Under review as a conference paper at ICLR 2026

CORE: DISCOVERING INTRINSIC RANKING PREFER-
ENCES IN LLLMS VIA CONSISTENT EGO-CORRECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models are powerful listwise rerankers, but their performance
is notoriously sensitive to prompt variations, undermining their reliability for
real-world applications. To address this, we proposes CORE, a new fine-tuning
framework that mitigates this instability by learning a model’s intrinsic, prompt-
invariant ranking preferences. CORE integrates two complementary mechanisms:
a guidance strategy adapted from Classifier-Free Guidance to calibrate the gener-
ative process against stylistic variations, and a consistency loss based on differen-
tiable Kendall’s Tau to regularize the model’s internal ordinal judgments. On stan-
dard TREC Deep Learning and BEIR benchmarks, CORE establishes new state-
of-the-art ranking performance. Crucially, it demonstrates superior robustness,
reducing performance variance across diverse prompts by over 80% compared to
standard fine-tuning. Our work presents a principled and effective method for
building powerful and trustworthy LLM-based reranking systems.

1 INTRODUCTION

Large Language Models (LLMs) have recently emerged as powerful components in information re-
trieval (IR) and document ranking systems (Sun et al., [2023b; |Long et al., [2025} |Gao et al., 2025;
Zhuang et al. 2024b). Due to their strong semantic understanding, reasoning, and generation ca-
pabilities, LLMs can be adapted to ranking tasks via flexible prompting paradigms (zero-shot, few-
shot) or fine-tuning (supervised tuning, direct preference optimization) (Sun et al., [2025), often
showing potential beyond traditional neural rankers. LLMs can assess relevance with a nuance that
traditional, sparse-vector or dense-vector models often miss (Ma et al., 2023} [Sun et al., 2023a).
This allows them to capture subtle semantic relationships between a query and a document, making
them an invaluable final-stage component in modern search pipelines.

LLM ranking approaches can be broadly categorized into pointwise, pairwise, listwise, and setwise
paradigms (Sun et al., 2025 |[Long et al.| 2025} Zhuang et al.| 2024b)). These differ in how the LLM
processes relevance signals. In a pointwise approach (Sachan et al.| [2022; Zhuang et al.| |2024a; [Fan
et al.}|20235)), the LLM evaluates each document’s relevance to the query independently. For instance,
an LLM may be prompted to output a binary “Yes/No” or a score indicating whether a given docu-
ment is relevant to the query, and each document is ranked by this score. This paradigm is straight-
forward and allows parallel scoring of documents, but it ignores inter-document comparisons. In a
pairwise approach (Qin et al.| 2024} (Chen et al.,[2025), the LLM compares two documents at a time
to decide which is more relevant (e.g. prompting “Which document, A or B, is more relevant to the
query?”’). Repeating such comparisons across document pairs can yield a preference-based rank-
ing. Pairwise LLM rankers such as PRP (Qin et al.,|2024) tend to achieve high accuracy by directly
modeling comparative relevance, at the cost of requiring many LLM inference calls (quadratic in the
number of documents). In a listwise approach (Ren et al.,|2025} |Liu et al., [2025)), the LLM consid-
ers the entire set of candidate documents and produces a sorted list in one go. Listwise prompting
can capture complex dependencies between documents (such as diversity or redundancy) and fully
leverage the LLM’s generative ability to output an ordered list. Early works like RankT5 (Zhuang
et al.| [2023)) showed the feasibility of sequence-to-sequence ranking, and more recent zero-shot sys-
tems like RankGPT (Sun et al.} [2023b) and RankVicuna (Pradeep et al., 2023b)) have demonstrated
strong listwise re-ranking performance using GPT-4 and Vicuna-13B respectively.

Under review as a conference paper at ICLR 2026

Prompt Template: [BN Python Pseudo Code ~ EEEN RankGPT ~ EEE Mathematical Notation J
[------ Qwen2.5-3B Llama2-78B
=) =) =
B

0.75
DL19 DL20 bL21 bL22

DL20 bL21 DL22
Figure 1: The problem of prompt sensitivity in LLM rerankers. The left panel provides a con-
ceptual illustration: for the same set of documents, two semantically equivalent but stylistically
different prompts can lead to disparate ranking outcomes, a phenomenon we term “Ranking Fluctu-
ation”. The right panel presents empirical evidence, showing that the nDCG@ 10 performance for
both Qwen2.5-3B and Llama2-7B in the zero-shot setting varies significantly across three different
prompt templates on the TREC DL datasets, highlighting the severity of this issue.

0.70

- Q -
Prompf\ly ﬁrompf 2 e

BEEE EALEH
A D 4 B D B C A

@nking Flucfuaﬁonﬂ

o

nDCG@10

0.

o
o

0.

o
o

0.

a

0

Despite the superior performance of LLM-based rankers, the reliability of LLM-based rerankers
is severely undermined by a critical weakness: prompt sensitivity. LLMs are notorious for their
susceptibility to prompt wording and format — seemingly minor differences in how the query and
instructions are phrased can lead to significant changes in the output ranking (Chatterjee et al.,[2024}
Sclar et all 20244, [Arabzadeh & Clarke), [2025)). For an identical query and document set, subtle,
semantically irrelevant variations to the prompt—such as changes in wording, output format, or
even the initial order of documents—can lead to dramatically different ranked lists. This instability
manifests as significant positional biases and a stark lack of invariance to input permutations
let all 2024; [Sun et al.| 2025)). We visually demonstrate this problem in Figure[I]

Besides, when controlling for the same LLM, the effectiveness gaps between pointwise, pairwise,
listwise, and setwise methods become much smaller once prompt variations are taken into ac-
count 2025). It suggests that some methods appeared better only because they used
better prompts. This prompt sensitivity undermines the reliability of LLM rankers: it becomes un-
clear whether a performance gain is due to a truly better ranking technique or just a better prompt.

To move beyond merely observing this instability and toward a principled solution, we argue that the
goal is to uncover the model’s intrinsic preference—a stable, core ranking capability shielded from
superficial prompt variations. Just as a master chef aims to replicate a signature dish’s taste consis-
tently regardless of the kitchen’s conditions, we seek to distill the LLM’s core ranking “palate”. We
find a powerful analogy for this challenge in Sigmund Freud’s structural model of the psyche
[1923)). We metaphorically define the model’s latent, intrinsic ranking capability as its “Id” (R*)—its
ideal, stable state. In contrast, the actual, observable ranked list produced under a specific prompt p is
its “Ego” (R,,)—the “Id’s” expression under external influence. From this perspective, the observed
ranking fluctuation is not just a surface-level inconsistencys; it reflects a deeper “cognitive gap” be-
tween the model’s singular “Id” and its multiple, prompt-dependent “Egos”. Therefore, the central
goal of this work is to resolve this cognitive gap: we aim to learn the robust, prompt-invariant “Id”
by treating the inconsistent “Egos” as signals for regularization. We term this process “Consistent
Ego-Correction”.

To resolve this gap, we propose a novel fine-tuning framework, CORE (COnsistent Reranking via
Ego-correction), designed to discover and stabilize the intrinsic preferences of LLM rankers. The
framework integrates two key components: 1) External Behavior Calibration via Inverse CFG:
Adapting Classifier-Free Guidance (CFG) (Ho & Salimans|, [2022)), this mechanism uses a generic,
task-defining prompt to anchor the model’s response, mitigating biases from specific, stylized user
prompts. 2) Internal Judgment Consistency via Differentiable Kendall’s Tau: A novel loss func-

Under review as a conference paper at ICLR 2026

tion based on a differentiable Kendall’s Tau (Kendall, 1938} |Guan et al.,[2024) is used to enforce con-
sistent relative rankings of documents across multiple prompt variations. These components compel
the model to develop a robust ranking function that is insensitive to superficial prompt phrasing.

The main contributions of this work are summarized as follows:

* We propose a novel cognitive framework (Id-Ego) and provide a formal technical inter-
pretation for it, offering a new perspective for understanding and addressing the prompt
sensitivity problem in LLM rankers.

* We design the CORE methodology, which uniquely combines a CFG-based guidance
mechanism with an ordinal consistency regularizer, specifically for enhancing the robust-
ness of listwise reranking.

* We conduct extensive empirical evaluations on multiple standard IR benchmarks, showing
that CORE not only achieves state-of-the-art ranking effectiveness but, more importantly,
exhibits significantly enhanced robustness against prompt variations.

2 PROBLEM FORMULATION

In this section, we formally define the task of listwise generative reranking, introduce the challenge
of ranking fluctuation and present our Id-Ego framework to conceptualize this problem.

2.1 TASK DEFINITION: LISTWISE GENERATIVE RERANKING

Listwise Document Reranking The task of document reranking is a crucial second stage in
modern search systems. Given a user query ¢ and an initial set of N candidate documents
D ={d;,ds,...,dy} retrieved by a first-stage ranker (e.g., BM25 or a dense retriever), the goal of a
reranker f is to produce a permutation 7 = (71, 72, . . ., my) of the document indices {1, 2, ..., N}.
This permutation should order the documents in descending order of their relevance to the query q.
The quality of the final ranked list is typically evaluated using metrics such as Normalized Dis-
counted Cumulative Gain (NDCG) (Jarvelin & Kekaldinen, [2002).

LLM-based Generative Reranking Large Language Models are increasingly being employed as
powerful listwise rerankers. In this paradigm, the reranking function f is realized by the LLM itself.
The query ¢, the set of candidate documents D, and a task instruction [are formatted into a single
textual prompt P using a template function fyrompt:

P:fprompt(laan) (D

The LLM, parameterized by 6, then processes this prompt autoregressively to generate the final
ranked list 7p. The output is typically a textual sequence of document identifiers, such as “[3] > [1]
> [2]”, from which the permutation 7 can be parsed.

7p = LLMy(P))

2.2 THE ID-EGO FRAMEWORK FOR RANKING FLUCTUATION

A key challenge that undermines the reliability of this paradigm is prompt sensitivity. For any given
reranking task, one can construct a set of textually different but semantically equivalent prompt tem-
plates P = {Py, P, ..., Pk }. An ideal, robust ranker should exhibit invariance to such superficial
changes, producing a consistent output regardless of the specific prompt used. However, LLMs often
fail to meet this requirement.

Formally, for two different prompts P;, P; € P, it is frequently observed that:
TP, # TP (3)

We term this variance in rankings under different but synonymous prompts ranking fluctuation.
This phenomenon reveals a fundamental lack of robustness and poses a significant barrier to the
trustworthy deployment of LLMs in critical ranking scenarios.

To better analyze ranking fluctuation, we distinguish between a model’s intrinsic ranking ability and
its prompt-conditioned realizations. For a given query-document set, we posit the existence of an

Under review as a conference paper at ICLR 2026

ideal, latent ranking function R* that is invariant to prompt variations. In practice, however, we
only observe a family of outputs {R,}, each corresponding to a specific prompt p. These outputs
can diverge significantly, highlighting the model’s sensitivity to superficial changes in instructions
or input order.

For intuition, we use the terms ‘Id’ and ‘Ego’ as a metaphor: the latent, stable function R* can
be seen as the model’s “Id’, while each observable R, is an “Ego’, i.e., a surface-level realization
influenced by the prompt. Under this view, ranking fluctuation is the manifestation of a gap between
the hidden, invariant “Id” and the multiple, prompt-dependent “Egos’.

The central challenge is therefore to recover the stable R* from noisy { R, }. Our proposed method,
CORE, is designed precisely for this purpose: it aligns the prompt-dependent realizations with the
intrinsic ranking function through external calibration and internal consistency objectives.

3 RELATED WORK

LLM Ranking and the Challenge of Prompt Sensitivity. The application of Large Language
Models to document ranking has evolved through pointwise, pairwise, and listwise paradigms (Sun
et al., |2023b). Pointwise methods assess documents individually, for instance by generating rele-
vance scores or query likelihoods, offering simplicity but ignoring inter-document context (Sachan
et al.,|2022; Zhuang et al., 2023). Pairwise approaches like PRP improve accuracy by making rela-
tive judgments between document pairs, but at a high computational cost (Q1n et al.,[2024)). Listwise
methods such as RankT5, RankGPT, and RankVicuna leverage the model’s full context window by
processing an entire candidate list at once, demonstrating significant performance potential (Sun
et al.,|2025}; 2023bj |[Pradeep et al., |2023b; (Waldo & Boussard, [2024). However, this increased con-
textual awareness exposes a fundamental vulnerability: extreme sensitivity to the prompt. Minor,
semantically irrelevant changes to prompt wording, format, or the initial order of documents can
drastically alter ranking outcomes (Chatterjee et al.,[2024; Sclar et al., |2024b; |Arabzadeh & Clarke},
2025 Hu et al., |2024). This instability is particularly evident as positional bias, where models un-
fairly favor documents at certain positions, violating the crucial principle of permutation invariance
for a true ranker (Tang et al.| 2024). This unreliability complicates scientific evaluation, as perfor-
mance gains may stem from prompt engineering rather than methodological innovation.

Approaches to Mitigating Ranking Instability. Existing research to address this challenge can
be divided into two main paradigms. Inference-time methods apply post-hoc corrections to the out-
puts of a fixed model. The most prominent of these is self-consistency, where multiple outputs are
generated and aggregated via a voting mechanism (Wang et al., 2023 Zhou et al., 2024). For rank-
ing tasks, this is specifically realized as permutation self-consistency, which aggregates rankings
from multiple permuted input lists to neutralize positional bias (Tang et al., 2024). While effective,
these methods do not alter the model’s intrinsic sensitivity and incur a significant multiplicative in-
crease in inference cost. In contrast, training-time enhancements aim to instill robustness directly
into the model’s parameters. This is a more fundamental approach and includes data-centric strate-
gies, such as augmenting the training data with diverse prompt formats (Ngweta et al.l [2025; |Wei
et al.,|2025)), and objective-centric strategies, which modify the loss function to explicitly encourage
prompt invariance, for instance, through contrastive learning (Qiang et al., | 2024)).

Positioning CORE: Towards a Robust Prior. Our work, CORE, is a training-time framework
that offers a novel and principled approach to instilling intrinsic robustness. Conceptually, our
method is grounded in a Bayesian perspective, where we aim to learn a strong prior (the model’s
intrinsic preference, our “Id”) that is not easily swayed by the noisy evidence of a superficial prompt
(the “Ego”) (Zhao et al.,|2021}; [Fortuin} 2021} Sam et al.| [2024). CORE achieves this through a dual
mechanism that directly operationalizes this goal. Its external calibration module is a unique, in-
verse application of Classifier-Free Guidance, a technique from diffusion models (Ho & Salimans,
2022)). Its internal consistency module uses a differentiable relaxation of the classic Kendall’s Tau
rank correlation coefficient (Kendall, [1938), which is made feasible by recent advances in differen-
tiable sorting operators (Guan et al.| |[2024; [Zheng et al., [2023). By internalizing robustness during
training, CORE produces stable rankings in a single forward pass, providing a more fundamental
and efficient solution than post-hoc correction methods.

Under review as a conference paper at ICLR 2026

E Cross Entropy Loss L ank
Neutral Logits Iy 3 N
o] (> (4>

Guided Logits lGuided Ground Truth

A B C D Differentiable Kendall's Tau
E] F\ A B C D P
sy ﬂ Token Logits —| t Alignment Loss Latign
Diverse Prompts Toke,, 0 Tuget Logits] [f A i)
D Neutral Vocabulary M . .
------ o INCHGHLNE
Doc List H Neutral Logits —erg & € 12 o= Ground Truth
rse Logits —o[2 .
m Diverse Logits . ‘ u Consistent Loss L, -

Diverse Vocabulary

Figure 2: Overview of the proposed CORE framework. It fine-tunes the model through two com-
plementary mechanisms. Top: This module calibrates the model’s external generative process. It
interpolates the logits produced under a diverse prompt with those from a canonical neutral prompt
to compute guided logits for the main ranking loss, L;,.,%. Bottom: This module regularizes the
model’s internal ranking judgment. It uses the first-token logits as a differentiable proxy for the
overall preference, supervising it for accuracy with an alignment loss, Lgz;4,, and for stability across
prompts with a consistency loss, L.

4 METHOD

In this section, we present our methodology, CORE, a fine-tuning framework designed to instill
prompt-invariance ability in listwise rerankers. The overall architecture of our framework is illus-
trated in Figure 2] It resolves the “cognitive gap” between a model’s intrinsic ranking capability
(“Id”) and its prompt-dependent outputs (“Egos”) through a dual strategy that we term ‘“external
behavior and calibration internal judgment consistency.” Externally, we calibrate its step-by-step
generative behavior to be less susceptible to stylistic prompt variations. We detail these two com-
plementary mechanisms below. Internally, we enforce consistency on the model’s holistic ranking
judgment before generation begins.

4.1 EXTERNAL BEHAVIOR CALIBRATION VIA INVERSE CFG

Our first component targets the model’s external generative process. The goal is to make the model’s
final output robust to prompt variations. To achieve this during training, we use two types of
prompts: a single, canonical neutral prompt (p,c.+-q1) that represents the pure ranking task, and a
set of diverse prompts (Py;,er-se) that contain stylistic variations.

This task presents an interesting parallel to the use of Classifier-Free Guidance (CFG) in diffusion
models (Ho & Salimans, 2022; |Chung et al., 2025). Originally, CFG was designed to amplify the
influence of a condition to improve stylistic adherence. Its mechanism is formally written as:

€o(zy,c) = €g(my, 0) + w - (eg(xy, c) — €a(xy, D)) 4)

where €g (¢, ¢) is the model’s prediction conditioned on input ¢, eg(z¢, @) is the unconditional pre-
diction, and a guidance scale w > 1 steers the final output €y more strongly toward the condition.

Our goal is precisely the opposite: we want to weaken the influence of the prompt’s stylistic “noise”
and steer the model back toward its pure, task-oriented “Id”. We thus adapt the CFG principle for
this inverse purpose. We treat the output from the noisy pgiverse, as the “conditional output” and
the output from p,,cy1rq; as the “unconditional” baseline.

To formulate this concisely for each generation step j, let l,,c,, and I, denote the logit vectors
produced using the neutral and diverse prompts, respectively. We then compute the calibrated logit
vector, lgyided, by interpolating between them:

lguided = (1 - ’LU) Apeu + W+ lp'r‘m 5

Under review as a conference paper at ICLR 2026

where w € [0, 1] is the calibration weight. This formulation pulls the potentially biased output from
a diverse prompt back toward the stable, neutral baseline. The primary ranking loss, L, gk, iS a
standard listwise cross-entropy loss applied to these guided logits:

N
Lrank = - Z log SOftmaX(lguided,j) [Rtrue,j] (6)

j=1

This external calibration ensures the model’s final output behavior is robustly anchored to the core
task, not the prompt’s superficial form.

4.2 INTERNAL JUDGMENT CONSISTENCY VIA DIFFERENTIABLE KENDALL’S TAU

While calibrating the external behavior addresses the final output, we also aim to enforce consistency
more directly at the source. Our core motivation is to minimize the ordinal distance between the
ranking preferences generated by different prompts. To achieve this, we leverage the Kendall’s
Tau (7) correlation coefficient—a natural metric for comparing two ranked lists—as a loss function
to regularize the model’s internal ranking judgment, its holistic, pre-generation assessment of the
document list.

Conceptually, Kendall’s Tau measures ordinal correlation by comparing the number of concordant
pairs (P,), where items are in the same relative order, against discordant pairs (Py). The formula for
its simplest form, 7, is:

P.—P;
IN(N —1)

This formula perfectly captures our objective of maximizing ordinal agreement. However, applying
it directly to optimize a generative LLM presents two fundamental challenges:

(7

Tq =

1. How to extract a differentiable ranking signal? An LLM produces a ranked list (e.g.,
“[3] >[1] > [2]’) token-by-token. While we can parse this final text to get a discrete ranking
to compute 7,, this process itself is non-differentiable. The path from model weights to
a final, sorted textual output involves sequential “argmax” operations, which breaks the
gradient flow. This makes it extremely difficult to directly optimize the model based on
a loss computed from the final generated order. We need a differentiable proxy for the
model’s ranking preference.

2. How to create a differentiable loss function? The standard Kendall’s Tau coefficient,
as shown in Equation [/} is inherently non-differentiable due to its reliance on the discrete
counting of pairs. This prevents its direct use as a loss function for gradient-based opti-
mization.

Our method systematically addresses these two challenges, as detailed below.

4.2.1 SOLUTION 1: A DIFFERENTIABLE PROXY FOR RANKING JUDGMENT

To solve the first challenge, we need a differentiable signal that represents the model’s ranking
judgment. Inspired by the insights from FIRST (Reddy et al., 2024), which showed that the logit
distribution of the first generated token can serve as a powerful proxy for the model’s preference
over the entire list, we adopt this technique.

We extract the logits corresponding to each document identifier (e.g., “[doc_1]", “[doc_2]’) from this
initial token’s distribution, forming a vector of preference scores Z = {z1, ..., zy }. To ensure these
scores are meaningful, we first supervise them to be accurate using a pairwise Judgment Alignment
Loss, Lyjign:

1
Latign = Z —— log(1 + exp(z; — 2;)) (8)
1+
i <Tj
where the sum is over all ground-truth pairs where document ¢ is more relevant than j. This loss
effectively teaches the model to use the first-token logits to express a correct internal assessment of
the document list.

Under review as a conference paper at ICLR 2026

4.2.2 SOLUTION 2: A DIFFERENTIABLE ORDINAL CORRELATION LOSS

Having obtained a differentiable ranking signal Z, we now address the second challenge: the non-
differentiability of the Kendall’s Tau metric itself. We formulate a differentiable variant, 7,4, that
replaces the implicit, non-differentiable sign function used for comparing pairs with the smooth,
differentiable hyperbolic tangent (“tanh”) function.

This allows us to create a Judgment Consistency Loss, L ,,sist, that maximizes the correlation
between the judgment from a neutral prompt (Zy,cytrqr) and a diverse prompt (Zprompt):

Lk:t = _Td(Zneutrab Zprompt) (9)

where 7'03(Z17 ZQ) = % Zi<j tanh (k(zq;,l — Zj,l)) - tanh (k(ZZQ — Zj,g)).

4.2.3 COMBINED INTERNAL JUDGMENT LOSS

Finally, we combine the alignment and consistency losses into a single loss term, Lconsist, that
holistically supervises the model’s internal judgment for both accuracy and consistency:

Leonsist = aLalign + ﬁth (10)

where a and (are balancing hyperparameters.

4.3 FINAL TRAINING OBJECTIVE

The complete CORE framework is then trained end-to-end by uniting the external behavior calibra-
tion loss (L4) and the internal judgment consistency 108S (L¢onsist). The hyperparameters o and
B effectively control the balance between all three underlying loss components. The final objective
is a straightforward sum:

LCORE = Lrank + Lconsist (ll)

Both mechanisms are active only during training. At inference, the model uses a standard single
forward pass, incurring no additional computational cost.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. For fine-tuning, we use ~40k GPT-4 labeled instances created from 5k queries sampled
from MS MARCO (Nguyen et al., 2016), following the setup of (Pradeep et al., 2023a). Each
training instance consists of a query and a variable number (< 20) of candidate passages that need
to be reranked. These automatically labeled pairs serve as supervision to align the model’s internal
preference signal with ground-truth relevance.

For evaluation, we adopt two categories of benchmarks. First, the TREC Deep Learning tracks
(MS MARCO passages), including DL19 (Craswell et al.| 2020), DL20 (Craswell et al.,[2021) (MS
MARCO vl), and DL21 (Craswell et al., 2025a), DL22 (Craswell et al., 2025b) (MS MARCO
v2), which are widely used for listwise reranking and allow direct comparison with prior work.
Second, we consider a diverse subset of BEIR (Thakur et al.| 2021)) tasks to assess cross-domain ro-
bustness and prompt sensitivity, covering climate—-fever, dbpedia-entity, fever, fiqga,
hotpotga, nfcorpus, scidocs, scifact, and trec—covid. Unless otherwise specified,
we rerank the top-100 documents retrieved by a first-stage retriever for each query.

Evaluation Metrics. We report nDCG@10 (Jarvelin & Kekéladinen, 2002)) as the primary evalua-
tion metric, following common practice in listwise reranking. Since our focus is on the second-stage
reranking setting, we always rerank the top-100 documents retrieved by a first-stage retriever and
thus do not report retrieval-oriented metrics such as MAP@100. Because large language models
exhibit inherent stochasticity and instability, we evaluate each model across multiple runs with tem-
perature fixed at zero, and report the average performance. This procedure ensures fair and stable
comparison.

Under review as a conference paper at ICLR 2026

Implementation. We instantiate CORE on a decoder-only LLM and fine-tune it with our CORE
method. Training uses mixed precision and gradient accumulation. Our baseline models, denoted
as “RankX” (e.g., RankZephyr, RankQwen), are standard supervised fine-tuning (SFT) implemen-
tations that follow the methodology of RankZephyr (Pradeep et al.|[2023a). Models fine-tuned with
our approach are denoted as “CORE_X* (e.g., CORE_Qwen). Unless otherwise specified, the base
model for both baseline and CORE-finetuned variants is Qwen2.5-3B. For sliding-window listwise
decoding, we adopt a window size of 20 and a stride of 10, a setup comparable to prior work (Sun
et al., [2023b; |Pradeep et al., [2023bja). At inference time, all models, including CORE, follow the
standard autoregressive decoding process to ensure a fair comparison. To minimize instability,
we unify all evaluations under a single neutral prompt (p,,cyirq1), rather than varying prompt tem-
plates. We set the maximum context length to 8192 tokens; when the combined input exceeds this
limit, we truncate the input to fit within the window. More specific training details and prompt
templates can be seen in the appendix [A.T|and appendix [A.2]

Baselines. We compare CORE against a comprehensive set of baselines to validate its effective-
ness. The comparison includes standard retrievers (BM25 and SPLADE++ ED) to establish a per-
formance floor. Our primary competitors are state-of-the-art open-source listwise rerankers, which
represent the direct supervised fine-tuning (SFT) counterparts to our method: RankVicuna (Pradeep
et al.|2023b), RankZephyr (Pradeep et al.,[2023a), and RankQwen, which we create by applying
the RankZephyr methodology to the Qwen base model. To situate our work in the broader landscape,
we also include the powerful proprietary model RankGPT, (Sun et al., [2023b).

5.2 OVERALL PERFORMANCE

To assess the overall effectiveness of our proposed CORE framework, we first evaluate its perfor-
mance on the widely-used TREC Deep Learning tracks (DL19-DL22) and a diverse set of BEIR
tasks for cross-domain generalization.

Results on TREC Deep Learning Tracks. As shown in Table [l our CORE-finetuned mod-
els demonstrate superior performance over existing state-of-the-art open-source listwise rerankers.
Specifically, CORE_Zephyr achieves an average nDCG@ 10 of 0.7517, surpassing its SFT coun-
terpart RankZephyr (0.7379). Our strongest model, CORE_Qwen, further elevates the average
performance to 0.7594, outperforming the highly competitive RankQwen baseline (0.7549). These
consistent improvements across most individual tracks highlight CORE’s ability to enhance the core
ranking effectiveness of LLMs.

Results on BEIR Cross-Domain Tasks. To evaluate generalization capabilities, we test our mod-
els on nine diverse tasks from the BEIR benchmark. The results in Table 2| show that CORE_Qwen
achieves the highest average nDCG@10 score of 0.5632, outperforming strong baselines like
RankQwen (0.5553) and RankZephyr (0.5488). The performance gains are particularly significant
on challenging domains such as FIQA and SciFact. This demonstrates that the robust ranking pref-
erences learned through CORE translate well to a wide variety of domains, showcasing its strong
generalization ability.

Table 1: Overall Results on TREC DL Tracks (DL19-DL22). Metric is nDCG@10 on top-100
candidates. CORE-finetuned models consistently outperform their SFT counterparts. Best scores
are in bold, second-best are underlined.

Method DL19 DL20 DL21 DL22 Average
BM25 0.5058 0.4796 0.4458 0.2692 0.4251
SPLADE++ED 0.7308 0.7195 0.6846 0.5705 0.6764
RankGPT4 0.7464 0.7076 0.7721 0.7175 0.7359

RankVicuna 0.7459 0.7473 0.7011 0.5817 0.6940
RankZephyr 0.7438 0.7620 0.7497 0.6962 0.7379
RankQwen 0.7652 0.7740 0.7534 0.7097 0.7546

CORE_Zephyr 0.7735 0.7812 0.7402 0.7120 0.7517
CORE_Qwen 0.7643 0.8046 0.7697 0.7231 0.7654

Under review as a conference paper at ICLR 2026

Table 2: Overall Results on BEIR tasks. We report nDCG@ 10 on the top-100 documents retrieved
by Contriever. CORE_Qwen achieves the highest average score, demonstrating strong cross-domain
generalization. Best scores are in bold, second-best are underlined.

Dataset Contriever RankVicuna RankZephyr RankQwen CORE_Qwen
Climate-FEVER 0.237 0.282 0.256 0.234 0.223
DBPedia 0.413 0.500 0.500 0.508 0.512
FEVER 0.758 0.810 0.801 0.831 0.830
FiQA 0.329 0.359 0.422 0.462 0.478
HotpotQA 0.638 0.735 0.716 0.740 0.761
NFCorpus 0.328 0.331 0.427 0.384 0.390
SciDocs 0.165 0.184 0.377 0.192 0.208
SciFact 0.677 0.705 0.656 0.768 0.783
TREC-COVID 0.596 0.713 0.784 0.879 0.885
Average 0.460 0.513 0.549 0.555 0.563
LLaMA2-7B Qwen2.5-3B
‘1,2% %6%
@5\(& o /%é"o' WS‘(& %e"o'
Qe ° 0, Qe j“~ R °
Ay h % gr o b 4 Tew K3
- ,/’ The-o o ,/’, \\\
F \ \ e i
,'I . ’Il ,'
g, L /,)‘ a’ I/
_____ -, é NS ‘\
<>~;>' $omoo N ? o? \\\70
A/\/ I/’ Il' II’
oo/ £ \.\\] ,,E" (/o/ A \\\ ,,,lln
-,(e(o - \\-__‘.____J*,/ /?(o \\\\ ,9-__‘» K/
4//0\) < \9-6 /l//oo - \:’ \)-b
7 N %
%9% 9 O%% K2
7 st CORE e DLI19 = DL20 7 bLat + DL22

Figure 3: Performance of SFT vs. CORE on LLaMA2-7B and Qwen2.5-3B across four different
prompt templates on TREC DL datasets. The radar plots visually demonstrate CORE’s key advan-
tage: its performance (solid orange line) is consistently high across all prompts, forming a larger
and more regular shape compared to the erratic performance of standard SFT (dashed blue line).

5.3 ROBUSTNESS TO PROMPT VARIATIONS

The central claim of our work is that CORE can mitigate prompt sensitivity. To verify this, we
compare models trained with CORE against standard SFT across four semantically equivalent but
stylistically different prompts.

The results, presented visually in Figure [3|and summarized in Table [3] provide strong evidence for
our claim. On both LLaMA2-7B and Qwen2.5-3B, the standard SFT model exhibits high perfor-
mance variance, with scores fluctuating dramatically depending on the prompt. In stark contrast,
the CORE-trained models show remarkable stability. For instance, on LLaMA2-7B, CORE reduces
the performance spread (max-min difference) from a substantial 0.155 to just 0.028, while also im-
proving the average score. This unequivocally demonstrates that CORE successfully learns a more
robust, prompt-invariant ranking function.

Under review as a conference paper at ICLR 2026

Table 3: Summary of prompt robustness on LLaMA2-7B and Qwen2.5-3B. We report the mean,
standard deviation (Std Dev), and performance spread (Max-Min) of nDCG@ 10 scores across four
prompts. CORE significantly reduces variance and improves the average score.

Backbone Method Mean Std Dev Spread

SFT 06911 00681 0.1548
LLaMA2-TB ~oRE 07410 0.0123 0.0275
owenzs38 SFT 07385 00183 0.0389

CORE 0.7611 0.0048 0.0065

5.4 EFFECT OF CORE COMPONENTS

To understand the individual contributions of CORE’s key components, we conduct a thorough
ablation study across three distinct model backbones of varying sizes: Qwen2.5-0.5B, Qwen2.5-
1.5B, and Qwen2.5-3B. The consolidated results are presented in Table 4]

Table 4: Ablation study of CORE components across three different model backbones. We report
nDCG@10 on TREC DL datasets. The results show that the full CORE framework consistently
achieves the best performance. Best average scores for each backbone are in bold.

Backbone Method DL19 DL20 DL21 DL22 Avg
CORE 0.7379 0.7583 0.7219 0.6095 0.7069
Qwen2.5-0.5B W/0 Leonsist 0.7313 0.7309 0.6998 0.6088 0.6927
w/o CFG & L¢onsist (SFT) 0.7308 0.7207 0.6846 0.5705 0.6767
CORE 0.7590 0.7856 0.7463 0.7084 0.7498
Qwen2.5-1.5B W/0 Leonsist 0.7604 0.7860 0.7467 0.6953 0.7471
w/0 CFG & L¢onsist (SFT) 0.7680 0.7642 0.7499 0.7001 0.7456
CORE 0.7706 0.7622 0.7705 0.7344 0.7594
Qwen2.5-3B W/0 Leonsist 0.7693 0.7707 0.7600 0.7282 0.7571

w/o CFG & Lconsist (SFT) 0.7652 0.7740 0.7534 0.7097 0.7505

A consistent trend emerges from the results: the full CORE framework consistently yields the best
average performance across all model sizes. Removing the internal consistency loss (W/0 Lconsist)
generally leads to a drop in performance, demonstrating the benefit of regularizing the model’s
internal judgment. A further degradation typically occurs when both the consistency loss and the
inverse CFG mechanism are removed, which reduces the model to a standard Supervised Fine-
Tuning (SFT) baseline (Ww/o CFG & L¢onsist)-

Interestingly, the magnitude of the improvement varies with model scale. The impact of the CORE
components is most pronounced on the 0.5B model, while the performance differences are more
subtle on the 1.5B model. Nevertheless, the full CORE configuration remains the most effective
or tied for the best across all tested backbones. These comprehensive results confirm that both
the external calibration via Inverse CFG and the internal consistency regularizer are valuable and
complementary components for enhancing ranking performance.

6 CONCLUSION

In this work, we addressed the critical challenge of prompt sensitivity in LLM-based rerankers. We
introduced CORE, a novel fine-tuning framework that stabilizes a model’s intrinsic ranking prefer-
ences. CORE employs a dual strategy, combining an inverse CFG mechanism for external behavior
calibration with a differentiable Kendall’s Tau loss for internal judgment consistency. Experiments
on TREC DL and BEIR benchmarks confirm that CORE achieves state-of-the-art performance and
yields significantly more robust and stable rankings across diverse prompts. Our work represents
a key step towards more reliable LLM systems, and the proposed framework offers a promising
direction for mitigating input sensitivity in other text generation tasks.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Negar Arabzadeh and Charles L. A. Clarke. A human-ai comparative analysis of prompt sensitivity
in llm-based relevance judgment. CoRR, abs/2504.12408, 2025.

Anwoy Chatterjee, H. S. V. N. S. Kowndinya Renduchintala, Sumit Bhatia, and Tanmoy
Chakraborty. POSIX: A prompt sensitivity index for large language models. In EMNLP Findings,
pp. 14550-14565, 2024.

Yiqun Chen, Qi Liu, Yi Zhang, Weiwei Sun, Xinyu Ma, Wei Yang, Daiting Shi, Jiaxin Mao, and
Dawei Yin. Tourrank: Utilizing large language models for documents ranking with a tournament-
inspired strategy. In WWW, 2025.

Hyungjin Chung, Jeongsol Kim, Geon Yeong Park, Hyelin Nam, and Jong Chul Ye. CFG++:
manifold-constrained classifier free guidance for diffusion models. In ICLR, 2025.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M. Voorhees. Overview
of the TREC 2019 deep learning track. CoRR, abs/2003.07820, 2020.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. Overview of the TREC 2020
deep learning track. CoRR, abs/2102.07662, 2021.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Jimmy Lin. Overview of the
TREC 2021 deep learning track. CoRR, abs/2507.08191, 2025a.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, Jimmy Lin, Ellen M. Voorhees, and
Tan Soboroff. Overview of the TREC 2022 deep learning track. CoRR, abs/2507.10865, 2025b.

Yongqi Fan, Xiaoyang Chen, Dezhi Ye, Jie Liu, Haijin Liang, Jin Ma, Ben He, Yingfei Sun, and
Tong Ruan. Tfrank: Think-free reasoning enables practical pointwise LLM ranking. CoRR,
abs/2508.09539, 2025.

Vincent Fortuin. Priors in bayesian deep learning: A review. CoRR, abs/2105.06868, 2021.
Sigmund Freud. The Ego and the Id. Internationaler Psychoanalytischer Verlag, 1923.

Jingtong Gao, Bo Chen, Xiangyu Zhao, Weiwen Liu, Xiangyang Li, Yichao Wang, Wanyu Wang,
Huifeng Guo, and Ruiming Tang. Llm4rerank: Llm-based auto-reranking framework for recom-
mendations. In WWW, pp. 228-239, 2025.

Yuchen Guan, Runxi Cheng, Kang Liu, and Chun Yuan. Kendall’s 7 coefficient for logits distillation.
CoRR, abs/2409.17823, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. CoRR, abs/2207.12598, 2022.

Chi Hu, Yuan Ge, Xiangnan Ma, Hang Cao, Qiang Li, Yonghua Yang, Tong Xiao, and Jingbo Zhu.
Rankprompt: Step-by-step comparisons make language models better reasoners. In COLING, pp.
1352413536, 2024.

Kalervo Jarvelin and Jaana Kekildinen. Cumulated gain-based evaluation of IR techniques. ACM
Transactions on Information Systems, 20(4):422-446, 2002.

Maurice G. Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81-93, 1938.

Qi Liu, Bo Wang, Nan Wang, and Jiaxin Mao. Leveraging passage embeddings for efficient listwise
reranking with large language models. In WWW, pp. 4274-4283, 2025.

Kehan Long, Shasha Li, Chen Xu, Jintao Tang, and Ting Wang. Precise zero-shot pointwise ranking
with llms through post-aggregated global context information. CoRR, abs/2506.10859, 2025.

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. Zero-shot listwise document rerank-
ing with a large language model. arXiv preprint arXiv:2305.02156, 2023.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. MS MARCO: A human generated machine reading comprehension dataset. In NIPS,
2016.

11

Under review as a conference paper at ICLR 2026

Lilian Ngweta, Kiran Kate, Jason Tsay, and Yara Rizk. Towards llms robustness to changes in
prompt format styles. In NAACL, 2025.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankzephyr: Effective and robust zero-
shot listwise reranking is a breeze! CoRR, abs/2312.02724, 2023a.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankvicuna: Zero-shot listwise docu-
ment reranking with open-source large language models. CoRR, abs/2309.15088, 2023b.

Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg Ver Steeg, Anoop Kumar, Anna Rumshisky,
and Aram Galstyan. Prompt perturbation consistency learning for robust language models. In
EACL Findings, pp. 1357-1370, 2024.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu,
Jialu Liu, Donald Metzler, Xuanhui Wang, and Michael Bendersky. Large language models are
effective text rankers with pairwise ranking prompting. In NAACL Findings, pp. 1504-1518,
2024.

Revanth Gangi Reddy, JaeHyeok Doo, Yifei Xu, Md. Arafat Sultan, Deevya Swain, Avirup Sil, and
Heng Ji. FIRST: faster improved listwise reranking with single token decoding. In EMNLP, 2024.

Ruiyang Ren, Yuhao Wang, Kun Zhou, Wayne Xin Zhao, Wenjie Wang, Jing Liu, Ji-Rong Wen,
and Tat-Seng Chua. Self-calibrated listwise reranking with large language models. In WWW, pp.
3692-3701, 2025.

Devendra Singh Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau Yih, Joelle
Pineau, and Luke Zettlemoyer. Improving passage retrieval with zero-shot question generation.
In EMNLP, 2022.

Dylan Sam, Rattana Pukdee, Daniel P. Jeong, Yewon Byun, and J. Zico Kolter. Bayesian neural
networks with domain knowledge priors. CoRR, abs/2402.13410, 2024.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sensi-
tivity to spurious features in prompt design or: How I learned to start worrying about prompt
formatting. In ICLR, 2024a.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sen-
sitivity to spurious features in prompt design or: How i learned to start worrying about prompt
formatting. In ICLR, 2024b.

Shuoqi Sun, Shengyao Zhuang, Shuai Wang, and Guido Zuccon. An investigation of prompt varia-
tions for zero-shot llm-based rankers. In ECIR, volume 15573, pp. 185-201, 2025.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaigiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents. In EMNLP, pp. 14918-14937, 2023a.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents. In EMNLP, pp. 14918-14937, 2023b.

Raphael Tang, Xinyu Zhang, Xueguang Ma, Jimmy Lin, and Ferhan Ture. Found in the middle:
Permutation self-consistency improves listwise ranking in large language models. In NAACL, pp.
2327-2340, 2024.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A
heterogeneous benchmark for zero-shot evaluation of information retrieval models. In NeurlIPS,
2021.

Jim Waldo and Soline Boussard. Gpts and hallucination: Why do large language models hallucinate?
ACM Queue, 22(4):10, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR, 2023.

12

Under review as a conference paper at ICLR 2026

Chenxing Wei, Yao Shu, Mingwen Ou, Ying Tiffany He, and Fei Richard Yu. PAFT: prompt-
agnostic fine-tuning. CoRR, abs/2502.12859, 2025.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In Marina Meila and Tong Zhang (eds.), ICML, pp.
12697-12706, 2021.

Kaipeng Zheng, Huishuai Zhang, and Weiran Huang. Diffkendall: A novel approach for few-shot
learning with differentiable kendall’s rank correlation. In NeurIPS, 2023.

Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu, Jilin Chen, Katherine A. Heller, and Subhrajit
Roy. Batch calibration: Rethinking calibration for in-context learning and prompt engineering.
In ICLR, 2024.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang,
and Michael Bendersky. Rankt5: Fine-tuning TS for text ranking with ranking losses. In SIGIR,
pp. 2308-2313, 2023.

Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan, Xuanhui Wang, and Michael Bendersky.
Beyond yes and no: Improving zero-shot LLM rankers via scoring fine-grained relevance labels.
In NAACL, 2024a.

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman, and Guido Zuccon. A setwise approach for
effective and highly efficient zero-shot ranking with large language models. In SIGIR, 2024b.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training. All models were fine-tuned on the full dataset provided by RankZephyr (Pradeep et al.,
2023a)), which comprises 39,912 training instances. Our experiments were conducted on a single
NVIDIA A40 GPU with 48GB of VRAM. To manage memory and facilitate training of larger mod-
els, we utilized the DeepSpeed framework with the ZeRO Stage 3 optimization and CPU offloading
enabled. Key hyperparameters were kept consistent across all experiments to ensure a fair compar-
ison. We used the AdamW optimizer with a learning rate of 5e-6, scheduled using a cosine decay
with 50 warmup steps. We used a per-device batch size of 2 and a gradient accumulation of 16,
resulting in an effective batch size of 32. For reproducibility, the global random seed was set to 42
for all runs.

Inference. Our inference process follows a standard two-stage retrieve-and-rerank pipeline. For
all experiments on the TREC DL and BEIR benchmarks, we first use the SPLADE++ (EnsembleDis-
til ONNX version) retriever to generate a candidate pool of the top 100 documents for each query.
In the second stage, our LLM reranker processes these 100 documents using a sliding window ap-
proach, following the methodology of RankZephyr (Pradeep et al.,|2023a). We use a window size
of 20 and a stride of 10, requiring 9 slides to cover the full list. After aggregating the results from
all windows, the final output consists of the top 20 reranked documents for evaluation.

A.2 PROMPT TEMPLATES

Our robustness experiments utilized one neutral prompt (p,,c.trq) and three diverse prompts
(Ptrain)- The neutral prompt is a simple, direct instruction for the ranking task. The diverse prompts
are designed to be semantically equivalent but stylistically different, framing the task as a general Al
assistant instruction (RankGPT style), a piece of Python pseudocode, and a mathematical notation
problem, respectively.

Below are the system messages and user-facing prompt templates used in our experiments. The
“query” and “documents” placeholders are dynamically filled during runtime.

13

Under review as a conference paper at ICLR 2026

Neutral Prompt This is the standard, task-focused prompt used for all main evaluations and as
the baseline for training CORE.

System Message

You are an AI assistant tasked with ranking documents based on relevance
— to a query.

Your response must be a direct sequence of alphabetical document IDs,
— ordered from

most to least relevant, in the format [A] > [B] > ... > [N]. Provide
— nothing else.

User Prompt Template

Rank the following {document_num} passages, identified by alphabetical
— IDs [],

based on their relevance to the query: {query}.

Query: {query}

Documents:
{documents}

Your output must be a ranked list of the alphabetical passage IDs, in
— descending

order of relevance, formatted strictly as: [A] > [B] > ... > [N].

Provide only this ranked list.

)

% \end{verbatim}

Diverse Prompt 1: RankGPT Style This prompt mimics the conversational style of a general-
purpose Al assistant.

System Message

You are RankLLM, an intelligent assistant that can rank passages based
< on their

relevancy to the query.

User Prompt Template

I will provide you with {label_num} passages, each indicated by a
— alphabetic

identifier []. Rank the passages based on their relevance to the search
— query: {query}

{documents}
Search Query: {query}

Rank the {label_num} passages above based on their relevance to the
— search query.

All the passages should be included and listed using identifiers, in
<~ descending order

of relevance. The output format should be [] > [], e.g., [A] > [B]. Only
— respond

with the ranking results, do not say any word or explain.

)

% \end{verbatim}
Diverse Prompt 2: Python Pseudocode This prompt frames the task as the execution of a Python
function, testing the model’s ability to follow structured, code-like instructions.

System Message
You are an AI engine that interprets pseudocode defining a ranking task.
<~ Your output

14

Under review as a conference paper at ICLR 2026

must be the result of the described ranking function, formatted as a
~ string:

[A] > [B] > ... > [N], representing alphabetically identified documents
— in

descending order of relevance. Output only this string.

User Prompt Template

Function Definition: PerformRelevanceRanking

Objective: Order a list of documents based on their relevance to a
— given query.

def perform_relevance_ranking(query_text: str, input_document_data: str):

mwn

Ranks documents provided in ’input_document_data’ against the
— ’'query_text’.

The ’input_document_data’ is a string containing documents, each
— with an

alphabetical ID. The alphabetical IDs from the input should be used
<~ in the output.

nnn

current_query = "{query}"

candidate_documents_text_block = """{documents}"""

——- Ranking Logic (To Be Performed by You) --—-

Your goal is to determine the ’relevant_order’’ based on

— 'current_query’
and the information within ’candidate_documents_text_block’.

Output Specification:
Return a string representing the sorted alphabetical document IDs,
from most relevant to least relevant.
Format: "[A] > [B] > ... > [N]"
pass # Replace with actual output string
% \end{verbatim}

4o =

Diverse Prompt 3: Mathematical Notation This prompt presents the task in a formal, mathe-
matical style, testing the model’s ability to parse symbolic instructions.

System Message

You are an AI system designed to interpret ranking tasks defined with

mathematical-like notation. Your role is to compute the ranking Rx. The
<~ output must

be a string of alphabetical document IDs: [A] > [B] > ... > [N], ordered
— by a

relevance function decreasingly. Provide only this string.

User Prompt Template
Let Q be the query:
Q = "{query}"

Let D be the set of {document_num} documents, D = {d_A, d_B, ..., d_N}.
Each document d_i has a unique alphabetical identifier ID(d_1i).
The document content is provided in {documents}.

Define a relevance function, Rel(Q, d_i), which scores the relevance of
document d_i to query Q.

The task is to find an ordered sequence of alphabetical document
— identifiers Rx:

R+ = [ID(d_31)]1 > [ID(d_3j2)] > ... > [ID(d_JN)]

such that Rel(Q, d_jl) >= Rel(Q, d_j2) >= >= Rel (Q, d_jN).

15

Under review as a conference paper at ICLR 2026

Provide the sequence Rx as a string:

)

% \end{verbatim}

A.3 STATEMENT ON Al USAGE

In preparing this manuscript, we leveraged large language models to improve academic writing and
to assist in debugging code. These tools served a function analogous to that of a human copyeditor or
a programming linter, with their use solely dedicated to enhancing clarity, grammatical correctness,
and code efficiency. All conceptual insights, methodological designs, experimental results, and
critical analyses presented in this work remain the original contributions of the authors.

16

	Introduction
	Problem Formulation
	Task Definition: Listwise Generative Reranking
	The Id-Ego Framework for Ranking Fluctuation

	Related Work
	Method
	External Behavior Calibration via Inverse CFG
	Internal Judgment Consistency via Differentiable Kendall's Tau
	Solution 1: A Differentiable Proxy for Ranking Judgment
	Solution 2: A Differentiable Ordinal Correlation Loss
	Combined Internal Judgment Loss

	Final Training Objective

	Experiments
	Experiment Setup
	Overall Performance
	Robustness to Prompt Variations
	Effect of CORE Components

	Conclusion
	Appendix
	Implementation Details
	Prompt Templates
	Statement on AI Usage

