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Abstract
The utilization of state-of-the-art single-cell RNA
sequencing (scRNA-seq) techniques has signifi-
cantly enhanced the depth and richness of scRNA-
seq datasets, contributing to a more comprehen-
sive comprehension of cellular biology and fa-
cilitating advancements across a spectrum of re-
search domains. In this work, we propose a novel
Single-cell Pre-trained Language Model via Ge-
netic Pathway Learning, named scPaLM, that
effectively harnesses scRNA-seq data and enables
various downstream applications. scPaLM inte-
grates several innovative designs: (1) an embed-
ding process that adeptly represents gene infor-
mation with a reduced token count, enhancing
computational efficiency; (2) a genetic pathway
learning module that is designed to learn discrete
representations, enabling the modeling of collec-
tive gene behaviors in a data-driven way; (3) an in-
novative training methodology that progressively
aggregates cell representations into a designated
token during the training phase, with a tailored
masking strategy and a token-level contrastive
regularizer. scPaLM demonstrates superior per-
formance on various downstream tasks, including
cell type annotations, imputation, and cancer drug
response prediction, by clear margins compared
to baselines.

1. Introduction
Single-cell RNA sequencing has emerged as the state-of-
the-art method for elucidating the intricacies and diversity
inherent in RNA transcripts at the individual cell level and
providing insights into the composition of distinct cell types
and their respective functions within tissues, organs, and
organisms (Jovic et al., 2022). The massive amount of data
generated by scRNA-seq techniques has provided massive
information on various cells, enabling a better understand-
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ing of them, and hence benefit diverse research areas such
as development (Semrau et al., 2017), auto-immune dis-
eases (Gaublomme et al., 2015) and cancer (Patel et al.,
2014) diagnosis or prognosis.

To effectively model scRNA-seq data, various computa-
tional methods with different architectural designs have been
proposed. Recent advances in deep learning have inspired
the application of advanced machine learning techniques,
such as transformers (Vaswani et al., 2017), to scRNA-seq
data analysis. These models, especially those inspired by
the success of BERT (Devlin et al., 2018) and GPT (Radford
et al., 2019), use a token-based approach where each gene’s
expression count is treated as a “token”, a concept widely
adopted in natural language processing (NLP). These tokens
are then compiled into a “sentence” that represents the ge-
netic expression profile of a cell. While transformer-based
algorithms have proven to be effective, they are not with-
out their limitations. First, treating each gene as a distinct
token significantly increases the total token count, leading
to considerable computational demands. One solution is
to select a subset of highly variable genes, such as the top
2000, which can significantly reduce the gene count. How-
ever, this approach inevitably results in the loss of valuable
biological information. Alternatively, the use of memory-
efficient transformers can help reduce computational costs,
though possibly at the expense of performance. Addition-
ally, these transformer-based models overlook biological
priors, which could prevent the models from attaining a
more thorough understanding of scRNA-seq data. For ex-
ample, current methods often treat each cell as a sequence
of genes, even though the order of genes does not inherently
have biological significance.

In this paper, we propose scPaLM, a transformer-based
model that effectively harnesses massive scRNA-seq data.
scPaLM incorporates multiple innovative elements: (1) We
introduce an efficient embedding process that condenses
information from all genes into a reduced number of to-
kens by leveraging a symmetric transformation. This en-
sures the embedding process is permutation-invariant, sig-
nificantly reduces computational costs, and facilitates rapid
training and inference; (2) Recognizing the collective nature
of gene functionality, we introduce a genetic pathway en-
coder. This encoder translates gene tokens into genetically
related pathway tokens and obtains discrete representations
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to capture the unique yet collective functionality of genes;
(3) To aggregate cell-specific information, we establish a
tailored training framework that learns a designated token
to represent cells, incorporating a specific masking strat-
egy and a token-level contrastive regularizer. In several
downstream tasks including cell type annotation, drug re-
sponse prediction and imputation, scPaLM achieves greater
performance compared to baseline methods including Gene-
former (Theodoris et al., 2023), scGPT (Cui et al., 2023)
and scFoundation (Hao et al., 2023).

2. Related Works
Several methods have been proposed to model transcriptome
measurements at the single-cell level that reflect biological
diversity (Lopez et al., 2018). MAGIC (Dijk et al., 2017)
aims to predict the missing measurements, often referred to
as “dropouts”, by propagating in a graph constructed based
on cell-cell similarity. scImpute (Li & Li, 2018) learns to
accurately and robustly identify dropouts and perform im-
putation on these identified positions. SAVER (Huang et al.,
2018) leverages gene-to-gene relationships to recover the
expression level of each gene individual cell. Lopez et al.
(2018) developed a scalable framework called scVI for prob-
abilistic representation and analysis of gene expression in
single cells. More recently, there has been a notable utiliza-
tion of pretrained transformers in the context of modeling
single-cell RNA sequencing (scRNA-seq) data. In the realm
of encoder-only transformers, scBERT (Yang et al., 2022)
embeds each gene into a token and leverages an efficient
transformer to model over 16000 genes for each individual
cell. Subsequently, scFoundation (Hao et al., 2023) has
made advancements in the embedding process introduced
by scBERT and resulted in enhanced performance. Gene-
former (Theodoris et al., 2023) discards the original mea-
surement of transcriptome and constructs input sequences
that account for the ranking of measurements across the
entirety of the dataset, thereby creating a representation
that encapsulates the relative expression levels of all genes
within each cell. For decoder-based models, scGPT (Cui
et al., 2023) leverages the concept of next token prediction
in NLP to iteratively predict the masked genes, creating
a novel path for scRNA-seq data modeling. A concurrent
work CellPLM (Wen et al., 2023) encodes cell-cell relations
by leveraging spatially-resolved transcriptomic data in pre-
training. In this work, our objective is to deploy a vector
quantization technique to learn discrete genetic pathway
representation.

3. Methodology
The training process for scPaLM consists of two distinct
stages. During the initial stage, we train both an encoder
and a decoder using a reconstruction loss. Specifically, the
encoder is trained to map the raw gene tokens to tokens that
represent genetic pathways (as discussed in Section 3.2),
while the decoder’s role is to reverse this mapping, convert-

ing genetic pathway tokens back to the original expression
levels. In the second stage, we train another encoder with
an additional token designed to capture cell-specific infor-
mation (as discussed in Section 3.3). The two encoders
we have trained in these two stages collectively empower
various downstream tasks, exhibiting superior performance.

3.1. Permutation-Invariant Embedding
A crucial aspect of implementing the Transformer involves
the construction of “tokens”. One commonly employed
method for tokenization is to transform each gene’s expres-
sion value into a token (Hao et al., 2023; Cui et al., 2023),
which yields a sequence with a length of Ng. However, it
is worth noting that Ng can sometimes grow to reach val-
ues in the tens of thousands, posing significant challenges
due to the substantial memory and computational resources
required to handle such a long sequence. To alleviate the
necessity for an excessively large token count, an alterna-
tive approach can be employed known as “patching”, a
technique inspired by the Vision Transformer (Dosovitskiy
et al., 2020), which groups nearby genes together, thereby
reducing computational complexity. While this strategy
seems to be effective, it does exhibit sensitivity to the or-
der of genes within different patches. In contrast to natural
languages, the relative positions of genes lack biological
significance; in other words, permuting the vector of gene
expression values results in the same cellular expression,
which is not the case for the patching technique.

We introduce a tokenization scheme that helps reduce com-
putational costs and enhances the representation of gene ex-
pression values while ensuring permutation invariance. Our
approach initiates by mapping the expression values of in-
dividual genes into high-dimensional vectors through gene-
specific projection matrices, represented as P ∈ RNg×d1 . A
trainable gene-specific coefficient α is adopted to scale these
vectors, concurrently pass them through a linear layer, and
finally the outputs of these two operations by summation are
combined to obtain Evalue. Subsequently, we set up learn-
able embeddings for individual gene, denoted as Egene and
concatenate it with Evalue. We feed the concatenated embed-
dings into a linear layer and obtain E ∈ RNg×N . To save
computational cost, we introduce a symmetric pooling func-
tion denoted as f(·), that reduces the matrix E to a single
N dimensional vector. Widely adopted options to achieve
this include max or mean pooling. However, due to the high
sparsity of the vector x, where only a small subset of genes
has non-zero expression values, employing these conven-
tional pooling techniques results in suboptimal outcomes.
As a remedy, we design a hierarchical pooling strategy to re-
lieve the issue brought by excessive zero-count genes, where
the function f first processes embeddings corresponding to
genes with zero-count expressions. Subsequently, f pools
the embeddings of the remaining genes, while incorporat-
ing the pooled embeddings of the zero-count genes. After
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obtaining the pooled embeddings, we use them as the co-
efficients to interpolate N learnable vectors, denoted as
P ′ ∈ RN×d. This can enhance the representation ability of
our embedding process. We summarize the whole process
in Algorithm 2.

3.2. Genetic Pathway Learning
Most genes do not function in isolation; instead, they func-
tion in concert to perform biological functions. Groups of
biologically related genes that demonstrate substantial as-
sociations with specific biological processes are commonly
referred to as pathways. Recognizing the activated pathways
within a cell holds paramount importance in comprehending
its characteristics (Wang & Sherwood, 2011).

We propose to learn distinct “pathway” tokens, represented
as discrete codes, by training an encoder and a vector quan-
tizer. To be more specific, the encoder, implemented as a
transformer, maps Ē into hidden representations, denoted as
E = {e1, e2, . . . , eN}. Subsequently, the quantizer learns
a codebook V = {v1,v2, . . . ,vK}, and associates each ei
with the closest entry in V in terms of distance. More pre-
cisely, for each embedding with index i, we derive the cor-
responding embedding from the codebook with the follow-
ing formula: zi = argminv∈V ∥v − ei∥2. After acquiring
Z = {z1, z2, . . . ,zN}, we input it into an additional de-
coder, which is implemented as another transformer model,
and obtain the output vector o ∈ RN

g . These modules are
trained using reconstruction tasks, where a mean-squared-
error (MSE) loss is employed to minimize the dissimilarity
between x and o. Furthermore, we introduce a commitment
loss (Huh et al., 2023) to minimize the distance between
each pair of ei and zi. Additionally, we follow Huh et al.
(2023) to regularly replace the unused tokens in codebooks
with randomly re-initialized tokens, and leverage an affine
parameterization to minimize interval covariate shifts. More
details are provided in Section A.2.

3.3. Cell Information Aggregation
While the pathway encoder encodes gene expression values
into pathway tokens, it does not provide a cellular-level
representation. One possible approach to constructing cell
representations involves concatenating the representation
of genetic pathway tokens. However, this results in a pro-
hibitively high-dimensional representation, leading to in-
creased computational costs in downstream tasks. Alterna-
tively, using the average representation of pathway tokens,
while simpler, yields inferior performance (Section B.7).

To aggregate gene representations effectively and efficiently
at the cellular level, we introduce a learnable token, eC , de-
signed to encapsulate cell-specific information. This token
is associated with a subset, denoted as zi1 , zi2 , . . . ,ziN′ ,
randomly selected with monotonically increasing indices
from the set Z . This subset operation is analogous to the

masking concept, where information is transferred from
the masked tokens to eC . We employ an encoder to con-
vert these tokens into representations, which we denote as
H = {hC ,hi1 ,hi2 , . . . ,hiN ′}. Subsequently, we exclude
hC , replace the positions of the previously omitted pathway
tokens (i.e., those not selected in the subset) with a common
token eM , and proceed to decode this modified embedding
using a decoder. To achieve the aggregation, we train the
two introduced tokens, namely eC and eM , as well as two
neural networks, namely the encoder and the decoder. Note
that the encoder and the quantizer introduced in Section 3.2
are frozen. The optimization is achieved by minimizing the
reconstruction loss between the original gene expression
and the decoded representation within the masked region.
Despite the fact that the number of pathway tokens differs
from the number of genes, we have found that a straightfor-
ward scaling algorithm is effective (see Algorithm 1). The
experimental results confirm that the stronger capability of
he in representing cells compared to other variants such as
the average of zi after training. To further encourage hC

to learn cell-specific information, we devise a contrastive
learning framework, as presented in Section A.1.

4. Experiments
4.1. Implementation Details
We provide details on benchmark datasets below, and defer
other details to Section B.1. We compare against baseline
methods on various benchmark datasets that are not included
in the pretraining data: (1) CLL (GEO: GSE111014) (Ren-
deiro et al., 2020), which originally contains 48016 cells
with 33694 genes and 6 types of cells. We further filter out
cells without type annotations, resulting in 30K cells; (2)
COVID (GEO: GSE150861) (Guo et al., 2020), which con-
tains 11931 cells; (3) Jurkat from 10x Genomics, which con-
tains 3258 cells. We filter out zero-count genes and retain
17753 genes. (4) PBMC-5k that also comes from 10x Ge-
nomics which contains around 5K cells; and finally the Can-
cer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012)
and Genomics of Drug Sensitivity in Cancer (GDSC) (Iorio
et al., 2016) datasets which are leveraged in Section 4.3.

4.2. Unsupervised Cell Type Annotation
Our first set of experiments involves applying computational
methods on unseen scRNA-seq data and providing type an-
notations to those unseen cells in an unsupervised manner.
We compare the performance of scPaLM with three base-
lines, namely PCA, Geneformer, and scGPT. These exper-
iments are conducted on the CLL and the COVID dataset.
Figure 1 and 3 display UMAP visualizations created from
the cell representations, i.e., hC . We use the Leiden (Traag
et al., 2019) algorithm with a resolution of 1.0 to cluster the
embeddings, and assess the clustering performance with the
adjusted rand index (ARI) and normalized mutual informa-
tion (NMI) scores. Qualitatively speaking, PCA exhibits the
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Figure 1. Unsupervised clustering performance on the CLL dataset.

poorest results, whereas the UMAPs generated by the other
three models demonstrate significantly superior clustering
quality. We can also observe that scPaLM possesses a
smoother and more clustered latent space with respect to the
ground-truth cell type labels. Quantitative results also con-
firm scPaLM’s ability to annotate types of cells. Notably,
our method achieves higher ARI and NMI scores compared
to the baselines by clear margins on both datasets. On CLL,
scPaLM outperforms the baselines by 0.084 ∼ 0.169 in
terms of the ARI score and 0.054 ∼ 0.158 in terms of
the NMI score. Similarly, on COVID, it outperforms the
baselines by 0.030 ∼ 0.356 in terms of the ARI score and
0.002 ∼ 0.247 in terms of the NMI score. These improve-
ments indicate the high quality of produced embeddings.

4.3. Cancer Drug Response Prediction
Cancer Drug Responses is an important task that can help
guide the design of anti-cancer drugs and also understand the
cancer biology (Unger et al., 2015). Following the setting in
scFoundation (Hao et al., 2023), we combine scPaLM with
a CDR prediction framework, DeepCDR (Liu et al., 2020),
to provide prediction of the IC50 values (i.e., half-maximal
inhibitory concentrations) of drugs across different cells.
We adopt the settings from scFoundation (Hao et al., 2023)
to fuse the extracted representations from gene expression
values with the representations of drugs, and fit a graph
convolution network (GCN) to learn representations that en-
compass information from multiple sources and modalities.
We follow the settings of DeepCDR and experiment with
different options: (1) Use Mut, which indicates the usage of
genomic mutation information; and (2) Use Methy, which
indicates the usage of DNA methylation data. From Table 1,
we can observe that both scFoundation and our method out-
perform the baseline framework DeepCDR significantly and
achieve a stronger correlation between the prediction and
the IC50 values. Notably, when using no additional infor-
mation from the mutation and methylation, our method sig-
nificantly outperforms scFoundation by 5% in terms of the
Pearson Correlation Coefficient (PCC). Having additional
information, all the methods demonstrate higher PCCs, yet
our method remains to be the top performer among all the

methods. To have a better understanding of the performance
gain, we provide pairwise visualization of the correlation
achieved by our method and scFoundation in Figure 4. In
these experiments, we follow the setting of scFoundation
and disable the mutation and the methylation features, to
focus on the benefit brought by the incorporation of embed-
dings from gene expression values. From those figures, we
can observe that scPaLM achieves better PCCs on all but
one cancer type, and improves the metrics on a majority
of cell lines. Following the analysis, we further visualize
the best prediction case of the cancer type, namely the low-
grade gliomas (LGG) in Figure 5, where we observe both
methods achieve high PCC values despite that the IC50 val-
ues have a large range from −6 to 6. scPaLM outperforms
scFoundation by 2% and 4% in terms of the PCC and the
Spearman correlation coefficient. These results showcase
the effectiveness of scPaLM. It is also noteworthy that the
embeddings generated by scPaLM are smaller in dimen-
sion compared to those of scFoundation, which implies that
scPaLM are more efficient in modeling scRNA-seq data.

Table 1. Comparison of Pearson correlation coefficient (PCC) be-
tween the predicted and the ground-truth IC50 values using differ-
ent settings of feature . We compare scPaLM’s performance with
two baseline algorithms, DeepCDR and scFoundation.

Settings Method
Use Mut Use Methy DeepCDR scFoundation Ours

✗ ✗ 83.79 86.11 91.26
✓ ✗ 92.11 92.15 92.28
✓ ✓ 92.38 92.45 92.46

5. Conclusion
This work presents scPaLM, a foundation model pre-
trained on single-cell RNA-seq data. We devise several
novel techniques that efficiently represent gene expression
values into tokens, model the collective function of genes,
and effectively aggregate cell-specific information into a
single token. We evaluate scPaLM on a wide range of
downstream tasks, and demonstrate it reaches SoTA.
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A. Details on Methodology
A.1. Token-level Contrastive Learning

Our objective is to have diverse cell types manifest distinct representations in line with their unique biological characteristics.
However, due to the absence of cell type annotations for scRNA-seq data modeling during training time, we employ
K-Means (Lloyd, 1982) to leverage hC to assign pseudo labels to each cell to enable the construction of positive and
negative pairs. In each batch, we generate two distinct sets of representations, denoted as Hi and H′

i, for every gene
expression vector xi where i indicates the index within a batch. These sets are generated by sampling different subsets of
indices, therefore implying different representations of the same cells. We use hi,C to indicate the first representation inHi,
which corresponds to that of eC summarizing the cell information. Such embeddings from the same cell, i.e., hi,C and h′

i,C ,
are considered as positive pairs. Conversely, when xi and xj have different assigned cluster labels, we consider hi,C and
hj,C as negative pairs. To ensure training efficiency, we limit the number of sampled negative pairs to K. The regularization
based on these positive and negative pairs can be expressed as:

LCL =
∑
i

− log
s(hi,C ,h

′
i,C)/τ

s(hi,C ,h
′
i,C) +

∑
j∈neg(i) s(hj,C ,hi,C)

, (1)

where s(·, ·) indicates the cosine similarity and neg(·) provides the indices of negative samples. During training, we
maintain a fixed length queue Q to store the derived hC and periodically update pseudo-label assignments for cells by
re-running the K-Means on Q to adapt to changes in their representations. The detailed pipeline is in Algorithm 3.

A.2. VQ-Techniques For Stable Training

To address the potential index collapse when applying VQ techniques in training neural networks, we follow the pipeline
introduced in Huh et al. (2023). Firstly, they introduce an affine transformation to reparameterize the representation in the
codebook with the following formula:

vi = cmean + cstd ∗ ci
where the ci represents the original code vector, and cmean and cstd indicate the shared affine parameters. Moreover, they
introduce several minor modification to the codebook update process to enhance the stability.

A.3. Mask Construction and Output Reshaping

In Algorithm 1, we introduce a simple way to make the shape of the output from the decoder introduced in Section 3.3
consistent with the original gene expression vector. Essentially, we flatten the hidden representations, and we assign a region
according to the indices of leave-out tokens in which we calculate the MSE loss.

Algorithm 1 Reshaping Masks and Outputs For Loss Calculation.

Input: a gene expression vector x ∈ RNg , the hold-out indices I = {i1, . . . , im}, number of tokens N .
Calculate the scaling factor s← ⌈Ng/N⌉.
Initialize a mask vector m← 0Ng .
for j = 1, 2, . . . ,m do

ms×ij :s×(ij+1) ← 1s.
end for
Flatten the output from the decoder which also has the shape of N × s to 1× (N × s), and store it as o.
Crop both o and m to have the length of Ng . Calculate the MSE loss as LMSE = ∥o− x∥22/∥m∥1.

A.4. Association of Genes with Pathway Tokens

In this section, we describe the methodology employed for associating genes with specific pathway identifiers through an
algorithmic approach. The process involves the utilization of a matrix with a dimension of K by Ng, where K represents
the number of tokens and Ng the number of genes. For each vector of gene expression, we obtain the set of tokens that are
activated within the codebook. Upon activation of the Ki-th token, the corresponding raw gene expression vector is scaled
by the frequency of Ki token occurrences among the activated tokens and subsequently aggregated to the Ki-th row of the
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matrix. This procedure is iterated across the entire gene dataset. Subsequent to the completion of this iterative process, we
perform a normalization step on each column, which correlates to individual genes. Following normalization, for each row,
we identify and select the genes that exhibit the most significant values.

A.5. Overall Framework

Figure 2 demonstrates the overall framework of scPaLM.

Figure 2. The overview of our framework. Three main innovative components are introduced in our framework: an efficient embedding
process that is permutation-invariant; a module aims to capture genetic pathways; and a training framework for cell information
aggregation.

Algorithm 2 Permutation-Invariant Embedding

Input: A batch of normalized expression value vectors X ∈ RB×Ng

Output: Embedding of X
X ← einsum("bi,ij->bij",X,P )
X ← leaky relu(X)
Evalue ← einsum("ij,bij->bij",α,X)+MLP(X)
E ← concat(Evalue,Egene) {E ∈ RB×Ng×N}
Ē ← einsum("bj,jl->bjl", f(E),P ′)
return Ē

Algorithm 3 demonstrates the algorithm for training scPaLMfor one step.

B. More Experimental Settings and Results
B.1. Experimental Settings

Pretraining Data. scPaLM is pretrained on single-cell RNA-seq data covering different types of cells, having in total
0.5M cells and around 60K genes. The statistics and description of the pre-training data are in Appendix C.

Baselines. We compare scPaLM with various baseline methods on different tasks. For cell-type annotation, we com-
pare with PCA (where we derive the first 256 principal components on the log-normalized expression values), Gene-
former (Theodoris et al., 2023), scGPT (Cui et al., 2023). The latter two are current state-of-the-art algorithms on this
task. For imputation, we compare with MAGIC (Dijk et al., 2017), SAVER (Huang et al., 2018), scImpute (Li & Li, 2018),

8
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Algorithm 3 Training Pipeline (One Step)

Input: A batch of gene expression vectors X ∈ NB×Ng , current time stpe T , an interval for re-fit Tr, a K-Means classifier
K, a queue Q
Obtain Ē ∈ RB×N×d according to Section 3.1.
Obtain Z ∈ RB×N×d according to Section 3.2.
Randomly select p% tokens from Z for each sample and prepend a token eC . ObtainH and assign clusters.
if use token-level contrastive learning then

if T%Tr == 0 then
Re-fit K based on embeddings in Q.

end if
Randomly select p% tokens from Z for each sample and prepend a token eC . ObtainH′.
Calculate the contrastive learning loss according to Equation 1.

end if
Fill eM intoH at positions previously excluded during sampling.
Train eC , eM , and the two networks with reconstruction loss for excluded tokens (i.e., eM ).
Store hC in Q.

DCA (Eraslan et al., 2019), which are widely used methods for this task. For drug response prediction, we compare with
another transformer-based algorithm, scFoundation (Hao et al., 2023).

Architectures. The overall architecture of scPaLM can be split into three parts: (1) embedding layers, where we use
mainly MLPs as described in Algorithm 2. The N is set to 256 in our experiment; (2) genetic pathway learning, where
we introduce an encoder, a decoder, and a quantizer. The encoder and the decoder are developed based on the transformer
architecture which contains of 6 layers and a hidden dimension of 256. The quantizer has the same hidden dimension with a
codebook size of 128; (3) cell information aggregation, where we introduce another encoder and decoder that have the same
architectures and configuration. Table 2 demonstrates the hyperparameters on the structure of scPaLM.

Table 2. Configurations of our scPaLM.

Hyperparameters Value

Hidden Size 256
Intermediate Size 1024
Number of Layers 6

Number of Attention Heads 8
Dropout Probability 0.0

Attention Dropout Probability 0.0

Training Settings. The optimizer we use in our experiments is AdamW (Loshchilov & Hutter, 2017). In the first stage of
training where we train the encoder for pathway tokens and the vector quantizer, we adopt a learning rate of 0.001 and a
batch size of 128. In the second stage, we train other components with a learning rate of 5× 10−4 and using the same batch
size of 128.

B.2. Unsupervised Cell Type Annotation

Figure 3 provides a UMAP visualization on the embeddings extracted from the COVID dataset.

B.3. Cancer Drug Response

We provide pairwise visualization of the correlation achieved by our method and scFoundation in Figure 4. We further
visualize the best prediction case of the cancer type, namely the low-grade gliomas (LGG) in Figure 5.
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Figure 3. Unsupervised clustering performance on the COVID dataset.
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Figure 4. Pairwise visualization of the Pearson correlation coefficient of scFoundation and scPaLM based on different grouping strategies.
Left: grouping with respect to the cell lines; Middle: grouping with respect to the cancer type; Right: grouping with respect to the drug
type. The red lines indicate the relationship of y = x.

B.4. Imputation

Imputation is an important task where the model is asked to recover the expression value of genes within individual cells.
It has real-world implications because the measurement of expression levels often exhibits noise (Grün et al., 2014). We
conduct a series of simulated experiments on the Jurkat and the PBMC dataset to assess scPaLM’s ability in accurately
predicting the missing genes’ expression levels. We randomly sample 10% of genes from each cell with a probability that is
proportional to the exponent of negative genes’ expression values and mask them as 0.

Table 3. Imputation performance of various methods on the Jurkat and the PBMC dataset. We report the rooted mean square error (RMSE)
and the mean absolute error (MAE).

Method Jurkat PBMC

RMSE MAE RMSE MAE

SAVER 0.841 0.664 0.779 0.594
MAGIC 0.449 0.379 0.656 0.548
scImpute 1.178 0.838 1.528 1.132

DCA 0.937 0.629 0.833 0.638

scPaLM (Zero Shot) 0.494 0.397 0.674 0.539

Table 3 presents the rooted mean square error (RMSE) and the mean absolute error (MAE) between the ground-truth and the
predicted expression values on the masked genes across different cells. Note that these metrics are calculated based on the
log-normalized expression values. Even under a zero-shot setting, scPaLM achieves superior performance compared to
most baselines, which estimate their parameters on the downstream datasets. This experiment confirms scPaLM’s ability in
denoising the expression data and capturing the interactions between cells and genes.
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Figure 5. Scatter plots of the predicted and the observed IC50 values on the samples with the cancer type of low-grade gliomas.

Table 4. Significant pathways identified by GSEA (p-value < 1× 10−5 ). Two pathways related to the immune system are selected.
Gene Lists (Token ID) Term P-value

CD1E, TREM2, ICAM5, CD1B (25) Immunoregulatory Interactions Between A Lymphoid And A non-
Lymphoid Cell

2.8× 10−7

BTN1A1, MRC1, CD1E, TREM2,
ICAM5, CD1B (25)

Adaptive Immune System 4.4× 10−7

B.5. Genetic Pathway Identification

We finally conduct an experiment to understand the obtained pathway tokens from scRNA-seq datasets. We follow the
setting from scGPT (Cui et al., 2023) where we aim to identify genetic pathways on the Immune Human dataset. To
associate a gene with a certain pathway token, we first derive the V for each gene, and for every v we calculate the associated
gene expression vector weighted by the occurrence percentage of v for each cell. Finally, for every v we obtain the list of
associated genes by calculating the relative prevalence of genes. A more detailed algorithm is deferred in Section A.4. We
associate 10 genes to each pathway token and run the gene set enrichment analysis (GSEA) algorithm to search for pathways
in Reactome Pathway Database (Fabregat et al., 2018). Note that this dataset is not involved in our training set, thereby it
constitutes a zero-shot setting. Nevertheless, our method identifies two significant pathways related to the immune system,
as shown in Table 4. Particularly, it identifies and clusters the CD1 gene family (CD1E and CD1B), which is involved in
antigen presentation that is related to immune reaction.

B.6. Comparison of Different Embedding Processes.

We conduct an experiment to compare the memory usage and the subsequent clustering performance of models with different
embedding processes on the COVID dataset. The results are presented in Table 5.

Table 5. Comparison between different embedding process. The models are trained on a subset of the pretraining data, and evaluated on
the COVID dataset.

Embedding Algorithm Memory Usage ARI NMI

Per-gene >80G - -
Shared-first-layer 42378MiB 0.167 0.251

Ours 43678MiB 0.201 0.291

B.7. Ablation Studies

The effectiveness of the cell information aggregation process. We conduct a series of experiment on the CLL dataset to
compare two alternatives for building cell representations, where we use the average and the concatenated representations of
pathway tokens to represent cells. Table 6 presents the performance of cell type annotations, where we can observe that
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Table 6. Clustering performance of different variants for cell representations on the CLL dataset. We compare the adjusted rand index
(ARI), normalized mutual information (NMI), silhouette score (S-score), and clustering time between models.

Method ARI NMI S-score

Mean 0.015 0.059 −0.133
Concatenated 0.181 0.478 0.310
hC (No CL) 0.275 0.573 0.361

hC 0.292 0.593 0.376

using our cell information aggregation technique yields the best performance. We have also conducted an experiment where
we do not use the token-level contrastive learning framework to train the embedding of hC . The decreased scores of these
experiments demonstrate the importance of the token-level contrastive learning regularizer.

The effectiveness of the pathway encoder. We conduct experiments excluding the genetic pathway learning module
discussed in Section 3.2. Instead, we train the embedding layers and also aggregate information directly from the embeddings
of genes, on a small subset of training data that have around 100K cells. Table 7 demonstrates the importance of the encoder
and the quantizer. We see that the introduced genetic pathway encoder helps improve the clustering performance, improving
the metrics by 0.14 and 0.16, respectively. The usage of the quantizer also further improves the performance by an additional
1%.

Table 7. Comparisons on COVID with different configurations. The models are trained on a small subset of the pre-training data.

Configuration ARI NMIEncoder Quantizer
✗ ✗ 0.050 0.120
✓ ✗ 0.191 0.286
✓ ✓ 0.201 0.291

The effectiveness of the embedding process. To evaluate the effectiveness of our embedding process, we explore several
alternatives and compare to our deployed embedding process: (1) per-gene, where we E as gene embeddings. This is a
widely adopted option in various methods such as scFoundation (Hao et al., 2023) and Geneformer (Theodoris et al., 2023);
(2) shared-first-layer, where we deploy only a shared P for all the genes. The results are presented in Table 5, where we can
observe that these alternatives demonstrate either degraded performance, or suffer from overly high computational cost. The
per-gene variant results in out-of-memory (OOM) error even using a batch size of 1. Using a shared first layer requires less
amount of GPU memory, but yields inferior performance.

C. Dataset Description
Our pretraining data comes from Tabula Sapiens (Consortium* et al., 2022), which has nearly 500, 000 cells from 24 organs
of 15 normal human subjects. The cell-type annotations datasets are from patients with COVID and leukemia.
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