) L̄2(x) . . . L̄M (x)

]⊤
. (82)

From Lemma 12, the gradient of the validation loss L̄i (x) is S̃-Lipschitz continuous. Hence, applying Taylor’s
theorem for the function L̄i(xt+1) at point xt gives:

L̄i (xt+1) ≤ L̄i (xt) + ∇⊤
x L̄i (xt) (xt+1 − xt) + S̃

2 ∥xt+1 − xt∥2. (83)

Note that uti is constrained to be non-negative as mentioned in Section 3.1 or in step 16 of Algorithm 1.
Hence, one can multiply both sides by uti ≥ 0, t ∈ {1, . . . , T}, i ∈ {1, . . . , M} and sum side-by-side to obtain:

u⊤
t L̄ (xt+1) ≤ u⊤

t L̄ (xt) + ∇⊤
x
[
utL̄ (xt)

]
(xt+1 − xt) + S̃

2 ∥xt+1 − xt∥2111⊤
M ut. (84)

For simplicity, we assume that the state-transition dynamics is SGD as mentioned in (5). Thus:

xt+1 − xt = −α∇x
[
u⊤

t L (xt)
]

. (85)

Thus, one can simplify to:

u⊤
t L̄ (xt+1) ≤ u⊤

t L̄ (xt)− α∇⊤
x
[
utL̄ (xt)

]
∇x

[
u⊤

t L (xt)
]

+ S̃

2
∥∥∇x

[
u⊤

t L (xt)
]∥∥2111⊤

M ut. (86)

The above inequality contains the true validation loss L̄(x) and the empirical validation loss L(x). The relation
between them can be written as: L̄(x) = E(D(q))M [L(x)]. Thus, we take the expectation of validation data
(expectation over the t-th mini-batch, each consists of M tasks) on both sides to obtain:

E(
D(q)

t

)M

[
u⊤

t L̄ (xt+1)
]
≤ E(

D(q)
t

)M

[
u⊤

t L̄ (xt)− α∇⊤
x
[
utL̄ (xt)

]
∇x

[
u⊤

t L (xt)
]

+ S̃

2
∥∥∇x

[
u⊤

t L (xt)
]∥∥2111⊤

M ut

]
,

(87)

where
(
D(q)

t

)M

is the probability distribution of task data in the mini-batch of M tasks at time step t.

34

Published in Transactions on Machine Learning Research (08/2023)

Note that one can use Eq. (7) to imply that:

∇x
[
utL̄ (xt)

]
= E(

D(q)
t

)M

[
∇x

[
u⊤

t L (xt)
]]

,

which also implies:
∇x

[
utL̄ (xt)

]
= E(

D(q)
t

)M

[
∇x

[
u⊤

t L (xt)
]]

. (88)

Thus, the above inequality can be written as:

E(
D(q)

t

)M

[
u⊤

t L̄ (xt+1)
]
≤ u⊤

t L̄ (xt)− α
∥∥∇x

[
utL̄ (xt)

]∥∥2

+ α2S̃

2

[
Var

[
∇x

[
u⊤

t L (xt)
]]

+
∥∥∇x

[
utL̄ (xt)

]∥∥2]111⊤
M ut

(since E[X2] = Var[X] + (E[X])2)

≤ u⊤
t L̄ (xt)− α

(
1− αS̃

2 111⊤
M ut

)∥∥∇x
[
utL̄ (xt)

]∥∥2

+ α2S̃

2 Var
[
∇x

[
u⊤

t L (xt)
]]

111⊤
M ut. (89)

Since: {
111⊤

M ut ≤ δ
√

M + 1 (Corollary 9 in Appendix F.2.1)
Var

[
∇x

[
u⊤

t L (xt)
]]
≤ σ̃2 (Lemma 11)

then:

E(
D(q)

t

)M

[
u⊤

t L̄ (xt+1)
]
≤ u⊤

t L̄ (xt)− α

[
1− αS̃

2

(
δ
√

M + 1
)]∥∥∇x

[
utL̄ (xt)

]∥∥2 + α2σ̃2S̃

2

(
δ
√

M + 1
)

.

(90)

Re-arranging the gradient norm of the weighted validation loss to the left-hand side gives:

α

[
1− αS̃

2

(
δ
√

M + 1
)]∥∥∇x

[
utL̄ (xt)

]∥∥2 ≤ u⊤
t L̄ (xt)− E(

D(q)
t

)M

[
u⊤

t L̄ (xt+1)
]

+ α2σ̃2S̃

2

(
δ
√

M + 1
)

.

(91)

The right-hand-side, excluding the constant term at the end, can be written as:

u⊤
t L̄ (xt)− E(

D(q)
t

)M

[
u⊤

t L̄ (xt+1)
]

=
[
u⊤

t L̄ (xt)− E(
D(q)

t

)M

[
u⊤

t+1L̄ (xt+1)
]]

+
[
E(

D(q)
t

)M

[
u⊤

t+1L̄ (xt+1)
]
− E(

D(q)
t

)M

[
u⊤

t L̄ (xt+1)
]]

(92)

The second part in the right-hand side of the above expression can be upper-bounded as:

E(
D(q)

t

)M

[
u⊤

t+1L̄ (xt+1)
]
− E(

D(q)
t

)M

[
u⊤

t L̄ (xt+1)
]

= E(
D(q)

t

)M

[
(ut+1 − ut)⊤ L̄ (xt+1)

]

≤ E(
D(q)

t

)M

∥ut+1 − ut∥

√√√√ M∑
i=1

L̄2
i (xt+1)

 (Cauchy-Schwarz inequality)

≤ B
√

M E(
D(q)

t

)M ∥ut+1 − ut∥ (ℓ is B-bounded, and hence, L̄i is B-bounded)

≤ 2δB
√

M (Corollary 9). (93)

35

Published in Transactions on Machine Learning Research (08/2023)

Hence, one can upper-bound further the right-hand side of (91), resulting in:

α

[
1− αS̃

2

(
δ
√

M + 1
)]∥∥∇x

[
utL̄ (xt)

]∥∥2 ≤ u⊤
t L̄ (xt)− E(

D(q)
t

)M

[
u⊤

t+1L̄ (xt+1)
]

+ 2δB
√

M

+ α2σ̃2S̃

2

(
δ
√

M + 1
)

. (94)

We take the expectation over all the mini-batches used at time step t, t− 1, . . . , 1 on both sides of Ineq. (94)
to obtain:

α

[
1− αS̃

2

(
δ
√

M + 1
)]

E(
D(q)

1:t

)M

[∥∥∇x
[
utL̄ (xt)

]∥∥2]
≤ E(

D(q)
1:t

)M

[
u⊤

t L̄ (xt)
]
− E(

D(q)
1:t

)M

[
u⊤

t+1L̄ (xt+1)
∣∣x1
]

+ 2δB
√

M + α2σ̃2S̃

2

(
δ
√

M + 1
)

, (95)

where: E(
D(q)

1:t

)M [.] = E(
D(q)

1

)ME(
D(q)

2

)M . . .E(
D(q)

t

)M [.].

Summing (95) from t = 1 to Titer gives:

α

[
1− αS̃

2

(
δ
√

M + 1
)] Titer∑

t=1
E(

D(q)
1:t

)M

[∥∥∇x
[
utL̄ (xt)

]∥∥2]
≤ u⊤

1 L̄ (x1)− E(
D(q)

1:Titer

)M

[
u⊤

Titer+1L̄ (xTiter+1)
]

+ Titer

[
2δB
√

M + α2σ̃2S̃

2

(
δ
√

M + 1
)]

. (96)

Note that uti ≥ 0 ∀t ∈ {1, . . . , Titer, i ∈ {1, . . . , M}, and L̄i ≥ 0 due to the non-negativity of the loss function
ℓ assumed in (3). Hence, we can upper-bound further the right-hand side to:

α

[
1− αS̃

2

(
δ
√

M + 1
)] Titer∑

t=1
E(

D(q)
1:t

)M

[∥∥∇x
[
utL̄ (xt)

]∥∥2] ≤ u⊤
1 L̄ (x1) + Titer

[
2δB
√

M + α2σ̃2S̃

2

(
δ
√

M + 1
)]

.

(97)

If the learning rate α is selected such that: 1 − αS̃/2
(

δ
√

M + 1
)

> 0, then dividing both sides by

αTiter

[
1− αS̃/2×

(
δ
√

M + 1
)]

gives:

1
Titer

Titer∑
t=1

E(
D(q)

1:t

)M

[∥∥∇x
[
utL̄ (xt)

]∥∥2] ≤ 2u⊤
1 L̄ (x1) + Titer

[
4δB
√

M + α2σ̃2S̃
(

δ
√

M + 1
)]

αTiter

[
2− αS̃

(
δ
√

M + 1
)] . (98)

Next, we use a similar trick in the SVRG paper (Johnson & Zhang, 2013) to make the left-hand side term
useful. The idea is to output some randomly chosen xt rather than outputing xTiter . For simplicity, let
z = xt with a uniform probability for t ∈ {1, . . . , Titer}. The expectation of the gradient norm in this case
can be expressed as:

1
Titer

Titer∑
t=1

E(
D(q)

1:t

)M

[∥∥∇x
[
utL̄ (xt)

]∥∥2] = Ez∼{xt}Titer
t=1

[
E(

D(q)
1:t

)M

[∥∥∇x
[
utL̄ (xt)

]∥∥2]]
. (99)

This combining with (98) leads to:

Ez∼{xt}Titer
t=1

[
E(

D(q)
1:t

)M

[∥∥∇z
[
utL̄ (z)

]∥∥2]] ≤ 2u⊤
1 L̄ (x1) + Titer

[
4δB
√

M + α2σ̃2S̃
(

δ
√

M + 1
)]

αTiter

[
2− αS̃

(
δ
√

M + 1
)] , (100)

which concludes the proof.

36

Published in Transactions on Machine Learning Research (08/2023)

F.4 Miscellaneous lemmas

Lemma 13. If λ is an eigenvalue of matrix A, then λ− 1 is an eigenvalue of matrix A− I, where I is the
identity matrix.

Proof. According to the definition of eigenvalue, λ is an eigenvalue of A if:

det (A− λI) = 0.

Rewriting the above equation gives:

det ((A− I)− (λ− 1) I) = 0. (101)

Hence, λ− 1 is an eigenvalue of A− I.

Lemma 14 (Adpated from https://math.stackexchange.com/a/4303207/274798).
If a function f : Rn → Rm, where n, m ∈ N, is differentiable and L-Lipschitz, then its gradient norm is

bounded by L.

Proof. According to the definition of vector or matrix norm:

∥∇f(x)∥ = sup
v

∥∇f(x) v∥
∥v∥

,∀x, v ∈ Rn : ∥v∥ ≠ 0

= sup
v

lim
λ→0

|λ|∥∇f(x) v∥
|λ|∥v∥

, λ ∈ R, λ ̸= 0

= sup
v

lim
λ→0

∥∇f(x) (λv)∥
∥λv∥

. (102)

Applying the triangle inequality gives:

∥∇f(x)∥ ≤ sup
v

lim
λ→0

∥f(x + λv)− f(x)−∇f(x) (λv)∥
∥λv∥

+ ∥f(x + λv)− f(x)∥
∥λv∥

≤ sup
v

lim
λ→0

∥f(x + λv)− f(x)−∇f(x) (λv)∥
∥λv∥

+ L∥x + λv − x∥
∥λv∥

(f is L-Lipschitz)

≤ L. (103)

The first term equals to 0 since it corresponds to the definition of Fréchet derivative.

Lemma 15 (Adapted from https://math.stackexchange.com/a/2193914/274798).
If A ∈ Rn×n is a positive definite symmetric matrix, then its largest eigenvalue is

λmax = max
{
∥A x∥
∥x∥

: x ̸= 0
}

. (104)

Proof. According to the spectral theorem, if A is a real and symmetric matrix, then there exists an orthonor-
mal basis consisting of eigenvectors of A, denoted as v1, v2, . . . , vn. Without loss of generality, let’s assume
that the corresponding eigenvalues are: λ1, λ2, . . . , λn.

For any non-zero vector x, we can represent it in this orthonormal basis as:

x =
n∑

i=1
civi, ci ∈ R. (105)

37

https://math.stackexchange.com/a/4303207/274798
https://math.stackexchange.com/a/2193914/274798

Published in Transactions on Machine Learning Research (08/2023)

Then, the function of interest can be calculated as follows:

∥A x∥
∥x∥

=
∥
∑n

i=1 ciλivi∥√∑n
i=1 c2

i

=

√∑n
i=1 c2

i λ2
i∑n

i=1 c2
i

({vi}n
i=1 is an orthonormal basis)

≤ max
i∈{1,...,n}

λi. (106)

The equality occurs when the vector x equals to the corresponding eigenvector of the eigenvalue
maxi∈{1,...,n} λi.

38

Published in Transactions on Machine Learning Research (08/2023)

Appendix G Experimental settings

For all experiments, GD is used to obtain ϕ∗(x) with 5 iterations and a learning rate of 0.1 for Omniglot
and 0.01 for mini-ImageNet. The learning rate for the meta-parameters, α, is set at 10−4 for all the setting.
The mini-batch size is M = 10 tasks for Omniglot and M = 5 tasks for mini-ImageNet. For the Dirichlet
concentration of the prior in the exploration and exploitation baselines, we try three values of κ ∈ {0.2, 1.2, 5},
and found that a too small value of κ leads to noisy learning since only the easiest or hardest task is selected,
while too large value of κ makes both the baselines identical to uniform weighting. Hence, we select κ = 1.2
that balances between these two strategies. Note that κ = 1 results in a random prior, leading to a trivial
solution. For the trajectory optimiser iLQR, the state-transition dynamics f follows the formula of Adam
optimiser since Adam provides a less noisy training as in SGD. The nominal trajectory is, as mentioned
in Section 3.1, selected with uniform actions: ûtj = 1/M,∀j ∈ {1, . . . , M}, t ∈ {1, . . . , T}. The number of
iterations used in iLQR is 2 to speed up the training, although higher number of iterations can be used
to achieve better performance by trading off the running time. We also provide an ablation study with
two different numbers of iterations in iLQR in Section 5.4, where the larger number of iterations in iLQR
slightly improves the prediction accuracy on the validation set of mini-ImageNet. The number of time steps
(or number of mini-batches) is T = 10 for Omniglot and 5 for mini-ImageNet. The parameters of the
prior on the action ut are µu = 1/M and βu = 10. As we do not observe any major difference between
different configuration of M and T used in this experiment, we report the result for the case M = 10 and
T = 5. Each experiment is carried out on a single NVIDIA Tesla V100 GPU with 32 GB memory following
the configuration of NVIDIA DGX-1. The experiments mentioned in Section 5.4 is performed on a single
NIVIDIA A100 GPU with 40 GB memory.

39

Published in Transactions on Machine Learning Research (08/2023)

Appendix H Additional results when calculating with full matrix Vt

In this Appendix, we provide additional results of prediction accuracy on tasks formed from the evaluation
sets of Omniglot and mini-ImageNet. These results are based on the naive implementation of iLQR where
the auxiliary Hessian matrix Vt of the cost-to-go in (28) is exact without any approximation. We note
that due to the quadratic complexity of running time, we cannot train the one on mini-ImageNet until
convergence. The running time using the full matrix Vt is 160 GPU-hour for Omniglot and 184 GPU-hour
for mini-ImageNet.

0 10 20 30
Number of tasks (x10,000)

86

88

90

92

94

96

Te
st

in
g

ac
cu

ra
cy

 (%
)

94

95

96

(a) MAML on Omniglot

0 5 10 15 20
Number of training tasks (x10,000)

25

30

35

40

Te
st

in
g

ac
cu

ra
cy

 (%
)

uniform
exploration
exploitation
TOW

(b) MAML on mini-ImageNet

Figure 7: Additional results of prediction accuracy on 100 random validation tasks using MAML when the matrix
Vt is exact without any approximation.

40

Published in Transactions on Machine Learning Research (08/2023)

Appendix I Examples of loss functions satisfying Assumptions 1 to 3

In this section, we analyse some common loss functions including mean square error (MSE) and cross-entropy
(CE) to see if they satisfy Assumptions 1 to 3 made in Section 4.

Table 5: Examples of some common loss functions used with the assumption on the linearity in Eq. (107) that
satisfy Assumptions 1 to 3 specified in Section 4.

Loss (Assumption 1) Lipschitz gradient Lipschitz Hessian
Bounded Lipschitz (Assumption 2) (Assumption 3)

MSE
✓4 ✓5 ✓ ✓

CE ✓ ✓ ✓

Before analysing the loss functions of interest, it is important to note that the objective function mostly
depends on the model used. For example, if g(s; x) denotes the output of a model parameterised by x for the
input s, then the objective function of interest is ℓ(g(s; x), y). Depending on the model g used, the objective
function is different and would be very complicated if g represents a deep neural network since it would
result in a high-dimensional, non-linear, non-convex function. Analysing such general function is, however,
beyond the scope of this paper. To simplify, we assume that g is a linear function of x:

g(s; x) = Sx. (107)

Boundedness in Assumption 1 both the loss functions of interest, MSE and CE, are theoretically
unbounded, and thus, does not satisfy this assumption. However, we can simply clip the loss to ensure the
satisfaction of the boundedness assumption.

I.1 Mean square error

The loss function is defined as:

ℓ(x) = ∥Sx− y∥2
2. (108)

Lipschitz continuity In general, MSE does not satisfy the Lipschitz continuity property. However, when
the vector norm of x is bounded: ∥x∥ ≤ X0, then MSE is Lipschitz-continuous.

Proof. The Lipschitz continuity means:

∥∥∥∥Sx1 − y∥2
2 − ∥Sx2 − y∥2

2

∥∥∥ ≤ const. ∥x1 − x2∥. (109)

4when the loss is clipped
5when the norm of parameter vector is bounded

41

Published in Transactions on Machine Learning Research (08/2023)

The left hand side term can be expanded as follows:∥∥∥∥Sx1 − y∥2
2 − ∥Sx2 − y∥2

2

∥∥∥
=
∥∥∥x⊤

1 S⊤Sx1 − 2 (Sx1)⊤ y− x⊤
2 S⊤Sx2 + 2 (Sx2)⊤ y

∥∥∥
=
∥∥x⊤

1 S⊤Sx1 − x⊤
2 S⊤Sx2 − 2(x1 − x2)⊤S⊤y

∥∥
=
∥∥(x1 − x2)⊤S⊤Sx1 + x⊤

2 S⊤S(x1 − x2)− 2(x1 − x2)⊤S⊤y
∥∥

(triangle inequality)
≤
∥∥(x1 − x2)⊤S⊤Sx1

∥∥+
∥∥x⊤

2 S⊤S(x1 − x2)
∥∥+ 2

∥∥(x1 − x2)⊤S⊤y
∥∥

(submultiplicative inequality)
≤
(∥∥S⊤Sx1

∥∥+
∥∥x⊤

2 S⊤S
∥∥+ 2

∥∥S⊤y
∥∥) ∥x1 − x2∥

≤
(∥∥S⊤S

∥∥∥x1∥+
∥∥S⊤S

∥∥∥x2∥+ 2
∥∥S⊤y

∥∥) ∥x1 − x2∥
≤ 2

(
X0
∥∥S⊤S

∥∥+
∥∥S⊤y

∥∥) ∥x1 − x2∥. (110)

where the norm is the operator norm if the argument is a matrix.

Smoothness MSE is smooth, or its gradient is Lipschitz-continuous.

Proof. The gradient of MSE can be written as:

∇ℓ(x) = 2S⊤(Sx− y). (111)

Therefore, for any x1 and x2:

∥∇ℓ(x1)−∇ℓ(x2)∥ = 2
∥∥S⊤(Sx1 − y)− S⊤(Sx2 − y)

∥∥
= 2
∥∥S⊤S(x1 − x2)

∥∥
≤ 2
∥∥S⊤S

∥∥∥x1 − x2∥. (112)

Thus, MSE in this setting is Lipschitz-continuous.

Lipschitz-continuous Hessian Since the Hessian in this case is constant, it also satisfies the Lipschitz-
continuity.

I.2 Cross-entropy loss

The loss function can be defined as:

ℓ(x) = −y⊤ ln [softmax (Sx)] , (113)

where:

softmax (Sx) = exp (Sx)
111⊤ exp (Sx) (114)

is the softmax function.

Lipschitz continuity The cross-entropy loss is Lipschitz-continuous.

Proof. To prove, we employ the mean-value theorem and then find the upper-bound of the gradient norm.

42

Published in Transactions on Machine Learning Research (08/2023)

First, we calculate the gradient of the softmax function w.r.t. each element xi in x:

∂softmax (Sx)j

∂xi
= ∂

∂xi

exp (Sx)j

111⊤ exp (Sx)

= ∂

∂(Sx)j

exp (Sx)j

111⊤ exp (Sx) ×
∂(Sx)j

∂xi

= softmax(Sx)j [1(j = i)− softmax(Sx)i] Sij , (115)

where the subscript denotes an element in the corresponding vector and 1(.) denotes the indicator function.

Thus, the derivative of the cross-entropy loss w.r.t. the parameter of interest x can be written following the
chain rule:

∂ℓ(x)
∂xi

= − ∂

∂xi

nc∑
j=1

yj ln
[
softmax (Sx)j

]
= −

nc∑
j=1

yj

softmax(Sx)j
× ∂softmax(Sx)j

∂xi

=
nc∑

j=1
yj [1(j = i)− softmax(Sx)i] Sij , (116)

where nc is the number of classes.

Therefore, one can apply the triangle inequality to obtain the following:∥∥∥∥∂ℓ(x)
∂xi

∥∥∥∥ ≤ nc∑
j=1
∥yj [1(j = i)− softmax(Sx)i] Sij∥

≤
nc∑

j=1
∥yj∥︸︷︷︸

≤1

×∥[1(j = i)− softmax(Sx)i]∥︸ ︷︷ ︸
≤2

×∥Sij∥

≤ 2
nc∑

j=1
∥Sij∥. (117)

Since each element of the gradient is bounded, the gradient norm is also bounded.

By applying the mean-value theorem, we can obtain the following:

∥ℓ(x1)− ℓ(x2)∥ = sup
z∈[x1,x2]

∥∇zℓ(z)∥ × ∥x1 − x2∥, (118)

where: z ∈ [x1, x2] denotes a vector z contained in the set of points between x1, x2 ∈ RD.

Since the gradient norm is bounded, the mean-value theorem results in the Lipschitz continuity for the
cross-entropy loss.

Smoothness The cross-entropy loss in this case is smooth, or in other words, its gradient is Lipschitz-
continuous.

Proof. According to (116), the difference of derivative between x1 and x2 can be written as:

∂ℓ(x1)
∂xi

− ∂ℓ(x2)
∂xi

=
nc∑

j=1
yj [softmax(Sx2)i − softmax(Sx1)i] Sij

= [softmax(Sx2)i − softmax(Sx1)i]
nc∑

j=1
yjSij . (119)

43

Published in Transactions on Machine Learning Research (08/2023)

Therefore:

∥∇xℓ(x1)−∇xℓ(x2)∥ =

√√√√√ D∑
i=1

[softmax(Sx2)i − softmax(Sx1)i]
nc∑

j=1
yjSij

2

≤ max
i∈{1,...,D}

∣∣∣∣∣∣
nc∑

j=1
yjSij

∣∣∣∣∣∣×
√√√√ D∑

i=1
[softmax(Sx2)i − softmax(Sx1)i]2

≤ max
i∈{1,...,D}

∣∣∣∣∣∣
nc∑

j=1
yjSij

∣∣∣∣∣∣× ∥softmax(Sx1)− softmax(Sx2)∥. (120)

And since softmax function is Lipschitz-continuous6, the gradient of cross-entropy loss, in this case, is also
Lipschitz-continuous.

Lipschitz continous Hessian The Hessian matrix of the cross-entropy loss is Lipschitz-continuous.

Proof. To prove the Lipschitz continuity of the Hessian matrix for the cross-entropy loss, we will prove that
the norm of its third order derivative tensor is bounded. According to (Nesterov, 2003, Page 175), if the
norm of the third order tensor, also known as Terssian, is bounded, then the Hessian matrix will satisfies
the Lipschitz continuity. To do this, we calculate each element in the Terssian tensor as follows:

The second derivative of the cross-entropy loss w.r.t. an element xi can be written as:

∂2ℓ(x)
∂xi∂xk

= ∂

∂xk

nc∑
j=1

yj [1(j = i)− softmax(Sx)i] Sij

= −∂softmax(Sx)i

∂xk
×

nc∑
j=1

yjSij

= −softmax(Sx)k [1(k = i)− softmax(Sx)i] Sik ×
nc∑

j=1
yjSij . (121)

Thus, the third order derivative can also be derived as:

∂3ℓ(x)
∂xi∂xk∂xl

= −Sik ×

 nc∑
j=1

yjSij

× ∂

∂xl
[softmax(Sx)k [1(k = i)− softmax(Sx)i]] . (122)

To this point, we can see that the third order derivative involves the derivative of softmax functions and
some constants relating to input data S and its label y. Also, as the derivative of softmax function shown
in (115) consists of softmax and indicator functions, the derivative of softmax function is bounded. Thus,
we can conclude that the third order derivative in (122) is also bounded with the bound depending on the
norm of the input maxi,j |Sij | and label maxj |yj |.

When the norm of each element in the Terssian is bounded, its norm is also bounded. Thus, according to
the result in (Nesterov, 2003, Page 175), we can conclude that the Hessian is Lipschitz-continuous.

I.3 Values of the Lipschitz continuity constants

The values of the constants used in Assumptions 1 to 3 heavily depend on some other parameters, including
the maximum value of norm of the inputs and labels as well as the clipping norm value of the parameter x

6see Proposition 4 in “On the properties of the softmax function with application in game theory and reinforcement learning”,
arXiv preprint arXiv:1704.00805.

44

Published in Transactions on Machine Learning Research (08/2023)

(in case of MSE). Thus, we cannot give exact values in numbers for those constants, but only provide a few
expressions to show the dependency of their values on the input and output.

Table 6: The values of some Lipschitz-continuity constants assumed in Assumptions 1 to 3.

Loss function L S

MSE supS,y 2
(
X0
∥∥S⊤S

∥∥+
∥∥S⊤y

∥∥) supS 2
∥∥S⊤S

∥∥
CE supS 2∥S∥1 -

45

Published in Transactions on Machine Learning Research (08/2023)

Appendix J Additional visualisation

We provide additional visualisation for the qualitative results reported in Section 5 with uncertainty in
the evaluation. Conventionally, meta-learning methods are evaluated on a certain number of tasks where
the accuracy reported is averaged over those testing tasks (Vinyals et al., 2016; Finn et al., 2017; Ravi &
Larochelle, 2017; Snell et al., 2017; Ravi & Beatson, 2019; Nguyen et al., 2020). In this case, the uncertainty,
represented by the confidence intervals, is calculated based on the accuracy values obtained on those testing
tasks. In Section 5, we do not plot this uncertainty associated with the empirical results, e.g., Figures 1
and 2, to clarify the visualisation. Hence, we provide additional qualitative results with 95 percent confidence
intervals in Figure 8, where Figure 8a is the accuracy on 100 validation 5-way 1-shot tasks formed from mini-
ImageNet, and Figure 8b is the “zoom-in” version.

0 20 40 60 80 100

30

35

40

45

№ of iterations (× 1,000)

A
cc

ur
ac

y
(%

)

uniform
exploration
exploitation
tow

(a) Zoomed-out version

80 85 90 95 100

40

45

№ of iterations (× 1,000)

A
cc

ur
ac

y
(%

)

(b) Zoomed-in version

Figure 8: Additional visualisation of the prediction accuracy evaluated on 100 5-way 1-shot mini-ImageNet with 95
percent confidence intervals.

46

	Introduction
	Background
	Trajectory optimisation
	Meta-learning

	Methodology
	Task-weighting as a trajectory optimisation
	Practical task-weighting method based on trajectory optimisation

	Convergence analysis
	Assumptions on the boundedness and smoothness of the loss function and its gradients
	Boundedness and smoothness of the loss function
	Smoothness of the Jacobian and Hessian

	The convergence of the proposed method

	Experiments
	N-way k-shot classification
	Any-shot classification
	Weight visualisation
	Ablation studies
	Number of iLQR iterations
	The length of the trajectory T
	Hyper-parameters of the prior of u
	Train the baselines more

	Related work
	Discussion and conclusion
	Approximation of state-transition dynamics and cost function
	Linearisation
	Stochastic gradient descent (SGD)
	Adam

	Quadraticisation
	Quadraticise validation loss
	Quadraticise the penalisation of the action ut

	Derivation of iLQR
	Convergence of iLQR
	Auxiliary to prove convergence
	Proof of iLQR convergence
	Auxiliary lemmas
	Convergence of iLQR

	Trajectory optimisation algorithm(s)
	Complexity analysis
	Convergence analysis for TOW
	Notations
	Auxiliary lemmas
	Boundedness of action (or weighting vector) u
	Bounded variances of the loss' gradient and the weighted validation loss
	Smoothness of validation loss

	Convergence of TOW
	Miscellaneous lemmas

	Experimental settings
	Additional results when calculating with full matrix Vt
	Examples of loss functions satisfying
	Mean square error
	Cross-entropy loss
	Values of the Lipschitz continuity constants

	Additional visualisation

