
Investigating Efficiently Extending Transformers
for Long Input Summarization

Anonymous ACL submission

Abstract

While large pretrained Transformer models001
have proven highly capable at tackling natural002
language tasks, handling long sequence inputs003
still poses a significant challenge. One such004
task is long input summarization, where inputs005
are longer than the maximum input context of006
most models. Through an extensive set of ex-007
periments, we investigate what model architec-008
tural changes and pretraining paradigms most009
efficiently adapt a pretrained Transformer for010
long input summarization. We find that a stag-011
gered, block-local Transformer with global en-012
coder tokens strikes a good balance of perfor-013
mance and efficiency, and that an additional014
pretraining phase on long sequences mean-015
ingfully improves downstream summarization016
performance. Based on our findings, we in-017
troduce PEGASUS-X, an extension of the PE-018
GASUS model with additional long input pre-019
training to handle inputs of up to 16K tokens,020
which achieves strong performance on long021
input summarization tasks comparable with022
much larger models.023

1 Introduction024

Large pretrained Transformer models have proven025

to be extremely capable at tackling natural lan-026

guage tasks (Devlin et al., 2018; Brown et al.,027

2020). However, handling long textual sequences028

continues to be a significant challenge for these029

models. Training models to handle long sequences030

is expensive in both computation and memory, and031

moreover requires training and evaluating on long032

sequence data, which is rarer and more costly to033

collect. Given the broad success of Transformer034

models on short-sequence language tasks, our goal035

is to investigate the best way to extend these models036

to handle longer input sequences.037

In this work, we focus on the task of long in-038

put summarization: summarizing long input doc-039

uments into shorter text sequences. The inputs040

of such tasks are often significantly longer than041

200M 400M 800M 1600M 3200M
Params

22.5

23.0

23.5

24.0

24.5

25.0

25.5

S
C

R
O

LL
S

 S
um

m
. S

co
re PEGASUS-Xbase

PEGASUS-X

LongT5base

LongT5large

LongT5XL

BARTbase-SLED

BARTlarge-SLED

BARTbase-LED

Figure 1: Performance on SCROLLS (Shaham et al.,
2022) summarization tasks. All models evaluated on up
to 16K input tokens. PEGASUS-X outperforms other
models at comparable model sizes. Scores shown are
the average of the geometric mean of ROUGE-1/2/L.

the maximum input lengths of most standard Trans- 042

former models, and hence warrant both architecture 043

modifications as well as new training regimes. For 044

instance, to avoid the quadratic growth in memory 045

consumption of attention in Transformers, many 046

memory-efficient Transformer variants have been 047

proposed (Tay et al., 2020, 2021). However, the 048

manner in which these changes are incorporated 049

into models has been inconsistent and ad-hoc, and 050

there are few established best practices. For in- 051

stance, some works directly fine-tune on long-input 052

summarization tasks (Zaheer et al., 2020; Pang 053

et al., 2022), while others first perform additional 054

pretraining (Beltagy et al., 2020). Because of the 055

high cost of training these models, there has yet to 056

be a systematic study of how best to adapt models 057

for long input sequences. Hence, it has been diffi- 058

cult to establish which model and training changes 059

are necessary or complementary. 060

To answer these questions, we conduct an ex- 061

tensive empirical investigation into the architec- 062

tural changes, model configurations and pretraining 063

schemes to identify better approaches to training 064

1

Transformer models for long input summarization.065

We evaluate a set of efficient Transformer variants,066

and propose a simple block-wise local Transformer067

architecture with staggered blocks and global to-068

kens that strikes a good balance of performance and069

memory efficiency. We show that given a fixed to-070

ken budget, pretraining on short sequences and then071

pre-adapting the model to an efficient Transformer072

architecture by training on longer sequences leads073

to better performance than only long input pretrain-074

ing or no adaptation at all. We also investigate075

model design choices such as position encoding076

schemes, encoder-decoder layer distributions, and077

the impact of discrepancies between pretraining078

and fine-tuning architecture hyperparameters.079

Based on the findings from our empirical inves-080

tigation, we adapt the pretrained PEGASUSLarge081

model (Zhang et al., 2020) to tackle long input082

summarization on up to 16K input tokens. The re-083

sulting model, which we call PEGASUS-X, attains084

top scores on long summarization tasks, outper-085

forming much larger models like LongT5 (Guo086

et al., 2021). Moreover, impact on short input sum-087

marization performance is minimal. A smaller ver-088

sion which we call PEGASUS-XBase attains simi-089

lar scores with much fewer parameters. Beyond090

summarization, we believe that many of our find-091

ings will be useful to the community for efficiently092

adapting Transformer models to handle ever longer093

input sequences for other tasks.094

In summary, our contributions are:095

1. We evaluate a series of proposed efficient096

Transformer architectures as well as other097

model modifications, and report their efficacy098

and computational trade-offs when applied to099

long input summarization tasks.100

2. Based on our findings, we propose a recipe101

for adapting a short-context, pretrained Trans-102

former encoder-decoder to longer inputs, and103

apply it to PEGASUS to greatly improve its104

long-document summarization performance,105

with comparable short-input performance.106

2 Experimental Setup107

Similar to Zhang et al. (2020), we perform the ma-108

jority of our experiments with a PEGASUSBase-109

sized model, before applying our findings to110

PEGASUSLarge-sized model.111

2.1 Pretraining 112

We generally follow the recipe from PEGASUS 113

(Zhang et al., 2020) for pretraining PEGASUSBase- 114

sized models. All experiments in our ablation study 115

performed pretraining with C4 (Raffel et al., 2020) 116

for 500k steps with 512 input tokens and 256 output 117

tokens and a masking ratio of 45%, unless other- 118

wise stated. For long input pretraining we extend 119

the input length to 4096 tokens, and adjust the 120

masking ratio from 45% to 5.625%, reducing the 121

ratio by a factor of 8 to account for the 8x increase 122

in input sequence length. We also filter for only 123

documents longer than 10000 characters. 124

2.2 Fine-tuning 125

We evaluate models by fine-tuning on the arXiv 126

(Cohan et al., 2018) and GovReport (Huang et al., 127

2021) long input summarization tasks. Where 128

relevant, we also fine-tune on the shorter-context 129

XSUM and CNN/DailyMail tasks. For each ex- 130

periment, we report the best validation set scores 131

based on the geometric average (RG) of ROUGE-1, 132

ROUGE-2 and ROUGE-L scores (Lin, 2004) based 133

on the rouge-score package.1 Fine-tuning hy- 134

perparameters can be found in Appendix E. Unless 135

otherwise stated, we directly switch to the efficient 136

Transformer architectures between pretraining (on 137

shorter context) and fine-tuning (on longer con- 138

texts), with no adaptation phase in between. 139

3 Ablation Experiments 140

3.1 Encoder architectures 141

We first investigate whether using an efficient 142

Transformer encoder allows models to incorpo- 143

rate longer input sequences while consuming rea- 144

sonable amounts of device memory. We consider 145

two encoder architectures that exemplify different 146

approaches to efficient attention. Big Bird (Za- 147

heer et al., 2020) uses sparse attention computation, 148

combining sliding-window and random attention, 149

and a set of global-attention tokens. Conversely, 150

Performer (Choromanski et al., 2021) factorizes 151

attention matrices via orthogonal random features. 152

Both model also performed well on the LRA tasks 153

(Tay et al., 2021). For this experiment, we perform 154

both pretraining and fine-tuning with the same en- 155

coder architecture to avoid the issue of mismatch 156

between pretraining and fine-tuning architectures. 157

1https://github.com/google-research/
google-research/tree/master/rouge

2

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge

XSUM CNN/DM arXiv GovReport

Encoder R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG Steps/s Mem

Transformer 40.0 / 16.9 / 32.0 27.9 39.5 / 19.0 / 28.6 27.8 - / - / - - - / - / - - - -
BigBird 39.6 / 16.7 / 31.7 27.6 39.3 / 18.2 / 28.1 27.2 46.8 / 19.6 / 28.0 29.5 60.5 / 28.5 / 30.1 37.3 0.31 1.88
Performer 36.5 / 14.0 / 28.7 24.5 37.4 / 17.4 / 26.9 26.0 39.0 / 13.2 / 23.8 23.1 55.8 / 20.2 / 24.7 30.3 0.96 1.12

Local 38.5 / 15.7 / 30.6 26.4 39.0 / 18.4 / 28.1 27.2 46.5 / 19.7 / 27.9 29.5 60.2 / 28.3 / 30.0 37.1 1.00 1.00
Global-Local 38.7 / 16.2 / 31.2 26.9 39.0 / 18.6 / 28.2 27.3 47.6 / 20.2 / 28.5 30.1 61.4 / 29.3 / 30.6 38.0 0.87 1.08

Table 1: Comparison of different encoder architectures on short (XSUM, CNN/DM) and long (arXiv, GovReport)
summarization tasks. Training steps per second and memory are computed based on arXiv, and normalized to
Local Transformer performance.

Stagger
Local Blocks

Use Global
In Decoder

arXiv GovReport

Encoder R1 / R2 / RL RG R1 / R2 / RL RG

Global-Local ! ! 48.1 / 20.3 / 28.5 30.3 60.5 / 28.8 / 30.5 37.6
Global-Local ! 47.0 / 19.5 / 27.9 29.5 60.9 / 28.9 / 30.2 37.6
Global-Local ! 47.7 / 20.4 / 28.6 30.3 61.3 / 29.4 / 30.8 38.1
Global-Local 46.7 / 19.5 / 27.9 29.4 59.5 / 27.8 / 29.4 36.5
Local ! - 46.8 / 19.7 / 28.0 29.6 59.2 / 27.9 / 30.0 36.7
Local - 46.5 / 19.2 / 27.5 29.1 58.8 / 27.5 / 28.9 36.0

Table 2: Comparison of architectural tweaks to Local and GlobalLocal encoder. Staggering local blocks uses
different blocks boundaries for different layers in block-local attention. Global information is incorporated in the
decoder via an additional cross-attention before cross-attention over the encoded input.

In addition, we also introduce two simple vari-158

ants of local attention Transformer encoders. First,159

we use a simple block-local Transformer (Local),160

where encoder input tokens are divided into non-161

overlapping blocks, and tokens can only attend to162

other tokens within the block. Second, we extend163

the local Transformer by adding a set of global to-164

kens with learned embeddings, that can attend to165

and be attended from every encoder token (Global-166

Local). These components are similar to the slid-167

ing window attention and global token attention168

of Big Bird, ETC (Ainslie et al., 2020) and Long-169

former (Beltagy et al., 2020). However, we opt for170

the simpler block-local attention rather than sliding171

window attention, and compensate for the lack of172

overlapping blocks by staggering the local atten-173

tion blocks, which we elaborate on in Section 3.2.174

As we show below, the performance is highly com-175

petitive despite its simplicity.176

Results on short and long summarization tasks177

are shown in Table 1, with the relative training178

steps per second and memory consumed per device179

for fine-tuning on arXiv shown in the right-most180

columns. Among the short tasks, the full-attention181

Transformer performs best, followed by BigBird.182

On the long tasks, Big Bird and Global-Local mod-183

els perform best, but Big Bird consumes signifi-184

cantly more memory and trains much more slowly185

than the other architectures. Conversely, although186

Performer has relatively low memory consumption 187

and trains efficiently, it performs worst among the 188

architectures tested by a noticeable margin. 189

On the other hand, Local and Global-Local en- 190

coders strike a good balance of performance and 191

efficiency. The simple local attention encoder, 192

which uses block-local attention, attains perfor- 193

mance close to that of Big Bird while being much 194

faster and using much less memory. Global-Local 195

trades off a small amount of speed and memory for 196

better performance, outperforming Big Bird. 197

Takeaways: Local attention is a strong baseline, 198

and adding global tokens significantly improves 199

performance. Both models are resource-efficient. 200

3.2 Local and Global-Local configurations 201

Given the good performance of both Local and 202

Global-Local encoder variants, we next consider 203

further architectural tweaks to these models. 204

First, we introduce staggering of local attention 205

blocks. In block-local attention, tokens can only 206

attend to other tokens within the same block. If the 207

input tokens are divided up into the same blocks 208

in every layer, this means that no information is 209

exchanged across blocks through the entire encoder. 210

To address this pitfall, we stagger attention blocks 211

by shifting the block boundaries by half a block 212

every other layer. We show an example of this in 213

Figure 2. In practice, we implement this by padding 214

3

(a) Block-local attention (b) Block-local attention with staggered blocks

Figure 2: In block-local attention (a), the same block boundaries are used across all layers, preventing information
from being shared across blocks. Staggering the block boundaries (b) be shifting the boundaries every other layer
allows for cross-block interactions with minimal additional computational cost or complexity.

the hidden representations on either side by half a215

block and masking accordingly.216

Secondly, in the Global-Local model, the de-217

coder only attends to the encoded token representa-218

tions, and not the global token representations. We219

consider a variant where we supply the global to-220

ken representations to the decoder and introduce a221

second cross-attention layer that attends only to the222

global tokens. Our goal is to allow the decoder to223

incorporate global information before performing224

cross-attention over the encoded sequence.225

Results are shown in Table 2. We find that226

staggering local blocks noticably improves perfor-227

mance in both Local and Global-Local models. Per-228

formance improves even with Global-Local mod-229

els, which already allow for cross-block interac-230

tions via global tokens, indicating that both model231

improvements are complementary. Conversely, in-232

corporating global token information in the decoder233

did not lead to much performance improvement,234

particularly once staggered local blocks were used.235

Takeaways: Staggering local attention blocks236

significantly improves performance, and is com-237

plementary to global tokens.238

3.3 Global-Local: Block Size and Number of239

Global Tokens240

Next, we vary the block size and number of global241

tokens for the Global-Local encoder, with results242

shown in Table 3.2 Broadly, we find that increas-243

ing either block size or global tokens leads to im-244

proved performance, with a corresponding increase245

in memory consumption and computation time.246

However, the effect size from going to larger block247

sizes is not large, and saturates with larger block248

sizes or number of global tokens. As such, in-249

creasing either of these hyperparameters is ideal if250

2Experiments with very small block sizes or number global
tokens ran into memory issues, because TPUs pad small di-
mensions of arrays to certain minimum lengths, leading to
larger than expected memory consumption.

resources allow, but is not a high priority compared 251

to other model improvements. For the remainder 252

of the ablation experiments, we use a block size of 253

64 and 32 global tokens for consistency. 254

Takeaways: Larger block sizes and/or number 255

of global tokens leads to improved performance, 256

although the effect saturates. 257

3.4 Other Architecture Modifications 258

We further investigate a of series architectural mod- 259

ifications to the encoder-decoder model, including 260

the position encoding scheme (Table 8), scaling the 261

encoder and decoder layers (Table 10) and using 262

cross-attention in only a fraction of the decoder lay- 263

ers (Table 12). We find that the sinusoidal position 264

encoding provide a good balance of performance 265

and efficiency, and that a balanced encoder-decoder 266

with full cross-attention generally performs the 267

best. More details are provided in Appendix B. 268

3.5 Pretraining vs Fine-tuning Architectures 269

Previous works using efficient Transformer en- 270

coders have generally taken the parameters of a 271

full-attention Transformer pretrained on a shorter 272

sequences and adapted them to efficient architec- 273

tures, either directly during fine-tuning (Zaheer 274

et al., 2020) or with an intermediate stage of ad- 275

ditional pretraining (Beltagy et al., 2020). In this 276

section, we investigate if such an approach is opti- 277

mal, or if models benefit from being pretrained with 278

efficient encoders from the beginning. Note that 279

we still perform pretraining on a short sequences 280

(512 tokens), even with an efficient encoder. 281

We consider both pretraining with a Transformer 282

and pretraining with the efficient architecture for 283

both Local and Global-Local models. We also 284

vary the block size, as the main difference be- 285

tween a Transformer and Local Transformer is 286

the block size (aside from staggering, a Local 287

model with block size 512 is equivalent to a dense 288

4

arXiv GovReport

Block Size Global Tokens R1 / R2 / RL RG R1 / R2 / RL RG Steps/s Mem

16 32 47.1 / 20.0 / 28.3 29.9 59.7 / 27.8 / 29.2 36.5 0.92 1.15
64 46.8 / 19.7 / 28.0 29.6 60.8 / 28.6 / 30.0 37.4 0.75 1.54

128 47.7 / 20.0 / 28.2 30.0 60.7 / 28.8 / 30.2 37.5 0.58 1.70

64 32 47.7 / 20.3 / 28.5 30.2 61.0 / 29.3 / 30.8 38.0 0.47 1.07
64 47.4 / 20.2 / 28.5 30.1 60.9 / 29.1 / 30.7 37.9 0.94 1.10

128 47.8 / 20.4 / 28.6 30.3 60.9 / 29.0 / 30.3 37.7 0.85 1.26

128 32 46.9 / 19.7 / 28.0 29.6 60.9 / 28.7 / 30.1 37.5 1.00 1.00
64 47.4 / 20.2 / 28.4 30.1 60.9 / 28.9 / 30.8 37.8 0.96 1.05

128 47.1 / 20.0 / 28.3 29.9 61.0 / 28.9 / 30.6 37.8 0.90 1.15

256 32 47.3 / 20.2 / 28.3 30.0 61.6 / 29.4 / 30.7 38.2 0.92 1.11
64 47.2 / 20.2 / 28.4 30.0 59.2 / 28.6 / 30.5 37.2 0.88 1.16

128 48.1 / 20.5 / 28.6 30.4 61.7 / 29.3 / 30.8 38.2 0.83 1.26

Table 3: Varying the block size and number of global tokens in Global-Local encoders. Training steps per second
and memory are computed based on arXiv, and normalized to the run with Block Size=128 and Global Tokens=32.

Transformer), and hence the difference in block289

size also corresponds to the extent to which the290

model needs to adapt between architectures. When291

adapting from a pretrained Transformer encoder to292

a Global-Local architecture, because the Global-293

Local model relies on newly introduced global to-294

ken embeddings, we initialize them by randomly295

sampling tokens from the vocabulary embeddings.296

Results are shown in Table 11. For Local mod-297

els, pretraining with local attention using small298

block sizes tends to hurt performance, but at mod-299

erate block sizes (e.g. 64) there is little differ-300

ence between the two approaches. In contrast, for301

Global-Local pretraining with the efficient archi-302

tecture tends to perform better. We hypothesize303

that this difference arises because of the learned304

global embedding tokens, which are randomly ini-305

tialized when adapting from a pretrained Trans-306

former and hence may benefit from pretraining and307

being jointly trained with the local attention.308

Takeaways: For moderate block sizes, either pre-309

training or adapting to a Local encoder performs310

about equally well, but pretraining with a Global-311

Local encoder performs slightly better.312

3.6 Pretraining Schemes313

Up to this point, we have only considered pretrain-314

ing with short sequences. We might expect that315

pretraining with longer sequences ought to improve316

performance on downstream long input summariza-317

tion. However, pretraining only on long sequences318

is computationally expensive and requires a large319

collection of long input documents, which are rel-320

atively rarer. Long documents may also contain321

different information from short documents, hence 322

limiting training to only long inputs mae reduce 323

the diversity of training data. Different long con- 324

text Transformers have taken different approaches 325

to pretraining on long inputs. For instance, Long- 326

former (Beltagy et al., 2020) performed several 327

additional stages of increasingly longer-sequence 328

pretraining to adapt the initial RoBERTa to long 329

sequence inputs. On the other hand, LongT5 (Guo 330

et al., 2021) is pretrained exclusively with long in- 331

put sequences. Others (Zaheer et al., 2020; Ivgi 332

et al., 2022) perform no long input pretraining at all. 333

In this section, we investigate how the balance of 334

short and long pretraining impact downstream per- 335

formance, and try to find the best trade-off between 336

pretraining cost and downstream performance. 337

We consider two setups for pretraining: short- 338

input pretraining, with 512 input tokens and 256 339

output tokens, and long-input pretraining, with 340

4096 input tokens and 256 output tokens. We de- 341

scribe the corresponding differences in data pre- 342

processing in Section 2.1. We fix the number of 343

input tokens seen during training, and vary config- 344

urations subject to this constraint. This constraint 345

roughly proxies for the amount of compute con- 346

sumed and corresponds to the number of input to- 347

kens seen during pretraining.3 348

We set our total input token budget at 131 billion 349

tokens, which corresponds to 1 million steps with 350

512 input tokens, compared to the 500k steps in the 351

above experiments. This larger budget ensures that 352

when we only do long-input pretraining, the model 353

3If we instead fixed the number of training steps, long-
input pretraining would consume far more compute for the
same number of steps.

5

XSUM CNN/DM arXiv GovReport

Pretraining Scheme Encoder R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG

Short (50%) Local 38.4 / 15.8 / 30.6 26.5 39.2 / 18.1 / 27.9 27.1 46.8 / 19.7 / 28.0 29.6 60.1 / 28.3 / 29.8 37.0
Global-Local 39.4 / 16.5 / 31.5 27.4 39.1 / 18.6 / 28.3 27.4 47.7 / 20.4 / 28.6 30.3 61.9 / 29.6 / 30.8 38.4

Short (100%) Local 39.2 / 16.3 / 31.3 27.1 39.2 / 18.6 / 28.3 27.4 46.9 / 19.7 / 28.0 29.6 60.1 / 28.3 / 29.8 37.0
Global-Local 39.9 / 17.0 / 31.9 27.9 39.8 / 18.6 / 28.3 27.6 48.1 / 20.5 / 28.7 30.5 61.9 / 29.6 / 30.8 38.4

Short (75%) → Long (25%) Local 38.8 / 15.9 / 30.7 26.7 39.1 / 18.2 / 28.0 27.1 47.5 / 20.1 / 28.2 30.0 60.6 / 28.9 / 30.6 37.7
Global-Local 39.6 / 16.8 / 31.7 27.6 39.8 / 18.8 / 28.5 27.7 48.4 / 20.7 / 28.8 30.7 61.8 / 29.8 / 31.1 38.5

Short (50%) → Long (50%) Local 38.4 / 15.7 / 30.5 26.4 39.4 / 18.1 / 27.9 27.1 47.7 / 20.2 / 28.3 30.1 60.9 / 29.1 / 30.7 37.9
Global-Local 39.3 / 16.4 / 31.4 27.3 39.4 / 18.3 / 28.1 27.3 48.4 / 20.9 / 29.1 30.9 61.7 / 30.0 / 31.2 38.7

Long (100%) Local 36.0 / 14.0 / 28.6 24.3 38.4 / 17.7 / 27.4 26.5 46.7 / 19.5 / 27.7 29.3 59.8 / 28.0 / 29.5 36.7
Global-Local 36.4 / 14.3 / 28.9 24.7 38.5 / 17.8 / 27.5 26.6 47.3 / 19.9 / 28.1 29.8 61.1 / 29.1 / 30.7 37.9

Table 4: Comparison of different pretraining formats, given a input token budget of 131B tokens, which corre-
sponds to 1M steps with 512 input tokens. Short pretraining uses 512 input tokens, whereas long pretraining uses
4096 input tokens.

is still pretrained for a reasonable number of steps.354

We consider four pretraining configurations:355

• Short-input for 100% of tokens (1M steps)356

• Short-input for 75% of tokens (98.3B, 750k357

steps), then long-input for 25% of tokens358

(32.8B, 31.25k steps)359

• Short-input for 50% of tokens (62.5B, 500k360

steps), then long-input for 50% of tokens361

(62.5B, 62.5k steps)362

• Long-input for 100% of tokens (125k steps)363

We compare the performance of the different364

pretraining scehemes in Table 4. We also include365

short-input pretraining for 500k steps for compar-366

ison. First, comparing short-input pretraining for367

500k and 1M steps, we find that more pretraining368

still improves performance, indicating that our base369

models may still be undertrained at 500k steps. Sec-370

ond, long-input pretraining performs consistently371

worse than the other variants, which we attribute372

having fewer training steps, again highlighting the373

issue of potential undertraining. For the middle374

three configurations, on the long tasks, all three375

non-long-only variants atttain similar scores, with376

more long-input pretraining having slightly better377

performance, particularly on the ROUGE-2 and378

ROUGE-L scores. While the small absolute differ-379

ences in scores make it hard to draw strong conclu-380

sions, we lean towards the conclusion that adding a381

short phase of long input pretraining can improve382

performance on long input summarization tasks.383

Takeaways: Given a fixed compute budget, allo-384

cating some training steps to long-input training385

can improve performance, although the optimal al-386

location is difficult to determine. Exclusively long387

pretraining results in worse performance.388

4 PEGASUS-X 389

Based on our findings, we settle on the follow- 390

ing recipe for adapting PEGASUS models (Zhang 391

et al., 2020) to long sequence summarization. 392

• We use a Global-Local architecture with block 393

staggering, a large number of global tokens, 394

and large block sizes during pretraining. 395

• We perform additional long input pretraining 396

on 4096 token inputs for 300k steps. 397

• We extend input sequences up to 16384 input 398

tokens in fine-tuning, depending on the task. 399

We experiment with two model sizes: 400

PEGASUS-X (PEGASUS eXtended) based 401

on PEGASUSLarge, and PEGASUS-XBase based on 402

a newly trained PEGASUSBase model which we 403

call PEGASUSBase+.4 404

We initialize the weights of PEGASUS-X and 405

PEGASUS-XBase with the pretrained weights of 406

PEGASUSLarge and PEGASUSBase+ respectively. 407

Only two new sets of parameters are introduced: 408

global token embeddings, and a new LayerNorm 409

for the global input representations in each Trans- 410

former layer. This is ∼1M more parameters for 411

PEGASUS-XBase and 2M more for PEGASUS-X. 412

We initialize the global token embeddings by ran- 413

domly sampling tokens from the input embeddings, 414

and we initialize the LayerNorm weights with the 415

regular input LayerNorm weights. 416

The task- and model-specific hyperparameters 417

for fine-tuning can be found in Appendix 15. For 418

this section, we report ROUGE-Lsum5 rather than 419

ROUGE-L for consistency with the metrics re- 420

ported in other papers and leaderboards. 421

4See Appendix C.
5https://github.com/google-research/

6

https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l

PEGASUS-XBase PEGASUS-X

Parameters 272M 568M
Global Tokens 128 128
Block Size 512 512
Batch Size 512 1024
Additional
Pretraining 300K steps 300K steps

Table 5: Hyperparameters of PEGASUS-X Models

4.1 Results on Summarization Tasks422

Long summarization tasks In Table 6, we com-423

pare the performance of PEGASUS models to those424

of PEGASUS-X on three long-input summarization425

tasks: arXiv, Big Patent and PubMed. In all three426

tasks, we see significant improvements in perfor-427

mance of PEGASUS-XBase over PEGASUSBase+,428

and PEGASUS-X over PEGASUSLarge. To iso-429

late the impact of additional long input pretraining430

compared to only switching the architecture dur-431

ing fine-tuning, we also include evaluation on the432

PEGASUS models using the Global-Local archi-433

tecture with no further pretraining, which we list in434

the table as PEGASUSBase+ + Global-Local.435

We also compare to reported results of Big436

Bird-PEGASUS6 (Zaheer et al., 2020), LED (Belt-437

agy et al., 2020), Top-Down Transformer (Pang438

et al., 2022) with both Average-Pool (AvgP) and439

Adaptive-Pool (AdaP) variants, BART-LS (Xiong440

et al., 2022a), LongT5-Large and XL, and SLED441

(Ivgi et al., 2022). LED, Top-Down and SLED442

are initialized with BARTLarge weights with no443

additional pretraining on long input sequences.444

BART-LS is concurrent work that also incorpo-445

rates staggered block-local attention and addition446

long-sequence pretraining, in addition to pooling447

layers and different pretraining data.448

PEGASUS-X outperforms Big Bird-PEGASUS449

on all tasks, and Top-Down-AvgP on both com-450

pared tasks. Although Top-Down-AdaP outper-451

forms PEGASUS-X, it uses a much more complex452

fine-tuning setup, using an importance tagger on453

reference summaries to construct token pooling454

weights, whereas PEGASUS-X only uses standard455

fine-tuning. Even so, PEGASUS-X still outper-456

forms Top-Down-AdaP on PubMed. PEGASUS-X457

outperforms BART-LS on PubMed and slightly458

underperforms on arXiv; as mentioned above,459

google-research/blob/master/rouge/README.
md#two-flavors-of-rouge-l

6Big Bird-PEGASUS only has a context of 3072 tokens,
likely due to the larger memory consumption of Big Bird.

PEGASUS-X and BART-LS share many similari- 460

ties, and we see the strong performance of BART- 461

LS as confirmation of the efficacy of parts of our 462

recipe for longer sequence models. PEGASUS- 463

X also outperforms LongT5 on both arXiv and 464

PubMed, despite both compared LongT5 models 465

having more parameters. However, we find that 466

LongT5 performs much better on BigPatent, which 467

is a largely extractive summarization task. We hy- 468

pothesize that a larger hidden size may improve 469

extraction over very long sequences. 470

Short summarization tasks We show in Ta- 471

ble 14 the performance of PEGASUS and 472

PEGASUS-X models on shorter summarization 473

tasks, where there is a slight regression in perfor- 474

mance of both PEGASUS-X models compared to 475

their PEGASUS equivalents. We hypothesize that 476

long input pretraining might negatively impact the 477

performance on shorter input tasks because of the 478

data filtering for long documents, resulting in a 479

potentially less diverse training data distribution. 480

4.2 SCROLLS Summarization Tasks 481

We report the performance of the PEGASUS- 482

X models on the summarization tasks in the re- 483

cently introduced SCROLLS benchmark in Table 7. 484

This includes GovReport (Huang et al., 2021), the 485

ForeverDreaming subset of SummScreen (Chen 486

et al., 2022), and QMSum (Zhong et al., 2021). 487

PEGASUS-X outperforms all other models 488

on GovReport, setting the state of the art on 489

the dataset.7 It also performs comparably to 490

both LongT5Large and Top-Down-AvgP on Summ- 491

Screen/FD, although it underperforms LongT5 492

models and BART-LS on QMSum. Moreover, 493

PEGASUS-XBase also performs competitively, out- 494

performing both LongT5 models on GovReport, 495

and only a small margin behind PEGASUS-X on 496

all three tasks. PEGASUS-XBase also outperforms 497

BARTLarge-SLED, a larger model with a similar 498

16K input length. 499

5 Pertinent Related Work 500

Many works such as Zaheer et al. (2020), Beltagy 501

et al. (2020), Ivgi et al. (2022) have investigated 502

extending short input models to longer sequences 503

using efficient attention mechanisms. In closely 504

comparable work, Guo et al. (2021) pretrained a 505

T5 model on long sequences from scratch, incor- 506

7As of 08/08/2022

7

https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l
https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l

arXiv Big Patent PubMed

Model #Params R1 / R2 / RLs RG R1 / R2 / RLs RG R1 / R2 / RLs RG

PEGASUSBase 271M 34.8 / 10.2 / 22.5* 20.0* 43.5 / 20.4 / 31.8* 30.5* 40.0 / 15.2 / 25.2* 24.8*
PEGASUSBase+ 271M 42.2 / 15.8 / 37.3 29.2 51.2 / 32.6 / 41.0 40.9 44.1 / 18.3 / 40.1 31.9
PEGASUSBase+ + Global-Local 272M 47.6 / 20.2 / 42.4 34.4 58.1 / 39.5 / 47.2 47.7 47.3 / 21.4 / 43.0 35.2
PEGASUS-XBase 272M 49.4 / 21.6 / 44.0 36.1 61.3 / 42.6 / 50.1 50.8 49.6 / 23.6 / 45.2 37.5

PEGASUSLarge 567M 44.7 / 17.2 / 25.7* 27.0* 53.4 / 32.9 / 42.1* 42.0* 45.1 / 19.6 / 27.4* 28.9*
PEGASUS-X 568M 50.0 / 21.8 / 44.6 36.5 64.8 / 47.5 / 54.3 55.1 51.0 / 24.7 / 46.6 38.9

BART-LS 460M 50.2 / 22.1 / 45.4 36.9 –.- / –.- / –.- –.- 50.3 / 24.3 / 46.3 38.4
Longformer Encoder-Decoder 464M 46.6 / 19.6 / 41.8 33.7 –.- / –.- / –.- –.- –.- / –.- / –.- –.-
Top-Down (AvgP) 464M 48.7 / 20.7 / 43.9 35.4 –.- / –.- / –.- –.- 48.3 / 21.4 / 44.2 35.7
Top-Down (AdaP) 464M 51.0 / 21.9 / 45.6 37.1 –.- / –.- / –.- –.- 51.1 / 23.3 / 46.5 38.1
Big Bird-Pegasus 567M 46.6 / 19.0 / 41.8 33.3 60.6 / 42.5 / 50.1 50.5 46.3 / 20.7 / 42.3 34.4
LongT5Large 770M 48.3 / 21.6 / 44.1 35.8 70.4 / 56.8 / 62.7 63.1 50.0 / 24.7 / 46.5 38.6
LongT5XL 3B 48.4 / 21.9 / 44.3 36.1 76.9 / 66.1 / 70.8 71.1 50.2 / 24.8 / 46.7 38.7

Table 6: Comparison on long summarization tasks (Test sets). Results for other models are taken from their
respective papers. *: PEGASUS (Zhang et al., 2020) only reports ROUGE-L and not ROUGE-LSum.

GovReport SummScreen/FD QMSum

Model #Params R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG

PEGASUS-XBase 272M 59.3 / 29.3 / 30.9 37.7 35.0 / 8.9 / 20.4 18.5 32.9 / 9.8 / 21.4 19.0
PEGASUS-X 568M 60.3 / 30.0 / 31.5 38.5 35.7 / 9.1 / 20.6 18.8 33.2 / 9.6 / 21.6 19.0

BARTLarge-SLED 406M 58.0 / 26.9 / 27.6 35.1 33.8 / 8.0 / 18.5 17.1 32.1 / 10.2 / 21.0 19.0
BART-LS 460M 59.4 / 29.8 / 30.8 37.9 37.7 / 10.2 / 21.5 20.2 35.1 / 12.0 / 23.3 21.4
Top-Down-AvgP 464M –.- / –.- / –.- –.- 35.8 / 8.9 /30.6* 21.4* –.- / –.- / –.- –.-
Top-Down-AdaP 464M –.- / –.- / –.- –.- 36.8 / 9.2 /31.1* 21.9* –.- / –.- / –.- –.-
LongT5Large 770M 54.2 / 27.8 / 29.8 35.5 35.6 / 9.2 / 21.2 19.1 35.1 / 12.0 / 23.3 21.4
LongT5XL 3B 54.7 / 28.2 / 30.2 36.0 35.8 / 9.6 / 21.1 19.4 34.9 / 11.8 / 23.5 21.3
UL2 20B 53.6 / 26.1 / 28.8 34.3 32.9 / 7.8 / 19.4 17.1 31.1 / 8.5 / 20.4 17.5

Table 7: Comparison on SCROLLS benchmark (Summarization tasks, Test sets). Results for SLED, BART-LS,
LongT5 and UL2 models are taken from the SCROLLS benchmark leaderboard. *: Top-Down (Pang et al., 2022)
reports much higher scores for ROUGE-L on SummScreen/FD than any other model, and may have been computed
with a variant of ROUGE-L that involves splitting on sentences rather than newlines.

porating sliding window attention and global rep-507

resentations. However, pretraining only on long508

sequences significantly increases the pretraining509

time, and as we show in Section 3.6, pretraining510

first on short inputs and then subsequently on long511

inputs is much more cost efficient.512

In concurrent work released shortly before this513

submission deadline, Xiong et al. (2022a) also in-514

vestigated extending short input Transformer mod-515

els for long input tasks. While they focus on BART516

rather than PEGASUS, they similarly find that517

global tokens, staggered block-local attention, and518

extended pretraining greatly improve performance,519

lending further support to our findings. Their fi-520

nal model also incorporates pooling layers and is521

trained on different data.522

A broader treatment of related work can be found523

in Appendix A.524

6 Conclusion 525

In this work, we investigate a range of proposed 526

improvements to Transformer models to effectively 527

and economically handle long inputs in summariza- 528

tion tasks. Through extensive ablation experiments, 529

we find a simple but effective recipe for extend- 530

ing short-input models to tackle long-input sum- 531

marization. Based on our findings, we introduce 532

PEGASUS-X, an extended version of PEGASUS 533

with a modified architecture and additional long- 534

sequence pretraining. We show that PEGASUS-X 535

sets the state of the art on two long input summa- 536

rization tasks (GovReport and PubMed) and per- 537

forms competitively on many others, even despite 538

being much smaller than some compared models. 539

Our findings can be extended to models in other do- 540

mains beyond summarization, both for pretraining 541

long input models from scratch as well as extending 542

already pretrained short sequence models. 543

8

References544

Joshua Ainslie, Santiago Ontañón, Chris Alberti, Va-545
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh546
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.547
2020. Etc: Encoding long and structured data in548
transformers. In Proceedings of the 2020 Confer-549
ence on Empirical Methods in Natural Language550
Processing (EMNLP 2020).551

Iz Beltagy, Matthew E. Peters, and Arman Cohan.552
2020. Longformer: The long-document transformer.553
arXiv:2004.05150.554

James Bradbury, Roy Frostig, Peter Hawkins,555
Matthew James Johnson, Chris Leary, Dougal556
Maclaurin, George Necula, Adam Paszke, Jake557
VanderPlas, Skye Wanderman-Milne, and Qiao558
Zhang. 2018. JAX: composable transformations of559
Python+NumPy programs.560

Tom Brown, Benjamin Mann, Nick Ryder, Melanie561
Subbiah, Jared D Kaplan, Prafulla Dhariwal,562
Arvind Neelakantan, Pranav Shyam, Girish Sastry,563
Amanda Askell, Sandhini Agarwal, Ariel Herbert-564
Voss, Gretchen Krueger, Tom Henighan, Rewon565
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,566
Clemens Winter, Chris Hesse, Mark Chen, Eric567
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,568
Jack Clark, Christopher Berner, Sam McCandlish,569
Alec Radford, Ilya Sutskever, and Dario Amodei.570
2020. Language models are few-shot learners. In571
Advances in Neural Information Processing Systems,572
volume 33, pages 1877–1901. Curran Associates,573
Inc.574

Mingda Chen, Zewei Chu, Sam Wiseman, and Kevin575
Gimpel. 2022. SummScreen: A dataset for ab-576
stractive screenplay summarization. In Proceedings577
of the 60th Annual Meeting of the Association for578
Computational Linguistics (Volume 1: Long Papers),579
pages 8602–8615, Dublin, Ireland. Association for580
Computational Linguistics.581

Krzysztof Choromanski, Valerii Likhosherstov, David582
Dohan, Xingyou Song, Andreea Gane, Tamás Sar-583
lós, Peter Hawkins, Jared Davis, Afroz Mohiuddin,584
Lukasz Kaiser, David Belanger, Lucy Colwell, and585
Adrian Weller. 2021. Rethinking attention with per-586
formers. In International Conference on Learning587
Representations, ICLR 2021.588

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,589
Trung Bui, Seokhwan Kim, Walter Chang, and Na-590
zli Goharian. 2018. A discourse-aware attention591
model for abstractive summarization of long docu-592
ments. In Proceedings of the 2018 Conference of593
the North American Chapter of the Association for594
Computational Linguistics: Human Language Tech-595
nologies, Volume 2 (Short Papers), pages 615–621,596
New Orleans, Louisiana. Association for Computa-597
tional Linguistics.598

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and599
Kristina Toutanova. 2018. Bert: Pre-training of deep600

bidirectional transformers for language understand- 601
ing. arXiv preprint arXiv:1810.04805. 602

Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur 603
Bapna, Maxim Krikun, Xavier Garcia, Ciprian 604
Chelba, and Colin Cherry. 2021. Scaling laws 605
for neural machine translation. arXiv preprint 606
arXiv:2109.07740. 607

Mandy Guo, Joshua Ainslie, David Uthus, Santiago 608
Ontanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei 609
Yang. 2021. Longt5: Efficient text-to-text trans- 610
former for long sequences. 611

Curtis Hawthorne, Andrew Jaegle, Cătălina Cangea, 612
Sebastian Borgeaud, Charlie Nash, Mateusz Mali- 613
nowski, Sander Dieleman, Oriol Vinyals, Matthew 614
Botvinick, Ian Simon, Hannah Sheahan, Neil Zeghi- 615
dour, Jean-Baptiste Alayrac, João Carreira, and 616
Jesse Engel. 2022. General-purpose, long-context 617
autoregressive modeling with perceiver ar. 618

Jonathan Heek, Anselm Levskaya, Avital Oliver, Mar- 619
vin Ritter, Bertrand Rondepierre, Andreas Steiner, 620
and Marc van Zee. 2020. Flax: A neural network 621
library and ecosystem for JAX. 622

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, 623
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, 624
Diego de Las Casas, Lisa Anne Hendricks, Johannes 625
Welbl, Aidan Clark, Tom Hennigan, Eric Noland, 626
Katie Millican, George van den Driessche, Bogdan 627
Damoc, Aurelia Guy, Simon Osindero, Karen Si- 628
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, 629
and Laurent Sifre. 2022. Training compute-optimal 630
large language models. CoRR, abs/2203.15556. 631

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng 632
Ji, and Lu Wang. 2021. Efficient attentions for long 633
document summarization. In Proceedings of the 634
2021 Conference of the North American Chapter of 635
the Association for Computational Linguistics: Hu- 636
man Language Technologies, pages 1419–1436, On- 637
line. Association for Computational Linguistics. 638

George Hudson and Noura Al Moubayed. 2022. Muld: 639
The multitask long document benchmark. In Pro- 640
ceedings of the Language Resources and Evaluation 641
Conference, pages 3675–3685, Marseille, France. 642
European Language Resources Association. 643

Maor Ivgi, Uri Shaham, and Jonathan Berant. 2022. Ef- 644
ficient long-text understanding with short-text mod- 645
els. 646

Jared Kaplan, Sam McCandlish, Tom Henighan, 647
Tom B. Brown, Benjamin Chess, Rewon Child, 648
Scott Gray, Alec Radford, Jeffrey Wu, and Dario 649
Amodei. 2020. Scaling laws for neural language 650
models. CoRR, abs/2001.08361. 651

Wojciech Kryściński, Nazneen Rajani, Divyansh Agar- 652
wal, Caiming Xiong, and Dragomir Radev. 2021. 653
Booksum: A collection of datasets for long-form 654
narrative summarization. 655

9

http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2022.acl-long.589
https://aclanthology.org/2022.acl-long.589
https://aclanthology.org/2022.acl-long.589
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.48550/ARXIV.2112.07916
https://doi.org/10.48550/ARXIV.2112.07916
https://doi.org/10.48550/ARXIV.2112.07916
https://doi.org/10.48550/ARXIV.2202.07765
https://doi.org/10.48550/ARXIV.2202.07765
https://doi.org/10.48550/ARXIV.2202.07765
http://github.com/google/flax
http://github.com/google/flax
http://github.com/google/flax
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://aclanthology.org/2022.lrec-1.392
https://aclanthology.org/2022.lrec-1.392
https://aclanthology.org/2022.lrec-1.392
https://doi.org/10.48550/ARXIV.2208.00748
https://doi.org/10.48550/ARXIV.2208.00748
https://doi.org/10.48550/ARXIV.2208.00748
https://doi.org/10.48550/ARXIV.2208.00748
https://doi.org/10.48550/ARXIV.2208.00748
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2105.08209
http://arxiv.org/abs/2105.08209
http://arxiv.org/abs/2105.08209

Chin-Yew Lin. 2004. ROUGE: A package for auto-656
matic evaluation of summaries. In Text Summariza-657
tion Branches Out, pages 74–81, Barcelona, Spain.658
Association for Computational Linguistics.659

Bo Pang, Erik Nijkamp, Wojciech Kryściński, Silvio660
Savarese, Yingbo Zhou, and Caiming Xiong. 2022.661
Long document summarization with top-down and662
bottom-up inference.663

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train664
short, test long: Attention with linear biases enables665
input length extrapolation. In International Confer-666
ence on Learning Representations.667

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-668
ine Lee, Sharan Narang, Michael Matena, Yanqi669
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring670
the limits of transfer learning with a unified text-to-671
text transformer. Journal of Machine Learning Re-672
search, 21(140):1–67.673

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori674
Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,675
Mor Geva, Jonathan Berant, and Omer Levy. 2022.676
Scrolls: Standardized comparison over long lan-677
guage sequences.678

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yun-679
feng Liu. 2021. Roformer: Enhanced transformer680
with rotary position embedding.681

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won682
Chung, William Fedus, Jinfeng Rao, Sharan Narang,683
Vinh Q. Tran, Dani Yogatama, and Donald Metzler.684
2022. Scaling laws vs model architectures: How685
does inductive bias influence scaling?686

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang687
Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu688
Yang, Sebastian Ruder, and Donald Metzler. 2021.689
Long range arena : A benchmark for efficient trans-690
formers. In International Conference on Learning691
Representations.692

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald693
Metzler. 2020. Efficient transformers: A survey.694
CoRR, abs/2009.06732.695

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob696
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz697
Kaiser, and Illia Polosukhin. 2017. Attention is all698
you need. In Advances in Neural Information Pro-699
cessing Systems, volume 30. Curran Associates, Inc.700

Alex Wang, Richard Yuanzhe Pang, Angelica Chen, Ja-701
son Phang, and Samuel R. Bowman. 2022. SQuAL-702
ITY: Building a long-document summarization703
dataset the hard way. arXiv preprint 2205.11465.704

Wenhan Xiong, Anchit Gupta, Shubham Toshniwal,705
Yashar Mehdad, and Wen-tau Yih. 2022a. Adapt-706
ing pretrained text-to-text models for long text se-707
quences.708

Wenhan Xiong, Barlas Oguz, Anchit Gupta, Xilun 709
Chen, Diana Liskovich, Omer Levy, Scott Yih, and 710
Yashar Mehdad. 2022b. Simple local attentions re- 711
main competitive for long-context tasks. In Pro- 712
ceedings of the 2022 Conference of the North Amer- 713
ican Chapter of the Association for Computational 714
Linguistics: Human Language Technologies, pages 715
1975–1986, Seattle, United States. Association for 716
Computational Linguistics. 717

Manzil Zaheer, Guru Guruganesh, Kumar Avinava 718
Dubey, Joshua Ainslie, Chris Alberti, Santiago On- 719
tanon, Philip Pham, Anirudh Ravula, Qifan Wang, 720
Li Yang, et al. 2020. Big bird: Transformers for 721
longer sequences. Advances in Neural Information 722
Processing Systems, 33. 723

Biao Zhang, Behrooz Ghorbani, Ankur Bapna, Yong 724
Cheng, Xavier Garcia, Jonathan Shen, and Orhan 725
Firat. 2022. Examining scaling and transfer of lan- 726
guage model architectures for machine translation. 727

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and 728
Peter Liu. 2020. PEGASUS: Pre-training with ex- 729
tracted gap-sentences for abstractive summarization. 730
In Proceedings of the 37th International Conference 731
on Machine Learning, volume 119 of Proceedings 732
of Machine Learning Research, pages 11328–11339. 733
PMLR. 734

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia 735
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli 736
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir 737
Radev. 2021. QMSum: A new benchmark for query- 738
based multi-domain meeting summarization. In Pro- 739
ceedings of the 2021 Conference of the North Amer- 740
ican Chapter of the Association for Computational 741
Linguistics: Human Language Technologies, pages 742
5905–5921, Online. Association for Computational 743
Linguistics. 744

10

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.48550/ARXIV.2203.07586
https://doi.org/10.48550/ARXIV.2203.07586
https://doi.org/10.48550/ARXIV.2203.07586
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2201.03533
http://arxiv.org/abs/2201.03533
http://arxiv.org/abs/2201.03533
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://doi.org/10.48550/ARXIV.2207.10551
https://doi.org/10.48550/ARXIV.2207.10551
https://doi.org/10.48550/ARXIV.2207.10551
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
http://arxiv.org/abs/2009.06732
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/ARXIV.2209.10052
https://doi.org/10.48550/ARXIV.2209.10052
https://doi.org/10.48550/ARXIV.2209.10052
https://doi.org/10.48550/ARXIV.2209.10052
https://doi.org/10.48550/ARXIV.2209.10052
https://aclanthology.org/2022.naacl-main.144
https://aclanthology.org/2022.naacl-main.144
https://aclanthology.org/2022.naacl-main.144
https://openreview.net/forum?id=PlFtf_pnkZu
https://openreview.net/forum?id=PlFtf_pnkZu
https://openreview.net/forum?id=PlFtf_pnkZu
https://proceedings.mlr.press/v119/zhang20ae.html
https://proceedings.mlr.press/v119/zhang20ae.html
https://proceedings.mlr.press/v119/zhang20ae.html
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472

A Full Related Work745

Long Document Summarization Several new746

long input summarization datasets and benchmarks747

have been recently introduced, providing better748

measures of long input summarization capabil-749

ity as well as prompting new interest in this re-750

search direction. The BookSum dataset (Kryś-751

ciński et al., 2021) consists of paragraph, chapter,752

and full summaries of books on Project Gutenberg753

based on web-scraped educational website. (Chen754

et al., 2022) consists of television show transcripts755

and episode summaries based on web-scraped fan-756

written summaries. The SCROLLS benchmark757

(Shaham et al., 2022) and the MuLD benchmark758

(Hudson and Al Moubayed, 2022) consist of multi-759

ple natural language tasks with long inputs, includ-760

ing long input summarization. The SQuALITY761

dataset (Wang et al., 2022) consists of question-762

focused summaries of Project Gutenberg stories,763

where annotators write summaries based on dif-764

ferent questions that cover different aspects of the765

same story.766

Efficient Transformers Many efficient Trans-767

former variants have been introduced in recent768

years (Tay et al., 2020), and we discuss here the769

works more relevant to this manuscript. (Beltagy770

et al., 2020) use global tokens as well as a sliding771

window local attention, implemented using custom772

CUDA kernels. The ETC model (Ainslie et al.,773

2020) uses both global tokens and block-wise slid-774

ing window local attention, although the global775

attention is incorporated based on the first few to-776

kens of a sequence, rather than separately learned777

global tokens. Zaheer et al. (2020) extend ETC778

by adding random attention blocks, but we found779

that this significantly increases code complexity780

and computational cost. Guo et al. (2021) sim-781

ilarly extend ETC’s block-wise sliding window782

attention, but computes transient “global token”783

representations by pooling over blocks of tokens.784

Pang et al. (2022) propose to augment the Long-785

former encoder-decoder with additional pooling786

layers to improve long-sequence summarization787

performance. Ivgi et al. (2022) propose an alter-788

native approach to sparse attention via encoding789

overlapping chunks and fusing information across790

chunks int he decoder. We highlight that while the791

final Global-Local model architecture that we set-792

tle on shares similarity with several other proposed793

efficient Transformer architectures, our key con-794

tribution lies in our extensive ablation study that 795

identifies architectural tweaks that improve and, 796

just as importantly, do not improve downstream 797

performance. 798

Among the listed model architectures for long 799

input summarization, LongT5 (Guo et al., 2021) is 800

the most similar to PEGASUS-X, sharing a similar 801

encoder-decoder architecture, a similar training ob- 802

jective in generating masked sentences, and a mix 803

of local attention and global information sharing 804

for the encoder. We briefly highlight the key dif- 805

ferences between the two models. Firstly, LongT5 806

trains from scratch on long sequences, whereas 807

we initialize our model weights with PEGASUS 808

weights (which is trained on short sequences) be- 809

fore doing additional pretraining on long input se- 810

quences. This significantly reduces the overall pre- 811

training cost, as short sequence pretraining and 812

be performed much more economically. LongT5 813

also uses the T5 relative position biases whereas 814

PEGASUS-X uses sinusoidal position embeddings– 815

as shown in Section B.1, T5 relative position biases 816

perform slightly better but are significantly slower. 817

The efficient encoder architecture between the two 818

models is also different: LongT5 uses a transient 819

global representations based on pooling chunks of 820

tokens, whereas PEGASUS-X uses learned global 821

token embeddings. LongT5 also uses a sliding win- 822

dow local attention based on ETC (Ainslie et al., 823

2020), whereas we use a simpler block-local at- 824

tention with staggered blocks. Lastly, the largest 825

LongT5 model is 3B parameters, more than 5× the 826

size of PEGASUS-X. 827

More broadly, Tay et al. (2021) compare a vari- 828

ety of efficient Transformer architectures on a set of 829

tasks designed to probe long-sequence processing 830

capability, evaluating the different models on both 831

performance as well as computation requirements. 832

Tay et al. (2022) further evaluate the scaling proper- 833

ties of novel Transformer architectures, finding that 834

deviating from full attention tends to hurt down- 835

stream performance. Xiong et al. (2022b) showed 836

that simple local attention variants can be highly 837

competitive with more complex sparse attention 838

schemes, consistent with our findings. 839

B Details of Architecture Modification 840

Experiments 841

B.1 Position Encoding Schemes 842

New position encoding schemes encoding schemes 843

such as RoPE (Su et al., 2021) and ALiBi (Press 844

11

XSUM CNN/DM arXiv GovReport

Position Encoding R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG Step/s

None 34.3 / 12.5 / 26.8 22.6 25.6 / 7.8 / 17.7 15.2 36.1 / 9.8 / 22.0 19.8 38.3 / 13.2 / 18.7 21.1 0.96
Sinusoidal 39.8 / 16.9 / 31.8 27.8 40.0 / 18.6 / 28.4 27.6 44.5 / 17.6 / 26.7 27.6 40.0 / 18.8 / 22.3 25.6 0.96
T5 40.1 / 17.1 / 32.0 28.0 39.8 / 18.8 / 28.6 27.8 44.9 / 17.9 / 26.8 27.8 40.2 / 19.5 / 22.9 26.2 0.53
RoPE 39.8 / 16.9 / 31.8 27.8 39.2 / 18.7 / 28.5 27.5 43.5 / 17.2 / 26.5 27.1 40.0 / 19.1 / 22.6 25.8 0.85
Absolute 39.1 / 16.4 / 31.3 27.2 39.7 / 18.7 / 28.5 27.7 44.3 / 17.5 / 26.5 27.4 38.6 / 17.5 / 21.1 24.2 1.00

Table 8: Comparison of position encodings schemes for a Transformer encoder-decoder. Training steps per sec-
ond are computed based on arXiv summarization. Absolute position embeddings are replicated to longer input
sequences, following Beltagy et al. (2020). Training steps per second is computed based on arXiv, and normalized
to the run with absolute position embeddings.

arXiv GovReport

Position Encoding R1 / R2 / RL RG R1 / R2 / RL RG

Factor=10000 48.1 / 20.4 / 28.6 30.4 60.9 / 29.3 / 30.8 38.0
Factor=50000 48.1 / 20.4 / 28.6 30.4 61.4 / 29.5 / 30.9 38.3

Table 9: Comparison of different scaling constants in sinusoidal position encodings.

et al., 2022) have garnered recent attention, show-845

ing improved performance on downstream evalua-846

tions. As input sequence lengths have gotten much847

longer, and in particular longer than the dimensions848

of hidden representations, previous choices of posi-849

tion encoding may no longer be optimal. Moreover,850

relative position encodings such as RoPE, T5 and851

ALiBi may be better suited for adapting models852

to different input lengths between pretraining and853

fine-tuning. Hence, this is a good opportunity to854

revisit the choice of positioning encoding schemes855

in encoder models.856

Because of the more complex interaction be-857

tween local attention blocks and relative position858

encoding implementations, we conduct a prelimi-859

nary investigation with a full-attention Transformer.860

We pretrain with an input length of 512, and fine-861

tune with an input length of 2048 for the long862

sequence tasks – this experiment also tests the863

propensity for position encodings to be adapted864

to longer sequences downstream. In addition to865

the sinusoidal position encoding used in PEGA-866

SUS and Vaswani et al. (2017), we also consider867

the bucket-based relative position encoding scheme868

of T5, RoPE, absolute position embeddings, and869

no position encoding as a baseline. For absolute870

position embeddings, we follow the recipe of Belt-871

agy et al. (2020) and duplicate the learned position872

embeddings to handle longer sequences before fine-873

tuning. The chosen position encoding scheme is874

applied to all parts of the model, including both the875

encoder and the decoder. We do not experiment876

with ALiBi, as we found no natural way to adapt877

ALiBi to cross-attention. 878

Our results are shown in Table 8. We find that al- 879

though T5 performs the best, it is also almost twice 880

as slow as the other position encoding schemes, 881

which is consistent with the findings of Press et al. 882

(2022). Sinusoidal position encodings and RoPE 883

perform only slightly worse than T5 with much bet- 884

ter efficiency, making them more desirable choices. 885

Given the much simpler implementation of sinu- 886

soidal position encodings, we opt to stick with them 887

for the remainder of the experiments. 888

Takeaways: Sinusoidal position encodings still 889

remain a good choice for long input Transformers. 890

B.2 Scaling Encoder and Decoder Layers 891

Scaling laws (Kaplan et al., 2020; Ghorbani et al., 892

2021; Zhang et al., 2022) that describe the em- 893

pirical relationship between model sizes and per- 894

formance have proven surprisingly consistent and 895

gotten significant attention in recent years. We 896

present in this section a small set of scaling experi- 897

ments, exploring the distribution of layers between 898

encoder and decoder. 899

Our results are shown in Table 10. In the top half, 900

we fix the total number of layers to 24, and con- 901

sider both encoder-heavy and decoder-heavy distri- 902

butions, for both Local and Global-Local models. 903

We observe that impact of distribution of encoder 904

and decoder layers on performance is relatively 905

small. For Local models, we see a slight boost from 906

decoder-heavy models. For Global-Local models, 907

we observe that a balanced encoder-decoder outper- 908

forms encoder- and decoder-heavy models, both of 909

12

XSUM CNN/DM arXiv GovReport

Architecture Enc Dec R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG

Local 18 6 37.4 / 15.0 / 29.7 25.5 39.0 / 18.2 / 27.9 27.0 46.0 / 19.4 / 27.6 29.1 58.9 / 27.4 / 29.1 36.1
12 12 37.5 / 14.9 / 29.7 25.5 38.5 / 18.0 / 27.6 26.7 45.4 / 18.9 / 27.3 28.6 59.2 / 27.6 / 29.3 36.3

6 18 37.7 / 15.1 / 29.9 25.7 38.5 / 18.1 / 27.7 26.9 46.3 / 19.3 / 27.6 29.1 59.4 / 27.8 / 29.5 36.5

Global-Local 18 6 38.6 / 15.9 / 30.9 26.7 39.2 / 18.5 / 28.2 27.3 47.3 / 20.1 / 28.3 30.0 60.2 / 28.7 / 30.6 37.5
12 12 38.6 / 15.9 / 30.7 26.6 40.0 / 18.6 / 28.3 27.6 47.5 / 20.1 / 28.3 30.0 61.1 / 29.3 / 30.7 38.1

6 18 37.7 / 15.1 / 29.9 25.7 38.5 / 18.1 / 27.7 26.9 46.4 / 19.5 / 27.9 29.3 60.3 / 28.6 / 30.0 37.2

Global-Local 18 12 38.5 / 15.7 / 30.6 26.4 38.7 / 18.4 / 28.1 27.1 47.3 / 20.0 / 28.3 29.9 60.2 / 29.2 / 31.0 37.9
12 18 38.6 / 15.8 / 30.5 26.5 38.6 / 18.3 / 28.0 27.0 47.5 / 20.3 / 28.5 30.2 60.9 / 29.0 / 30.4 37.7

Table 10: Varying the distribution of encoder/decoder layers)

which perform about comparably.910

We also consider cases where we further increase911

the size of either the encoder or decoder to 18 lay-912

ers, shown in the second half of Table 10. We913

observe no improvement in performance over the914

12/12-layer encoder-decoder, and suspect that other915

hyperparameters (e.g. hidden size) might be the916

bottleneck rather than the number of layers.917

We highlight here that because of the asymmetry918

of the input and output lengths, there are different919

computational trade-offs to different balances of920

encoder and decoder layers. Encoder-heavy mod-921

els require more memory because of the long input922

sequences, whereas decoder-heavy models are rel-923

ative slower at inference because of the autoregres-924

sive nature of decoding. Given the relatively small925

difference in the margin of performance, memory926

or computational constraints may outweigh the per-927

formance differences in practical scenarios.928

Takeaways: A balanced encoder-decoder per-929

forms best, but the difference in performance may930

be outweighed by other resource considerations.931

B.3 Partial Cross Attention932

Given the use of an efficient attention architec-933

ture, which has memory consumption scale lin-934

early rather than quadratically in input sequence935

length, another major memory bottleneck is the936

encoder-decoder cross-attention. Because each de-937

coder layer attends separately to the long encoder938

representations, and the attention is dense, this is a939

large contiguous chunk of memory that we could940

seek to reduce.941

Perceiver AR (Hawthorne et al., 2022) demon-942

strated strong performance by using only a single943

cross-attention at the bottom layer of an autoregres-944

sive language model. Based on these results, we in-945

vestigate the impact of only having cross-attention946

on a subset of decoder layers. In Table 12, we show947

the results of pretraining and fine-tuning Global- 948

Local models with cross-attention only on specific 949

layers on a variety of configurations. We find that 950

reducing the number of cross-attention layers leads 951

to a drop in performance, but the impact on per- 952

formance is smaller than expected. For instance, 953

with only cross-attention on the first and sixth layer, 954

the Global-Local model still outperforms a Local 955

model. The reduction of cross-attention layers also 956

leads to a corresponding improvement in training 957

step and reduction in memory consumption. 958

Given the small drop in performance from using 959

fewer decoder layers with cross-attention, we con- 960

sider the viability of dropping cross-attention layers 961

after pretraining. In other words, we take a Global- 962

Local model pretrained with full cross-attention, 963

drop the cross-attention for a subset of layers, and 964

fine-tune directly. Our results are shown in Ta- 965

ble 13. We find that dropping the cross-attention 966

after pretraining again only leads to a small (ad- 967

ditional) dip in performance. This indicates that 968

dropping cross-attention may be a viable strategy 969

for further reducing memory requirements for an 970

existing pretrained model with a small performance 971

trade-off, and pretraining a separate model from 972

scratch is not necessary. 973

Takeaways: Dropping cross-attention for a frac- 974

tion of decoder layers can reduce memory con- 975

sumption at the cost of slight performance regres- 976

sion. Cross-attention can be dropped after pretrain- 977

ing, with an associated performance trade-off. 978

B.4 Comparison on short summarization 979

tasks 980

C PEGASUSBase+ 981

In a similar finding as Hoffmann et al. (2022), we 982

found that PEGASUSBase benefits from training 983

on significantly more tokens. As such, we trained 984

a PEGASUSBase for a much larger number of to- 985

13

arXiv GovReport

Pretraining → Fine-tuning Block Size R1 / R2 / RL RG R1 / R2 / RL RG

Transformer → Local 16 46.4 / 19.6 / 27.9 29.4 59.6 / 28.2 / 29.9 36.9
64 46.5 / 19.5 / 27.8 29.3 59.5 / 28.0 / 29.6 36.7
256 46.8 / 19.7 / 28.0 29.6 59.8 / 28.0 / 29.8 36.8

Local → Local 16 45.9 / 19.1 / 27.5 28.9 59.0 / 27.5 / 29.3 36.2
64 46.5 / 19.5 / 27.8 29.3 59.7 / 28.1 / 29.8 36.8
256 47.1 / 19.9 / 28.1 29.8 59.7 / 28.5 / 30.3 37.2

Transformer → Global-Local 16 46.0 / 19.2 / 27.5 29.0 60.3 / 28.2 / 29.8 37.0
64 47.0 / 20.0 / 28.2 29.8 60.8 / 28.7 / 30.1 37.4
256 47.6 / 20.3 / 28.4 30.2 60.8 / 28.7 / 30.0 37.4

Global-Local → Global-Local 16 47.1 / 20.0 / 28.3 29.9 59.7 / 27.8 / 29.2 36.5
64 47.7 / 20.3 / 28.5 30.2 61.0 / 29.3 / 30.8 38.0
256 47.3 / 20.2 / 28.3 30.0 61.6 / 29.4 / 30.7 38.2

Table 11: Comparison of adapting models architectures between pretraining and fine-tuning.

XSUM CNN/DM arXiv GovReport

Cross-Attention R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG Step/s Mem

Full 38.8 / 16.0 / 31.0 26.8 39.5 / 18.6 / 28.4 27.5 47.7 / 20.4 / 28.6 30.3 61.3 / 29.4 / 30.8 38.1 1.00 1.00
Cross[0,2,4,6,8,10] 38.3 / 15.6 / 30.5 26.3 39.8 / 18.8 / 28.5 27.7 48.1 / 20.4 / 28.6 30.4 61.0 / 29.0 / 30.7 37.9 1.10 0.90
Cross[0,3,6,9,11] 38.0 / 15.3 / 30.2 26.0 38.8 / 18.4 / 28.1 27.2 46.9 / 19.9 / 28.2 29.7 60.1 / 28.6 / 30.2 37.3 1.15 0.88
Cross[0,4,8,11] 37.8 / 15.3 / 30.1 25.9 38.5 / 18.1 / 27.9 26.9 47.6 / 20.2 / 28.4 30.1 60.9 / 28.9 / 30.3 37.6 1.15 0.86
Cross[0,6,11] 37.4 / 14.8 / 29.7 25.4 38.8 / 18.1 / 27.9 27.0 46.9 / 19.7 / 28.1 29.6 60.3 / 28.5 / 30.2 37.3 1.18 0.87
Cross[0,6] 37.5 / 14.9 / 29.7 25.5 38.3 / 18.0 / 27.8 26.8 47.1 / 19.8 / 28.1 29.7 60.4 / 28.1 / 29.7 36.9 1.21 0.85

Table 12: Comparison of models with cross-attention only in a subset of the 12 decoder layers. Training steps per
second and memory are computed based on arXiv, and normalized to the Cross[0,6] run.

kens (the same as PEGASUSLarge), which achieves986

much better performance than the previously re-987

leased PEGASUSBase model.988

D Encoder Architecture989

Hyperparameters990

For experiments in Section 3.1, BigBird, Local and991

Global-Local all use a block size of 64. BigBird992

and Global-Local also use 32 global tokens. Per-993

former uses 256 random features.994

E Fine-tuning Hyperparameters995

For arXiv, we fine-tune with an input length of up996

to 16384 tokens and 256 output tokens, while for997

GovReport we use an input length of 10240 in-998

put tokens and 1024 output tokens given the longer999

summaries for the task. For XSUM and CNN/Daily1000

Mail, with use an input length of 512, and output1001

lengths of 64 and 128 respectively, following PE-1002

GASUS hyperparameters. The full set of hyper-1003

parameters for fine-tuning models are shown in1004

Table 15.1005

F Engineering Details1006

The original PEGASUS model was trained using a1007

codebase based on TensorFlow. The experiments1008

in this paper were run using a new codebase written1009

with JAX (Bradbury et al., 2018) and Flax (Heek 1010

et al., 2020). PEGASUS-XBaseand PEGASUS- 1011

Xwere trained by converting the weights from the 1012

TensorFlow checkpoint to a Flax checkpoint for- 1013

mat, and then continuing with long input training. 1014

14

arXiv GovReport

Cross-Attention Model R1 / R2 / RL RG R1 / R2 / RL RG

Pretrained Full 47.7 / 20.4 / 28.6 30.3 61.3 / 29.4 / 30.8 38.1
Cross[0,2,4,6,8,10] 48.1 / 20.4 / 28.6 30.4 61.0 / 29.0 / 30.7 37.9
Cross[0,6] 47.1 / 19.8 / 28.1 29.7 60.4 / 28.1 / 29.7 36.9

Converted Cross[0,2,4,6,8,10] 46.4 / 19.7 / 28.1 29.5 60.2 / 28.8 / 30.3 37.4
Cross[0,6] 46.2 / 19.7 / 28.1 29.5 60.2 / 28.1 / 29.8 36.9

Table 13: Comparison of models pretrained with cross-attention for a subset of layers, and adapting a pretrained
model by dropping cross-attention layers only during fine-tuning

CNN/DailyMail XSum

Model R1 / R2 / RLs RG R1 / R2 / RLs RG

PEGASUSBase 41.8 / 18.8 / 38.9 31.3 39.8 / 16.6 / 31.7 27.6
PEGASUSBase+ 42.5 / 20.1 / 39.6 32.4 43.8 / 21.2 / 36.0 32.2
PEGASUS-XBase 42.5 / 20.1 / 39.6 32.4 42.9 / 20.1 / 35.0 31.2

PEGASUSLarge 44.2 / 21.5 / 41.1 33.9 47.2 / 24.6 / 39.2 35.7
PEGASUS-X 43.4 / 21.2 / 40.6 33.5 45.8 / 22.8 / 37.6 34.0

Table 14: Comparison on short summarization tasks (Test sets)

Dataset Batch
Size

Learning
Rate

Num
Steps

Max Input
Tokens

Max Output
Tokens

Beam
Size

Beam
Alpha

PEGASUS-XBase

XSum 64 8e-4 97.5K 1024 128 4 0.8
CNN/DailyMail 64 8e-4 410K 1024 128 4 0.8
arXiv 64 8e-4 92.5K 16384 256 1 1
Big Patent 64 8e-4 272.5K 16384 256 1 1
PubMed 64 8e-4 85K 8096 256 1 1
GovReport 64 8e-4 40K 12288 1024 2 1
SummScreen 64 8e-4 90K 16384 256 1 1
QMSum 64 8e-4 7.5K 16384 256 1 1

PEGASUS-X

XSum 64 8e-4 5k 1024 128 4 0.8
CNN/DailyMail 64 8e-4 7.5k 1024 128 4 0.8
arXiv 64 8e-4 85k 16384 256 1 1
Big Patent 64 8e-4 390k 12192 256 1 1
PubMed 64 8e-4 47.5k 12192 256 1 1
GovReport 64 8e-4 75K 12288 1024 1 1
SummScreen 64 8e-4 40K 12192 256 1 1
QMSum 64 8e-4 35K 12192 256 1 1

Table 15: Hyperparameters for fine-tuning models

15

	Introduction
	Experimental Setup
	Pretraining
	Fine-tuning

	Ablation Experiments
	Encoder architectures
	Local and Global-Local configurations
	Global-Local: Block Size and Number of Global Tokens
	Other Architecture Modifications
	Pretraining vs Fine-tuning Architectures
	Pretraining Schemes

	PEGASUS-X
	Results on Summarization Tasks
	SCROLLS Summarization Tasks

	Pertinent Related Work
	Conclusion
	Full Related Work
	Details of Architecture Modification Experiments
	Position Encoding Schemes
	Scaling Encoder and Decoder Layers
	Partial Cross Attention
	Comparison on short summarization tasks

	PEGASUSBase+
	Encoder Architecture Hyperparameters
	Fine-tuning Hyperparameters
	Engineering Details

