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Abstract

Evaluating radiology reports is a challenging001
problem as factual correctness is extremely002
important due to its medical nature. Exist-003
ing automatic evaluation metrics either suf-004
fer from failing to consider factual correct-005
ness (e.g., BLEU and ROUGE) or are lim-006
ited in their interpretability (e.g., F1CheXpert007
and F1RadGraph). In this paper, we introduce008
GREEN (Generative Radiology Report Evalu-009
ation and Error Notation), a radiology report010
generation metric that leverages the natural lan-011
guage understanding of language models to012
identify and explain clinically significant er-013
rors in candidate reports, both quantitatively014
and qualitatively. Compared to current met-015
rics, GREEN offers: 1) a score aligned with016
expert preferences, 2) human interpretable ex-017
planations of clinically significant errors, en-018
abling feedback loops with end-users, and 3)019
a lightweight open-source method that reaches020
the performance of commercial counterparts.021
We validate our GREEN metric by comparing022
it to GPT-4, as well as to error counts of 6 ex-023
perts and preferences of 2 experts. Our method024
demonstrates not only higher correlation with025
expert error counts, but simultaneously higher026
alignment with expert preferences when com-027
pared to previous approaches.028

1 Introduction029

Machine learning has enabled great progress in the030
automatic interpretation of images, where vision lan-031
guage models (VLMs) translate features of images into032
text (Radford et al., 2021; Liu et al., 2024). In the033
medical domain, patient images are interpreted by ra-034
diologists, which is referred to as radiology report gen-035
eration (RRG). Automated and high-quality RRG has036
the potential to greatly reduce the repetitive work of037
radiologists, alleviate burdens arising from shortage038
of radiologists, generally improve clinical communi-039
cation (Kahn Jr et al., 2009), and increase the accuracy040
of radiology reports (Rajpurkar and Lungren, 2023).041

Commonly used evaluation metrics in RRG litera-042
ture (Lin, 2004; Zhang et al., 2019; Smit et al., 2020;043

Delbrouck et al., 2022) seek to evaluate a generated 044
radiology report against a reference report written by 045
a radiologist by leveraging simple n-grams overlap, 046
general language similarity, pathology identification 047
within specific imaging modalities and disease classes, 048
and commercially-available large language models. To 049
achieve performance on par with radiologists, evalua- 050
tion metrics must be adept with the radiology language 051
in order to accurately assess factual correctness and lev- 052
els of uncertainties. Additionally, RRG metrics should 053
be interpretable in a scalable fashion to enable a feed- 054
back loop between the generated reports and the experts 055
who review them. Moreover, these metrics should be 056
open-source to allow for assessment of private datasets 057
that require the safeguarding of patient information. 058

Current RRG metrics fall short of capturing the nu- 059
anced and multifaceted nature of radiology reports. To 060
mitigate the current gaps in appropriate metrics for RRG, 061
we introduce GREEN (Generative Radiology Evalua- 062
tion and Error Notation). The GREEN metric intro- 063
duces five major contributions: 064

• Score: We introduce and validate a score, which 065
ranges from 0 for the weakest assessment, to 066
1, marking the highest score achievable. We 067
show that GREEN is adept with the radiology 068
language and can accurately assess factual cor- 069
rectness and levels of uncertainties that surpass 070
prior approaches. 071

• Interpretable Evaluation Summary: We pro- 072
vide a method to generate a clear, human-readable 073
evaluation summary independent of the test set 074
size. By providing detailed error categorization 075
with explanations, GREEN enables machine learn- 076
ing practitioners and experts to pinpoint areas for 077
improvement in their trained systems. 078

• Practicability: We open-source the GREEN 079
model that leverages a < 7B parameter language 080
model with similar report evaluation abilities as 081
larger counterparts. This approach decreases GPU 082
requirements and enhances processing speed. 083

• Applicability: Leveraging high-performing 084
commercially-available large language model 085
(LLM) services typically requires a de- 086
identification procedure and institutional review 087
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ROUGE-L Evaluation

0.57 0.57

Candidate 2:
pleural effusion not present.

Candidate 1:
pleural effusion is present.

BLEU Evaluation

0.75 0.75

Candidate 2:
pleural effusion not present.

Candidate 1:
pleural effusion is present.

==
F1RadGraph Evaluation

1.0 0.5

Candidate 2:
pleural effusion not present.

Candidate 1:
pleural effusion is present 

BERTScore Evaluation

0.85 0.75

Candidate 2:
pleural effusion not present.

Candidate 1:
pleural effusion is present.

Our Proposed GREEN Evaluation

1.0 0.0

Candidate 2:
pleural effusion not present.

Candidate 1:
pleural effusion is present.

Reference : “pleural effusion present”

Generative Explanation: Pleural effusion is marked as
positive in both reference and candidate reports.
Error Notation: Clinically significant errors: 0. Matched 
Findings: 1. pleural effusion is present.

Generative Explanation: Pleural effusion is marked as
positive in reference but negative in candidate.
Error Notation: Clinically significant errors: 1. pleural 
effusion should be present. Matched Findings: 0.

Figure 1: Motivation of GREEN.

board approval for protected health information088
(PHI). GREEN is free, open-source, and designed089
for use in confidential datasets without worries of090
leaking medical information about individuals.091

• Multimodality: GREEN is designed to under-092
stand a wide array of pathologies, linguistic styles,093
and terminologies. We demonstrate that GREEN094
exhibits a generalized understanding of medical095
language that spans various imaging modalities096
and anatomical structures on out-of-distribution097
(OOD) data, specifically by examining its appli-098
cation to abdominal computed tomography (CT)099
reports in a zero-shot fashion.100

• Datasets: Lastly, we share the dataset used to101
develop our models. This dataset encompasses102
100,000 annotations from GPT-4 related to chest103
X-rays (spanning various datasets) and 50,000 an-104
notations across a diverse set of imaging modali-105
ties. By making these resources available, we hope106
to facilitate further research and improvement in107
the accuracy and reliability of automated radiology108
report generation systems.109

2 Related Work110

The literature demonstrates various advances in generat-111
ing radiology reports from medical images (Ramesh112
et al., 2022; Jeong et al., 2024; Li et al., 2023; Yang113
et al., 2022; Nguyen et al., 2021; Chen et al., 2024;114

Chaves et al., 2024). For instance, a set of evaluation 115
metrics are commonly utilized to assess the quality of 116
the generated reports and focus on lexical similarity 117
(e.g., ROUGE-L (Lin, 2004) and BLEU (Papineni et al., 118
2002)) and factual correctness (e.g., F1CheXbert (Smit 119
et al., 2020) and F1RadGraph (Delbrouck et al., 2022)). 120
F1CheXbert assesses the accuracy of identified disease 121
labels in reports against a narrow reference, covering 122
only 14 CheXbert classes of common-but-specific 123
chest x-ray findings. F1RadGraph enhances factual 124
correctness evaluations by comparing the agreement 125
on anatomical and observational entities between 126
candidate reports and reference reports, using a graph 127
model trained on human annotations. However, the 128
correlation of F1RadGraph with manual evaluations 129
by radiologists is low, leading to the development of 130
more closely-aligned metrics such as RadCliQ (Yu 131
et al., 2023a). RadCliQ consists of an ensemble of 132
ROUGE, BLEU, CheXbert embedding similarities, and 133
RadGraph to form a composite metric which aims to 134
match expert-generated error counts. While RadCliQ 135
is effective in mirroring these error counts, it has low 136
interpretability as the individual metric weights are 137
unknown and the single numerical score is inadequate 138
for clinical integration (Figure 1). 139

140

Our approach stands out from previous metrics 141
by emphasizing clinical relevance and interpretability, 142
showing higher alignment with expert error counts and 143
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Step 2: Training (Distilling the knowledge to a small LLM)

Prompt + +
Green Analysis

Prompt + +

Candidate

Candidate Reference

Reference

Green Analysis

Supervise

GPT-4

GREEN

Step1: Dataset Generation w/ GPT-4

Figure 2: Training procedure of the GREEN model.

expert preferences while still leveraging an open-source144
<7B parameter model.145

3 GREEN146

GREEN (Generative Radiology Evaluation and Error147
Notation) involves three primary components.148

149
First, we describe the construction of our genera-150

tive language model, which is designed to identify and151
classify errors in radiology reports into six categories152
(Section 3.1). This section is subdivided into the collec-153
tion of training data (Section 3.1.1) and details of the154
training process (Section 3.1.2). Second, we elaborate155
on the GREEN score in Section 3.2, including its ratio-156
nale and significance. Third, we explain the GREEN157
summary and its usefulness.158

We then outline the steps we took to validate the159
effectiveness and relevance of GREEN, both quantita-160
tively and qualitatively, in Section 3.4.161

3.1 Generative Large Language Model162

3.1.1 Chest X-rays Data Collection163

To compile our training dataset, we selected 100,000164
reference and generated candidate report pairs165
from six publicly-available de-identified chest X-166
ray datasets: MIMIC-CXR (Johnson et al., 2019),167
MIMIC-PRO (Ramesh et al., 2022), CandidPTX (Feng168
et al., 2021), PadChest (Bustos et al., 2020), BIMCV-169
covid19 (Vayá et al., 2020) and OpenI (Demner-170
Fushman et al., 2012). We employed the prompt shown171
in Appendix A.1 to task GPT-4 to identify and catego-172
rize differences in natural language across six unique173
clinically-defined categories detailed previously Yu et al.174
(2023b).175

The pairing process used five different heuristics,176
generating 20,000 unique pairs for each heuristic: i)177
randomly matching candidates and references, ii) modi-178
fying the candidate by removing and shuffling sentences179
from the original report, iii) using a trained RRG model180
to create the candidate based on the referenced image (to181
bridge the gap noted in literature between actual reports182
and those generated by baseline models), iv) pairing183
candidates with the closest semantically similar report184
assessed using BERTScore (Zhang et al., 2019), and v)185
creating candidates through RadGraph (named-entity186

recognition dataset) (Jain et al., 2021) permutations of 187
the reference reports, incorporating changes to the pres- 188
ence of findings or by making modifications to size, 189
severity, or location throughout the reports. The number 190
of RadGraph permutations and the BERTScore distribu- 191
tion of the pairs are presented in Figure 3. Additionally, 192
a sample GPT-4 response of a pair with a candidate 193
that includes exactly one RadGraph permutation can be 194
found in Appendix A.2. 195

Figure 3: Number of RadGraph permutations among
the candidates for 20,000 pairs (left) and BERTScore
distribution across 20,000 pairs (right).

To maintain uniqueness across the dataset, once 196
pairs were formed using one heuristic, they were ex- 197
cluded from consideration in others, ensuring each of 198
the 100,000 pairs is distinct. Overall, 174,329 unique 199
reports were utilized either as references or candidates 200
in this study. 201

3.1.2 Model Architecture and Training 202

To enhance performance with medical data, we pre- 203
trained LLaMA-2 and Phi-2 using a comprehensive set 204
of domain-specific datasets to form RadLLaMA-2 and 205
RadPhi-2. These datasets include MIMIC-IV Radiology 206
Reports (Johnson et al., 2023), MIMIC-IV Discharge 207
Summaries, MIMIC-CXR Radiology Reports, and a 208
variety of sources from PubMed (Abstracts and Patient 209
Reports). Specialized datasets such as Wiki Medical 210
Terms1 and Medical Guidelines2 (Vashishth et al., 2021) 211
were also used. 212

To obtain a local RRG evaluator for the GREEN 213
metric model, we opted to train open-source models 214
instead of relying on API-based models. Specifically, 215
we further fine-tuned RadLLaMA-2 and RadPhi-2, as 216
well as other models of different sizes, architectures, 217
and pre-training datasets, such as LLaMA-2 (Touvron 218
et al., 2023), Phi-2 (Javaheripi and Bubeck, 2023), and 219
Mistral-v0.1 (Jiang et al., 2023) (Figure 2). Models were 220
trained on 8x NVIDIA A100 Tensor Core GPUs with 221
40GB VRAM using the Huggingface framework with 222
Flash Attention 2, DeepSpeed Stage 3, and the AdamW 223
optimizer. An effective batch size of 2,048 was used 224
for 12 epochs, as well as a base learning rate of 1e-4, a 225
warm-up ratio of 0.05, and a weight decay of 0.1. Train- 226
ing for 7B-parameter models averaged 40 GPU hours, 227
while the 2.7B-parameters models averaged 28 GPU 228
hours. For fast and reliable inference, we employed data 229

1www.huggingface.co/datasets/gamino/wiki_medical_
terms

2www.huggingface.co/datasets/epfl-llm/guidelines
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GREEN Summary

[Summary]:
Green score: mean 0.23 std 0.04

[Clinically Significant Errors]:
(a) False report of a finding in the candidate: 0.9
[Small right pleural effusion, Small right pleural effusion, Small right pleural effusion]
(b) Missing a finding present in the reference: 0.7
[Residual opacification in the right upper lobe raising concern for pneumonia.,
Underlying chronic upper lobe scarring., Underlying chronic upper lobe scarring.]
(c) Misidentification of a finding's anatomic location/position: 0.4
[The opacity is in the right lower lobe, not the right upper lobe., Right lower lobe
consolidation instead of residual opacification in the right upper lobe., Opacity reported in
the left lower lobe instead of the right upper lobe]
(d) Misassessment of the severity of a finding: 0.8
[Bilateral pleural effusion, Bilateral pleural effusion, Bilateral pleural effusion.]
(e) Mentioning a comparison that isn't in the reference: 0.7
[The candidate report mentions a discussion between doctors, which is not present in the
reference report, The candidate report mentions monitoring and support devices which is not
mentioned in the reference report]
(f) Omitting a comparison detailing a change from a prior study: 0.5
[The candidate report does not mention the absence of disease progression, The candidate
report does not mention the position of the right IJ catheter, The candidate report does not
mention that the blunting of the costophrenic angle is not significantly changed from a prior
study]

Figure 4: Sample GREEN summary. For each error subcategory, we provide the most representative error
explanations, enabling users to pinpoint areas for improvement for their trained systems.

parallelism and deterministic sampling with a maximum230
token length of 2,048 to ensure the reproducibility of231
the GREEN metric.232

3.2 GREEN Score233

We employed regular expressions (regex) to parse the234
counts of errors from the model’s output. Specifically,235
we denoted the count of each type of error as # errors,i,236
where the error’s clinical significance s ∈ {sig., insig.}237
and subcategory i ∈ {(a), (b), . . . , (f)}.238

To calculate the GREEN score, we prioritized239
# errorsig.,i (errors with the potential to alter clinical240
decision-making processes) alongside the counts of ac-241
curate matched findings, # matched findings, for inver-242
sion. The formula for the GREEN score is then ex-243
pressed as:244

GREEN =
# matched findings

# matched findings +
(f)∑

i=(a)

# errorsig.,i

(1)

245

if # matched findings > 0, otherwise 0. Thus, the246
GREEN score (↑) is bounded between 0 and 1.247

3.3 GREEN Summary248

We present a method for a detailed analysis of error249
explanation per error subcategory i. Initially, the pro-250

cess involves clustering the embeddings of the explana- 251
tion sentence, ei ∈ Ei, into k clusters using Sentence 252
Transformers (Ni et al., 2021). Subsequent steps in- 253
clude quantifying the size of these k clusters, where k 254
is determined by the silhouette distance (Shahapure and 255
Nicholas, 2020). We then identify the largest cluster 256
and isolate the top-3 members exhibiting the closest dis- 257
tance to the cluster’s mean as determined through cosine 258
distance measures. The top-3 members are then named 259
for each error category in the GREEN summary (Ap- 260
pendix A.5). For example, in Figure 4, subcategory (a) 261
has "(Small right pleural effusion, Small right pleural ef- 262
fusion, Small right pleural effusion)" as the three closest 263
members to the largest cluster, which indicates signif- 264
icant hallucinations of a "small right pleural effusion". 265
This opens up the possibility for targeted detection of 266
data biases or quality issues, as well as specific areas 267
for model improvement. 268

3.4 Validation 269

3.4.1 Expert Error Counts Dataset 270

To validate the GREEN score in a clinical setting, we 271
utilized the publicly-available ReXVal dataset, which 272
includes assessments from six board-certified radiolo- 273
gists on 200 pairs of generated radiology reports from 274
50 cases of the MIMIC-CXR test set (Yu et al., 2023b). 275
Each radiologist counted the occurrences of six spe- 276
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Table 1: Results on the internal test set (10,000 examples) when compared to GPT-4 error counts. 1Mean absolute
error ± standard deviation, 2Average error count.

Language Model
MAE ± STD 1 ∆ GREEN ↓

∆Sig. Error Count ↓ ∆Insig. Error Count ↓ ∆Matched Findings ↓
3.1± 2.62 0.15 ± 0.522 2.07 ± 1.842

Mistral-v0.1 (7B) 0.97 ± 1.18 0.22 ± 0.58 0.44 ± 0.70 0.11 ± 0.17

LLaMA-2 (7B) 1.35 ± 1.40 0.15 ± 0.52 1.62 ± 1.67 0.29 ± 0.26

Phi-2 (2.7B) 0.84 ± 1.14 0.20 ± 0.58 0.34 ± 0.59 0.09 ± 0.14

RadLLaMA-2 (7B) 0.70 ± 0.99 0.20 ± 0.57 0.29 ± 0.54 0.08 ± 0.13

RadPhi-2 (2.7B) 0.63 ± 0.99 0.18 ± 0.57 0.26 ± 0.53 0.06 ± 0.12

cific error types denoted earlier, distinguishing between277
errors of clinical significance and those considered in-278
significant.279

3.4.2 Expert Preference Dataset280

Since we lacked a ground-truth score for evaluating ra-281
diology reports, we turned to a radiologist preference282
dataset. This helped to address the shortcomings of283
comparing errors counts in the previous section. In par-284
ticular, when radiologists compare two reports, they do285
so with an intuitive weighting of matched findings and286
significant and insignificant errors. As such, the prefer-287
ence dataset enabled us to determine which metric most288
effectively replicates expert evaluations and allowed us289
to assess GREEN as a preference generator (Rafailov290
et al., 2024; Ethayarajh et al., 2024).291

We collected 100 pairwise preferences by two board-292
certified radiologists (with over 5 and 25 years of ex-293
perience). The dataset comprised of 50 cases of the294
ReXVal dataset (Yu et al., 2023b), supplemented by an295
additional 50 cases randomly selected from the MIMIC-296
CXR test set. The two radiologists were presented with297
a chest X-ray alongside two corresponding candidate298
reports generated by an image-captioning model fine-299
tuned on the MIMIC CXR training set3. The primary300
task for the radiologist was to select the candidate report301
they preferred and to quantify their confidence in this302
selection on a scale ranging from 1 to 10. The inten-303
tion behind this was to categorize the complexity of the304
task. In essence, when radiologists have a high degree305
of confidence in their chosen report for a given case, it is306
anticipated that the automated preference generator will307
show the highest concordance, as the task is deemed less308
challenging. The quality of the two candidates is consid-309
ered to be equal when experts had differing preferences,310
hence implying no preference. We then excluded such311
cases from consideration.312

4 Experiments313

4.1 Inter-Expert Analysis314

The baseline for model performance was established315
by comparing the correlation between experts to each316

3https://huggingface.co/nlpconnect/
vit-gpt2-image-captioning

other from the ReXVal dataset using Kendall’s Tau co- 317
efficient (Yu et al., 2023b). The correlation between the 318
6 experts was less than the average correlation across 319
experts, which spans from 0.41 to 0.60 (Figure 5). Ad- 320
ditionally, we assessed the discrepancy between experts 321
by computing the mean absolute error of significant 322
error counts, resulting in a mean difference of 0.83 ± 323
0.13 (Table 2). These inter-expert measures serve as up- 324
per bound for the GREEN model performance outlined 325
below. 326

Table 2: Difference between ReXVal experts and the
GREEN model measured using mean absolute error of
significant error counts.

0 1 2 3 4 5 GREEN

0 − 0.505 0.835 0.675 0.495 1.130 1.160
1 0.505 − 1.100 0.870 0.660 1.365 1.485
2 0.835 1.100 − 0.730 0.770 0.725 0.715
3 0.675 0.870 0.730 − 0.570 0.965 0.895
4 0.495 0.660 0.770 0.570 − 1.025 1.005
5 1.130 1.365 0.725 0.965 1.025 − 0.930

GREEN 1.160 1.485 0.715 0.895 1.005 0.930 −

4.2 Performance on Training Data Distribution 327

We measured performance of the GREEN metric models 328
by sampling deterministically and comparing the mean 329
absolute errors and classical lexical metrics against ref- 330
erence labels from GPT-4. We found that RadPhi-2 331
and RadLLaMA-2 exhibit the lowest mean absolute dif- 332
ference for clinically significant errors of 0.63 ± 0.99 333
(Table 1) and the highest classical lexical metrics with 334
a mean BERTScore of 0.84 ± 0.10 (Table 3). We mea- 335
sured clustering and summary consistency with lan- 336
guage similarity metrics like BERTScore. Consistent 337
with the quantitative results, we found that RadPhi-2 338
and RadLLaMA-2 yielded the best natural language 339
agreement with GPT-4 (Table 1). 340

4.3 Performance on Validation Data Distribution 341

To analyze the performance upper bound of GREEN, 342
we inferred GREEN scores from GPT-4 responses on 343
the validation set, and referred to it as GREEN-GPT-4. 344

5

https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
https://huggingface.co/nlpconnect/vit-gpt2-image-captioning


Table 3: Results on the Internal test set (10,000 exam-
ples) when compared to GPT-4 responses.

Language Model Lexical
BERTScore↑ ROUGE-L ↑ BLEU ↑

Mistral-v0.1 (7B) 0.80 ± 0.11 0.68 ± 0.18 0.54 ± 0.22

LLaMA-2 (7B) 0.78 ± 0.12 0.65 ± 0.19 0.53 ± 0.21

Phi-2 (2.7B) 0.80 ± 0.11 0.70 ± 0.18 0.54 ± 0.23

RadLLaMA-2 (7B) 0.83 ± 0.24 0.73 ± 0.17 0.59 ± 0.23

RadPhi-2 (2.7B) 0.84 ± 0.10 0.76 ± 0.17 0.64 ± 0.23

Figure 5: Mean-expert and inter-expert correlation ma-
trix (Kendall’s Tau) for fine-grained error counts on the
external validation set (RexVal (Yu et al., 2023b)).

4.3.1 Expert Error Counts345

To quantitatively validate GREEN, we measured the346
mean absolute difference and accuracy relative to the347
average radiologist, as detailed in Section 4.1. We found348
that, overall, RadLLaMA-2 exhibits the lowest differ-349
ences to the mean radiologist’s error counts (1.54 ±350
1.36 sig. error difference), which approaches the per-351
formance of GPT-4 (1.51 ± 1.29 sig. error difference).352
Compared to all experts individually, RadLLaMA-2 ex-353
hibits an average difference of 1.02 ± 0.27, which is354
within the boundaries of the average inter-expert differ-355
ence of 0.83 ± 0.13. Drawing from these quantitative356
results, along with the findings presented in Section 3.4,357
we selected RadLLaMA-2 as the GREEN model for all358
future experiments.359

To validate GREEN against existing metrics, we as-360
sessed the correlation between the total error count by361
radiologists and the classical metrics, alongside GPT-4362
and GREEN, using an external dataset (Table 5). Both363
GREEN-GPT-4 and GREEN demonstrated similar and364
stronger correlations compared to classical metrics. We365
noted that the GREEN correlation significantly outper-366
forms that of RadGraph, despite RadGraph being trained367
on human annotations (RadGraph: 0.47 (95% CI, -0.55368
0.39) vs. GREEN: 0.63 (95% CI, 0.69 0.56) ).369

Compared to the inter-expert correlation, GREEN370
exhibits a competitive degree of correlation at 0.63 com-371
pared to the range from 0.48 to 0.64 on the same exam-372
ples (Figure 5).373

Figure 6: Radiologist confidence vs. accuracy of prefer-
ence labeling. As the confidence of the experts in their
preferences increases, the GREEN score demonstrates
the highest alignment with expert preferences as com-
pared to the approach of using just the summed error
counts. This difference was quantified using accuracy
(green lines). Of note, if GPT-4 is asked directly about
a preference, it aligns poorly with the expert preference.
However, when the GREEN score formula is applied,
a higher accuracy is shown even at lower expert confi-
dence levels. Detailed results can be found in Table 6.

Additionally, we observed that correlating the un- 374
weighted summed error counts of GREEN (clinically 375
sig. errors + insig. errors) yields a correlation coeffi- 376
cient of 0.79 (95% CI, 0.74 0.83), which may exceed 377
the performance of GPT-4-based G-Rad (Chaves et al., 378
2024). 379

We further used expert preferences to determine 380
whether the summed error counts or the GREEN score 381
best mimics expert evaluation. This approach is based 382
on the assumption that clinically significant errors, in- 383
significant errors, and matched findings carry different 384
weights in determining the quality of a candidate report. 385

4.3.2 Expert Preferences 386

The accuracy of the generated preferences was measured 387
by how often the expert-preferred report matched the 388
report that had a higher score from GREEN, a lower 389
summed error count, or the preference of GPT-4. The 390
prompt that was used for GPT-4 preferences is shown 391
in Appendix A.3). 392

We observed the highest mean accuracy for GREEN 393
and GREEN-GPT-4, which both outperforms the 394
summed error count approach. The preferences of GPT- 395
4 exhibited an accuracy of 0.23 (95% CI, 0.13 0.36) 396
(Table 6). 397

Upon examining the impact of varying confidence 398
levels (Figure 6), we observed that GREEN’s preference 399
alignment improves in conjunction with increased radi- 400
ologist confidence, distinguishing it from the approach 401
of using just the sum of error counts or the direct GPT-4 402
preference with low accuracy. 403
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Table 4: Results on the external validation set (200 examples) compared to ReXVal human experts. 1MAE: Mean
Absolute Error of the sum of Sig. Errors and Insig. Errors, 2STD: Standard Deviation, 3Average error count. (a)-(f)
Accuracy for each significant error category: (a) False report of a finding in the candidate, (b) Missing a finding
present in the reference, (c) Misidentification of a finding’s anatomic location/position, (d) Misassessment of the
severity of a finding, (e) Mentioning a comparison that isn’t in the reference, and (f) Omitting a comparison detailing
a change from a prior study.

Language Model MAE1 ± STD 2 Accuracy ↑
∆Sig. Error↓ ∆Insig. Error↓ (a) (b) (c) (d) (e) (f)

7.03 ± 1.16 3 0.47 ± 0.523

Compared to Mistral-v0.1 (7B) 2.60 ± 1.91 0.87 ± 0.94 0.13 0.31 0.62 0.59 0.48 0.67
Average Expert LLaMA-2 (7B) 2.62 ± 1.25 0.47 ± 0.52 0.10 0.23 0.65 0.59 0.68 0.70

Phi-2 (2.7B) 2.10 ± 1.39 0.65 ± 0.70 0.34 0.08 0.65 0.57 0.66 0.53
RadLLaMA-2 (7B) 1.54 ± 1.36 0.51 ± 0.54 0.34 0.38 0.60 0.54 0.65 0.68
RadPhi-2 (7B) 2.08 ± 1.15 0.55 ± 0.61 0.19 0.18 0.62 0.57 0.62 0.61
GPT-4 1.51 ± 1.29 0.52 ± 0.55 0.32 0.40 0.65 0.59 0.68 0.70

Table 5: Correlation analysis between metrics, GREEN
score, and GREEN score inferred from GPT-4 (GREEN-
GPT-4) to average total error count of 6 radiologists in
the ReXVal dataset (200 examples).

Metrics Kendall’s Tau ↑

BLEU 0.33 (95% CI, 0.42 0.23)

BERTScore 0.44 (95% CI, 0.52 0.35)

F1RadGraph 0.47 (95% CI, 0.55 0.39)

ROUGE-L 0.53 (95% CI, 0.61 0.45)

RadCliQ-v1 0.58 (95% CI, 0.51 0.64)

GREEN (ours) 0.63 (95% CI, 0.69 0.56)

GREEN GPT-4 (ours) 0.64 (95% CI, 0.70 0.57)

Error counts GREEN 0.79 (95% CI, 0.74 0.83)

Error counts GPT-4 0.79 (95% CI, 0.75 0.83)

5 Multimodality Generalizability404

We now demonstrate how this method can be applied to405
various other imaging modalities.406

5.1 Out-of-Chest X-ray Dataset407

Recent works extended RRG capabilities of VLMs to408
other imaging modalities (Hamamci et al., 2024; Bai409
et al., 2024). To extend the GREEN model to new410
imaging modalities beyond chest X-rays, we created a411
dataset analogous to the training dataset used for the412
GREEN chest X-ray (Section 3.1), but without access413
to RRG models to generate candidate reports for every414
modality. We did this to validate our method on a range415
of imaging modalities for which RRG models may not416
yet exist.417

This new dataset is also based on MIMIC-IV Radi-418
ology Reports, which includes 2,321,355 de-identified419
radiology reports from 237,427 patients. It covers a420
variety of imaging modalities such as X-ray, computed421
tomography, magnetic resonance imaging, and ultra-422
sound, as referenced in (Johnson et al., 2023).423

Table 6: Accuracies with 95% CI of various preferences
when compared to expert preferences.

Accuracy

Preference GPT-4 0.23 (95% CI, 0.13 0.36)

Error Count GREEN 0.57 (95% CI, 0.43 0.70)

Error Count GPT-4 0.60 (95% CI, 0.47 0.74)

GREEN (ours) 0.62 (95% CI, 0.49 0.75)

GREEN GPT-4 (ours) 0.68 (95% CI, 0.55 0.79)

We first uniformly sampled reports to maintain a dis- 424
tribution of cases similar to that described in (Johnson 425
et al., 2023). Secondly, we used 4 methods to mod- 426
ify the radiology reports to generate 50,000 candidate 427
reports: i) re-arranging the order of sentences, ii) remov- 428
ing sentences, iii) randomly pairing sentences, and iv) 429
modifying the report by sampling random combinations 430
of error categories and asking GPT-4 to incorporate er- 431
rors into the reports to generate a candidate report (if no 432
error categories are sampled, GPT-4 is asked to rephrase 433
the report with the same meaning by changing a small 434
number of words) (Appendix A.4). 435

We then prompted GPT-4 to evaluate the differences 436
with the same prompt design as with the chest X-ray 437
data. We further split these 50,000 reports into training, 438
validation, and test sets according to the same 80/10/10 439
ratio and combined them with the initial chest X-ray 440
dataset. 441

5.2 OOD External Abdominal CT dataset 442

We randomly chose 15 pairs of reference and candidate 443
reports from an abdominal CT dataset. The dataset 444
originated from the [BLIND] dataset, which includes 445
examinations from December 2012 to October 2018. 446
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Table 7: Adapting GREEN to any imaging modality: Performances on Out-of-Chest X-ray and OOD Data in
Zero-Shot and Trained Conditions. 1Mean absolute error ± standard variation, 2Average Error, 3Modalities include
X-ray, computed tomography, magnetic resonance imaging, and ultrasound.

Evaluation
data

Training
data

MAE ± STD 1 ∆ GREEN ↓

∆Sig. Error
Count ↓

∆Insig. Error
Count ↓

∆Matched
Findings ↓

MIMIC-IV-Notes3 CXR dataset 1.05 ± 1.51 0.20 ± 0.51 0.49 ± 1.00 0.10 ± 0.17

CXR + Out-of CXR dataset 0.61 ± 0.99 0.19 ± 0.48 0.34 ± 1.04 0.07 ± 0.15

Abdominal CT,
OOD

CXR dataset 5.31 ± 2.82 0.06 ± 0.24 4.09 ± 2.74 0.21 ± 0.17

CXR + Out-of CXR dataset 3.12 ± 2.03 0.19 ± 0.53 3.56 ± 3.28 0.17 ± 0.23

Table 8: Adapting GREEN to any imaging modality: Performance on Out-of-Chest X-ray and OOD data distribution
in Zero-Shot and Trained Conditions based on Lexical Metrics. 1Modalities include X-ray, computed tomography,
magnetic resonance imaging, and ultrasound.

Evaluation
data

Training
data

Lexical

BERTScore ↑ ROUGE-L ↑ BLEU ↑

MIMIC-IV-Notes1 CXR dataset 0.74 ± 0.12 0.62 ± 0.18 0.45 ± 0.21

CXR + Out-of CXR dataset 0.81 ± 0.09 0.73 ± 0.15 0.60 ± 0.18

Abdominal CT,
OOD

CXR dataset 0.68 ± 0.12 0.58 ± 0.15 0.41 ± 0.13

CXR + Out-of CXR dataset 0.71 ± 0.06 0.58 ± 0.07 0.45 ± 0.06

5.3 Out-of-Chest X-ray Experiments447

We first evaluated zero-shot performance of the GREEN448
model on the Out-of-Chest X-ray dataset (1.05 ± 1.51449
sig. error count difference) and on the external OOD450
(5.31 ± 2.82 sig. error count difference). We fine-tuned451
the best checkpoint of the GREEN model on the Out-452
of-Chest X-ray dataset with a batch size of 80 for 8453
epochs and the same hyperparameters as mentioned in454
Section 3.1.2. We used the same evaluation experiments455
as in the previous section. We found that further fine-456
tuning on multimodality data improves the sig. error457
count difference and the text similarity metrics for both458
the in-distribution and out-of-distribution data (0.61 ±459
0.99 and 3.12 ± 2.03 sig. error count difference).460

6 Conclusion461

In this study, we introduced GREEN (Generative Radi-462
ology Report Evaluation and Error Notation), a novel463
metric aimed at enhancing the evaluation of radiology464
reports. GREEN outperforms existing metrics by align-465
ing closely with the nuanced requirements of medical466
diagnostics through its precise assessment of factual cor-467
rectness and uncertainties. The score’s high correlation468
with expert evaluations underscores its effectiveness.469

The open-source nature of GREEN supports470
widespread use and collaborative improvements with-471
out compromising data privacy. Its lightweight design472
ensures practicality across diverse settings, reducing473
computational demands. Additionally, GREEN’s adapt-474
ability across different imaging modalities and extensive475

datasets encourage broader applicability and research in 476
medical artificial intelligence. 477

The GREEN metric’s ability to maintain robust per- 478
formance on OOD data further signifies its versatility 479
and potential as a standard for future developments in 480
automated radiology reporting. 481

7 Limitations 482

Analyzing each sample takes roughly 3.75 seconds on 483
one A100 GPU. However, using batching can accel- 484
erate the processing to four samples in 4.22 seconds 485
(equivalent to about 1.06 seconds per sample). Due to 486
its complexity, it is slower compared to ROUGE, at ap- 487
proximately 0.015 seconds per sample, but faster than 488
GPT-4, at up to 22.0 seconds per sample). 489

We introduce OOD metrics and suggest a strategy 490
to adjust the GREEN model to different imaging tech- 491
niques, even in the absence of an initial RRG model for 492
each technique. Nonetheless, fine-tuning GREEN for 493
new imaging modalities might be required in subsequent 494
studies to ensure satisfactory performance. 495

Although the model operates deterministically to 496
ensure reproducible outputs, the error quantification re- 497
mains, to some extent, uncontrollable, which introduces 498
a degree of randomness to the counting of errors. This 499
randomness may stem from inherent uncertainties in the 500
task, as evidenced by the disagreement among experts 501
on fine-grained error counts (Section 4.1). This is a char- 502
acteristic that has been previously observed and noted 503
in inter-expert agreement analyses (Irvin et al., 2019). 504
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A Appendix 701

A.1 GPT-4 Prompt Template for Generation of Training Data 702

The following prompt was used in GPT-4 to generate the GREEN model training data. **Reference Report** and 703
**Candidate Report** fields are replaced with their respective actual reports.

GPT-4 Prompt

Objective:
Evaluate the accuracy of a candidate radiology report in comparison to a reference
radiology report composed by expert radiologists.

Process Overview:
You will be presented with:
1. The criteria for making a judgment.
2. The reference radiology report.
3. The candidate radiology report.
4. The desired format for your assessment.

1. Criteria for Judgment:
For each candidate report, determine:

- The count of clinically significant errors.
- The count of clinically insignificant errors.

Errors can fall into one of these categories:
a) False report of a finding in the candidate.
b) Missing a finding present in the reference.
c) Misidentification of a finding's anatomic location/position.
d) Misassessment of the severity of a finding.
e) Mentioning a comparison that isn't in the reference.
f) Omitting a comparison detailing a change from a prior study.

Note: Concentrate on the clinical findings rather than the report's writing style.
Evaluate only the findings that appear in both reports.

2. Reference Report:
**Reference Report**

3. Candidate Report:
**Candidate Report**

4. Reporting Your Assessment:
Follow this specific format for your output, even if no errors are found:
```
[Explanation]:
<Explanation>

[Clinically Significant Errors]:
(a) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>
....
(f) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>

[Clinically Insignificant Errors]:
(a) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>
....
(f) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>

[Matched Findings]:
<The number of matched findings>. <Finding 1>; <Finding 2>; ...; <Finding n>
```

704
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A.2 GPT-4 Response used as Training Data705

The following depicts a sample GPT-4 response to the prompt in Appendix A.1 for a pair of reports selected from a706
’RadGraph Permutation’. Specifically, the candidate report contains exactly one RadGraph modifier change.707

708
Reference: "Examination. Faint infiltrates in the upper middle right field and doubtful retrocardiac suggestive709

of respiratory infection. Costophrenic sinuses are clear. No other notable findings."710
Candidate: "Examination . Subpleural infiltrates in the upper dorsal right field and doubtful retrocardiac711

suggestive of respiratory infection . Costophrenic sinuses are clear . No other notable findings ."712

GPT-4 Response

[Explanation]:
The candidate report misidentifies the anatomic location of the infiltrates.
The reference report mentions "upper middle right field" while the candidate report
mentions "upper dorsal right field".

[Clinically Significant Errors]:
(c) Misidentification of a finding's anatomic location/position: 1. The infiltrates
are in the upper middle right field, not the upper dorsal right field.

[Clinically Insignificant Errors]:
(a) False report of a finding in the candidate: 0.
(b) Missing a finding present in the reference: 0.
(c) Misidentification of a finding's anatomic location/position: 0.
(d) Misassessment of the severity of a finding: 0.
(e) Mentioning a comparison that isn't in the reference: 0.
(f) Omitting a comparison detailing a change from a prior study: 0.

[Matched Findings]:
3. Doubtful retrocardiac suggestive of respiratory infection;
Costophrenic sinuses are clear; No other notable findings.
```
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A.3 GPT-4 Prompt Template for Preference Evaluation 713

The following prompt was used in GPT-4 for the evaluation of preferences. **Reference Report**, **Candidate 714
Report 1**, and **Candidate Report 2** fields are replaced with their respective actual reports. 715

GPT-4 Prompt

We would like to request your feedback on the radiology reports generated by two AI
assistants by comparing them to the reference report written by radiologists.

[Reference Report]
**Reference Report**

[Assistant 1]
**Candidate Report 1**

[Assistant 2]
**Candidate Report 2**

[Requirements]
1. The length of the reports is not important.
2. The style of the reports is not important.
3. The clinical accuracy is important especially for positive findings (i.e., diseases).
Therefore, please focus on clinical accuracy instead of the length and style.

Please compare the accuracy of their generated reports. You should tell me whether Assistant 1
is "better than", "worse than", or "equal to" Assistant 2.

Please first compare the generated reports with the reference report to analyze which one is
more in line with the given requirements.

In the last line, please output a single line containing only a single label selecting from
"Assistant 1 is better than Assistant 2", "Assistant 1 is worse than Assistant 2", and
"Assistant 1 is equal to Assistant 2".
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A.4 Algorithm for Modifying Radiology Reports716

We employed this algorithm to produce prompts for GPT-4 to modify candidate reports for new imaging modalities717
that lack RRG models.

1 d e f g e t _ p r o m p t ( s e l f , r e p o r t ) :
2 e r r o r _ t y p e s = s e l f . g e t _ e r r o r _ c o m b i n a t i o n ( r e p o r t )
3 # randomly choose i f s u b t l e o r not , i f s u b t l e add " s e n t e n c e "
4 s u b t l e _ c h a n g e = " "
5 i f random . random ( ) > 0 . 5 :
6 s u b t l e _ c h a n g e = "Aim f o r s u b t l e t y , a d j u s t i n g on ly one word where f e a s i b l e . "
7 i f n o t e r r o r _ t y p e s == " no e r r o r s " :
8 r e t u r n f " [ O b j e c t i v e ] : C r e a t e a c a n d i d a t e r a d i o l o g y r e p o r t t h a t s u b t l y

i n t e g r a t e s s p e c i f i c e r r o r s based on t h e p r o v i d e d r e f e r e n c e r e p o r t .
9 P r o c e s s Overview : You w i l l be p r e s e n t e d wi th :

10 1 . S t y l e o f e r r o r s .
11 2 . A r e f e r e n c e r a d i o l o g y r e p o r t t o base your c a n d i d a t e r e p o r t on .
12 3 . The d e s i r e d f o r m a t f o r your c a n d i d a t e r e p o r t . Note : Be s h o r t i n your

r e s p o n s e !
13

14 S t y l e o f e r r o r s :
15 I n t r o d u c e e r r o r s r e l a t e d t o { e r r o r _ t y p e s } . The e r r o r s s h o u l d be woven i n t o t h e

r e p o r t a s i f t h e y were g e n u i n e o b s e r v a t i o n s from a m e d i c a l image , w i t h o u t any meta −
commentary on t h e i r a c c u r a c y . { s u b t l e _ c h a n g e }

16

17 R e f e r e n c e Re po r t : \ n{ r e p o r t } \ n D e s i r e d f o r m a t f o r your c a n d i d a t e r e p o r t : \ n \ n
[ C a n d i d a t e ] : < C a n d i d a t e Repor t >"

18

19 r e t u r n f " [ O b j e c t i v e ] : C r e a t e a c a n d i d a t e r a d i o l o g y r e p o r t t h a t has t h e same
20 c l i n i c a l meaning b u t i s s l i g h t l y r e p h r a s e d .
21 P r o c e s s Overview : You w i l l be p r e s e n t e d wi th : \ n 1 .A r e f e r e n c e r a d i o l o g y r e p o r t t o

base your c a n d i d a t e r e p o r t on . \ n 2 . The d e s i r e d f o r m a t f o r your c a n d i d a t e r e p o r t .
Note : Be s h o r t i n your r e s p o n s e ! \ n \ n R e f e r e n c e r a d i o l o g y r e p o r t : \ n{ r e p o r t } \ n \ n
D e s i r e d f o r m a t f o r your c a n d i d a t e r e p o r t : \ n \ n [ C a n d i d a t e ] : < C a n d i d a t e Repor t >"
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A.5 Visualization of the GREEN Summary Clustering Technique 719

Visualization (t-SNE) of the clustering technique used in the GREEN summary. Sentences were clustered for each 720
error subcategory.

721
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