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Abstract

We propose FedGLOMO, a novel federated learn-
ing (FL) algorithm with an iteration complexity
of O(ϵ−1.5) to converge to an ϵ-stationary point
(i.e., E[∥∇f(x)∥2] ≤ ϵ) for smooth non-convex
functions – under arbitrary client heterogeneity
and compressed communication – compared to
the O(ϵ−2) complexity of most prior works. Our
key algorithmic idea that enables achieving this
improved complexity is based on the observation
that the convergence in FL is hampered by two
sources of high variance: (i) the global server ag-
gregation step with multiple local updates, exac-
erbated by client heterogeneity, and (ii) the noise
of the local client-level stochastic gradients. The
first issue is particularly detrimental to FL algo-
rithms that perform plain averaging at the server.
By modeling the server aggregation step as a gener-
alized gradient-type update, we propose a variance-
reducing momentum-based global update at the
server, which when applied in conjunction with
variance-reduced local updates at the clients, en-
ables FedGLOMO to enjoy an improved conver-
gence rate. Our experiments illustrate the intrinsic
variance reduction effect of FedGLOMO, which
implicitly suppresses client-drift in heterogeneous
data distribution settings and promotes communi-
cation efficiency.

1 INTRODUCTION

Federated learning (FL) is a new edge-computing approach
that advocates training statistical models directly on remote
devices by leveraging enhanced local resources on each
device (McMahan et al. [2017]). In a standard FL setting,
there are n clients, each having its own training data, and

*Equal Contribution

a central server that is trying to train a model, parameter-
ized by w ∈ Rd, using the clients’ data. Suppose the data
distribution of the ith client is Di. Then the ith client has an
objective function fi(w) which is the expected loss, with
respect to some loss function ℓ, over data drawn from Di,
and the goal of the central server is to optimize the average
1 loss f(w), over the n clients, i.e.,

f(w) :=
1

n

n∑
i=1

fi(w) & fi(w) = Ex∼Di
[ℓ(x,w)]. (1)

The setting where the data distributions of all the clients
are identical, i.e. D1 = . . . = Dn, is typically known as
the “homogeneous” setting. Otherwise, the settings where
the data distributions are not identical are referred to as the
“heterogeneous” settings.

The core algorithmic idea of FL – in the form of FedAvg
– was introduced in McMahan et al. [2017]. In FedAvg
(summarized in Algorithm 3), a subset of the clients per-
form multiple steps of gradient descent based updates on
their local data and then communicate back their respective
updates to the server, which then averages them to update
the global model (hence the name FedAvg). This idea of
performing multiple local updates before averaging once re-
duces the communication cost required for training. Another
essential strategy in FL to cut down the communication cost
is to have the clients send compressed/quantized messages
to the server in every round – this is of particular signifi-
cance for training deep learning models where the number
of model parameters is in millions or more.

In practice however, performing multiple local updates on
clients with heterogeneous data distributions leads to the so-
called phenomenon of “client drift”, wherein the individual
client updates do not align well (due to over-fitting on the
local client data) inhibiting the convergence of FedAvg
to the optimum of the average loss over all the clients. In
this paper, we identify the high variance associated with the

1In general this may be a weighted average, but here we only
consider uniform weights, i.e., each weight is 1/n.
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simple averaging step of FedAvg for the global update to
be at the heart of this issue.

Ever since the development of FL, significant attention has
been devoted to analyzing FedAvg under different settings,
modifying FedAvg using ideas from centralized optimiza-
tion to accelerate the training or to reduce the communica-
tion cost; we discuss these works in Section 2. Compared
to centralized optimization, a formidable challenge in the
theoretical analysis of FL algorithms is the use of multiple
local updates in the clients which is compounded by the
heterogeneous nature of data distribution among the clients.
To limit the extent of client heterogeneity, a standard as-
sumption in FL theory is the bounded client dissimilarity
(BCD) assumption, i.e.,

1

n

n∑
i=1

∥∇fi(w)−∇f(w)∥2 ≤ G2 ∀ w, (2)

for some large enough constant G < ∞ (e.g., see A1 in
Karimireddy et al. [2020]). But this assumption is limiting
as it does not allow for arbitrarily large client heterogeneity.

Recently, Arjevani et al. [2019] showed that the stochastic
first-order complexity of any algorithm in the centralized set-
ting to reach an ϵ-stationary point (i.e., E[∥∇f(x)∥2] ≤ ϵ)
for smooth non-convex functions is Ω(ϵ−1.5). It is well
known that vanilla SGD has a suboptimal complexity of
O(ϵ−2) as it cannot mitigate the high variance of the stochas-
tic gradient noise. Recognizing this issue, variance-reducing
techniques for SGD (Fang et al. [2018], Zhou et al. [2018],
Cutkosky and Orabona [2019], Liu et al. [2020]) have been
proposed that attain the optimal complexity of O(ϵ−1.5).
Coming to the federated setting, as we discuss in this paper,
in addition to the noise in the local client-level stochastic
gradients, one has to also contend with the high variance
associated with the global server aggregation step which
depends on the client heterogeneity and the number of local
update steps. In this case, as we argue in the subsequent sec-
tions, applying only local client-level variance-reduction is
not enough for improving the iteration complexity of vanilla
FedAvg beyond O(ϵ−2) for smooth, non-convex losses.

To alleviate the issue of variance due to heterogeneity, we
propose a novel FL algorithm with compressed communica-
tion called FedGLOMO (Algorithm 1 and 2) which applies
Global as well as LOcal variance-reducing MOmentum to the
server update and client updates, respectively. We prove that
the iteration complexity of FedGLOMO is O(ϵ−1.5) in the
smooth non-convex case, which is better than the O(ϵ−2)
complexity of related works in the FL setting; see Table 1
and Theorem 1. Further, our theory does not use the BCD
assumption, i.e. eq. (2), which is a standard assumption in
related works. Instead, we propose and use Assumption 4,
which is a more realistic and empirically verified assumption
on the client drift, even allowing for arbitrary client hetero-
geneity. It is worth mentioning here that for FL, Karimireddy
et al. [2020] also propose an algorithm (MimeMVR) which

is shown to attain this improved complexity of O(ϵ−1.5) but
with the BCD assumption and no compressed communica-
tion; we talk about this at the end of Section 2.

We summarize our contributions next:

(a) We propose FedGLOMO (Alg. 1 and 2), in which we ap-
ply a novel global momentum term at the server in addition
to local momentum at the clients. The design of FedGLOMO
is motivated by two critical issues that need to be alleviated
to accelerate convergence in FL; these are the high variances
associated with: (i) the global server aggregation step due
to heterogeneity of clients when there are multiple local
updates, and (ii) the noise of local client-level stochastic
gradients. Global and local momentum result in variance
reduction for the global server update and the local client
updates, allowing us to tackle (i) and (ii), respectively. This
enables FedGLOMO to converge to an ϵ-stationary point
(i.e., E[∥∇f(x)∥2] ≤ ϵ) for smooth non-convex functions
in O(ϵ−1.5) gradient-based updates, which is better than the
O(ϵ−2) complexity of most related works in the FL setting;
see Table 1 and Theorem 1.

(b) Unlike prior work, our theory does not use the limit-
ing bounded client dissimilarity assumption (i.e., eq. (2)).
Instead, to tighten our result, we propose and use Assump-
tion 4 – which is a novel assumption on the client drift,
even allowing for arbitrary client heterogeneity in the worst
case. We empirically verify that Assumption 4 holds for
FedGLOMO as well as FedAvg. Theoretically, we also
show that Assumption 4 holds for any FL algorithm in the
case of linear regression and also with networks whose train-
ing dynamics follow that of a linearized model (a.k.a. the
“NTK” regime). Refer to the discussion after Assumption 4
and Remark 2 for details.

(c) FedGLOMO is the first FL algorithm achieving O(ϵ−1.5)
complexity while allowing compressed client-to-server com-
munication. We emphasize that from the theory perspective,
applying compression in FedGLOMO is not trivial and the
most obvious approach does not work; see Remark 3.

(d) In Section 6, experiments on CIFAR-10 and Fashion-
MNIST (Xiao et al. [2017]) show that in a highly heteroge-
neous setting of at most two (out of ten) classes per client,
FedGLOMO requires only about one-third the number of
bits used by FedAvg with PyTorch’s default momentum
applied to the local client updates; see Figure 1. Our ex-
periments also illustrate the variance reduction provided
by our scheme which implicitly mitigates client-drift un-
der heterogeneous data distribution and in turn promotes
communication-efficiency.

2 RELATED WORK

FedAvg and related methods: Reisizadeh et al. [2020]
propose FedPAQ which is basically FedAvg (McMahan



et al. [2017]) with quantized client-to-server communica-
tion, and establish its convergence for the homogeneous
case. Li et al. [2019] establish the convergence of FedAvg
for strongly convex functions with heterogeneity (assum-
ing bounded client dissimilarity) but without any com-
pressed communication. Haddadpour et al. [2021] propose
FedCOMGATE which incorporates gradient tracking (Pu
and Nedić [2020]) and derive results with data heterogene-
ity and quantized communication. Karimireddy et al. [2019]
propose SCAFFOLD which uses control-variates to mitigate
the client-drift owing to the heterogeneity of clients. Li et al.
[2018] present FedProx which adds a proximal term to
control the deviation of the client parameters from the global
server parameter in the previous round. Reddi et al. [2020]
propose federated versions of commonly used adaptive opti-
mization methods and prove their convergence under hetero-
geneity. Local SGD (Zinkevich et al. [2010], Stich [2018],
Yu et al. [2018], Wang and Joshi [2018], Basu et al. [2019],
Stich and Karimireddy [2019], Patel and Dieuleveut [2019],
Woodworth et al. [2020], Bayoumi et al. [2020], Liang et al.
[2019], Koloskova et al. [2020]) is very similar to FL and is
essentially based on the same principle as FedAvg. How-
ever, in local SGD, there is usually no data heterogeneity
and all the clients participate in each round (known as “full
device participation”), both of which do not hold in FL and
simplify the derivation of convergence results.
Wang et al. [2019], Huo et al. [2020] present momentum-
based updates at the server without any improvement in the
convergence rate as compared to momentum-free updates.
Qu et al. [2020] present Nesterov accelerated FedAvg
for convex objectives. Karimireddy et al. [2020] propose
Mime(MVR) which applies momentum at the client-level
based on globally computed statistics to control client-drift.
Khanduri et al. [2021] propose STEM which applies mo-
mentum globally and locally for local SGD; however, their
server aggregation step is just plain averaging as they do not
have deal with server-side variance reduction, since all the
clients participate in local SGD.

Distributed optimization with compression: References
Alistarh et al. [2017], Suresh et al. [2017], Reisizadeh et al.
[2020], Haddadpour et al. [2021], Tang et al. [2018], Wu
et al. [2018], Bernstein et al. [2018], Alistarh et al. [2018],
Lin et al. [2017], Stich et al. [2018], Basu et al. [2019],
Hashemi et al. [2021], Chen et al. [2020, 2021] aim to mini-
mize the communication bottleneck in distributed optimiza-
tion by transmitting compressed messages to the central
server and establishing their convergence. Horváth et al.
[2019], Gorbunov et al. [2021] provide distributed algo-
rithms with improved convergence rates by also applying
variance reduction and periodically using full gradients;
however, there are no multiple local updates in these works.
In Appendix D, we compare our work’s complexity against
that of Gorbunov et al. [2021]. In this work, we employ the
quantization operator of Alistarh et al. [2017].

Complexity for smooth non-convex stochastic optimiza-
tion: Arjevani et al. [2019] show that the optimal stochastic
first-order complexity to reach an ϵ-stationary point (i.e.,
E[∥∇f(x)∥2] ≤ ϵ) is O( σ

ϵ1.5 ) where σ2 is the variance of
the stochastic gradients. Unfortunately, vanilla SGD is sub-
optimal and variance-reducing techniques must be applied
to attain the optimal complexity; some noteworthy works on
variance-reduction for SGD are SVRG (Johnson and Zhang
[2013]), SAGA (Defazio et al. [2014]) and SARAH (Nguyen
et al. [2017]). SVRG-style algorithms such as SPIDER
(Fang et al. [2018]) and SNVRG (Zhou et al. [2018]) attain
this optimal complexity by periodically using giant batch
sizes. Cutkosky and Orabona [2019] propose STORM which
also attains this optimal complexity with adaptive learning
rates, but without using any large batches. The key idea of
STORM is momentum-based variance reduction, obtained by
using the stochastic gradient at the previous point computed
over the same batch on which the stochastic gradient at the
current point is computed. Liu et al. [2020] present a much
simpler proof for essentially the same algorithm by employ-
ing a constant learning rate and requiring a large batch size
only at the first iteration. Our key idea of global and local
momentum is STORM-like variance-reducing momentum
applied to the aggregation step at the server, interpreted
as a generalized gradient-type update, and the local client
updates, respectively; see Section 4.

Table 1 compares the complexities of the most relevant re-
lated works in FL (r < n) and local SGD (r = n) with
ours on smooth non-convex functions. Note that under the
more challenging FL setting with partial-device participa-
tion, only FedGLOMO and MimeMVR (Karimireddy et al.
[2020]) attain the improved iteration complexity of O(ϵ−1.5)
with respect to ϵ. However, unlike Karimireddy et al. [2020],
our work does not rely on the bounded client dissimilarity
assumption (eq. (2)) and allows for compressed client-to-
server communication, in which case maintaining the im-
proved complexity is not trivial; for details, see Remarks 2
and 3, respectively. There are meaningful algorithmic differ-
ences between our work and Karimireddy et al. [2020] too.
The biggest one is that while we explicitly apply momentum
in the server aggregation step (global momentum) as well
as in the client updates (local momentum), Karimireddy
et al. [2020] only apply globally computed momentum in
the local client updates. For a detailed discussion of the
differences of our work from Karimireddy et al. [2020],
see Appendix C. Since Mime is designed to deal with client
drift, we empirically compare it against FedGLOMOwithout
compression in a highly heterogeneous setting in Section 6.

3 PRELIMINARIES

Recall the setting and the optimization problem that the
server is trying to solve as defined in eq. (1). We assume
that the clients have access to unbiased stochastic gradients



Table 1: Number of gradient updates, i.e., T , required to achieve E[∥∇f(w)∥2] ≤ ϵ on smooth non-convex functions. Here,
n is the total number of clients and r is the number of clients participating in each round. “Client Participation” asks whether
all (r = n) or only a subset (r < n) of the clients participate in each round. “BCD?” asks if the bounded client dissimilarity
assumption (eq. (2)) is used or not. “Compression?” asks whether compressed communication is involved or not.
∗1: α ≤ n is a problem-dependent quantity; in practice, we expect α ≪ n as confirmed in our experiments.

Ref. T Client Participation BCD? Compression?

Koloskova et al. [2020], Wang et al. [2019] O( 1
nϵ2 ) Full (r = n) Yes ✗

Haddadpour et al. [2021] O( 1
nϵ2 ) Full (r = n) Yes ✓

Khanduri et al. [2021] O( 1
nϵ1.5 ) Full (r = n) Yes ✗

Karimireddy et al. [2019] O( 1
rϵ2 ) Partial (r < n) Yes ✗

Karimireddy et al. [2020] O
(

1√
rϵ1.5

)
Partial (r < n) Yes ✗

This work (FedGLOMO) O
(
max

(√
α
n ,

1√
r

)
1

ϵ1.5

)∗1
Partial (r < n) No ✓

of their individual losses. We denote the stochastic gradi-
ent of fi at w computed over a batch of samples B, by
∇̃fi(w;B). Also in this paper, K is the number of com-
munication rounds, E is the number of local updates per
round or the period, and T = KE is the total number of
local updates or the (order-wise) number of gradient-based
updates. Further, r is the number of clients that the server
accesses in each round, i.e., the global batch size.

Vectors and matrices are written in boldface. For any pos-
itive integer m, the set {1, . . . ,m} is denoted by [m], and
the uniform distribution over the set {0, . . . ,m} is denoted
by Unif[0,m]. 1(.) is the indicator function. Next, we recap
smooth functions.

Definition 3.1 (Smoothness). A function g : Θ −→ R is
to said to be L-smooth if for all θ,θ′ ∈ Θ, ∥∇g(θ) −
∇g(θ′)∥ ≤ L∥θ − θ′∥. For all θ,θ′ ∈ Θ, we also have:
g(θ′) ≤ g(θ) + ⟨∇g(θ),θ′ − θ⟩+ L

2 ∥θ
′ − θ∥2.

4 FEDGLOMO: GLOBAL AND LOCAL
MOMENTUM-BASED VARIANCE
REDUCTION

There are two issues that need to be alleviated for improving
the convergence rate in FL: (i) the high variance of simple
averaging used in the global server aggregation step (of
FedAvg), when there are multiple local updates, which
is exacerbated by heterogeneity of the clients, and (ii) the
high variance associated with the noise of local client-level
stochastic gradients. The key idea of FedGLOMO (Algo-
rithm 1 and 2) is to apply variance-reducing global and
local momentum to combat (i) and (ii), respectively. We
now describe global and local momentum in detail.

Global momentum is applied to the sever aggregation step
which is line 10 in Algorithm 1. To understand it better, let us
revisit FedAvg (summarized in Algorithm 3, although in a

Algorithm 1 FedGLOMO - Server Update

1: Input: Initial point w0, # of rounds of communication
K, period E, learning rates {ηk}K−1

k=0 and global batch
size r. QD is the quantization operator. Set w−1 = w0.

2: for k = 0, . . . ,K − 1 do
3: Server sends wk, wk−1 to a set Sk of r clients chosen

uniformly at random w/o replacement.
4: for client i ∈ Sk do
5: Set w(i)

k,0 = wk and ŵ
(i)
k−1,0 = wk−1. Run Algo-

rithm 2 for client i.
6: end for
7: if k = 0 then
8: Set uk = 1

r

∑
i∈Sk

QD(wk −w
(i)
k,E).

9: else
10: Set uk = βk

r

∑
i∈Sk

QD(wk − w
(i)
k,E) + (1 −

βk)uk−1 + (1−βk)
r

∑
i∈Sk

QD((wk − w
(i)
k,E) −

(wk−1 − ŵ
(i)
k−1,E)). // (Global Momentum)

11: end if
12: Update wk+1 = wk − uk.
13: end for

slightly different way than usual) and its server aggregation
step (line 12) which is just simple averaging. Similar to
the update of SGD suffering from high variance, this naive
averaging step – which we think of as the average of a batch
of generalized stochastic gradients – is characterized by high
variance stemming from heterogeneity and multiple local
updates. So, this way of server aggregation slows down the
convergence rate of FedAvg (and other related methods).

In this paper, we re-envision the server aggregation as a gen-
eralized gradient-based update by thinking of (wk −w

(i)
k,E)

as the generalized gradient. Then, we wish to incorporate
the style of variance-reducing momentum applied in STORM
(Cutkosky and Orabona [2019], Liu et al. [2020]) to our gen-



Algorithm 2 FedGLOMO - Client Update

1: for τ = 0, . . . , E − 1 do
2: if τ = 0 then
3: Set v(i)

k,τ = ∇fi(w
(i)
k,τ ), v̂

(i)
k−1,τ = ∇fi(ŵ

(i)
k−1,τ ).

4: else
5: Pick a random batch of samples in client i,

say B(i)
k,τ . Compute the stochastic gradients of

fi at w(i)
k,τ , ŵ(i)

k−1,τ , w(i)
k,τ−1 and ŵ

(i)
k−1,τ−1 over

B(i)
k,τ viz. ∇̃fi(w

(i)
k,τ ;B

(i)
k,τ ), ∇̃fi(ŵ

(i)
k−1,τ ;B

(i)
k,τ ),

∇̃fi(w
(i)
k,τ−1;B

(i)
k,τ ) and ∇̃fi(ŵ

(i)
k−1,τ−1;B

(i)
k,τ ).

6: Update: v(i)
k,τ = ∇̃fi(w

(i)
k,τ ;B

(i)
k,τ ) +

(
v
(i)
k,τ−1 −

∇̃fi(w
(i)
k,τ−1;B

(i)
k,τ )

)
and

v̂
(i)
k−1,τ = ∇̃fi(ŵ

(i)
k−1,τ ;B

(i)
k,τ ) +

(
v̂
(i)
k−1,τ−1 −

∇̃fi(ŵ
(i)
k−1,τ−1;B

(i)
k,τ )

)
. // (Local Mom.)

7: end if
8: Update w

(i)
k,τ+1 = w

(i)
k,τ − ηkv

(i)
k,τ and ŵ

(i)
k−1,τ+1 =

ŵ
(i)
k−1,τ − ηkv̂

(i)
k−1,τ .

9: end for

10: Send QD(wk − w
(i)
k,E) and QD((wk − w

(i)
k,E) −

(wk−1 − ŵ
(i)
k−1,E)) to the server.

eralized gradient-based update; note that their method is for
stochastic gradients in the case of centralized optimization.
To that end, let us briefly recap STORM’s update rule. For a
function h(z), STORM’s update for the jth iteration is:

zj+1 = zj − ηjvj , where vj = {∇̃h(zj ; ξj)+

(1− βj)(vj−1 − ∇̃h(zj−1; ξj))1(j > 0)}. (3)

In eq. (3), ξj denotes the source of randomness in the
jth iteration and βj ∈ [0, 1) is the momentum parame-
ter. Note the use of the stochastic gradient at zj−1 com-
puted on ξj . Coming back to Algorithm 1, the quantity
uk plays the role of vj in eq. (3). To see this clearly, let
us analyze EQD

[uk] (see lines 8 and 10 in Algorithm 1).
Under Assumption 3, the compression operator QD pro-
duces an unbiased estimate of the input. Then defining
g(wk;Sk) ≜ 1

r

∑
i∈Sk

(wk −w
(i)
k,E) and ĝ(wk−1;Sk) ≜

1
r

∑
i∈Sk

(wk−1 − ŵ
(i)
k−1,E), we have:

EQD
[uk] = {g(wk;Sk)+

(1− βk)
(
uk−1 − ĝ(wk−1;Sk)

)
1(k > 0)}. (4)

In eq. (4), g(wk;Sk) and ĝ(wk−1;Sk) play the roles of
∇̃h(zj ; ξj) and ∇̃h(zj−1; ξj), respectively. With this, one
can clearly see that eq. (4) is the analogue of eq. (3) for the
global server aggregation in FL. However, this equivalence
is not so apparent without looking at the expected value of
uk with respect to QD; in fact, the choice of quantities that

Algorithm 3 FedAvg McMahan et al. [2017]

1: Input: Initial point w0, # of communication rounds K,
period E, learning rates {ηk}K−1

k=0 and global batch size
r.

2: for k = 0, . . . ,K − 1 do
3: Server sends wk to a set Sk of r clients chosen uni-

formly at random w/o replacement.
4: for client i ∈ Sk do
5: Set w(i)

k,0 = wk.
6: for τ = 0, . . . , E − 1 do
7: Pick a random batch of samples in client i, B(i)

k,τ .

Compute the stochastic gradient of fi at w(i)
k,τ

over B(i)
k,τ , viz. ∇̃fi(w

(i)
k,τ ;B

(i)
k,τ ).

8: Update w
(i)
k,τ+1 = w

(i)
k,τ − ηk∇̃fi(w

(i)
k,τ ;B

(i)
k,τ ).

9: end for
10: Send (wk −w

(i)
k,E) to the server.

11: end for
12: Update wk+1 = wk − 1

r

∑
i∈Sk

(wk −w
(i)
k,E).

13: end for

are compressed in line 10 of Alg. 2 and used in line 10 of
Alg. 1 is crucial for establishing provable guarantees (also
see Remark 3).

Now that we understand global momentum, let us move on
to local momentum. For this see lines 3, 6 and 8 in Algo-
rithm 2; these give us (wk −w

(i)
k,E) and (wk−1 − ŵ

(i)
k−1,E)

after running for E steps. But notice that these lines are the
same as eq. (3) with βj = 0 and the stochastic gradient at
the first iteration replaced by the full gradient. It is worth
mentioning here that these local updates are also similar to
SPIDER which is an SVRG-style update proposed in Fang
et al. [2018]. However, recognizing that this is also a special
case of the STORM update with βj = 0, we prefer calling it
momentum in order to have a unifying terminology for both
the global and local updates.

One might wonder what is the role of global momentum
as SPIDER can be extended to improve the complexity in
distributed optimization without multiple local updates. For
this, Appendix F, we consider FedLOMO (Algorithm 4 and
5 in the Appendix) which is a simpler version of FedGLOMO
with only local momentum and no global momentum (i.e,
plain averaging at the server which is equivalent to setting
βk = 1 in Algorithm 1), and show that it does not achieve
O(ϵ−1.5) complexity under partial-device participation and
compression (see Theorem 3 in Appendix). The root cause
of this is client heterogeneity which amplifies its effect under
multiple local updates; without incorporating some form
of variance reduction in the server aggregation step, the
complexity cannot be improved.

Let us try to provide some intuition as to how incorporat-
ing global momentum helps. Suppose we keep ηk = η
and βk = β < 1 for all k. Theoretically, we get a lower



bound for β which is O(η2). Then with this momentum-
based aggregation strategy, the variance reduces by a factor
of O(β/η) = O(η) as compared to aggregation by plain
averaging. (There are some other terms too but these are suf-
ficiently small.) This reduction in the variance by a factor of
O(η) is what improves the convergence rate of FedGLOMO.

It is true that FedGLOMO has to communicate twice the
amount of information per round as compared to FedAvg
or FedPAQ (Reisizadeh et al. [2020]) which is just FedAvg
with compressed communication. One can set the precision
of the quantizer sufficiently low to account for the extra per-
round communication cost of FedGLOMO – we adopt this
approach in our experiments. Also, we only assume access
to the full client gradient in line 3 of Alg. 2 for simplicity of
analysis, but our main result (i.e., Theorem 1) can be readily
extended to the case of large enough batch sizes.

5 MAIN RESULT FOR FEDGLOMO

First, we state our assumptions.

Assumption 1 (Smoothness). ℓ(x,w) is L-smooth with
respect to w, for all x. Thus, each fi(w) (i ∈ [n]) is L-
smooth, and so is f(w).

Assumption 2 (Non-negativity). Each fi(w) is non-
negative and therefore, f∗

i ≜ min fi(w) ≥ 0.

Most loss functions used in practice satisfy this anyways
and if not, we can just add a constant offset to achieve
non-negativity.

Assumption 3 (Quantization). The quantization operator
QD in Alg. 1 and 2 is unbiased, i.e., E[QD(x)|x] = x,
and its variance satisfies E[∥QD(x)−x∥2|x] ≤ q∥x∥2 for
some q > 0. The “qsgd” operator proposed in Section 3.1
of Alistarh et al. [2017] satisfies Assumption 3.

Assumption 4 (Client Drift/Heterogeneity). Let A be an
FL algorithm with E local update steps and K communi-
cation rounds. Let w(i)

k,τ be the ith client’s local parameter
at the start of the (τ + 1)st local step of the (k + 1)st round
of A, for i ∈ [n] (similar to the notation in Alg. 1, 2, and
3). Define ẽ(i)k,τ ≜ ∇fi(w

(i)
k,τ )−∇fi

(
1
n

∑
j∈[n] w

(j)
k,τ

)
. Then

for some α ≪ n, the following holds:

E
[∥∥∥ ∑

i∈[n]

ẽ
(i)
k,τ

∥∥∥2] ≤ α
∑
i∈[n]

E
[∥∥∥ẽ(i)k,τ

∥∥∥2], (5)

∀ τ ∈ {0, . . . , E − 1} and k ∈ {0, . . . ,K − 1}. The expec-
tation above is w.r.t. any stochasticity in the local updates.

Equation (5) in the above assumption always holds with
α = n for any FL algorithm; this follows from the fact
that for any m > 1 vectors {aj}mj=1, ∥

∑m
j=1 aj∥2 ≤

m
∑m

j=1 ∥aj∥2 (this can be obtained by using the Cauchy-
Schwarz inequality). However, we empirically observe
α ≪ n in practice for FedGLOMO as well as FedAvg;
see Section 6 and Appendix H, respectively. The value of α
in Assumption 4 is a measure of the amount of client drift in-
duced by the algorithm which also depends on the degree of
heterogeneity in the system – as the heterogeneity increases
(decreases), we observe α to also increase (decrease).

From Figure 3 (in Section 6), we see that for the highly het-
erogeneous setting that we consider for our experiments
in Section 6, α < 0.06n for most of the trajectory of
FedGLOMO on both CIFAR-10 and Fashion-MNIST (abbre-
viated as FMNIST). In the homogeneous case, α < 0.03n
and α < 0.02n for most of the trajectory on CIFAR-10
and FMNIST, respectively. We observe a similar trend of
α for FedAvg in Appendix H. Additionally, we derive a
convergence result for FedAvg under Assumption 4 and
without the bounded client dissimilarity assumption (i.e.,
eq. (2)) in Appendix H.

Some theoretical motivation for Assumption 4: Let us
consider linear regression to provide a scenario where α =
0 provably for any FL algorithm. Suppose in client i, we
have feature and label pairs (x, y) ∼ (Xi,Yi), where the
label

y = ⟨w∗
i ,x⟩+ ξ,

with ξ ∼ Ni being independent zero-mean client-dependent
random noise. Obviously, the label distribution Yi here
depends on the feature distribution Xi, noise distribution
Ni and w∗

i . We assume that the covariance matrix of
the feature vectors is the same across all the clients, i.e.,
Ex∼Xi

[xxT ] = Q for all i ∈ [n]; this is possible for e.g.,
by normalization or whitening of the features. Note that by
assuming the same covariance matrix across all the clients,
we are not assuming that the feature distributions are the
same across clients, but even if they are, there is heterogene-
ity through the different label distributions. Then, with the
squared loss, our per-client objective function is:

fi(w) = E(x,y)∼(Xi,Yi)

[1
2
(y − ⟨w,x⟩)2

]
.

With the aforementioned conditions, it can be verified that
∇fi(w) = Q(w −w∗

i ). Thus,

ẽ
(i)
k,τ = Q

(
w

(i)
k,τ − 1

n

∑
j∈[n]

w
(j)
k,τ

)
,

and so
∑

i∈[n] ẽ
(i)
k,τ = 0⃗. So, Assumption 4 holds here with

α = 0 for any FL algorithm.

In fact, the above analysis and result (i.e., α = 0) can
be extended to networks whose training dynamics follow
that of a linearized model, which has been shown to be
the case for infinite-width networks (see for e.g., Lee et al.
[2019] and Jacot et al. [2018]) and has been also used on



applications for finite-width networks (for e.g., in Mu et al.
[2020]).

We now present the abridged version of the convergence
result of FedGLOMO, followed by some important remarks.
Its full version and detailed proof are in Appendix A and
G.1, respectively.

Theorem 1 (Smooth non-convex). Let Assumptions
1, 2 and 3 hold. Further, suppose Assumption 4 is
true for FedGLOMO. In FedGLOMO, for each round
k, set ηk = η = O( 1

LEK1/3C1/3 ), where C =

O
(
max

(
α
n ,

E2(1+q)2

r

))
, and βk = O((1 + q)η2L2E4).

Suppose we use full-device participation (i.e., the global
batch size is n) only at k = 0. Then, FedGLOMO
can achieve Ek∗∼Unif[0,K−1][∥∇f(wk∗)∥2] ≤ ϵ in K =

O
(
max

(√
α
n ,

1+q√
r

)
ϵ−1.5

)
rounds of communication and

E = O(1) local steps.

Remark 1 (Better iteration complexity). As per Theo-
rem 1, for converging to an ϵ-stationary point, FedGLOMO
needs T = KE to be O

(
max

(√
α
n ,

1√
r

)
ϵ−1.5

)
. This iter-

ation complexity is the same as that of MimeMVR (Karim-
ireddy et al. [2020]) but without using the bounded client
dissimilarity assumption, i.e. eq. (2), (also see the next re-
mark for more details on this) and better than other related
works in the federated setting; see Table 1. We underscore
the significance of global momentum here by comparing
this complexity of FedGLOMO to that of FedLOMO (recall
this is a simpler version of FedGLOMO with only local mo-
mentum and no global momentum, described in Appendix
F) under partial-device participation and compression which
is O

(
1
r ϵ

−2
)
; see Theorem 3 in the Appendix.

Remark 2 (No requirement of bounded client dissimilar-
ity (BCD) assumption). Divergent from related works,
Theorem 1 does not use the commonly used BCD as-
sumption, i.e., eq. (2). This is achieved by utilizing the
smoothness and non-negativity of the fi’s, specifically
1
n

∑
i∈[n] ∥∇fi(w)∥2 ≤ 1

n

∑
i∈[n] 2L(fi(w) − f∗

i ) ≤
2Lf(w); see the proof outline of Theorem 1 in Appendix
A. Instead of the BCD assumption, we use our empirically
verified Assumption 4 to provide a tighter (when α ≪ n)
and data-dependent convergence result. Note that Assump-
tion 4 will always hold for some α ≤ n, regardless of the
degree of client heterogeneity. Thus, Theorem 1 allows for
arbitrary client heterogeneity.

Remark 3 (Compressed communication). To our knowl-
edge, FedGLOMO is the first algorithm that attains the
aforementioned improved iteration complexity for FL on
smooth non-convex functions with compressed communi-
cation. We emphasize that the choice of quantities com-
pressed in line 10 of Algorithm 2 is important. This par-
ticular choice enables deriving the improved complexity
by first deriving a result analogous to smoothness, i.e.,
∥(wk −w

(i)
k,E) − (wk−1 − ŵ

(i)
k−1,E)∥ ≤ L̂∥wk − wk−1∥

(see Lemma 9 in Appendix G.1). The straightforward choice
of sending QD(wk−w

(i)
k,E) and QD(wk−1 − ŵ

(i)
k−1,E) pro-

hibits us from deriving the improved rate, unless we also
assume QD(.) to be a Lipschitz operator.
In Appendix B, for r ≪ n, we show that using the quan-
tization scheme of Alistarh et al. [2017] with s =

√
d,

FedGLOMO achieves more than a five-fold saving in the
total communication cost as compared to when there is
full-precision communication in FedGLOMO.

Remark 4 (A limitation). Even though our iteration
complexity of T = O(ϵ−1.5) is better than that of
FedCOMGATE proposed by Haddadpour et al. [2021]
(which is O(ϵ−2)), our communication complexity of K =
O(ϵ−1.5) is higher than that theirs which is K = O(ϵ−1)
(albeit under an extra assumption on the quantizer, namely
Assumption 5 in their paper). Ideally, we would like to have
E = O(ϵ−p) and K = O(ϵ−(1.5−p)) for some p > 0, in
order to reduce FedGLOMO’s communication complexity.
Exploring whether such a result is obtainable with our pro-
posed style of momentum is an interesting future direction.

6 EXPERIMENTS

To show the efficacy of global momentum in FedGLOMO,
we compare it against FedLOMO (recall this has only lo-
cal momentum and no global momentum; see Appendix
F) and FedAvg (McMahan et al. [2017]) with the stan-
dard momentum available in PyTorch applied to (i) only
its local updates, and (ii) both local and global updates –
all with compressed client-to-server communication. We
denote (i) and (ii) by FedAvg-lm and FedAvg-glm (“lm”
and “glm” stand for local momentum, and global + local
momentum), respectively. FedAvg with compression is re-
ferred to as FedPAQ (Reisizadeh et al. [2020]). Similarly,
we call FedAvg-lm and FedAvg-glm with compression,
as FedPAQ-lm and FedPAQ-glm. We also compare against
FedCOMGATE (Haddadpour et al. [2021]) which uses gradi-
ent tracking to theoretically derive a better communication-
complexity than us (see Remark 4). For compression, the
“qsgd” operator proposed in Alistarh et al. [2017] is used.

We consider the task of classification on CIFAR-10 and
Fashion-MNIST (Xiao et al. [2017]) abbreviated as FM-
NIST henceforth. The model used is a two-layer neural
network with ReLU activation in the hidden layers. The size
of both the hidden layers is 300/600 for FMNIST/CIFAR-10.
We train the models using the categorical cross-entropy loss
with ℓ2-regularization. The weight decay value in PyTorch
(to apply ℓ2-regularization) is set to 1e-4. We consider both
homogeneous and heterogeneous data distribution among
the clients. Similar to McMahan et al. [2017], for the hetero-
geneous case, we distribute the data among the clients such
that each client can have data from either one or (at most)
two classes – note that this is a high degree of heterogeneity.
The exact procedure is described in Appendix E. The num-



ber of clients (n) in all the experiments is set to 50, with
each client having the same number of samples. The global
batch-size r is 25, and the number of local updates per round
(i.e., E) is 10. All full gradients are replaced by stochastic
gradients computed on a (per-client) batch size of 256. The
learning rates, momentum parameters of the algorithms, and
some other experimental details are in Appendix E.

In Fig. 1, we compare FedPAQ-lm, FedPAQ-glm,
FedLOMO and FedCOMGATE with 4 (resp., 8) bits per-
round against FedGLOMO with 2 (resp., 4) bits per-round
on FMNIST (resp., CIFAR-10) in the heterogeneous and
homogeneous cases. We set the number of per-round bits
used by FedGLOMO to be half the number used by all other
algorithms, so that each one has the same per-round commu-
nication budget. All plots depict results over 3 independent
runs; the shaded regions represent ±1 standard deviation
whereas the solid lines are the respective means. Please see
the discussion in the figure caption. These results illustrate
the power of global momentum.

Next, in the no-compression heterogeneous case, we com-
pare against Mime (specifically, “MimeSGDm”) of Karim-
ireddy et al. [2020] which also attains a complexity of
O(ϵ−1.5) but without compressed communication, and is
tailored to handle client heterogeneity. Having shown the
suboptimality of FedLOMO and FedPAQ-lm in Fig. 1, we
only compare FedAvg-glm, FedGLOMO without compres-
sion and MimeSGDm in the heterogeneous case in Fig. 2.
The plots in Fig. 2 show that the implicit client-drift control-
ling ability of our proposed global momentum is on par with
the explicit client-drift controlling mechanism of Mime. The
test error values averaged over the last five rounds for the
plots in Figures 1 and 2 are in Tables 2 and 3, respectively.

We also provide some more empirical results on CIFAR-100
in Appendix E.1.

Algo. CIFAR-10 Het. FMNIST Het.
FedPAQ-lm 50.26 ± 0.85 16.17 ± 0.53
FedPAQ-glm 49.88 ± 1.15 15.87 ± 1.10
FedLOMO 53.74 ± 0.17 18.95 ± 0.19
FedGLOMO 46.42 ± 0.05 13.55 ± 0.32
FedCOMGATE 46.26 ± 0.25 15.32 ± 0.09
Algo. CIFAR-10 Hom. FMNIST Hom.
FedPAQ-lm 45.13 ± 0.07 13.08 ± 0.05
FedPAQ-glm 45.70 ± 0.10 11.76 ± 0.06
FedLOMO 45.96 ± 0.01 14.22 ± 0.01
FedGLOMO 44.97 ± 0.05 10.98 ± 0.05
FedCOMGATE 45.46 ± 0.03 12.24 ± 0.01

Table 2: Average test error % (± standard deviation) over
the last five rounds for the plots in the heterogeneous (top)
and homogeneous (bottom) cases in Figure 1.

Algo. CIFAR-10 Het. FMNIST Het.
FedAvg-glm 50.26 ± 0.74 16.17 ± 0.53
MimeSGDm 46.10 ± 0.13 13.34 ± 0.25
FedGLOMO 45.41 ± 0.15 13.48 ± 0.26

Table 3: Average test error % (± standard deviation) over
the last five rounds for the plots in Figure 2.

Verifying Assumption 4 for FedGLOMO: For each round

k, we compute α = maxτ∈[E]
∥
∑

i∈[n] ẽ
(i)
k,τ∥

2∑
i∈[n] ∥ẽ

(i)
k,τ∥2

, where ẽ
(i)
k,τ

is as defined in Assumption 4, for 4 and 2 bit FedGLOMO
on CIFAR-10 and FMNIST, respectively. Note that we re-
move the expectation (w.r.t. the stochastic gradients) while
computing α for empirical verification. In Fig. 3, we plot
(α/n) over different rounds for the heterogeneous as well
as homogeneous case on both datasets; see the discussion
in the figure caption.

7 CONCLUSION

We presented FedGLOMO, a communication-efficient algo-
rithm for faster federated learning via the application of
variance-reducing momentum, both in the aggregation step
at the server as well as local client updates. We showed that
FedGLOMO has better iteration complexity than prior work
on smooth non-convex functions with compressed commu-
nication. Further, unlike prior work, our result does not use
the bounded client dissimilarity assumption, even holding
under arbitrary client heterogeneity. We also demonstrate
the efficacy of FedGLOMO via extensive experiments.
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Figure 1: Comparison of FedPAQ-lm, FedPAQ-glm, FedLOMO, FedGLOMO and FedCOMGATE (Haddadpour et al.
[2021]) with the same per-round communication budget on FMNIST and CIFAR-10 in the heterogeneous (top four figs.) and
homogeneous (bottom four figs.) settings, respectively. The x-axis is the total number of communicated bits divided by the
dimension d and the global batch-size r. FedGLOMO is the fastest and most communication-efficient algorithm in almost
all the cases; for e.g., in the heterogeneous case for both datasets, FedGLOMO attains the final test error of FedPAQ-glm
(resp., FedPAQ-lm) with less than a half (resp., only about a third) of the number of bits used by FedPAQ-glm (resp.,
FedPAQ-lm). Further, FedGLOMO and FedLOMO have a smoother trajectory than other algorithms in the heterogeneous
case due to variance-reducing momentum. Observe that FedLOMO and FedPAQ-lm (with only local momentum) are slower
than FedGLOMO and FedPAQ-slm (with both local and global momentum), showing the ineffectiveness of only local
momentum and the power of combining both local and global momentum. Also, note that FedGLOMO performs much
better than FedCOMGATE in the homogeneous case.
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Figure 2: Comparison of FedAvg-glm, FedGLOMO (without compression) and MimeSGDm on FMNIST and CIFAR-10
in the heterogeneous case. On both datasets, FedAvg-glm is the slowest while FedGLOMO is somewhat faster than
MimeSGDm. While Mime has an explicit client-drift control mechanism, we do not have that in FedGLOMO, but still our
proposed global momentum implicitly mitigates client-drift as well as Mime.
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Figure 3: Variation of (αn ) over different rounds of 4 and 2 bit FedGLOMO for CIFAR-10 (Fig. 3a) and FMNIST (Fig. 3b)
in the heterogeneous and homogeneous cases. In both cases, notice that α ≪ n throughout training. Also, as discussed
after the statement of Assumption 4, note that (αn ) is higher for the heterogeneous case (except at the end of training for
FMNIST). See Figure 4 in the Appendix for the same on FedAvg.
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