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ABSTRACT

A fascinating aspect of nature lies in its ability to produce a large and diverse col-
lection of high-performing organisms in an open-ended way. By contrast, most
AI algorithms seek convergence and focus on finding a single efficient solution
to a given problem. Aiming for diversity through divergent search in addition to
performance is a convenient way to deal with the exploration-exploitation trade-
off that plays a central role in learning. It also allows for increased robustness
when the returned collection contains several working solutions to the considered
problem, making it well-suited for real applications such as robotics. Quality-
Diversity (QD) methods are evolutionary algorithms designed for this purpose.
This paper proposes a novel algorithm, QD-PG, which combines the strength of
Policy Gradient algorithms and Quality Diversity approaches to produce a col-
lection of diverse and high-performing neural policies in continuous control en-
vironments. The main contribution of this work is the introduction of a Diversity
Policy Gradient (DPG) that drives policies towards more diversity in a sample-
efficient and open-ended manner. Specifically, QD-PG selects neural controllers
from a MAP-ELITES grid and uses two gradient-based mutation operators to im-
prove both quality and diversity. Our results demonstrate that QD-PG is signifi-
cantly more sample-efficient than its evolutionary competitors.

Figure 1: An agent robot is rewarded for running forward as fast as possible, following the reward
signal without further exploration leads the agent into a trap. Our method QD-PG allows deeper
exploration, necessary to solve such deceptive control problems. QD-PG builds upon the MAP-
ELITES and leverages the data-efficiency of reinforcement learning by using a quality critic and a
diversity critic to derive policy gradient based mutations in order to seek for high performance and
new behaviors.

∗Both authors contributed equally to this research.
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1 INTRODUCTION

Natural evolution has the fascinating ability to produce diverse organisms that are all well adapted
to their respective niche. It is a creative and open-ended (OE) process that continuously produces
new solutions without explicitely optimizing for a fitness objective. Such open-endedness could be
the key to solving problems where the required stepping stones cannot be anticipated and planned,
emphasizing the need for a serendipitous search process. Inspired by this ability to produce a tremen-
dous diversity of living systems, Quality-Diversity (QD) algorithms aim at searching for a collection
of both diverse and high-performing solutions (Pugh et al., 2016; Cully & Demiris, 2017). While
classic optimization algorithms focus on finding a single efficient solution, QD algorithms aim to
cover the range of possible solution types and to return the best solution for each type.

By seeking diversity, QD algorithms can be viewed as partially open-ended tools that balance open-
endedness with practical use (Mouret, 2020). Diversity search is the core component that allows QD
algorithms to generate large collections of diverse solutions in an open-ended manner. By contin-
uously encouraging the emergence of novel solutions never seen before, the search for diversity is
only limited by the very nature of the considered problem (or environment). QD methods have been
useful in autonomous skill discovery (Cully, 2019), demonstrating their ability to create solutions of
increasing complexity from the void, but also as a part of broader open-ended systems (Wang et al.,
2019).

Building large and efficient controllers that work with continuous actions has been a long-standing
goal in Artificial Intelligence and particularly in robotics. Deep reinforcement learning (RL), and
especially Policy Gradient (PG) methods have proven efficient at training such large controllers
(Schulman et al., 2017; Lillicrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al., 2018). One of
the keys to this success lies in the fact that PG methods exploit the structure of the objective function
when the problem can be formalized as a Markov Decision Process (MDP). Moreover, they also
exploit the analytical structure of the controller when known, which allows the sample complexity
of these methods to be independent of the parameter space dimensionality (Vemula et al., 2019).

Although exploration is very important to reach optimal policies, PG methods usually rely on simple
exploration mechanisms, like adding Gaussian noise (Fujimoto et al., 2018) or maximizing entropy
(Haarnoja et al., 2018) to explore the action space, which happens to be insufficient in hard explo-
ration tasks where the reward signal is sparse or deceptive (Colas et al., 2018; Nasiriany et al., 2019).
These techniques only focus on building high-performing solutions and do not explicitly encourage
diversity within the set of produced solutions. In this regard, they fail when confronted with hard
exploration problems.

Contributions. In this work, we introduce the idea of a diversity policy gradient (D-PG) that drives
the search process towards unseen and novel solutions in an open-ended way. We show that the
D-PG can be used in combination with the standard policy gradient, dubbed quality policy gradient
(Q-PG), to produce high-performing and diverse solutions. Our algorithm, called QD-PG, builds on
MAP-ELITES and PGA-ME (Nilsson & Cully, 2021) replacing random diversity search by D-PG, and
demonstrates remarkable sample efficiency brought by off-policy PG methods. We compare QD-PG
to state-of-the-art policy gradient methods algorithms (including SAC, TD3, RND, AGAC, DIAYN and
PGA-ME), and to several evolutionary methods known as Evolution Strategies (ESs) augmented with
a diversity objective (namely the NS-ES family (Conti et al., 2018) and the ME-ES algorithm (Colas
et al., 2020)) on a set of challenging continuous control tasks with deceptive reward signals.

2 BACKGROUND

2.1 PROBLEM STATEMENT

We consider an MDP (S,A,R, T , γ) where S is the state space, A the action space, R : S×A → R
the reward function, T : S × A → S the dynamics transition function and γ a discount factor. We
assume that both S and A are continuous and consider a controller, or policy, πθ : S → A, a neural
network parameterized by θ ∈ Θ, which is called a solution to the problem. The fitness F : Θ → R
of a solution measures its performance, defined as the expectation over the sum of rewards obtained
by controller πθ. A solution with high fitness is said to be high-performing.
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We introduce a behavior descriptor (BD) space B, a behavior descriptor extraction function ξ : Θ →
B, and define a distance metric ||.||B over B. The diversity of a set of K solutions {θk}k=1,...,K is
defined as d : ΘK → R+:

d ({θk}k=1,...,K) =

K∑
i=1

min
k ̸=i

||ξ(θi), ξ(θk)||B, (1)

meaning that a set of solutions is diverse if the solutions are distant with respect to each other in the
sense of ||.||B.

Following the objective of the family of Quality Diversity algorithms, we are trying to evolve a
population of diverse and high-performing solutions.

2.2 THE MAP-ELITES ALGORITHM

MAP-ELITES (Mouret & Clune, 2015) is a simple yet state-of-the-art QD algorithm that has been
successfully applied to a wide range of challenging problems such as robot damage recovery (Cully
et al., 2015), molecular robotic control (Cazenille et al., 2019) and game design (Alvarez et al.,
2019). In MAP-ELITES, the behavior descriptor space B is discretized into a grid of cells, also called
niches, with the aim of filling each cell with a high-performing solution. A variant, called CVT MAP-
ELITES uses Centroidal Voronoi Tesselations (Vassiliades et al., 2016) to initially divide the grid into
the desired number of cells. The algorithm starts with an empty grid and an initial random set of
K solutions that are evaluated and added to the grid by following simple insertion rules. If the cell
corresponding to the behavior descriptors of a solution is empty, then the solution is added to this
cell. If there is already a solution in the cell, the new solution replaces it only if it has greater fitness.
At each iteration, P existing solutions are sampled uniformly from the grid and randomly mutated
to create P new solutions, encouraging the emergence of serendipity throughout the search process:
a new high-performing solution is often created from a distant stepping stone in the behavior space.
These new solutions are then evaluated and added to the grid following the same insertion rules.
This cycle is repeated until convergence or for a given budget of iterations.

2.3 REINFORCEMENT LEARNING AND TD3

Deep Reinforcement learning (DRL) is a paradigm to learn high-performing policies implemented
by neural networks in MDPs. In this work, we focus on a class of policy search methods called policy
gradient methods. In opposition to standard evolutionary methods that rely on random updates,
policy gradient methods exploit the structure of the MDP under the form of the Bellman equations
to compute efficient performance-driven updates to improve the policy.

Among many algorithms in the reinforcement learning community, TD3 (Fujimoto et al., 2018)
shows state-of-the-art performance to train controllers in environments with continuous action space
and large state space. TD3 relies on the deterministic policy gradient update Silver et al. (2014) to
train deterministic policies, as defined in Section 2.1. In most policy gradients methods, a critic
Qπ : S ×A → R implemented by a neural network is introduced. The critic evaluates the expected
fitness of policy π when performing a rollout starting from a state-action pair (s, a). The policy is
updated to take the actions that will maximise the critic’s value estimation in each state. Both the
actor and the critic have an associated target network and use delayed policy updates to stabilize the
training. More details can be found in the supplementary material in Section B.

3 KEY PRINCIPLE: DIVERSITY POLICY GRADIENT

3.1 GENERAL PRINCIPLE

In this work, we introduce the Diversity Policy Gradient, which aims at using time-step level infor-
mation in order to mutate controllers towards diversity. The DPG acts in addition to the structural
pressure for diversity induced by the MAP-ELITES selection and insertion mechanisms. It can be
viewed as a divergent search (Lehman & Miikkulainen, 2015), open-ended oriented component,
which continuously drives the search process towards creating solutions that are novel and different
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from the so far created ones. We are trying to characterize the behavior of policies thanks to the
states they visit and hence construct a diversity reward at the time-step-level that is correlated with
the diversity at the episode-level. This reward is computed based on distance of a state compared
to the nearest states visited by other controllers in the MAP-ELITES grid. Aiming at maximizing
the accumulated diversity rewards will induce an increase of the diversity of the population we are
evolving. The following section provides a mathematical motivation for this approach.

3.2 MATHEMATICAL FORMULATION

In this section, we motivate and introduce formally the D-PG computations.

Let us assume that we have a MAP-ELITES grid containing K solutions (θ1, . . . , θK) and that we
sampled θ1 from the grid to evolve it. We want to update θ1 in such a way that the population’s
diversity as defined in Equation equation 1 will increase. For this purpose, we aim to compute the
gradient of the diversity with respect to θ1 and update θ1 in its direction using standard gradient
ascent techniques.

Proposition 1 The gradient of diversity with respect to θ1 can be written as{
∇θ1d({θk}k=1,...,K) = ∇θ1n(θ1, (θj)2≤j≤J),

where n(θ1, (θj)2≤j≤J) =
∑J

j=2 ||ξ(θ1), ξ(θj)||B
(2)

and θ2 is θ1 closest neighbour and (θj) with j = 3, . . . , J are the elements in the population for
which θ1 is the nearest neighbour. Proof in Appendix F.

We call n the novelty of θ1 with respect to its nearest elements. This proposition means that we can
increase the diversity of the population by increasing the novelty of θ1 with respect to the solutions
for which it is the nearest neighbor.

Under this form, the diversity gradient cannot benefit from the variance reduction methods in the
RL literature to efficiently compute policy gradients Sutton et al. (1999). To this end, we need to
express it as a gradient over the expectation of a sum of scalar quantities obtained by policy πθ1 at
each step when interacting with the environment.

For this purpose, we introduce a novel space D, dubbed state descriptor space and a state descriptor
extraction function ψ : S → D. We assume D and B have the same dimension. The notion of state
descriptor will be used in the following to link diversity at the time step level to the diversity at the
trajectory level.

In this context, if the following compatibility equation is satisfied:


n(θ1, (θj)2≤j≤J) = Eπθ1

∑
t
n(st, (θj)2≤j≤J)

where n(s, (θj)j=1,...,J) =
J∑

j=1

Eπθj

∑
t
||ψ(s), ψ(st)||D

(3)

then the diversity policy gradient can be computed as:

∇θ1d({θk}k=1,...,K) = ∇θ1Eπθ1

∑
t

n(st, (θj)2≤j≤J) (4)

See the Appendix F for more details about the motivation behind this assumption. The obtained
expression corresponds to the classical policy gradient setting where γ = 1 and where the corre-
sponding reward signal, here dubbed diversity reward, is computed as rDt = n(st, (θj) 2≤j≤J).
Therefore, this gradient can be computed using any PG estimation technique replacing the environ-
ment reward by the diversity reward rDt .

Equation equation 3 enforces a relation between B and D and between extraction functions ψ and
ξ. In practice, it may be hard to define the behavior descriptor and state descriptor of a solution
that satisfy this relation while being meaningful to the problem at hand and tractable. Nevertheless,
a strict equality is not necessary: a positive correlation between the two hand-size is sufficient for
diversity seeking.
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4 RELATED WORK

Simultaneously maximizing diversity and performance is the central goal of QD methods (Pugh
et al., 2016; Cully & Demiris, 2017). Among the various possible combinations offered by the QD
framework (Cully & Demiris, 2017), Novelty Search with Local Competition (NSLC) (Lehman &
Stanley, 2011b) and MAP-ELITES (Mouret & Clune, 2015) are the two most popular algorithms.
NSLC builds on the Novelty Search (NS) algorithm (Lehman & Stanley, 2011a) and maintains an
unstructured archive of solutions selected for their local performance while MAP-ELITES uniformly
samples individuals from a structured grid that discretizes the BD space. Although very efficient
in small parameter spaces, those methods struggle to scale to bigger spaces which limits their
application to neuro-evolution.

Gradients in QD. Algorithms such as NSR-ES and NSRA-ES have been applied to challenging con-
tinuous control environments (Conti et al., 2018). But, as outlined by Colas et al. (2020), they still
suffer from poor sample efficiency and the diversity and environment reward functions could be
mixed in a more efficient way. ME-ES (Colas et al., 2020) went one step further in that direction,
achieving a better mix of quality and diversity seeking through the use of a MAP-ELITES grid and
two specialized ES populations. Using these methods was shown to be critically more successful
than population-based GA algorithms (Salimans et al., 2017), but they rely on heavy computation
resources. Differentiable QD (Fontaine & Nikolaidis, 2021) improves data-efficiency in QD with an
efficient search in the descriptor space but does not tackle neuro-evolution and is limited to problems
where the fitness and behavior descriptor functions are differentiable.
Exploration and diversity in RL. RL methods generally seek for diversity either in the state space
or in the action space. This is the case of algorithms maintaining a population of RL agents for
exploration without an explicit diversity criterion (Jaderberg et al., 2017) or algorithms explicitly
looking for diversity but in the action space rather than in the state space like ARAC (Doan et al.,
2019), AGAC (Flet-Berliac et al.), P3S-TD3 (Jung et al., 2020) and DvD (Parker-Holder et al., 2020).

An exception is Curiosity Search Stanton & Clune (2016) which defines a notion of intra-life novelty
that is similar to our state novelty defined in Section 3. However, their novelty relies on skills rather
than states. Our work is also related to algorithms using RL mechanisms to search for diversity only
like DIAYN (Eysenbach et al., 2018) and others (Pong et al., 2019; Lee et al., 2019; Islam et al.,
2019). These methods have proven useful in sparse reward situations, but they are inherently limited
when the reward signal can orient exploration, as they ignore it. Other works sequentially combine
diversity seeking and RL (Colas et al., 2018; Ecoffet et al., 2019).

Mixing policy gradient and evolution. The fruitful synergy between evolutive and RL methods
has been explored in many recent methods, notably ERL (Khadka & Tumer, 2018), CERL (Khadka
et al.), CEM-RL (Pourchot & Sigaud, 2018) and PGA-ME (Nilsson & Cully, 2021). ERL and CEM-RL
mix Evolution Strategies and RL to evolve a population of agents to maximize quality but ignores the
diversity of the population. Policy Gradient Assisted MAP-Elites (PGA-ME) successfully combines
QD and RL. This algorithm scales MAP-ELITES to neuroevolution by evolving half of its offsprings
with a quality policy gradient update instead of using a genetic mutation alone. Nevertheless, the
seek for diversity is only explicitly done with the genetic mutation.

To the best of our knowledge, QD-PG is the first algorithm optimizing both diversity and performance
in the solution space and in the state space, using a sample-efficient policy gradient computation
method for the latter.

5 METHODS

Our full algorithm is called QD-PG, its pseudo code and general architecture are given in Apendix A.
QD-PG is an iterative algorithm based on MAP-ELITES that replaces random mutations with policy
gradient updates. As we consider a continuous action space and want to improve sample efficiency
by using an off-policy policy gradient method, we rely on TD3.

QD-PG maintains three permanent structures. On the QD side, a CVT MAP-ELITES grid stores the
most novel and performing solutions. On the RL side, a replay buffer contains all transitions col-
lected when evaluating solutions and an archive A stores all state descriptors obtained so far. QD-PG
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starts with an initial population of random solutions, evaluates them and inserts them into the MAP-
ELITES grid. At each iteration, solutions are sampled from the grid, copied, and updated. The
updated solutions are then evaluated through one rollout in the environment and inserted into the
grid according to the usual insertion rules. Transitions collected during evaluation are stored in the
replay buffer, and state descriptors are stored in the archive A. Note that these state descriptors are
first filtered to avoid insertion in the archive of multiple state descriptors that are too close to each
other.

During the update step, half the population is updated with Q-PG ascent and the other half with
D-PG ascent. The choice of whether an agent is updated for quality or diversity is random, meaning
that it can be updated for quality and later for diversity if selected again. To justify this design, we
show in Section 7 that updating consecutively for quality and diversity outperforms updating based
on joint criteria. Both gradients are computed from batches of transitions sampled from the replay
buffer. The Q-PG is computed from the usual environment rewards (similar to TD3) whereas for
D-PG, we get ”fresh” novelty rewards as the sum of the distances between state st descriptor and its
J nearest neighbors in the archive A. Diversity rewards must be recomputed at each update because
A changes during training. Following Equation equation 3, diversity rewards should be computed as
the sum of the distances between the descriptor of st and the descriptors of all the states visited by a
list of J solutions. In practice, we consider the J nearest neighbors of st. This choice simplifies the
algorithm, is faster to compute and works well in practice.

TD3 relies on a parameterized critic to reduce the variance of its policy gradient estimate. In QD-
PG, we maintain two parameterized critics QD

w and QQ
v , respectively dubbed diversity and quality

critics. Every time a policy gradient is computed, QD-PG also updates the corresponding critic. The
critics are hence trained with all agents in the population instead of a specialised agent. This helps
avoiding local minima in exploration environments where the specialised actor could get stuck and
hence mislead the values learned by the critic. However, having critics trained with multiple agents
can destabilize the process, which is why we avoid using QD-PG with big grids. In our benchmarks,
our grids usually contain 3 times less cells than PGA-ME. As in TD3, we use pairs of critics and
target critics to fight the overestimation bias. We share the critic parameters among the population
as in CEM Pourchot & Sigaud (2018). Reasons for doing so come from the fact that diversity is not
stationary, as it depends on the current population. If each agent had its own diversity critic, since
an agent may not be selected for a large number of generations before being selected again, its critic
would convey an outdated picture of the evolving diversity. We tried this solution, and it failed. A
side benefit of critic sharing is that both critics become accurate faster as they combine experience
from all agents. Additional details on QD-PG implementation are available in Appendix C.

6 EXPERIMENTS

In this section, we intend to answer the following questions: 1. Can QD-PG produce collections of
diverse and high-performing neural policies and what are the advantages to do so? 2. Is QD-PG more
sample efficient than its evolutionary competitors? 3. How difficult are the considered benchmarks
for classical policy gradients methods?

6.1 ENVIRONMENTS

We assess QD-PG capabilities in continuous control environments that exhibit high dimensional
observation and action spaces as well as deceptive rewards. The size of the state/action space makes
exploration difficult for Genetic Algorithms and Evolution Strategies. Deceptive rewards creates
exploration difficulties which is particularly challenging for classical RL methods. We consider three
OpenAI Gym environments based on the MUJOCO physics engine that all exhibit strong deceptive
rewards (illustrated in the Appendix in Figure 5), POINT-MAZE, ANT-MAZE and ANT-TRAP. Such
environments have also been widely used in previous works (Parker-Holder et al., 2020; Colas et al.,
2020; Frans et al., 2018; Shi et al., 2020).

In the POINT-MAZE environment, an agent represented as a green sphere must find the exit of the
maze depicted in Figure 2a, represented as a red sphere. The reward is expressed as the negative
Euclidean distance between the center of gravity of the agent and the exit center. The ANT-MAZE
environment is modified from OpenAI Gym ANT-V2 (Brockman et al., 2016) and also used in (Colas
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(a) We tested QD-PG on 3 environments, from left to right: POINT-MAZE, ANT-MAZE and ANT-TRAP

(b) QD-PG final grid on POINT-MAZE, ANT-MAZE and ANT-TRAP respectively. Colors on final grids show
fitness of solutions, yellow corresponding to high fitness and dark purple to low fitness.

Figure 2: Visual representation of POINT-MAZE, ANT-MAZE and ANT-TRAP and their respective
final grids.

et al., 2020; Frans et al., 2018). In ANT-MAZE, a four-legged ant starts in the bottom left of a maze
and has to reach a goal zone located in the lower right part of it (green area in Figure 2a). As in
POINT-MAZE, the reward is expressed as the negative distance the goal zone.

Finally, the ANT-TRAP environment also derives from ANT-V2 and is inspired from (Colas et al.,
2020; Parker-Holder et al., 2020). In ANT-TRAP, the four-legged ant initially appears in front of a
trap and must bypass it to run as fast as possible in the forward direction (see Figure 2a), as in ANT-
V2, the reward is computed as the ant velocity on the x-axis. Additional details on environments can
be found in Appendix D

7 RESULTS

Can QD-PG produce collections of neural policies and what are the advantages to do so?
Table 1a presents QD-PG performances. In all environments, our algorithm manages to find working
solutions that avoid local minima and reach the overall objective. In addition to its exploration
capabilities, QD-PG generates collections of high performing solutions in a single run. During the
ANT-TRAP experiment, the final collection of solutions returned by QD-PG contained, among others,
5 solutions that were within a 10% performance margin from the best one.

Figure 3: QD-PG produces a collection
of diverse solutions. In ANT-MAZE,
even after setting new randomly lo-
cated goals, the MAP-ELITES grid still
contains solutions that are suited for the
new objectives.

Generating a collection of diverse solutions comes with
the benefit of having a repertoire of diverse solutions
that can be used as alternatives when the MDP changes
(Cully et al., 2015). We show that QD-PG is more robust
than conventional policy gradient methods by changing
the reward signal of the ANT-MAZE environment. We
replace the original goal in the bottom right part of the
maze (see Figure 3) with a new randomly located goal in
the maze. Instead of running QD-PG to optimize for this
new objective, we run a Bayesian optimization process
to quickly find a good solution among the ones already
stored in the grid. With a budget of only 20 solutions
to be tested during the Bayesian optimization process,
we are able to quickly recover a good solution for the
new objective. We repeat this experiment 100 times,
each time with a different random goal, and obtain an
average performance of −10 with a standard deviation of 9. In other words, 20 interaction episodes
(corresponding to 60.000 time steps) suffice for the adaptation process to find a solution that
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performs well for the new objective without the need to re-train agents. More detailed results can
be found in Appendix E.4.

Table 1: Results for all environments. Final Perf. is the minimum distance to the goal in ANT-
MAZE and the episode return in POINT-MAZE and ANT-TRAP. The Ratio to ours column compares
the sample efficiency of a method to QD-PG.

(a) Comparison to ablations and PG baselines.

Final Perf. (± std)

Algorithm POINT-MAZE ANT-MAZE ANT-TRAP
QD-PG −24(±0) −7(±7) 1541(±86)
QD-PG SUM −24(±0) −5(±3) 1018(±6)
D-PG −36(±2) −2(±0) 1016(±8)
Q-PG −128(±0) −26(±0) 1175(±79)

SAC −127(±1) −59(±1) 1049(±21)
TD3 −130(±2) −26(±0) 1131(±7)
RND −35(±10) −27(±1) 978(±61)

CEM-RL −312(±1) −26(±0) 934(±22)
P3S-TD3 −144(±14) −60(±0) 1173(±4)
AGAC −32(±49) −43(±3) 1113(±8)
DIAYN −96(±14) −47(±4) 949(±34)
PGA-ME −126(±0) −18(±6) 1455(±17)

(b) Comparison to evolutionary competitors.

ANT-MAZE

Algorithm Final Perf. Steps to goal Ratio to ours

QD-PG −1(±7) 8.4e7 1
CEM-RL −26(±0) ∞ ∞
ME-ES −5(±1) 2.4e10 286
NSR-ES −26(±0) ∞ ∞
NSRA-ES −2(±1) 2.1e10 249

Is QD-PG more sample efficient than its evolutionary competitors? Table 1b compares QD-PG
to Deep Neuroevolution algorithms with a diversity seeking component (ME-ES, NSR-ES, NSRA-
ES, CEM-RL) in terms of sample efficiency. QD-PG runs on 10 CPU cores for 2 days while its
competitors used 1000 CPU cores for the same duration.

We see three reasons for the improved sample efficiency of QD-PG: 1) QD-PG leverages a replay
buffer and can re-use each sample several times. 2) QD-PG leverages novelty at the state level and
can exploit all collected transitions to maximize quality and diversity. For instance, in ANT-MAZE,
a trajectory brings 3000 samples to QD-PG while standard QD methods would consider it a unique
sample. 3) PG exploits the analytical gradient between the neural network weights and the resulting
policy action distribution and estimates only the impact of the distribution on the return. By
contrast, standard QD methods directly estimate the impact on the return of randomly modifying
the weights.

How challenging are the considered benchmarks for policy gradients methods? Table 1a com-
pares QD-PG to state-of-the-art policy gradient algorithms and validates that classical policy gradient
(TD3 and SAC) methods fail to find optimal solutions in deceptive environments. Besides, despite
its exploration mechanism based on CEM, CEM-RL also quickly converges to local optima in all
benchmarks, confirming the need for a dedicated diversity seeking component. RND, which adds
an exploration bonus used as an intrinsic reward, also demonstrates performances inferior to QD-PG
in all environments but manages to solve POINT-MAZE. In ANT-TRAP, RND extensively explores
the BD space but fails to obtain high returns. Although maintaining diversity into a population of
reinforcement learning agents, AGAC and P3S-TD3 are not able to explore enough the environments
to solve them, showing some limits of exploration through the action space.

DIAYN is able to explore in POINT-MAZE but does not fully explore the environment and hence does
not reach the goal. DIAYN ensures that its skills explore states different enough to be discriminated,
but once they are, there is no incentive to further explore. Moreover, DIAYN in ANT-TRAP shows
a limit of unsupervised learning methods: In ANT-TRAP the behavior descriptor chosen is not
perfectly aligned with the performance measured, as a matter of fact, the objective is not to reach
a point but to achieve the best forward speed with some control costs. But as those rewards are
completely ignored by DIAYN, the produced controllers have very low fitness.
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8 CONCLUSION

We introduced the diversity policy gradient to efficiently implement divergent search for diversity
seeking. Based on this component we proposed a novel algorithm, QD-PG, that builds upon MAP-
Elites algorithm and significantly improve its sample efficiency. We believe that in future work,
the DPG could be part of and enhance open-ended algorithms that seek diversity in a more sample
efficient manner.
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A QD-PG CODE AND ARCHITECTURE

The full algorithm can be found on pseudocode 1 and its architecture in Figure 4.

(a) (b)

Figure 4: (a): The RL part of QD-PG operates at the time step level while the QD part operates
at the controller level, considering the MDP as a black box. (b) One QD-PG iteration consists of
three phases: 1) A new population of solutions is sampled from the MAP-ELITES grid. 2) These
solutions are updated by an off-policy RL agent: half of the solutions are optimized for quality and
the other half for diversity. The RL agent leverages one shared critic for each objective. 3) The
newly obtained solutions are evaluated in the environment. Transitions are stored in a replay buffer
while the updated solutions, their final scores and behavior descriptors are stored in the MAP-ELITES
grid.

B DETAILED EQUATIONS OF TD3

The Twin Delayed Deep Deterministic (TD3) agent Fujimoto et al. (2018) builds upon the Deep
Deterministic Policy Gradient (DDPG) agent Lillicrap et al. (2015). It trains a deterministic actor
πϕ : S → A directly mapping observations to continuous actions and a critic Qθ : S × A →
R which takes a state s and an action a and estimates the average return from selecting action
a in state s and then following policy πϕ. As DDPG, TD3 alternates between policy evaluation
and policy improvement so as to maximise the average discounted return. In DDPG, the critic is
updated to minimize a temporal difference error during the policy evaluation step which induces an
overestimation bias. TD3 corrects for this bias by introducing two critics Qθ1 and Qθ2 . TD3 plays
one step in the environment using its deterministic policy and then stores the observed transition
(st, at, rt, st+1) into a replay buffer M. Then, it samples a batch of transitions from M and updates
the critic networks. Half the time it also samples another batch of transitions to update the actor
network.

Both critics are updated so as to minimize a loss function which is expressed as a mean squared
error between their predictions and a target:

Lcritic(θ1, θ2) =
∑
batch

∑
i=1,2

(Qθi(st, at)− yt)
2, (5)

where the common target yt is computed as:

yt = rt + γ min
i=1,2

Qθi(st+1, πϕ(st+1) + ϵ), (6)

where ϵ ∼ N (0, I).

12



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Algorithm 1: QD-PG
Given: N, max steps, gradient steps ratio, BD extraction function ξ, state descriptor extraction function ψ
Initialize: MAP-Elites grid M, Replay Buffer R, N actors {πθi}i={1,...,N}, 2 critics QD

w and QQ
w , state

descriptors archive A

total steps, actor steps = 0, 0 // Step counters

// Parallel evaluation of the initial population
for j ← 1 to N do

Play one episode with actor πθj and store all transitions in R
Get episode length T , discounted return R and state descriptors {ψ(s1), . . . , ψ(sT )}
Store state descriptors {ψ(s1), . . . , ψ(sT )} in A
Compute ξ(θj) and add the tuple (R, ξ(θj), θj) in the MAP-Elites grid M
actor steps← actor steps+ T

end

// Main loop
while total steps < max steps do

// Select new generation
Get N actors πθi , i ∈ {1, . . . , N} from M
gradient steps = int(actor steps× gradient steps ratio)
actor steps = 0

// Perform in parallel population update and evaluation
for j ← 1 to N do

// Update the population
for i← 1 to gradient steps do

Sample batch of (st, at, rt, st+1, ψ(st)) from R

// First half is updated to maximise diversity
if j ≤N//2 then

Compute novelty reward as rDt from ψ(st) and A
Update πθj for diversity
Compute the novelty critic gradient locally
Average novelty critic gradients between threads
Update novelty critic QD

w

end

// Second half is updated to maximise quality
else

Update πθj for quality
Compute the quality critic gradient locally
Average quality critic gradients between threads
Update quality critic QQ

v

end
end

// Evaluate the updated actors
Play one episode with actor πθj and store all transitions in R
Get episode length T , discounted return R and state descriptors {ψ(s1), . . . , ψ(sT )}
Store state descriptors {ψ(s1), . . . , ψ(sT )} in A
Compute ξ(θj) and add the tuple (R, ξ(θj), θj) in the MAP-Elites grid M
actor steps← actor steps+ T

end

total steps← total steps+ actor steps // Update total time steps

end
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The Q-value estimation used to compute target yt is taken as minimum between both critic pre-
dictions thus reducing the overestimation bias. TD3 also adds a small perturbation ϵ to the action
πϕ(st+1) so as to smooth the value estimate by bootstrapping similar state-action value estimates.

Every two critics updates, the actor πϕ is updated using the deterministic policy gradient also used
in DDPG Silver et al. (2014). For a state s, DDPG updates the actor so as to maximise the critic
estimation for this state s and the action a = πϕ(s) selected by the actor. As there are two critics
in TD3, the authors suggest to take the first critic as an arbitrary choice. The actor is updated by
minimizing the following loss function:

Lactor(ϕ) = −
∑
batch

Qθ1(st, πϕ(st)). (7)

Policy evaluation and policy improvement steps are repeated until convergence. TD3 demonstrates
state of the art performance on several MUJOCO benchmarks.

C QD-PG DETAILS

C.1 COMPUTATIONAL DETAILS

We consider populations of N = 4 actors for the POINT-MAZE environment and N = 10 actors for
ANT-MAZE and ANT-TRAP. We use 1 CPU thread per actor and parallelization is implemented with
the Message Passing Interface (MPI) library. Our experiments are run on a standard computer with
10 CPU cores and 100 GB of RAM, although the maximum RAM consumption per experiment at
any time never exceeds 10GB due to an efficient and centralized management of the MAP-ELITES
grid which stores all solutions. An experiment on POINT-MAZE typically takes between 2 and 3
hours while an experiment on ANT-MAZE or ANT-TRAP takes about 2 days. Note that these durations
can vary significantly depending on the type of CPU used. We did not use any GPU.

Computational costs of QD-PG mainly come from backpropagation during the update of each agent,
and to the interaction between agents and the environment. These costs scale linearly with the
population size but, as many other population-based methods, the structure of QD-PG lends itself
very well to parallelization. We leverage this property and parallelize our implementation to assign
one agent per CPU thread. Memory consumption also scales linearly with the number of agents.
To reduce this consumption, we centralize the MAP-ELITES grid on a master worker and distribute
data among workers when needed. With these implementation choices, QD-PG only needs a very
accessible computational budget for all experiments.

C.2 MAP-ELITES IMPLEMENTATION DETAILS

QD-PG uses a MAP-ELITES grid as archive of solutions. We assume that the BD space is bounded
and can be discretized into an Cartesian grid. We discretize each dimension into m meshes, see
Table 2 for the value of m depending on the environment. Hence, the number of cells in the MAP-
ELITES grid equals m times the number of dimensions of the BD space. When a new solution θ is
obtained after the mutation phase, we look for the cell corresponding to its BD, ξ(θ). If the cell is
empty, the solution is added, otherwise the new solution replaces the solution already contained in
the cell if its score F (θ) is better than the score of the already contained solution. During selection,
we sample solutions uniformly from the MAP-ELITES grid.

C.3 DIVERSITY REWARD COMPUTATION

QD-PG optimizes solutions for quality but also for diversity at the state level. The diversity pol-
icy gradient updates the solutions so as to encourage them to visit states with novel state descrip-
tors. The novelty of a state descriptor ψ(st) is expressed through a diversity reward rDt . In prac-
tice, we maintain a FIFO archive A of the state descriptors encountered so far. When a transition
(st, at, rt, st+1, ψ(st)) is stored in the replay buffer, we also add ψ(st) to A. We only add a state
descriptor in A if its mean Euclidean distance to its K nearest neighbors is greater than an accep-
tance threshold. This filtering step enables to keep the archive size reasonable and to facilitate the
computation of the K nearest neighbors. The values of K and of the threshold are given in Table 2.
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When a batch of transitions is collected during the update phase, we recompute fresh diversity re-
wards rDt as the mean Euclidean distance between the sampled state descriptors ψ(st) and their K
nearest neighbors in A. These diversity rewards are used instead of standard rewards in sampled
transitions (st, at, rDt , st+1, ψ(st)) to compute the diversity policy gradient.

C.4 QD-PG HYPER-PARAMETERS

Table 2 summarizes hyper-parameters used in experiments. Most of these hyper-parameter values
are taken from TD3.

Table 2: QD-PG Hyper-parameters: ANT-MAZE and ANT-TRAP hyper-parameters are identical and
grouped under the Ant column

Parameter PointMaze Ant

TD3
Optimizer SGD SGD
Learning rate 6.10−3 3.10−4

Discount factor γ 0.99 0.99
Replay buffer size 106 5.105

Hidden layers size 64/32 256/256
Activations ReLU ReLU
Minibatch size 256 256
Target smoothing coeff. 0.005 0.005
Delay policy update 2 2
Target update interval 1 1
Gradient steps ratio 4 0.1

State Descriptors Archive
Archive size 10000 10000
Threshold of acceptance 0.0001 0.1
K-nearest neighbors 10 10

MAP-Elites
Nb. of bins per dimension 5 7

D ENVIRONMENTS

D.1 ENVIRONMENTS DETAILS

In POINT-MAZE an observation contains the agent position at time t, and an action corresponds to
position increments along the x and y axes. The trajectory length cannot exceed 200 steps.

In ANT-MAZE the final performance is the maximum reward received during an episode. The envi-
ronment is considered solved when an agent obtains a score superior to −10. An episode consists
of 3000 time steps, this horizon is three times larger than in usual MUJOCO environments, making
this environment particularly challenging for RL based methods (Vemula et al., 2019).

In ANT-TRAP, the trap consists of three walls forming a dead-end directly in front of the ant. In
this environment, the trajectory length cannot exceed 1000 steps. In the three environments, the
state descriptor is defined as the agent center of gravity position at time step t while the solution
descriptor is the center of gravity position at the end of the trajectory.As opposed to POINT-MAZE
and ANT-MAZE, where the objective is to reach the exit area, there is no unique way to solve ANT-
TRAP and we expect a QD algorithm to generate various effective solutions as depicted in Figure 1.
Furthermore, the behavior descriptor is not aligned with the fitness which makes it more difficult for
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MAP-ELITES and also for pure novelty seeking approaches as simply exploring the BD space is not
enough to find a performing solution.

D.2 ENVIRONMENTS ANALYSIS

In POINT-MAZE, the state and action spaces are two-dimensional. By contrast, in ANT-MAZE and
ANT-TRAP, the dimensions of their observation spaces are respectively equal to 29 and 113 while the
dimensions of their action spaces are both equal to 8, making these two environments much more
challenging as they require larger controllers. The ANT-TRAP environment also differs from mazes
as it is open-ended, i.e., the space to be explored by the agent is unlimited, unlike mazes where this
space is restricted by the walls. In this case, a state descriptor corresponds to the ant position that is
clipped to remain in a given range. On the y-axis, this range is defined as three times the width of
the trap. On the x-axis, this range begins slightly behind the starting position of the ant and is large
enough to let it accelerate along this axis. Figure 8b depicts the BD space in ANT-TRAP.

In all environments, state descriptors ψ(st) are defined as the agent’s position at time step t and
behavior descriptors ξ(θ) are defined as the agent’s position at the end of a trajectory. Therefore, we
have B = D = R2, ψ(st) = (xt, yt) and ξ(θ) = (xT , yT ) where T is the trajectory length. We also
take ||.||B and ||.||D as Euclidean distances. This choice does not always satisfy Equation equation 3
but is convenient in practice and led to satisfactory results. The peculiarity of ANT-TRAP lies in the
fact that the reward is expressed as the forward velocity of the ant, thus making the descriptors not
totally aligned with the task.

Figure 5 highlights the deceptive nature of the POINT-MAZE and the ANT-MAZE objective functions
by depicting gradient fields in both environments. Similarly, the reward is also deceptive in ANT-
TRAP.

(a) POINT-MAZE (b) ANT-MAZE

Figure 5: Gradients maps on POINT-MAZE and ANT-MAZE. Black lines are maze walls, arrows de-
pict gradient fields and the square indicates the maze exit. Both settings present deceptive gradients
as naively following them leads into a wall.

E DETAILED RESULTS

In this section, we provide performance charts corresponding to Table 1b and Table 1a, coverage
maps highlighting the exploration capabilities of QD-PG, and detailed results of the fast adaptation
experiment. Table 3 summarizes the different components present in QD-PG, its ablations and all
baselines.

E.1 PERFORMANCE CHARTS

Figure 7 shows supplementary results, with an ablation study and a comparison to evolutionary
competitors in ANT-MAZE. In QD-PG, the current population of solutions is evaluated every 150.000
time steps in ANT-MAZE and ANT-TRAP, and every 5000 time steps in POINT-MAZE. At evaluation
time, agents are set to be deterministic and stop exploring. Figure 7 reports the performance obtained
by the best agent in the population at a given time step.
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Table 3: Ablations and baselines summary. Selec. stands for selection. The last column assesses
whether the method optimizes for a collection instead of a single solution.

Algorithm QPG DPG Q Selec. D Selec. Collection

A
bl

at
io

ns QD-PG

QD-PG SUM

D-PG X
Q-PG X

PG

SAC X X X X
TD3 X X X X
RND X X X

CEM-RL X X
P3S-TD3 X X

AGAC X X X
DIAYN X X X X

PGA-ME X

Q
D

ME-ES X X
NSR-ES X X

NSRA-ES X X

Figure 6: Performance of QD-PG and baseline algorithms for POINT-MAZE (106 steps), ANT-MAZE
(108 steps) and ANT-TRAP (108 steps). Plots present median bounded by first and third quartiles.

E.2 ABLATION STUDY

In addition to Section 7, we wanted to answer the following question: What is the usefulness of the
different components of QD-PG? To answer this question, we propose to investigate the following
matters: Can we replace alternating quality and diversity updates by a single update that optimizes
for the sum of both criteria? Are quality (resp. diversity) gradients updates alone enough to fill
the MAP-ELITES grid? Consequently, we consider the following ablations of QD-PG: QD-PG SUM
computes a gradient to optimize the sum of the quality and diversity rewards, D-PG applies only
diversity gradients to the solutions, and Q-PG applies only quality gradients, but both D-PG and
Q-PG still use QD selection.

The ablation study in Table 1a and Figure 7 shows that when maximising quality only, Q-PG fails due
to the deceptive nature of the reward and when maximizing diversity only, D-PG sufficiently explores
to solve POINT-MAZE but requires more steps and finds lower-performing solutions. When optimiz-
ing simultaneously for quality and diversity, QD-PG SUM fails to learn in ANT-TRAP and manages to
solve the task in ANT-MAZE but requires more samples than QD-PG. We hypothesize that quality and
diversity rewards may give rise to conflicting gradients. For instance, at the beginning of training in
ANT-TRAP, the quality reward drives the ant forward whereas the diversity reward drives it back to
escape the trap and explore the environment. Therefore, both rewards cancel each other, preventing
any learning. This study validates the usefulness of QD-PG components: 1) optimizing for diversity
is required to overcome the deceptive nature of the reward; 2) adding quality optimization provides
better asymptotic performance; 3) it is better to disentangle quality and diversity updates.
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(a) POINT-MAZE: Ablation study (b) ANT-TRAP: Ablation study

(c) ANT-MAZE: Ablation study (d) ANT-MAZE: Evo methods

Figure 7: Learning curves of QD-PG versus ablations and evolutionary baselines. In POINT-MAZE
and ANT-TRAP, the performance is the highest return. In ANT-MAZE, it is the negative lowest dis-
tance to the goal. We separate the comparison on ANT-MAZE into two graphs for better readability.
Plots present median bounded by first and third quartiles.
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E.3 COVERAGE MAPS

Figure 8a shows coverage maps of the POINT-MAZE environment obtained with one representative
seed by the different algorithms presented in the ablation study (see Table 1a). A dot in the figure
corresponds to the final position of an agent after an episode. The color spectrum highlights the
course of training: agents evaluated early in training are in blue while newer ones are represented in
purple.

(a) POINT-MAZE (b) ANT-TRAP

Figure 8: Coverage map of the POINT-MAZE and ANT-TRAP environments for all ablations. Each
dot corresponds to the final position of an agent.

QD-PG and D-PG almost cover the whole BD space including the objective. Unsurprisingly, Q-PG
and TD3 present very poor coverage maps, both algorithms optimize only for quality and the MAP-
ELITES selection mechanism in Q-PG contributes nothing in this setting. By contrast, algorithms
optimizing for diversity (QD-PG and D-PG) find the maze exit. However, as shown in Table 1a,
QD-PG which also optimizes for quality, is able to refine trajectories through the maze and obtains
significantly better performance.

Figure 8b depicts the coverage maps of the ANT-TRAP environment by QD-PG and TD3. Only QD-PG
is able to bypass the trap and to cover a large part of the BD space.

E.4 FAST ADAPTATION

The fast adaptation experiment described in Section 7 uses a Bayesian optimization process to
quickly find a high-performing solution for a new randomly sampled goal. Browsing the MAP-
ELITES grid in an exhaustive way is another option to find a good solution for a new objective.
However, the number of solutions to be tested with this option increases quadratically w.r.t. the
number of meshes used to discretize the dimensions of the BD space. As shown in Table 2, we use a
7× 7 grid to train QD-PG in the ANT-MAZE environment, containing a maximum of 49 solutions. In
this setting, the difference in computation cost between exhaustive search and Bayesian optimization
is negligible.

To ensure that fast adaptation scales to finely discretized MAP-ELITES grids, we reproduce this
experiment with a 100 × 100 grid, thus containing thousands of solutions. We first train QD-PG
again on the standard objective of ANT-MAZE and obtain a 100 × 100 grid of solutions. Then, we
repeat the fast adaptation experiment described in Section 7 using this large grid. With a budget
of only 50 solutions to be tested during the Bayesian optimization process among the thousands
of solutions contained in the grid, we are able to recover a good solution for the new objective.
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Figure 9: Performance map of 100 fast adaptation experiments in ANT-MAZE. In each square, we
display the score of the best experiment whose goal was sampled in this region of the maze, as
several experiments may have goals in the same square. White squares correspond to regions where
no goal was sampled during the experiments. The black circle shows the agent’s starting position.

We repeat this experiment 100 times, each time with a new random goal, and obtain an average
performance of −9 with a standard deviation of 7.

Figure 9 maps these 100 fast adaptation experiments to their respective goal location and perfor-
mance. In each square, we display the score of the best experiment whose goal was sampled in this
region of the maze. For instance, the square in the top left corner of the performance map corre-
sponds to one of the 100 fast adaptation experiments that sampled its goal in this part of the maze,
and obtained a performance of −12 after testing 50 solutions from the MAP-ELITES grid during the
Bayesian optimization process. Some squares do not have a score when no experiment sampled its
goal in this region of the maze.

F D-PG DERIVATIONS EXTENDED

F.1 PROOF OF PROPOSITION 1.

The diversity of a set of K solutions {θk}k=1,...,K is defined as d : ΘK → R+:

d ({θk}k=1,...,K) =

K∑
i=1

min
k ̸=i

||ξ(θi), ξ(θk)||B, (8)

The diversity can be split into three terms: the distance of θ1 to its nearest neighbor (defined as θ2),
the distance of θ1 to the θj for which θ1 is the nearest neighbor (defined {θj}j=3,...,K

1) and a third
term that does not depend on θ1. Thus:

d({θk}k=1,...,K) = ||ξ(θ1), ξ(θ2)||B +
∑J

j=3
||ξ(θ1), ξ(θj)||B +M

=
∑J

j=2
||ξ(θ1), ξ(θj)||B +M

where M =
∑

i ̸∈{1,...,J} min
k ̸=i

||ξ(θi), ξ(θk)||B does not depend on θ1. Hence, the gradient with

respect to θ1 is:

∇θ1d({θk}k=1,...,K) = ∇θ1

∑J

j=2
||ξ(θ1), ξ(θj)||B

As the remaining term is precisely defined as the novelty n :

n(θ1, (θj)2≤j≤J) =
∑J

j=2
||ξ(θ1), ξ(θj)||B (9)

1Remark: θ2 can appear twice in the list (θj)2≤j≤J
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We get the final relation :

∇θ1d({θk}k=1,...,K) = ∇θ1n(θ1, (θj)2≤j≤J) (10)

F.2 MOTIVATION BEHIND EQUATION 3

The idea behind this equation is to link novelty defined at the solution level to a notion of novelty
defined at the time step level. The information that we use at the time step level is the current state
in the environment, so we describe a solution by the states it visits and hence want to define state
novelty such that :

n(θ1, (θj)2≤j≤J) = Eπθ1

∑
t

n(st, (θj)2≤j≤J) (11)

Furthermore, we assume that a state is novel w.r.t. some solutions if it is novel w.r.t. to the states
visited by these solutions. To be able to do so, we introduce the notion of state descriptor Ψ, which
enables to define the novelty between states. Hence, we can define the novelty of a state w.r.t. to a
set of solutions by:

n(s, (θj)j=1,...,J) =

J∑
j=1

Eπθj

∑
t

||ψ(s), ψ(st)||D (12)

This state descriptor Ψ constrains the link between the novelty at the state level with the novelty at
the solution level through a link with the behavior descriptor ξ.

That being said, we can now compute the diversity gradient thanks to the novelty at the state level.
As a matter of fact, proposition 1 links diversity gradient to novelty at solution level:

∇θ1d({θk}k=1,...,K) = ∇θ1n(θ1, (θj)2≤j≤J) (13)

Then we link novelty at the solution level to novelty at the state level with the following equation,
which is satisfied thanks to the relevant choice of the state descriptor Ψ.

n(θ1, (θj)2≤j≤J) = Eπθ1

∑
t

n(st, (θj)2≤j≤J) (14)

Finally, by replacing the novelty at the solution level by the novelty at the state level in proposition
1, we get the formulation of the diversity policy gradient given in equation 4.

∇θ1d({θk}k=1,...,K) = ∇θ1Eπθ1

∑
t

n(st, (θj)2≤j≤J) (15)
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