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Abstract

We study the problem of consistently recovering the sparsity pattern of a regression parameter
vector from correlated observations governed by deterministic missing data patterns using
Lasso. We consider the case in which the observed dataset is censored by a deterministic,
non-uniform filter. Recovering the sparsity pattern in datasets with deterministic missing
structure can be arguably more challenging than recovering in a uniformly-at-random scenario.
In this paper, we propose an e�cient algorithm for missing value imputation by utilizing the
topological property of the censorship filter. We then provide novel theoretical results for
exact recovery of the sparsity pattern using the proposed imputation strategy. Our analysis
shows that, under certain statistical and topological conditions, the hidden sparsity pattern
can be recovered consistently with high probability in polynomial time and logarithmic
sample complexity.

1 Introduction

Missing entries in real-world datasets often exhibit deterministic patterns. In federated learning frameworks,
sensitive features collected from clients may be censored before being sent to the central server. In electronic
health record (EHRs) data, certain lab results may no longer be collected during the postoperative window.
Government bureaus may censor certain fields before releasing census data. To deal with missing entries,
arguably the most commonly used technique is data imputation. Imputation is the process of replacing
missing data in a dataset with certain computed values. Common imputation strategies include filling missing
entries with row / column mean, median, mode, extreme values, among others. However, most imputation
methods do not come with theoretical guarantees. When talking about the quality of imputation methods,
prior research mainly evaluates the accuracy boost, before and after imputation, on specific downstream
test sets (Wang et al., 2019; Liu & Gopalakrishnan, 2017; Myrtveit et al., 2001). These metrics being used
are application-oriented. On the other hand, if we consider imputation itself as the ultimate task alone
(i.e., an unsupervised learning task), it is well-known that under low-rank assumptions, matrix completion
is possible with theoretical guarantees. The drawbacks are: 1) real world datasets might not follow the
missing-at-random assumption in (Candès & Recht, 2009; Candes & Plan, 2010; Recht, 2011) or the structural
constraints of the deterministic missingness pattern in (Bhojanapalli & Jain, 2014; Burnwal & Vidyasagar,
2020; Chatterjee, 2020; Lee & Shraibman, 2013; Shapiro et al., 2019; Tsakiris, 2023); and most importantly,
2) matrix completion does not give any guarantee about the downstream tasks utilizing the imputed matrix.

In this paper, we propose the class of censored supervised learning tasks, in which the dataset is masked by
some deterministic and non-uniform censorship filters. A censorship filter removes certain entries from the
true dataset, so that the observed part of the dataset contains missing entries in a deterministic fashion.
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Furthermore, we pick sparsity recovery as the downstream task in our analysis. Also known as feature
selection, sparsity recovery is the task of recovering the support set or sparsity pattern of a vector wú œ Rp,
from noisy and correlated observations.

It is worth highlighting, that our goal is not to reinvent sparsity recovery or Lasso. The task itself has been
extensively studied in the past two decades (Marques et al., 2018; Wainwright, 2009a;b). We also need to
highlight, that we are not proposing another heuristic imputation method. Such techniques (filling mean,
low rank completion, to name a few) have been proposed and extensively applied in the industry. Instead,
we are proposing a unified framework for analyzing the relationship between the sparsity structure in a
censored dataset with deterministic missing patterns, and the quality of sparsity recovery, in a formal way
with with provable guarantees. A censorship filter applied to the dataset brings new challenges from both the
algorithmic side (missing data imputation) and the statistical side (sparsity recovery guarantee), and we are
interested in the synergy between these two parts.

Here we briefly discuss the implications and the related works.

Missing Data Techniques. When dealing with missing values in a dataset, researchers have been using
heuristic imputation methods since the first day of machine learning. Such methods include filling missing
entries with row / column mean, median, mode, extreme values, among others. Another examples include
using random forests for imputation (Stekhoven & Bühlmann, 2012; Van Buuren et al., 1999) and multiple
imputation (Carpenter & Kenward, 2012; Murray, 2018). However, it is known that these imputation methods
rarely have theoretical guarantees in specific machine learning tasks, including sparsity recovery. Regarding
missing data patterns, Fletcher Mercaldo & Blume (2020) proposed the idea of pattern submodels, that is,
training a set of submodels for every possible missing value pattern in the observed data. Such approach will
be computationally expensive if the missing data pattern is nontrivial. Our goal is to design an imputation
method, that is computationally e�cient without training multiple submodels, and has theoretical guarantees
in the context of sparsity recovery.

Sparsity Recovery. The problem of sparsity recovery has been studied extensively during the past 20
years. One of the most widely used algorithm is l
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regularized quadratic programming, also referred to as
Lasso. However, most prior literature focus on the fully observed case. For instance, Wainwright (2009a);
Meinshausen & Yu (2009) provided theoretical guarantees of sparsity recovery through Lasso when the
observation matrix is fully observed. In comparison, the number of works that analyze Lasso given that
the dataset is partially observed, is limited. Loh & Wainwright (2015) considered a so-called corruption
mechanism, such that every entry in the original dataset is observed with probability 1 ≠ ◊, and unobserved
with probability ◊. Nguyen & Tran (2012) proposed a tangentially related model, in which part of the outcome
vector is unobserved. The analysis of sparsity recovery guarantee in these cases are usually straightforward,
since the pattern of missing entries is uniformly distributed, thus can be viewed as extra noises in the model.

Randomness in Missing Structure. It should be highlighted, that the notion of censorship filters in
our paper is di�erent from existing discussion of missing data mechanisms in prior literature. This includes
definitions such as Missing At Random (MAR), Missing Completely At Random (MCAR), and Missing
Not At Random (MNAR) (Mohan et al., 2013; Little & Rubin, 2019). These mechanisms describe how
the probability of observing missing entries relate to the values of the underlying true data, whereas our
censorship filter is deterministic, arguably more relevant in the real world.

We try to answer the following questions in this paper:

• Does there exists an imputation method for missing entries, so that sparsity recovery algorithms can
be applied to the imputed dataset?

• Under what statistical and topological conditions can our workflow correctly and e�ciently recover
the sparsity pattern?

We propose a simple yet novel sparsity recovery workflow, which 1) imputes the missing entries using
their most significant observed neighboring feature, and 2) runs Lasso to recover the sparse pattern using
the imputed data. More importantly, our framework can be analyzed rigorously. We provide theoretical
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guarantees for the quality of sparsity recovery, in terms of the topological structure of the censorship filter,
using the proposed workflow. Our analysis focuses on the case with most significant neighboring feature only,
and this can be easily generalized to more neighboring features.

Summary of Our Contribution. Our work is mostly theoretical. We provide a series of novel results in
this paper:

• We propose a simple yet novel imputation method to fill the missing entries that are censored by an
deterministic censorship filter. Our strategy computes the missing value from its most significant
neighboring feature, and can be easily generalized to the case of multiple neighboring features.

• We provide provable theoretical guarantees for recovery of the underlying sparsity structure using
our imputation method. We analyze the statistical and topological conditions that govern e�cient
exact recovery. We establish the sample complexity guarantees for our workflow to succeed with high
probability. Our theorems also provide guidelines for setting regularization parameters.

2 Preliminaries

In this section, we provide the formal setup of our problem and introduce all notations that will be used
throughout the paper.

We first introduce the definition of censorship filters. We use (X, y, M) to denote the dataset in a supervised
learning task, where X œ Rn◊p is the feature matrix, and y œ Rn is the label vector. A censorship filter
M œ {0, 1}n◊p is a binary matrix applied to the feature matrix X. For every sample k and feature i, Xk,i is
observed by the learner if and only if Mk,i = 1. In other words, entries with Mk,i = 0 are missing and need
to be imputed. It is worth highlighting that the censorship filter M is deterministic and non-uniform, i.e.,
there is no randomness in M .

2.1 Censored Sparsity Recovery Model

We now present the application of censorship filters to the task of sparsity recovery. Suppose that there exists
an unknown fixed vector wú œ Rp, and wú is sparse. We denote its support set as S = {i œ [p] | wú

i ”= 0},
and the cardinality of the support set as s = |S| π p. Let X œ Rn◊p be the input data generated by nature,
such that for every k œ [n], sample Xk,: œ Rp fulfills: 1) zero-mean; 2) with covariance �; 3) each Xk,i is
sub-Gaussian with parameter ‡2

X�i,i. Then the labels y œ Rn are generated in the form of

y = Xwú + ‘ ,

where ‘ œ Rn is the additional zero-mean sub-Gaussian noise with parameter ‡2

‘ . It is known that in the
fully observed case, the sparsity recovery of S given X and y can be achieved through solving the following l
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constrained quadratic program, known as Lasso:

minimize
w

1
2n

ÎXw ≠ yÎ2 + ⁄ÎwÎ
1

,

where ⁄ is the regularization parameter. Now a censorship filter M œ {0, 1}n◊p is imposed on the learner,
such that all entries with Mk,i = 0 is masked and missing from X.

Our task consists of two parts. First, we want to impute X̂ from the observed part of X, such that X̂k,i = Xk,i

if Mk,i = 1. This ensures that the observed entries are not changed. Second, we solve Lasso using the imputed
matrix in the form of

minimize
w

1
2n

...X̂w ≠ y
...

2

+ ⁄ÎwÎ
1

, (1)

and we claim that the support set recovered by (1) is consistent with the ground truth. We also include the
necessary definitions for completeness.
Definition 1. A zero-mean random variable x is sub-Gaussian with parameter ‡2

, if for all t > 0, we have

E [exp(tx)] Æ exp(‡2t2/2).
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Definition 2. A zero-mean random vector x = (x
1

, . . . , xp) is sub-Gaussian with parameter ‡2

, if for all

u œ Rp
with ÎuÎ = 1, we have E

#
exp(u€x)

$
Æ exp(‡2/2).

2.2 Notations

Without specification we use lowercase letters (e.g., a, b, u, v) for scalars and vectors, and uppercase letters
(e.g., A, B, C) for matrices and sets. For any natural number n, we use [n] to denote the set {1, . . . , n}. We
use R to denote the set of real numbers. We use 1 to denote the all-one vector, and 0 for the all-zero vector.
For any vector u, we use diag (u) to denote the diagonal matrix with u in the diagonal, ÎuÎ to denote the
Euclidean norm, ÎuÎ

1

to denote the l
1

norm, and ÎuÎŒ to denote the infinity norm. For any matrix A, we
use ⁄

min

(A) to denote its smallest eigenvalue, tr (A) to denote its trace, |||A||| to denote its spectral norm,
and |||A|||Œ = maxi

q
j |Ai,j | to denote its lŒ operator norm. We use ¶ to denote the Hadamard product.

We use sgn (·) to denote the sign function.

When dealing with entries in a matrix, we use notation : to denote the whole row or column. For example,
A

1,: refers to the first row of matrix A. We also use index sets in subscripts to select submatrices. For
example, AS,S is the submatrix obtained by deleting all rows and columns with indices that are not in the
index set S from A. When the context is clear, we use single subscripts to denote the choice of columns. An
example is that A

2

denotes the second column of A.

We use Sc to denote the complement of the support set. Similarly, we use M c to denote the complement of
the censorship filter, algebraically M c = 11€ ≠ M .

In our analysis, we use �
dmax

:= maxi �i,i to denote the maximum diagonal entry in �, and �
dmin

:= mini �i,i

to denote the minimum.

For distributions, we use subG to denote sub-Gaussian distribution, and subE to denote sub-Exponential
distribution.

3 Algorithm

In this section, we setup our censored sparsity recovery problem and provide theoretical guarantees. We first
introduce the necessary statistical assumptions and definitions.
Assumption 1 (Positive Definiteness). We assume that the population covariance matrix � is positive

definite on the support S. In particular, we use — := ⁄
min

(�S,S) > 0 to denote its smallest eigenvalue.

Assumption 2 (Mutual Incoherence). We assume that the population covariance matrix � fulfills the mutual

incoherence condition

---
---
---�Sc,S�≠1

S,S

---
---
---
Œ

Æ 1 ≠ “, for some “ œ (0, 1].

Recall that X œ Rn◊p is the feature matrix generated by nature, and M œ {0, 1}n◊p is the deterministic
censorship filter. We use XM to denote the observed feature matrix, where (XM )k,i = Xk,i if Mk,i = 1, and
(XM )k,i = ı denotes the missing value otherwise.

Let H œ Rp◊p denote the sample covariance matrix. Since only XM is observed, zero-mean, and contains
missing values, Hi,j is computed as Hi,j = 1

|{k|Mi,k=Mj,k=1}|
q

k,Mi,k=Mj,k=1

Xk,iXk,j .

We use ’i,j := �2

i,j/�j,j to denote the (population) neighbor score of two features i and j. Intuitively, the
neighbor score measures how related two features are. A higher neighbor score indicates that i is more related to
j. Similarly, we use ’̂i,j := H2

i,j/Hj,j to denote the empirical neighbor score. Let �(i) := arg maxjœ[p]≠{i} ’̂i,j

be the top neighbor feature of i. The intuition is that if a sample has feature i missing, we use its top neighbor
feature �(i) to impute it. To simplify analysis we introduce the following assumption.
Assumption 3. We assume that the top neighbor feature of any missing entry is always observed, that is,

we assume Mk,�(i) = 0 if Mk,i = 1.

In practice, one can use the second top feature instead (or third, fourth, etc.), if the top feature is not observed.
The assumption only serves to simplify the proofs by reducing the number of concentrations required.
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We use ·i to denote the (population) error ratio of feature i, such that ·i = �i,�(i)

�

�(i),�(i)

. The motivation is that
the error ratio measures how much variance will be gained, if we use the imputed value instead of the true
value in the algorithm. Similarly we have the empirical error ratio ·̂i = Hi,�(i)

H
�(i),�(i)

. We now introduce our
censored sparsity recovery algorithm, given the observation of the censored dataset.

Algorithm 1 Censored Sparsity Recovery
Input: Observed dataset (XM , y), regularization parameter ⁄
Output: Imputed feature matrix X̂, recovered model vector w̃

1: Compute sample covariance matrix H from XM

2: for every feature pair (i, j) œ [p] ◊ [p] do
3: Compute empirical neighbor score ’̂i,j = H2

i,j/Hj,j

4: end for
5: for every feature i œ [p] do
6: Compute top neighboring feature �(i) = arg maxjœ[p]≠{i} ’̂i,j

7: Compute empirical error ratio ·̂i = Hi,�(i)/H
�(i),�(i)

8: end for
9: Initialize imputation matrix X̄ œ Rn◊p

10: for every entry (k, i) œ [n] ◊ [p] do
11: X̄k,i Ω Xk,�(i)·̂i

12: end for
13: Compute imputed matrix X̂ = M ¶ X + M c ¶ X̄
14: Solve the following Lasso program

ŵ = minimize
w

l(w) + ⁄ÎwÎ
1

(2)

where l(w) = 1
2n

...X̂w ≠ y
...

2

.

Algorithm 1 takes the observed dataset as the input and imputes the missing entries given by X̂. Understand-
ably the imputed data X̂ and the true data X are equivalent on the support of M . We use � to denote the
imputation error matrix, defined as � := X̂ ≠ X. Naturally �ij = 0 if Mij = 1. After that, our algorithm
solves the Lasso program (2), and the support of ŵ gives the recovered support set Ŝ.

4 Guarantees of Censored Sparsity Recovery

4.1 Consistency of Imputation through Empirical Score

In this section, we prove consistency of our imputation step, by choosing the top neighboring feature using the
empirical neighbor score as in Algorithm 1. The proofs of Theorems and Lemmas can be found in Appendix.

Here is the motivation: in Algorithm 1, we choose �(i) = arg maxjœ[p]≠{i} ’̂i,j based on the observed
samples, where ’̂ is the empirical score. However, there is no guarantee that the order of ’̂ is consistent
with the underlying true ’. Our goal is to identify the su�cient conditions, such that arg maxjœ[p]≠{i} ’̂i,j =
arg maxjœ[p]≠{i} ’i,j . Equivalently, it is desirable to ensure that, ’i,�(i) > ’i,j holds if and only if ’̂i,�(i) > ’̂i,j

holds with high probability for all j ”= i.

Our proof relies on the following lemma. The proofs can be found in Appendix.
Lemma 1. For every feature i œ [p], its ratio between the sample variance and population variance fulfills

P
;

1
2 Æ Hi,i

�i,i
Æ 3

2

<
Ø 1 ≠ 4 exp

3
≠ n�2

dmin

512(1 + 4‡2

X)2�2

dmax

4
.

We now present the consistency guarantee for our imputation method proposed in Algorithm 1.
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Theorem 1. For every feature i œ [p], if the population neighbor score fulfills

’i,�(i) ≠ 3’i,j >
--�

�(i),�(i)

-- + 3 |�j,j | + �
dmin

for every feature j ”= �(i), then the sample neighbor score fulfills

P
Ó

’̂i,�(i) > ’̂i,j

Ô
Ø 1 ≠ 4 exp

3
≠ n�2

dmin

512(1 + 4‡2

X)2�2

dmax

4
.

Consequently, the imputation result from the empirical score is consistent with the imputation result from the

population score with high probability.

Remark 1. In the statement above we have a coe�cient of 3. This coe�cient is determined by the setting
t = 1

2

�
dmin

in Lemma 1, and can be changed to any constant that is greater but arbitrarily close to 1. This
will only a�ect the constant terms in the high probability statement, and the 1 ≠ O(exp(≠n)) rate holds.

4.2 Primal-dual Witness

We prove the correctness of Algorithm 1 for recovering the true support set S, through the primal-dual
witness framework and Karush-Kuhn-Tucker (KKT) conditions at the optimum.

Step 1: Let w̃ be the solution (primal variable) to the following restricted problem

minimize
wSœRs

l((wS , 0)) + ⁄ÎwSÎ
1

, (3)

with w̃Sc = 0.

Step 2: Let z œ Rp be the dual variable fulfilling the complementary slackness condition on S. That is, for
every i œ S, zi = sgn (w̃i) if w̃i ”= 0, and zi œ [≠1, +1] otherwise.

Step 3: Solve for zSc œ Rp≠s to fulfill the following stationarity conditions:

[Òl((w̃S , 0))]S + ⁄zS = 0 (4)
[Òl((w̃S , 0))]Sc + ⁄zSc = 0 (5)

Step 4: Verify that the strict dual feasibility condition is fulfilled:

ÎzScÎŒ < 1 . (6)

Since Step 1 through 3 are constructive, it is su�cient to prove Step 4. If the conditions above are fulfilled,
our Algorithm 1 recovers the true support with high probability, i.e., Ŝ = S, where Ŝ is the support of the
recovered vector ŵ in (2) and S is the true support.

4.3 Verifying Strict Dual Feasibility

To verify the strict dual feasibility condition (6), we first consider the quadratic loss function l(w). Note that

l(w) = 1
2n

...X̂w ≠ y
...

2

= 1
2n

...X̂w ≠ Xwú ≠ ‘
...

2

= 1
2n

Î(M ¶ X + M c ¶ X̄)w ≠ (M ¶ X + M c ¶ X)wú ≠ ‘Î2

= 1
2n

Î(M ¶ X)(w ≠ wú) + (M c ¶ X̄)w ≠ (M c ¶ X)wú ≠ ‘Î2 .

We have the gradient

Òl(w) = 1
n

X̂€((M ¶ X)(w ≠ wú) + (M c ¶ X̄)w ≠ (M c ¶ X)wú ≠ ‘) ,
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and Hessian Ò2l(w) = 1

n X̂€X̂. In particular, we can define the sample covariance matrix of the imputed
matrix as Ĥ := Ò2l(w) = 1

n X̂€X̂.

We now consider the restricted problem and the stationarity conditions. Expanding (5) leads to

1
n

X̂€
S [(M ¶ X)S(w̃S ≠ wú

S) + (M c ¶ X̄)Sw̃S ≠ (M c ¶ X)Swú
S ≠ ‘] + ⁄zS = 0 ,

1
n

X̂€
Sc [(M ¶ X)S(w̃S ≠ wú

S) + (M c ¶ X̄)Sw̃S ≠ (M c ¶ X)Swú
S ≠ ‘] + ⁄zSc = 0 .

Next we solve for z. On the support set we have

zS = ≠ 1
⁄n

X̂€
S [(M ¶ X)S(w̃S ≠ wú

S) + (M c ¶ X̄)Sw̃S ≠ (M c ¶ X)Swú
S ≠ ‘]

= ≠ 1
⁄n

X̂€
S [(M ¶ X)S(w̃S ≠ wú

S) + (M c ¶ X̄)S(w̃S ≠ wú
S) + (M c ¶ X̄ ≠ M c ¶ X)Swú

S ≠ ‘]

= ≠ 1
⁄n

X̂€
S [X̂S(w̃S ≠ wú

S) + (M c ¶ X̄ ≠ M c ¶ X)Swú
S ≠ ‘]

= ≠ 1
⁄n

X̂€
S [X̂S(w̃S ≠ wú

S) + �Swú
S ≠ ‘] . (7)

Similarly on the complement set we have

zSc = ≠ 1
⁄n

X̂€
Sc

Ë
X̂S(w̃S ≠ wú

S) + �Swú
S ≠ ‘

È
. (8)

Rearranging the terms in (7) leads to w̃S ≠ wú
S = ≠(X̂€

S X̂S)≠1

1
X̂€

S (�Swú
S ≠ ‘) + ⁄nzS

2
. Plugging the last

equation into (8), we obtain zSc = z(a) + z(b), where we use the shorthand notation

z(a) := 1
⁄n

X̂€
Sc

1
I ≠ X̂S(X̂€

S X̂S)≠1X̂€
S

2
(‘ ≠ �Swú

S) , (9)

z(b) := X̂€
ScX̂S(X̂€

S X̂S)≠1zS . (10)

It remains to verify the strict dual feasibility condition ÎzScÎŒ =
..z(a) + z(b)

..
Œ < 1. This can be further

broken down into two parts: we first prove that
..z(a)

..
Œ < “/4, and then prove

..z(b)

..
Œ Æ 1 ≠ “/4.

4.4 Bound of z(a)

In this section we analyze the upper bound of
..z(a)

..
Œ. For every feature i œ Sc and sample k œ [n], we

define the following variance proxy

h2

k := ‡2

‘ + ‡2

X

ÿ

iœS

(·̂2

i �
�(i),�(i) + �i,i)M c

k,i(wú
i )2 ,

and
gk(i)2 := Mk,i‡

2

X�i,i + (1 ≠ Mk,i)
9
4‡2

X�
�(i),�(i)·

2

i ,

assuming hk, gk(i) Ø 0. We also denote the maximum variance proxy as

h
max

= max
kœn

hk , g
max

= max
kœn

max
iœSc

gk(i) ,

across all sample k œ [n]. We now provide the statement of the theorem.
Theorem 2. By setting the regularization parameter

⁄ > 20h
max

· g
max

/“ ,

we have

..z(a)

..
Œ < “/4 with probability at least 1 ≠ O((p ≠ s) exp(≠n)).
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Remark 2. Our proofs of Theorem 2 and Theorem 3 to bound z(a) and z(b), rely on the careful analysis of the
sub-Gaussian condition of the imputed matrix. Techniques from prior literature do not work in our model,
because our missing structure M is deterministic and cannot be reduced to some uniformly random noise.
For instance, one classic technique is to write XSc as a predictor of XS using the conditional covariance
matrix (Wainwright, 2009a). This does not work in our case, because X̂ (imputed matrix) will not cancel
with the complement projection on X (original matrix).
Remark 3. One may note that the magnitude of Î‘ ≠ �Swú

SÎ is directly related to the quality of regression
in the proof above. Intuitively, the whole term measures the noise level in our algorithm: ‘ for the noise
generated by nature, and �Swú

S for the imputation noise, consisting of the imputation error on the support
�S and the ground truth wú

S . This provides the insight, that if the magnitude of wú is large, censored sparsity
recovery will be harder because of a higher imputation noise level.

Proof. Here we consider every feature j œ Sc. It is worth noting that by definition, X̂S(X̂€
S X̂S)≠1X̂€

S is
an orthogonal projection matrix to the column space of X̂, thus for simplicity, we denote the projection
P

ˆXS
:= X̂S(X̂€

S X̂S)≠1X̂€
S .

Using Cauchy-Schwarz inequality and the fact that the norm of a orthogonal projection matrix is bounded
above by 1, we obtain

---z(a)

j

--- =
-----

nÿ

k=1

X̂k,j

5
(I ≠ P

ˆXS
)
3

1
⁄n

(‘ ≠ �Swú
S)

46

k

-----

Æ
....(I ≠ P

ˆXS
)
3

1
⁄n

(‘ ≠ �Swú
S)

4.... ·
...X̂j

...

Æ
....

1
⁄n

(‘ ≠ �Swú
S)

.... ·
...X̂j

...

= 1
⁄n

Î‘ ≠ �Swú
SÎ ·

...X̂j

... .

We proceed to bound Î‘ ≠ �Swú
SÎ for each entry. For every sample k œ N , we have

‘k ≠ �k,Swú
S = ‘k ≠

ÿ

iœS

�k,iw
ú
i

= ‘k ≠
ÿ

iœS

(X̂k,i ≠ Xk,i)wú
i

= ‘k ≠
ÿ

iœS

(X̄k,i ≠ Xk,i)M c
k,iw

ú
i

= ‘k ≠
ÿ

iœS

(·̂iXk,�(i) ≠ Xk,i)M c
k,iw

ú
i .

Under the assumption of Xk,i ≥ subG(‡2

X�i,i), ‘k ≥ subG(‡2

‘ ), note that the entrywise imputation error
·̂iXk,�(i) ≠ Xk,i is sub-Gaussian with parameter (·̂2

i �
�(i),�(i) + �i,i)‡2

X . As a result, ‘k ≠ �k,Swú
S is sub-

Gaussian with parameter h2

k.

Since samples are independently generated across all k’s, we know that ‘ ≠ �Swú
S is a sub-Gaussian vector

with parameter at most h2

max

, where h
max

:= maxkœ[n]

hk. Then, by Lemma 4, for all t > 0 we have

P
Ó

Î‘ ≠ �Swú
SÎ2 > h2

max

(n + 2
Ô

nt + 2t)
Ô

Æ e≠t .

Setting t = n and taking square roots, this leads to

P
Ó

Î‘ ≠ �Swú
SÎ > h

max

Ô
5n

Ô
Æ e≠n .

8
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Next we bound
...X̂j

.... For every sample k, X̂k,j is sub-Gaussian with parameter ‡2

X�j,j if Mk,j = 1, or with
parameter ‡2

X�
�(j),�(j)

·̂2

j otherwise. In particular, the latter is bounded by 9

4

‡2

X�
�(j),�(j)

·2

j with probability
at least 1 ≠ O(exp(≠n)) using Lemma 5. Put together, X̂k,j is sub-Gaussian with parameter at most gk(j)2.
Since samples are independently generated across all k’s, we know that X̂j is a sub-Gaussian vector with
parameter at most g

max

(j)2 := maxkœn gk(j)2. Then, by Lemma 4, for all t > 0 we have

P
;...X̂j

...
2

> g
max

(j)2(n + 2
Ô

nt + 2t)
<

Æ e≠t .

Setting t = n, this leads to

P
Ó...X̂j

... > g
max

(j)
Ô

5n
Ô

Æ e≠n .

Combining both parts above, with probability at least 1 ≠ O(exp(≠n)), we require that
---z(a)

j

--- Æ 1
⁄n

Î‘ ≠ �Swú
SÎ ·

...X̂j

...

Æ 1
⁄n

h
max

Ô
5n · g

max

(j)
Ô

5n

= 5h
max

g
max

(j)
⁄

.

Our goal is to ensure that
---z(a)

j

--- is less than “/4 for all j œ Sc. Thus, the high probability su�cient condition
is

⁄ > 20h
max

· g
max

(j)/“ .

Taking a union bound for all j œ Sc leads to the final result.

4.5 Bound of z(b)

Here we provide the upper bound for z(b). Our analysis relies on the following auxillary lemma.
Lemma 2. Under the mild condition “ < 6/7, the sample covariance matrix H fulfills the mutual incoherence

condition ---
---
---HSc,SH≠1

S,S

---
---
---
Œ

Æ 1 ≠ “/2 ,

with probability at least 1 ≠ O
1

s(p ≠ s) exp
1

≠ —2“2n
s3

22
≠ O

1
s2 exp

1
≠ —2“2n

s3

(1≠“)

2

22
.

Theorem 3. Under the mild condition “ < 6/7, we have

..z(b)

..
Œ Æ 1 ≠ “/4 with probability at least

1 ≠ O
1

s(p ≠ s) exp
1

≠ —2“2n
s3

22
≠ O

1
s2 exp

1
≠ —2“2n

s3

(1≠“)

2

22
≠ O

1
s2 exp

1
≠ —2“2n

s3

(1≠“/2)

2

22
.

Proof. Note that
...z(b)

...
Œ

=
...X̂€

ScX̂S(X̂€
S X̂S)≠1zS

...
Œ

Æ
---
---
---X̂€

ScX̂S(X̂€
S X̂S)≠1

---
---
---
Œ

ÎzSÎŒ

Æ
---
---
---X̂€

ScX̂S(X̂€
S X̂S)≠1

---
---
---
Œ

Æ
---
---
---HSc,SH≠1

S,S

---
---
---
Œ

+
---
---
---(ĤSc,S ≠ HSc,S)H≠1

S,S

---
---
---
Œ

+
---
---
---HSc,S(Ĥ≠1

S,S ≠ H≠1

S,S)
---
---
---
Œ

+
---
---
---(ĤSc,S ≠ HSc,S)(Ĥ≠1

S,S ≠ H≠1

S,S)
---
---
---
Œ

.

We use the shorthand notation to denote the last four terms above, where HH
1

:= HSc,SH≠1

S,S , HH
2

:=
(ĤSc,S ≠ HSc,S)H≠1

S,S , HH
3

:= HSc,S(Ĥ≠1

S,S ≠ H≠1

S,S), and HH
4

:= (ĤSc,S ≠ HSc,S)(Ĥ≠1

S,S ≠ H≠1

S,S), respectively.

9
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Next we bound |||HH
1

|||Œ through |||HH4|||Œ. Regarding HH
1

, by Lemma 2, with probability at least
1 ≠ O

1
s(p ≠ s) exp

1
≠ —2“2n

s3

22
≠ O

1
s2 exp

1
≠ —2“2n

s3

(1≠“)

2

22
, we have |||HH

1

|||Œ Æ 1 ≠ “/2.

For HH
2

, using Lemma 7, with probability at least 1 ≠ O
1

s2 exp
1

≠ —2“2n
s3

(1≠“/2)

2

22
, we have

|||HH
2

|||Œ Æ
---
---
---ĤSc,S ≠ HSc,S

---
---
---
Œ

---
---
---H≠1

S,S

---
---
---
Œ

Æ
Ô

s
---
---
---ĤSc,S ≠ HSc,S

---
---
---
Œ

---
---
---H≠1

S,S

---
---
---

Æ 2
Ô

s

—

---
---
---ĤSc,S ≠ HSc,S

---
---
---
Œ

Æ “

12 .

Similarly for HH
3

, with probability of the same order we have

|||HH
3

|||Œ Æ
---
---
---HSc,S(Ĥ≠1

S,S ≠ H≠1

S,S)
---
---
---
Œ

Æ
---
---
---HSc,S(H≠1

S,S(HS,S ≠ ĤS,S)Ĥ≠1

S,S)
---
---
---
Œ

Æ
---
---
---HSc,SH≠1

S,S

---
---
---
Œ

---
---
---HS,S ≠ ĤS,S

---
---
---
Œ

---
---
---Ĥ≠1

S,S

---
---
---
Œ

Æ 4
Ô

s(1 ≠ “/2)
—

---
---
---HS,S ≠ ĤS,S

---
---
---
Œ

Æ “

12 .

For HH
4

, with probability of the same order we have

|||HH
4

|||Œ Æ
---
---
---ĤSc,S ≠ HSc,S

---
---
---
Œ

---
---
---Ĥ≠1

S,S ≠ H≠1

S,S

---
---
---
Œ

Æ 8s

—2

---
---
---ĤSc,S ≠ HSc,S

---
---
---
Œ

---
---
---HS,S ≠ ĤS,S

---
---
---
Œ

Æ “

12 ,

where the last inequality holds if “2 Æ 12“(1 ≠ “/2), which is always true since “ is bounded between 0 and 1.

Combining all four terms above using a union bound, with probability at least 1≠O
1

s(p ≠ s) exp
1

≠ —2“2n
s3

22
≠

O
1

s2 exp
1

≠ —2“2n
s3

(1≠“)

2

22
≠ O

1
s2 exp

1
≠ —2“2n

s3

(1≠“/2)

2

22
, we have

..z(b)

..
Œ Æ 1 ≠ “

2

+ “
12

+ “
12

+ “
12

= 1 ≠ “
4

.

4.6 Main Result

Armed with the previous results, we present our main contribution. That is, we show that Algorithm 1
recovers the true support with high probability.
Theorem 4. Under the mild condition “ < 6/7 and by setting the regularization parameter

⁄ > 20h
max

· g
max

/“ ,

Algorithm 1 recovers the true support set with high probability, i.e., Ŝ = S, where Ŝ is the support of the

recovered vector ŵ in (2) and S is the true support.

Proof. Straightforwardly, by considering the discussion on Section 4.2 and Section 4.3, as well as by invoking
Theorem 1, Theorem 2, Theorem 3 and Lemma 6.
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5 Discussions

In this section, we validate the proposed Algorithm 1 through synthetic experiments.

Experiment 1: We test four imputation strategies in the task of censored sparsity recovery, including
our method, imputation by zero, imputation by mean, and imputation by median. We generate wú such
that features in the support are randomly drawn in [≠1, ≠0.25] fi [0.25, 1]. X is generated from Gaussian
distribution, with mean 0 and covariance �. We set the diagonal of � to 1, and the o�-diagonal to 0.8.
We control the number of samples n = 1000, number of features p = 50, and size of support s = 10. The
variable is the percentage of missing entries in observed X̂. We plot the probability of censored sparsity
recovery P

Ó
Ŝ = S

Ô
and the lŒ distance Îŵ ≠ wúÎŒ between the recovered and the true vector, against the

percentage of missing entries, in Figure 1a and Figure 1b, respectively. Each trial is run 100 times. It can be
seen that our imputation strategy outperforms the others on both metrics.

(a) Probability of Recovery (b) lŒ Distance

Figure 1: Validation across di�erent numbers of missing entries. Our algorithm achieved recovery when 20% of
entries are censored with probability at least one half, while other approaches failed with high probability. The vector
recovered by our algorithm is also closer to the ground truth.

Experiment 2: We fix the percentage of missing entries to be 20%, and run the same experiment with
di�erent n, p, and s. To present the results, we define a weighted constant C := log

1
n

s3

log s(p≠s)

2
, which is

derived from the high probability bound in Theorem 2 and 3. We plot the probability of censored sparsity
recovery P

Ó
Ŝ = S

Ô
and the lŒ distance Îŵ ≠ wúÎŒ between the recovered and the true vector, against C

in Figure 2a and Figure 2b, respectively. Each trial is run 100 times. From Figure 2a, one can see that our
method achieved recovery with probability tending to 1 if C is large enough. This matches our prediction in
Theorem 2 and 3.

Experiment 3: One of our contributions, is that we focus on the case when the missing data pattern is
deterministic. As highlighted above, our analysis provides exact sparsity recovery guarantees when the missing
data admit a nontrivial deterministic pattern. In contrast, low-rank matrix completion either assumes that
the entries are missing at random, or imposes some structural constraints to the deterministic missingness
pattern, both of which might not be followed by real world datasets. To illustrate this, we consider the case
where the observed entries follow a chain graph pattern (Figure 3a), where each white entry is observed and
black entry is not observed. Note that the features on the two sides are not observed at the same time. This
is common in many real world scenarios. For example, in medical data, certain lab tests serve the same
purpose and thus are not conducted at the same time.

In this experiment, we demonstrate that our workflow performs better than low-rank matrix completion, when
the observed entries follow a deterministic chain graph pattern as in Figure 3a. The chain width ranges from
2 to 20. We control the parameters by setting n = 200, p = 50, and s = 10. The other settings are the same
as in previous experiments. We plot the lŒ distance Îŵ ≠ wúÎŒ between the recovered and the true vector,

11
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(a) Probability of Recovery (b) lŒ Distance

Figure 2: Validation across di�erent C, a weighted sample size. Our algorithm achieved recovery C is large enough,
matching our theoretical findings.

(a) Chain Structure (b) lŒ Distance

Figure 3: Validation across di�erent C, a weighted sample size. Our algorithm achieved recovery C is large enough,
matching our theoretical findings.

against the chain width in Figure 3b. Each trial is run 10 times. From Figure 3b, one can see that our method
is more robust than the matrix completion approach when the dataset admits a deterministic chain graph
pattern. MissForest (Stekhoven & Bühlmann, 2012) and MICEForest (Van Buuren et al., 1999) are better
than matrix completion, but slightly worse than our relatively simpler imputation technique. On the other
hand, MissForest and MICEForest are far more complex to study theoretically. Thus, our relatively simpler
imputation technique allows for good experimental results, together with a strong theoretical guarantee of
support recovery.

6 Concluding Remarks

In this paper we proposed the idea of censored supervised learning, in which a censorship filter masks the
dataset in a deterministic, non-uniform way. We analyzed the specific case of censored sparsity recovery, and
provided imputation strategies and theoretical guarantees.

We currently use the top neighboring feature to impute the missing value in our algorithm. As a future
direction, this can be extended to the second, third, . . . , neighboring features in a weighted fashion. Another
possible option is to take y into account in the imputation step.

Moreover, it would be interesting to see if similar strategies and analysis will follow, for other supervised
learning tasks masked by some censorship filters. Most of these problems, though commonly encountered in
real world applications, do not have theoretical guarantees about imputation quality.
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