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Abstract

How cost-effectively can we elicit strong reasoning abilities in language models by
leveraging their underlying representations? We present Resa, a family of reasoning
models trained via an efficient sparse autoencoder tuning (SAE-Tuning) procedure.
This method first trains an SAE to capture reasoning abilities from a source model,
and then uses the trained SAE to guide a standard supervised fine-tuning process to
elicit such abilities in a target model, all using verified question-answer data without
any reasoning traces. When applied to certain Qwen-style models before further
RL training, SAE-Tuning retains 97% of its RL-trained counterpart’s performance
while reducing training costs by 2000x to roughly $1 and training time by 450x
to around 20 minutes. Furthermore, even at the 1.5B model size, SAE-Tuning
on lightly RL-trained models delivers strong reasoning results, reaching 43.33%
Pass@1 on AIME24 and 90% Pass@1 on AMC23. We also show that SAE-Tuning
works for Llama-style models, boosting their scores by over 10% on tasks like
AMC23 and MATH500. Surprisingly, the reasoning abilities extracted via SAEs are
potentially both generalizable and modular. Generality means abilities extracted
from one dataset still elevate performance on a larger and overlapping corpus.
Modularity means abilities extracted from models like Qwen or Qwen-Math can be
attached to the R1-Distilled Qwen model at test time, without any retraining, and
yield comparable gains. Extensive ablations validate these findings and all artifacts
are fully open-sourced.

1 Introduction

Reasoning language models have demonstrated increasing performance in domains like math, coding,
and science (Wang and Neiswanger, 2025; Xu et al., 2025). Despite the impressive reasoning
performance elicited by reinforcement learning (RL) or supervised fine-tuning (SFT) (Chu et al.,
2025), these methods often operate as a “black box”. In other words, while they improve reasoning,
how they alter the model’s internal representations to do so is largely opaque. Furthermore, RL-based
workflows are notoriously resource-intensive, requiring substantial compute and long training time to
converge. SFT, in turn, hinges on the availability of high-quality Chain-of-Thought (CoT) reasoning
traces, which are costly to curate (Muennighoff et al., 2025). This leaves a critical gap: The need for
a “three-birds-one-stone” method that can elicit strong reasoning abilities in a way that is not only
effective but also computationally efficient and transparent.

We aim to bridge this gap with Resa, a family of reasoning models trained via sparse autoencoders
(SAEs) on Qwen and Llama models, using a novel post-training method, which we call SAE-Tuning.
Specifically, SAE-Tuning involves two key stages: First, we use an SAE to probe the internal
activations of a source model, extracting a dictionary of latent features that correspond to its reasoning
processes. SAEs are unsupervised models designed to deconstruct a model’s dense internal activations
into a sparse dictionary of more interpretable latent features (Anthropic, 2023, 2024). Our key insight
is that within this dictionary, certain features must correspond to the fundamental building blocks
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Figure 1: Comparison of Example Resa Models and Baselines The Tina models correspond
to the best checkpoints in Wang et al. (2025a). Resa-STILL and Resa-DeepScaleR correspond
to Resa-STILL-v5 and Resa-DeepScaleR-v3 in Table 2, respectively. For these Resa models, the
required SAEs are trained from scratch (as shown in Section 4.2) and both computational and time
costs are total costs for training SAEs and models. Reasoning performance denotes the average
zero-shot Pass@1 score across AIME24/25, AMC23, MATH500, GPQA Diamond, and Minerva
benchmarks. Please see more details in the Appendix A.2.

of reasoning. Second, we freeze this feature-rich SAE and insert it into a target model to guide a
SFT process to elicit reasoning abilities in the target model. By instilling latent reasoning features
captured by an SAE back into a model via a tuning procedure, we can effectively and efficiently elicit
the model’s reasoning abilities.

SAE-Tuning also distinguishes itself from existing methods by using SFT on a minimal verified
CoT-free question-answer data type. By verified, we mean that the answer correctness is ensured
via methods like human annotation or language-model-based verification (Guha et al., 2025), while
CoT-free signifies that our SAE-Tuning procedure functions without needing explicit step-by-step
reasoning traces1. In line with this minimalist approach, we demonstrate our method across multiple
model families and sizes, focusing on Qwen and Llama architectures at the 1.5B and 3B scale. This
strategic choice lowers computational costs—thereby democratizing research—and allows us to more
precisely isolate and measure the incremental benefits of SAE-Tuning. We summarize our core
contributions as follows:

• Efficient Reasoning Ability Elicitation Purely using verified CoT-free data, we demonstrate
that SAE-Tuning can be applied in an end-to-end manner to certain base models with a trained-
from-scratch SAE to elicit reasoning abilities on par with those achieved via costly RL. This
leads to substantial gains with peak training cost reductions of over 2000x (to approximately
$1) and time reductions of over 450x (to under 20 minutes) compared to RL-based workflows,
while maintaining comparable performance.

• Generalizable and Modular Reasoning Ability We establish the generality and modularity of
the extracted reasoning abilities such that these abilities generalize across out-of-distribution
datasets and can be attached to models within the same family at test time without additional
training, functioning as a portable reasoning adapter.

2 Related Work

Reinforcement Learning for Reasoning Ability Elicitation The structure of reasoning tasks
lends itself well to RL approaches, primarily because the final output’s correctness provides a clear
and verifiable reward signal. This feedback loop helps the model develop more robust reasoning
strategies (Shao et al., 2024; DeepSeek-AI, 2025). Recently, a growing body of work suggests
that RL primarily elicits and amplifies reasoning capabilities already embedded within pretrained
models, rather than installing them from scratch. Training dynamics analysis supports this “elicitation
hypothesis,” showing that post-training largely surfaces latent abilities (Zhao et al., 2025). The

1Results in Table 2 show that standard SFT on CoT-free data without an SAE fails to elicit reasoning.
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elicitation hypothesis is substantiated by several findings. For example, significant reasoning gains
are achievable through minimal parameter updates that merely teach the model a new output format
(Wang et al., 2025a), and even through one-shot RL with data selection (Wang et al., 2025b). More
surprisingly, studies have shown that RL can surface reasoning skills even with spurious or incorrect
rewards (Shao et al., 2025), indicating that the primary mechanism is the surfacing of useful, pre-
existing representations. We in this paper show that one can perform such elicitation in a much more
efficient way by bypassing RL.

Sparse Autoencoders Recent advances in SAEs have enabled new approaches for analyzing and
steering neural network computations. Building on the original SAE architecture proposed by Cun-
ningham et al. (2023), subsequent work from Anthropic (2023) demonstrated how these sparse
bottleneck networks can decompose transformer activations into human-interpretable features. The
scaling properties of SAEs were systematically studied in Anthropic (2024), establishing practical
guidelines for training SAEs across model sizes. Recent innovations have improved SAE training
stability and feature quality: O’Neill and Bui (2024) introduced scalable and reliable circuit identifica-
tion techniques. Concurrent work by Chen et al. (2025) has focused on optimizing SAE computational
efficiency and integration with modern transformer architectures. Karvonen et al. (2025) developed
a comprehensive evaluation on components of SAE training. In the SAE-Tuning procedure, we
leverage SAEs specifically to extract the latent features that underpin reasoning abilities.

Model Steering The use of SAEs for model steering builds on earlier work in activation editing
(Alain and Bengio, 2018). Panickssery et al. (2024) first demonstrated that SAE features could be used
for controlled behavior modification, while Bayat et al. (2025) later developed more precise steering
vectors through feature subspace analysis. Recent work by O’Brien et al. (2025) demonstrated
improved safety properties through SAE-mediated interventions and Gan et al. (2025) showing SAEs’
transferability of steering across modalities. Alternative to SAEs, activation differences (Li et al.,
2023) and recursive feature machines (Beaglehole et al., 2025) are also widely used for steering, and
Wu et al. (2025) evaluated the concept steering abilities of these methods. Besides steering, Chen et al.
(2025) demonstrates the feasibility of adapting models to pretrained SAEs. Our proposed procedure,
SAE-Tuning, beyond steering and adapting, fully leverages sparse autoencoders to identify, extract,
and elicit latent reasoning abilities.

3 Resa: Efficient Reasoning Models via SAEs

Resa is a family of reasoning models derived from the Qwen (e.g., Tina (Wang et al., 2025a) and R1-
Distill2 (DeepSeek-AI, 2025)) and Llama (e.g., OctoThinker (Wang et al., 2025c)) families of models.
We use an SAE to explicitly isolate and extract implicit reasoning abilities (i.e., latent reasoning
features) from a source model, and use this trained SAE to controllably instill those features into a
target model to elicit reasoning abilities. We refer to this post-training procedure as SAE-Tuning,
which requires only verified CoT-free question-answer data.

3.1 Sparse Autoencoder Tuning: Workflow & Intuition

SAE-Tuning is an efficient two-stage training procedure to transfer reasoning abilities from a source
model to a target model; this procedure is summarized in Figure 2. The two stages consist of:

Stage I: SAE Training (Reasoning Ability Extraction) The first stage involves training an SAE
to reconstruct the activations from a specific layer of a source model. We feed a trigger dataset,
comprising only verified CoT-free question-answer pairs, into the source model and capture the
resulting activations at a chosen SAE hookpoint. The SAE is then trained on these activations,
learning features that represent the source model’s internal reasoning while processing the data.

Stage II: SAE-Guided SFT (Reasoning Ability Elicitation) Once the SAE has been trained,
we shift to training a target model. The trained SAE is actively integrated into the target model’s
architecture (at certain layer) and kept with frozen weights during a standard SFT process. By
exposing the target model to the feature representations captured by the SAE, the SFT process is
guided to develop internal pathways that elicit reasoning abilities, effectively reconstructing such
abilities extracted from the source model. This entire stage uses an elicitation dataset, which is
typically identical to the trigger dataset.

2deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
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Figure 2: Two-Stage Pipeline of SAE-Tuning The procedure begins with SAE training (Left),
where an SAE is trained to capture reasoning features from a source model with a trigger dataset.
During SAE-guided SFT (Right), the trained SAE is then frozen and inserted into a target model. An
elicitation dataset is used to guide a SFT process to elicit the reasoning abilities in the target model.
Notably, the trigger and elicitation datasets are usually the same CoT-free data.

As shown in the following, the SAE-Tuning procedure is configured by five key components.3

• Source Model The model from which reasoning-related features are extracted. The SAE is
trained on the intermediate activations of one of its layers.

• Target Model The model for which we aim to elicit the reasoning abilities. In this paper, the
target model is usually R1-Distill, which also serves as the base model of the source models,
e.g., Tina models (Wang et al., 2025a) are more specialized models based on R1-Distill.

• Trigger Dataset The CoT-free dataset used to trigger reasoning-related features in SAEs during
SAE training. It is constructed from a standard open-source question-answer dataset by simply
formatting each entry into a specific template. For a given question and its final answer, we
have an input sequence: Problem: [Question] <think> [Answer] </think> <answer> Answer:
[Answer] </answer>. While this template uses <think> and </think> tokens, the dataset
remains CoT-free as no intermediate reasoning steps are provided between the tokens, only the
answer is present. The inclusion of this structure is hypothesized to activate the source model’s
latent reasoning abilities, allowing the SAE to capture such features.4

• Elicitation Dataset The CoT-free dataset used for the SAE-guided SFT of the target model to
elicit reasoning abilities. In our experiments, it is usually the same as the trigger dataset.

• SAE Training Mode This defines how Stage I (i.e., SAE training) is carried out. We explore
three distinct modes. (1) Pre-trained: We use an SAE that has been pre-trained on R1-Distill.5

This mode bypasses Stage I entirely. (2) Fine-tuned: The default pre-trained SAE is further fine-
tuned on activations from the source model using the trigger dataset. (3) Trained-from-Scratch:
An SAE is trained from a random initialization, exclusively on the activations produced by the
source model with the trigger dataset.

At its core, SAE-Tuning operates on a simple principle, namely:

Enforcing a reasoning-aligned structure on a model’s internal representations.

During Stage I, the autoencoder observes a capable source model and learns to deconstruct its complex
internal activations into a sparse dictionary of features. Our central hypothesis is that a subset of these
features represents the fundamental building blocks of reasoning. In Stage II, this feature dictionary
acts as a fixed “template.” By inserting the frozen SAE into a target model and fine-tuning the model
to make its internal activations compatible with this template, we constrain its learning process. The

3We provide a detailed configuration of main Resa models in the Appendix A.1.
4A detailed analysis of the role and importance of these thinking tokens is provided in Section B.1.
5EleutherAI/sae-DeepSeek-R1-Distill-Qwen-1.5B-65k
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target model is thus guided to arrange its internal representations to mimic the effective reasoning
structures captured from the source model, directly instilling those abilities into its own parameters.
We also offer two more alternative perspectives to build intuition for SAE-Tuning.

Intuition I: Knowledge Distillation The SAE acts as a “knowledge bottleneck.” In Stage I, it is
forced to learn a compressed and essential representation of the source model’s reasoning processes.
In Stage II, it becomes a “teacher.” The KL divergence objective distills this knowledge into the
target (student) model’s parameters, effectively teaching the student model to replicate the teacher’s
reasoning behavior while being guided by the explicit reasoning features captured by the SAE. We
provide more detailed discussion in Section 4.2.

Intuition II: Alternating Optimization We are optimizing two distinct sets of parameters for two
different goals, one after the other. 1) Optimizing the SAE: We hold the model constant and train the
SAE parameters to best capture the model’s latent reasoning features. 2) Optimizing Model Adapters:
We hold the model and the SAE constant and train low-rank adapters to best integrate the SAE’s
reasoning feature representation into the model. Combining these two goals allows the SAE to act
as a bridge between the two models. The first optimization step builds this bridge by learning a
compressed blueprint of the source model’s reasoning process. The second step then fine-tunes the
target model to align with the source model, ensuring that the target model inherits the structural
properties of the source model’s reasoning.

3.2 Sparse Autoencoder Tuning: Mathematical Formulation

We now formalize the two primary stages of the SAE-Tuning procedure.

Stage I: SAE Training Given a source model M0, we denote the SAE to be trained as sℓ, which is
hooked at ℓ-th layer (i.e., the multilayer perceptron output) of the source model M0. Suppose the
source model has L layers with hidden dimension d. Given input x0 and output y, we denote the
activation after the ℓth layer by xℓ. We view the ℓth transformer block as a function hℓ and we have

xℓ = hℓ(xℓ−1), 1 ≤ ℓ ≤ L, (1)
y = softmax(xL). (2)

The SAE sℓ trains an encoder Wenc ∈ Rm×d for m ≫ d, a decoder Wdec ∈ Rd×m with unit norm
columns, and biases benc ∈ Rm, bdec ∈ Rd. For activation xℓ, the SAE reconstructs activation x̃ℓ as

z = Top-k(Wenc(xℓ − bdec) + benc), (3)

x̃ℓ = Wdecz + bdec = ∑wifi, (4)

where Top-k means that we only the top k features in the vector (Gao et al., 2024). This is a simple
and standard practice when training SAEs. The SAE minimizes the reconstruction error

L = ∥xℓ − x̃ℓ∥2
. (5)

Stage II: SAE-Guided SFT For the trained SAE sℓ with a hookpoint ℓ, we freeze its weights and
insert it6 immediately after layer ℓ of a target model M . Note that this operation requires the source
and target models to have the same underlying model architecture and size such that the SAE can
be inserted directly. We denote the intermediate activation after i-th layer, before and after SAE
insertion, as xi and x̃i, respectively. Given the SAE sℓ with a hookpoint ℓ, we have x̃i = xi, i ≤ ℓ− 1
and the reconstructed activation x̃ℓ = SAE(xℓ) propagates through the remaining layers to produce

x̃i = hi(x̃i−1), ℓ + 1 ≤ i ≤ L, (6)
ỹ = softmax(x̃L). (7)

We then add low-rank adapters of rank r in each multilayer perceptron and attention sublayer of
every layer of the target model we are adapting. We provide insights on why we choose low-rank
adapters in Section 5. Concretely, for each frozen weight matrix Wi ∈ Rd1×d2 , we add Ai ∈ Rd1×r

and Bi ∈ Rr×d2 . We train only the low-rank adapters Θ = {Ai} ∪ {Bi}. The objective is the KL
divergence between the next token probability distribution with and without the SAE inserted:

argmin
Θ

DKL(ỹ,y). (8)

6We only consider single-layer SAE insertion, i.e., insert at most one SAE at a time.
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The core intuition behind this loss function is to force the target model to produce internal rep-
resentations at ℓ-th layer that are “compatible” with the frozen SAE with rich reasoning features.
Since the SAE was trained to reconstruct the reasoning-focused activations of the source model, this
objective pushes the target model’s activations to become explicitly similar to the source model’s
internal reasoning structure. By fine-tuning the target model to accommodate the SAE with minimal
disruption to its output, we instill the reasoning patterns embodied by the SAE’s learned features.

Inference Stage Crucially, after this SAE-guided SFT is complete, the SAE is entirely removed
from the model at test time. This leaves an enhanced target model with the elicited reasoning abilities
“instilled” directly into its own parameters, ready for standard inference and evaluation.

4 Efficient Reasoning Ability Elicitation

We empirically validate the effectiveness of SAE-Tuning. We first demonstrate that it can successfully
replicate the performance of models fully trained with RL. Building on this, we show its primary
practical utility: that SAE-Tuning remains effective with the base R1-Distill model as source model,
thus bypassing the need for further RL. We also establish the method’s self-sufficiency with a
trained-from-scratch SAE, which eliminates the dependence on pre-trained SAEs.

The default configuration for SAE-Tuning is as follows. The primary datasets are STILL7 (RUCAIBox
STILL Team, 2025) and DeepScaleR8 (Luo et al., 2025). The source model varies across experiments,
from specialized fine-tuned models (i.e., Tina models) to their base R1-Distill model (DeepSeek-AI,
2025). By default, we choose the best Tina checkpoint trained on a specific dataset as the source
model. The target model is by default the R1-Distill. For SAE, unless stated otherwise, we follow the
“fine-tuned” training mode. The SAE is hooked to the output of the multilayer perceptron submodule
after the 12th layer (out of 28) of the source model. This choice is based on the heuristic that middle
layers in a transformer-based language model are often crucial for understanding and reasoning. We
provide a detailed discussion on layer selection in Section B.1. The full hyperparameter setting is
provided in Appendix A.3.

4.1 Proof of Concept: Reasoning Ability Replication

We establish a proof of concept by answering: Can SAE-Tuning extract and transfer reasoning ability
from a source model post-trained for reasoning via RL? Therefore, we use the Tina models (Wang
et al., 2025a), which were trained with RL from R1-Distill on different datasets, as our source models.
The goal is to see if our Resa models can match the Tina models’ performance.

Table 1: Reasoning Ability Replication SAE-Tuning successfully replicates the performance of RL-
trained source models. Resa models (trained with SAE-Tuning on CoT-free data) achieve performance
on par with or exceeding their Tina counterparts. More details are shown in Appendix B.2.

MODEL NAME AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
DeepSeek-R1-Distilled-Qwen-1.5B 23.33 16.67 62.50 82.60 31.82 30.15 41.18

STILL-3-1.5B-preview 26.67 26.67 67.50 86.40 34.34 27.57 44.86

Tina-STILL (CoT-free RL) 36.67 30.00 77.50 84.60 33.33 26.84 48.16

Resa-STILL-v1 (CoT-free SAE-Tuning) 33.33 33.33 75.00 83.80 29.41 28.79 47.28

DeepScaleR-1.5B-Preview 36.67 26.67 77.50 87.80 31.82 31.99 48.74

Tina-DeepScaleR (CoT-free RL) 43.33 26.67 67.50 86.20 37.88 28.68 48.38

Resa-DeepScaleR-v1 (CoT-free SAE-Tuning) 36.67 23.33 85.00 83.00 32.35 33.33 48.95

ALGORITHM ABLATION AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
STILL-CoT-free-SFT 20.00 16.67 60.00 81.20 29.78 26.36 39.00

DeepScaleR-CoT-based-SFT 10.00 6.67 57.50 68.60 20.22 36.36 33.22

Table 1 summarizes our proof of concept results. On the STILL dataset, our Resa-STILL-v1 (47.28%
avg) recovers 98.2% of the performance of the RL-trained Tina-STILL (48.16% avg). On the

7RUC-AIBOX/STILL-3-Preview-RL-Data
8agentica-org/DeepScaleR-Preview-Dataset
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DeepScaleR dataset, our Resa-DeepScaleR-v1 (48.95% avg) not only replicates but slightly surpasses
the performance of its corresponding Tina-DeepScaleR source model (48.38% avg). The algorithm
ablation clearly demonstrates the necessity of our method using SAEs: standard SFT on the same
CoT-free data (i.e., STILL-CoT-free-SFT) achieves a mere 39.00% average, falling far short of
both the Tina models and our Resa counterparts. This shows that simply training on the final
answers is insufficient and the SAE-guided SFT is the critical ingredient for eliciting reasoning
abilities. Furthermore, standard SFT on a CoT-based dataset (i.e., DeepScaleR-CoT-based-SFT) also
performs worse (33.22% avg), suggesting that naive CoT-based training is not an effective strategy
for improving reasoning and underscores the novelty of our CoT-free approach via SAE-Tuning.

4.2 Practical Utility: End-to-End Reasoning Ability Elicitation

Having shown that SAE-Tuning can replicate reasoning ability, we now study: Can one bypass the
need for a specialized source model and the need for an existing SAE altogether? Specifically, this
section investigates if we can simplify SAE-Tuning into an end-to-end procedure, such that one can
elicit reasoning abilities directly from the base R1-Distill model, without a pre-trained SAE.

SAE Simplification The SAE training mode ablation in Table 2 shows that training an SAE from
scratch on the trigger dataset (i.e, Resa-STILL-Trained-from-Scratch-SAE, 47.36% avg) is just as
effective as fine-tuning a generic pre-trained SAE on the same dataset (i.e., Resa-STILL-Finetuned-
SAE, 47.28% avg). Both outperform using a default, pre-trained SAE (44.99% avg). The key insight
is that the SAE’s performance for reasoning ability elicitation hinges on its exposure to the specific
reasoning features encapsulated in the data (i.e., the trigger dataset), while the general knowledge
from its initial pre-training is less critical in SAE-Tuning. This result aligns with the knowledge
distillation perspective of SAE-Tuning at the end of Section 3.1. In that view, the SAE is a “teacher”
guiding the “student” (i.e., the target model). A static, pre-trained SAE is an ineffective teacher
because it is ignorant of the “curriculum”—the reasoning patterns in the trigger dataset. In contrast,
both training from scratch and fine-tuning are effective because they ensure the teacher first learns
the specific material it is meant to teach. Overall, this finding simplifies the pipeline by eliminating
the need for a pre-trained SAE, which yields substantial compute savings by avoiding the costly
pre-training on large corpora like SmolLM2 (Allal et al., 2025) and RedPajama (Weber et al., 2024).

Source Model Simplification Based on the above SAE simplification, we then simplify the source
model used for SAE training, using models ranging from the base R1-Distill model (i.e., Tina-0-step)
to well-trained Tina checkpoints. We notice that the source of reasoning features is nuanced such
that there is a non-monotonic relationship between the source model’s training progression and the
resulting Resa model’s performance. The “best” reasoning features for extraction are not always
found in the final, most-trained source model checkpoint. Specifically, it shows that one can get
optimal performance with a light RL training, i.e., Resa-STILL-Tina-100-step (with fine-tuned SAE,
49.46%) and Resa-STILL-Tina-50-step (with train-from-scratch SAE, 49.31%). Another important
finding is that by training an SAE from scratch and using the base model as the source, our method
achieves a competitive average score of 48.06% (i.e., Resa-STILL-v5). This performance is nearly
identical to the fully RL-trained Tina-STILL model (48.16%), demonstrating that our simplified,
end-to-end SAE-Tuning procedure has the potential to replace the RL fine-tuning stage with no
meaningful loss in reasoning performance. This also confirms that the necessary reasoning features
are already latent within the base model and can be elicited with high efficiency. Overall, this presents
a trade-off: using a lightly RL-trained source yields peak performance, while using the base model
enables an efficient, end-to-end workflow that still delivers competitive results.

4.3 Generalization to Llama-Style Architectures

To assess the broader applicability of SAE-Tuning, we tested its effectiveness beyond the Qwen model
family by applying it to Llama-style architectures. For this experiment, we used the STILL dataset
within our SAE-Tuning framework on three variants of the OctoThinker-3B-Base models (Wang
et al., 2025c). Each variant serves as the source and target model at the same time.

The results, presented in Table 3, show that SAE-Tuning is highly effective on this different architec-
tural foundation. Our comparison focuses on AMC23 and MATH500, as these are the evaluation
benchmarks shared between our work and the results reported for the OctoThinker base models. On
AMC23, the procedure yields dramatic absolute gains of 15 to 25 percentage points. Notably, the
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Table 2: End-to-End Reasoning Ability Elicitation (SAE Training Mode Ablation) Training
an SAE from scratch is comparably as effective as fine-tuning a pre-trained SAE. (Source Model
Ablations) The key results are Resa-STILL-v5 and Resa-DeepScaleR-v3 models which use the base
model as their own source and match the reasoning performance of the RL-trained models. More
detailed results are shown in Appendix B.3.

MODEL NAME AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
STILL-3-1.5B-preview 26.67 26.67 67.50 86.40 34.34 27.57 44.86

Tina-STILL 36.67 30.00 77.50 84.60 33.33 26.84 48.16

SAE TRAINING MODE ABLATION AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
Resa-STILL-Finetuned-SAE (i.e., Resa-STILL-v1) 33.33 33.33 75.00 83.80 29.41 28.79 47.28

Resa-STILL-Pretrained-SAE (i.e., Resa-STILL-v2) 23.33 23.33 72.50 85.40 30.51 34.85 44.99

Resa-STILL-Trained-from-Scratch-SAE (i.e., Resa-STILL-v3) 33.33 33.33 70.00 83.00 30.15 34.34 47.36

SOURCE MODEL ABLATION (FINE-TUNED SAE) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
Resa-STILL-Tina-0-step (i.e., Resa-STILL-v4) 23.33 20.00 77.50 84.60 27.57 35.35 44.73

Resa-STILL-Tina-1-step 40.00 26.67 70.00 83.20 31.62 36.36 47.98

Resa-STILL-Tina-10-step 23.33 23.33 75.00 82.20 29.41 33.33 44.43

Resa-STILL-Tina-50-step 33.33 26.67 72.50 82.60 27.57 38.89 46.93

Resa-STILL-Tina-100-step 43.33 23.33 82.50 85.60 28.68 33.33 49.46

Resa-STILL-Tina-500-step 36.67 26.67 80.00 83.80 31.62 31.82 48.43

Resa-STILL-Best-Tina-2000-step (i.e., Resa-STILL-v1) 33.33 33.33 75.00 83.80 29.41 28.79 47.28

Resa-STILL-Tina-3000-step 26.67 23.33 72.50 85.40 27.94 34.85 45.11

SOURCE MODEL ABLATION (TRAINED-FROM-SCRATCH SAE) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
Resa-STILL-Tina-0-step (i.e., Resa-STILL-v5) 33.33 26.67 70.00 87.00 29.41 41.92 48.06

Resa-STILL-Tina-1-step 33.33 33.33 72.50 82.20 29.41 35.35 47.69

Resa-STILL-Tina-10-step 33.33 16.67 67.50 86.20 30.51 37.37 45.26

Resa-STILL-Tina-50-step 43.33 23.33 77.50 83.40 29.41 38.89 49.31

Resa-STILL-Tina-100-step 33.33 23.33 90.00 82.60 28.68 35.35 48.88

Resa-STILL-Tina-500-step 36.67 20.00 67.50 84.20 30.88 35.35 45.77

Resa-STILL-Best-Tina-2000-step (i.e., Resa-STILL-v3) 33.33 33.33 70.00 83.00 30.15 34.34 47.36

Resa-STILL-Tina-3000-step 30.00 20.00 77.50 86.20 31.62 37.88 47.20

Resa-DeepScaleR-Best-Tina-1000-step (i.e., Resa-DeepScaleR-v2) 40.00 30.00 75.00 84.00 30.15 33.33 48.75

Resa-DeepScaleR-Tina-0-step (i.e., Resa-DeepScaleR-v3) 33.33 23.33 80.00 86.00 30.51 31.31 47.41

Table 3: SAE-Tuning on Llama-Style Models Performance evaluation of SAE-Tuning on
OctoThinker-3B-Base models, indicating the effectiveness of SAE-Tuning on models besides Qwen.
More detailed results are shown in Appendix B.4.

MODEL NAME AMC23 MATH500
OctoThinker-3B-Base-Long 7.50 25.80

Resa-STILL-OctoThinker-3B-Base-Long 22.50 30.00

OctoThinker-3B-Base-Short 2.50 31.40

Resa-STILL-OctoThinker-3B-Base-Short 27.50 38.20

OctoThinker-3B-Base-Hybrid 10.00 30.80

Resa-STILL-OctoThinker-3B-Base-Hybrid 27.50 40.80

score for the OctoThinker-3B-Base-Short model increases more than tenfold, from 2.50% to 27.50%.
On MATH500, the OctoThinker-3B-Base-Hybrid model’s score is lifted by 10 percentage points,
from 30.80% to 40.80%. These findings confirm that the SAE-Tuning procedure is not bespoke to
a single model family. Its success in eliciting reasoning from Llama-style models underscores the
general robustness and promise of this approach for efficient model enhancement.

5 Hypothesis: Generalizable and Modular Reasoning Ability

We now show that the reasoning ability captured by SAE-Tuning is a generalizable and modular
skill. We formulate this as a claim: Reasoning abilities extracted via SAEs can be transferred across
both data distributions and models. To validate this, we conduct two sets of experiments: First, we
test out-of-distribution generalization by applying reasoning extracted from one dataset to another.
Second, we test cross-model transfer by applying reasoning extracted from one model to another.
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Table 4: Generality and Modularity of Reasoning Ability (Top & middle) The results demonstrate
OOD generalization across datasets. Resa-STILL2X models are trained by extracting reasoning from
the STILL dataset and applying it to a new elicitation dataset X. (Bottom) The results demonstrate
cross-model transfer. A reasoning adapter trained on Qwen-Math or Qwen is transferred to R1-Distill
at inference time. More detailed results are shown in Appendix B.5.

OUT-OF-DISTRIBUTION COVERAGE DATA AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
DeepScaleR-1.5B-Preview 36.67 26.67 77.50 87.80 31.82 31.99 48.74

Tina-DeepScaleR 43.33 26.67 67.50 86.20 37.88 28.68 48.38

Resa-STILL2DeepScaleR (i.e., Resa-DeepScaleR-v4) 33.33 30.00 80.00 84.00 29.41 35.86 48.77

OUT-OF-DISTRIBUTION INTERSECTION DATA AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
Open-RS1 26.67 20.00 72.50 83.60 28.68 35.35 44.47

Tina-Open-S1 43.33 20.00 80.00 84.00 28.68 35.35 48.56

Resa-STILL2Open-S1 36.67 23.33 85.00 84.60 30.88 31.82 48.72

II-Thought-1.5B-Preview 30.00 23.33 72.50 86.80 30.88 31.90 45.90

Tina-II-Thought 40.00 20.00 80.00 86.00 33.84 26.84 47.78

Resa-STILL2II-Thought 40.00 23.33 75.00 83.20 31.25 38.89 48.61

Tina-OpenR1 36.67 26.67 75.00 86.80 30.51 39.90 49.26

Resa-STILL2OpenR1 33.33 30.00 77.50 86.80 27.21 41.92 49.46

REASONING-AS-AN-ADAPTER AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
Resa-STILL-Qwen-Math-Adapter 36.67 20.00 82.50 83.40 31.25 33.33 47.86

Resa-STILL-Qwen-Adapter 30.00 30.00 72.50 85.60 31.25 35.86 47.54

Out-of-Distribution Generalization To assess out-of-distribution (OOD) generalization, we use
a single dataset, STILL, to train the SAE on the source model (the “trigger” step). We then use
that trained SAE to guide a SFT process of the target model on a completely different dataset (the
“elicit” step). We test this on datasets that have varying degrees of overlap with STILL. Specifically,
DeepScaleR fully covers the STILL dataset (which we refer as the coverage dataset) while Open-
S1 (Dang and Ngo, 2025), II-Thought (Internet, 2025), and OpenR1 (Hugging Face, 2025) have
underlying overlapped sources with STILL (which we coin as the intersection datasets). As shown
in Table 4, the Resa-STILL2X models, where reasoning ability from STILL is transferred to a new
dataset X, consistently achieve performance on par with models trained end-to-end via RL on that new
dataset. For example, Resa-STILL2DeepScaleR scores 48.77%, almost identical to Tina-DeepScaleR
(48.38%) which was trained entirely on DeepScaleR. This pattern holds across all tested datasets.
This robust performance demonstrates that the reasoning features extracted from the STILL dataset
are not overfit to its specific data distribution. They represent a more general reasoning process that
can be effectively applied to new distributions, showcasing OOD resilience.

Modular Reasoning-as-an-Adapter Recall from Section 3.1 that during SAE-guided SFT, the
parameters we train are all from low-rank adapters. Therefore, we explore if the extracted reasoning
ability can similarly be treated as a modular “adapter” that can be plugged into other model. Specifi-
cally, we perform SAE-Tuning on models like Qwen-Math (Yang et al., 2024) and Qwen (Qwen et al.,
2025) to produce a set of adapters. Then, at test time, we attach such adapters to R1-Distill in the
same family, without any further training. The models in this family share an architecture but differ in
their foundational knowledge: R1-Distill has the most general knowledge, Qwen-Math is specialized
with math data, and Qwen is the most basic. This tests whether our extracted reasoning abilities can
be separated from the foundational knowledge of the model it was trained on. As shown in the final
rows of Table 4, the adapter trained on Qwen-Math or Qwen and attached to R1-Distill achieves
an average score of 47.86% or 47.54%, respectively. This performance is competitive with models
where the entire SAE-Tuning process was performed directly on R1-Distill (e.g., Resa-STILL-v1,
47.28% avg). This result provides evidence that:

Strong Reasoning Model ≈ Abstract Reasoning Ability + Foundational Knowledge.

Our SAE-Tuning procedure aims to isolate the “Abstract Reasoning Ability” component into a
portable adapter and the final performance is then a direct combination of this adapter with a model
that possesses sufficient “Foundational Knowledge.” This opens up possibilities for creating highly
capable and efficient models by composing reasoning abilities and foundational knowledge.
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6 Conclusion
In this work, we moved beyond the prevailing paradigms of resource-intensive RL and quality-
sensitive CoT-based SFT. Specifically, we introduced SAE-Tuning, a novel procedure that leverages
SAEs to identify, extract, and elicit latent reasoning abilities using only CoT-free data. Our extensive
experiments validated this approach on three key fronts. First, we demonstrated that SAE-Tuning
is a performant and practical method, capable of not only replicating the performance of RL-
trained models but, more importantly, of eliciting equivalent reasoning abilities directly from certain
base models. This process also extends across architectures for Llama-style models. Second, we
established the surprising generality of these extracted abilities, demonstrating both their robustness
to out-of-distribution data and also their modularity as portable “reasoning adapters.”
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Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,

11

https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2405.12522
https://arxiv.org/abs/2501.19406
https://arxiv.org/abs/2503.09532
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2503.00177
https://arxiv.org/abs/2503.00177
https://arxiv.org/abs/2411.11296
https://arxiv.org/abs/2505.14071
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://arxiv.org/abs/2502.03708
https://arxiv.org/abs/2502.03708
https://arxiv.org/abs/2501.17148
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://github.com/RUCAIBox/Slow_Thinking_with_LLMs
https://github.com/RUCAIBox/Slow_Thinking_with_LLMs


Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
2025. URL https://arxiv.org/abs/2502.02737.

Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chalamala,
Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and Ce Zhang.
RedPajama: an open dataset for training large language models. NeurIPS Datasets and Benchmarks
Track, 2024.

Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small LLMs: What works
and what doesn’t, 2025. URL https://arxiv.org/abs/2503.16219.

Intelligent Internet. II-Thought : A large-scale, high-quality reasoning dataset, 2025.
Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighteval:
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Appendix

A Additional Experimental Details

A.1 Key Resa Model Configurations

Table 5 details the configurations used to create each of our main Resa models in this paper.

Table 5: Configurations of Main Resa Models Each row corresponds to a Resa model and outlines
the components used in SAE-Tuning. The bolded rows represent a key configuration where reasoning
abilities are extracted from the base R1-Distill model itself and then instilled back into the same
model.

MAIN MODEL SOURCE MODEL TARGET MODEL TRIGGER DATA ELICITATION DATA SAE TRAINING MODE

Resa-STILL-v1 (in Table 1) Tina-STILL R1-Distill STILL STILL Fine-tuned

Resa-STILL-v2 (in Table 2) - R1-Distill - STILL Pre-trained

Resa-STILL-v3 (in Table 2) Tina-STILL R1-Distill STILL STILL Trained-from-Scratch

Resa-STILL-v4 (in Table 2) R1-Distill R1-Distill STILL STILL Fine-tuned

Resa-STILL-v5 (in Table 2) R1-Distill R1-Distill STILL STILL Trained-from-Scratch
Resa-DeepScaleR-v1 (in Table 1) Tina-DeepScaleR R1-Distill DeepScaleR DeepScaleR Fine-tuned

Resa-DeepScaleR-v2 (in Table 2) Tina-DeepScaleR R1-Distill DeepScaleR DeepScaleR Trained-from-Scratch

Resa-DeepScaleR-v3 (in Table 2) R1-Distill R1-Distill DeepScaleR DeepScaleR Trained-from-Scratch
Resa-DeepScaleR-v4 (in Table 4) Tina-STILL R1-Distill STILL DeepScaleR Fine-tuned

A.2 Practical Implementation Setup

Table 6: Computational Cost Breakdown We provide a detailed cost breakdown of all experiments
in this paper. Notice that the training cost estimate includes the costs for training both models and
SAEs.

EXPERIMENTAL TASK TRAINING COST EST. EVALUATION COST EST. TOTAL COST EST.
Main: Resa-STILL-v1 (in Table 1) $1 $4 $5

Main: Resa-STILL-v2 (in Table 2) $1 $4 $5

Main: Resa-STILL-v3 (in Table 2) $1 $4 $5

Main: Resa-STILL-v4 (in Table 2) $1 $4 $5

Main: Resa-STILL-v5 (in Table 2) $1 $4 $5

Main: Resa-DeepScaleR-v1 (in Table 1) $1 $6 $7

Main: Resa-DeepScaleR-v2 (in Table 2) $1 $6 $7

Main: Resa-DeepScaleR-v3 (in Table 2) $1 $6 $7

Main: Resa-DeepScaleR-v4 (in Table 4) $1 $6 $7

Ablation: Algorithm (in Table 1) $2 $10 $12

Ablation: Source Model (in Table 2) $14 $60 $74

Ablation: SAE Training Mode (in Table 2) $3 $12 $15

Hypothesis: Generality (in Table 4) $7 $35 $42

Hypothesis: Modularity (in Table 4) $102 $8 $120

Hypothesis: Transparency (in Table 8) $26 $104 $130

Total: All Tasks $163 $273 $436
Total: Main Tasks $9 $44 $53
Total: Best Resa Model $1 $4 $5

Evaluation Setup All evaluations reported herein utilize the lighteval framework (Habib et al.,
2023) integrated with the vLLM (Kwon et al., 2023) inference engine for efficiency. We maintain a
fixed hardware configuration (two GPUs) and apply a standardized set of vLLM inference parameters
across all evaluated models. All scores are zero-shot Pass@1 performance. Particularly, we evaluate
the reasoning abilities of models across a diverse suite of six reasoning benchmarks, primarily
focused on mathematical and scientific reasoning: AIME24/25 (Art of Problem Solving, 2024),

13



AMC23 (Art of Problem Solving, 2023), MATH500 (Hendrycks et al., 2021; Lightman et al.,
2023), Minerva (Lewkowycz et al., 2022), and GPQA Diamond (short as GPQA in this rest of the
paper) (Rein et al., 2024).

Overall Budget A primary motivation for developing SAE-Tuning is to democratize research into
reasoning models by establishing a low-cost and high-efficiency paradigm via SAEs. We deliberately
constrain our setup to a minimal hardware footprint, using just 2 NVIDIA L40S or NVIDIA RTX
6000 Ada GPUs for all training and evaluation tasks. This setup is readily accessible on major cloud
platforms, with an approximate cost of $1 USD per GPU hour at the time of our experiments. As
detailed in Table 6, this approach demonstrates high cost-efficiency. We believe this setup provides a
valuable testbed for the broader research community.

A.3 Full Hyperparameter

We show our default choice of hyperparameters in Table 7. The differences between main and
ablation experiments largely lie in the hyperparameters we ablate over, which means that most of
following hyperparameters are held constant across all experiments.

Table 7: Default Hyperparameter Settings of SAE-Tuning (Top) The default setting of SAE
training. (Bottom) The default setting of SAE-Guided SFT.

SAE-Tuning Stage I: SAE Training

Number of features 65536
Dead feature threshold 1e6
Expansion factor 64
Top-k value 32
Decoder normalization True

Optimizer Signum
Epochs 1
Batch Size 16
Learning Rate 2.5e-4
Learning Rate Scheduler Constant

SAE-Tuning Stage II: SAE-Guided SFT

LoRA Modules query, key, value, dense
LoRA Rank 32
LoRA α 128
LoRA Dropout 0.05

Optimizer AdamW
Optimizer Momentum β1, β2 = 0.9, 0.999
Epochs 2
Batch Size 1
Learning Rate 1e-6
Learning Rate Scheduler Cosine with Min LR
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B Additional Experiment Results

B.1 Hypothesis: Layerwise Reasoning Feature Extraction

A claim of SAE-Tuning is that it provides a transparent approach to reasoning. Having demonstrated
that it works, we now investigate how it works. We notice that the performance varies not only
depending on the source model but also depending on the specific layer chosen of the source
model for SAE training. This moves us beyond heuristics for SAE layer selection to a hypothesis:
The suitability of a model layer for reasoning is predictable and correlated with the presence of
quantifiable reasoning features. To test this hypothesis, we introduce a novel prompt-only reasoning
feature extraction method and use it to establish the underlying correlation between these features
and reasoning performance.
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Figure 3: Reasoning Feature Extraction (Left) This shows the layer-wise feature counts of the
base R1-Distill model. (Middle) This shows the layer-wise feature counts of the Tina-STILL model.
(Right) This shows the reasoning performance of the trained Resa models with different layer-wise
SAEs when Tina-STILL is the source model.

Prompt-Only Reasoning Feature Extraction We propose a novel method to explicitly identify and
quantify “reasoning features” and test if their distribution predicts the final performance of a Resa
model. We hypothesize that features specifically involved in reasoning should activate primarily when
the model is prompted to “think.” Specifically, we pass the standard DeepSeek-R1 system prompt
containing <think> and </think> tokens through a model equipped with trained SAEs inserted
after each layer indexed from 2 to 27. We cut off the first and final layer from the total 28 layers since
these two layers are mainly used for embedding and next token prediction, respectively. We then
define reasoning features as those SAE features that are exclusively and simultaneously activated at
the <think> and </think> tokens and not by other parts of the prompt. Applying this method to
the base R1-Distill model revealed an interesting pattern that the layer-wise count of these reasoning
features exhibits a tri-modal distribution around layer indices 3, 12, and 20 as shown in Figure 3.

Feature Counts v.s. Reasoning Performance Correlation To test the hypothesis that this feature
count distribution can predict reasoning performance, we conducted a large-scale study that we
created 26 different Resa-STILL models, with each one generated by applying SAE-Tuning to a
different layer of Tina-STILL, from layer 2 to 27. The results in Table 8 confirm that the choice of
SAE hookpoint is critical. The average reasoning score fluctuates significantly, ranging from a low
of 45.48% (Layer 14) to a high of 49.42% (Layer 18). Also, a naive interpretation, assuming more
reasoning features equals better performance, is proven false. For instance, Layer 18 yields the top
performance (49.42%) but has 0 identified reasoning features, while Layer 19 has the most features
(5) but achieves a lower score (47.66%). This validates our earlier finding that the source of reasoning
features is nuanced.

Such result indicates a more complex relationship between reasoning features and reasoning abilities
exists. The key insight to discover such relationship comes from analyzing the overall distributions
rather than single points. Just as the feature counts across layers form a tri-modal distribution, so
does the final reasoning performance. Therefore, we fit a 3-component Gaussian Mixture Model
(3-GMM) to both distributions: (1) the a priori reasoning feature counts from the base model, and (2)
the final reasoning scores from our 26 Resa models. The GMM analysis reveals an interesting and
close structural alignment between the two GMM distributions. The means of the three Gaussian
components for the feature count distribution are located near layers 4.9, 14.5, and 22.7. The
reasoning performance distribution’s components cluster around nearly identical means at layers 5.6,
15.1, and 23.0. This similarity extends to the component weights, which represent the proportion
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Table 8: SAE Hookpoints Ablation Performance evaluation of Resa-STILL models where SAE-
Tuning is applied to each layer indexed from 2 to 27 individually. Feature Cnts. is the number of
identified reasoning features in the corresponding layer of the Tina-STILL model. More detailed
results are shown in Appendix B.6.

MODEL NAME AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG. Feature Cnts.
Resa-STILL-2nd-Layer 26.67 30.00 80.00 83.20 29.78 37.37 47.84 1

Resa-STILL-3rd-Layer 26.67 36.67 70.00 83.40 28.31 33.84 46.48 4

Resa-STILL-4th-Layer 33.33 20.00 80.00 83.80 28.68 36.87 47.11 3

Resa-STILL-5th-Layer 40.00 23.33 70.00 83.20 26.84 44.95 48.05 2

Resa-STILL-6th-Layer 33.33 23.33 72.50 83.40 31.62 35.35 46.59 2

Resa-STILL-7th-Layer 26.67 26.67 77.50 81.60 27.94 35.86 46.04 3

Resa-STILL-8th-Layer 20.00 23.33 82.50 85.20 29.78 33.33 45.69 0

Resa-STILL-9th-Layer 36.67 20.00 80.00 84.20 27.57 34.34 47.13 3

Resa-STILL-10th-Layer 36.67 23.33 67.50 84.80 29.78 37.37 46.58 3

Resa-STILL-11th-Layer 26.67 36.67 77.50 83.80 31.25 32.83 48.12 1

Resa-STILL-12th-Layer 30.00 26.67 77.50 84.60 31.99 34.85 47.60 1

Resa-STILL-13th-Layer 33.33 33.33 75.00 83.80 29.41 28.79 47.28 3

Resa-STILL-14th-Layer 33.33 20.00 77.50 83.60 28.68 29.80 45.48 3

Resa-STILL-15th-Layer 36.67 23.33 80.00 84.80 30.15 38.89 48.97 3

Resa-STILL-16th-Layer 30.00 20.00 80.00 85.00 30.15 34.85 46.67 0

Resa-STILL-17th-Layer 43.33 16.67 77.50 83.80 30.88 36.36 48.09 3

Resa-STILL-18th-Layer 43.33 20.00 77.50 84.00 33.82 37.88 49.42 0

Resa-STILL-19th-Layer 33.33 30.00 72.50 84.20 29.04 36.87 47.66 5

Resa-STILL-20th-Layer 33.33 23.33 75.00 85.00 29.04 29.29 45.83 3

Resa-STILL-21st-Layer 30.00 33.33 75.00 84.60 27.57 36.87 47.90 0

Resa-STILL-22nd-Layer 33.33 23.33 75.00 82.20 31.99 34.34 46.70 1

Resa-STILL-23rd-Layer 30.00 20.00 80.00 82.00 29.04 35.35 46.07 2

Resa-STILL-24th-Layer 36.67 20.00 77.50 83.80 30.51 29.80 46.38 2

Resa-STILL-25th-Layer 40.00 30.00 70.00 84.20 28.68 37.88 48.46 1

Resa-STILL-26th-Layer 36.67 20.00 65.00 85.60 30.88 36.87 45.84 2

Resa-STILL-27th-Layer 30.00 36.67 67.50 83.00 27.94 40.40 47.59 2

of layers belonging to each cluster. The feature distribution’s weights (41%, 37%, 22%) are closely
mirrored by the reasoning performance distribution’s weights (39%, 37%, 24%). The overall spread
of the two distributions, as measured by entropy, are nearly identical (3.194 for feature counts vs.
3.202 for reasoning performance). This suggests that while a single layer’s feature count may not be
a good predictor, the overall structure of how reasoning is organized into three distinct layer-clusters
within the model is a robust predictor of how performance will be distributed. In practice, one can
therefore analyze the source model’s feature distribution to strategically identify layer-clusters likely
to yield high-performing models, providing a data-driven and transparent method for optimizing the
SAE-Tuning process.

B.2 Full Results of Table 1

In the following tables, we present the full performance evaluation results of models in Table 1.

Table 9: Performance of Resa-STILL-v1 Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 20.00 33.33 75.00 82.60 29.78 33.33 45.67

1500 33.33 23.33 75.00 82.80 30.88 30.81 46.03

2000 33.33 33.33 75.00 83.80 29.41 28.79 47.28

2500 30.00 23.33 77.50 84.20 26.47 33.33 45.81
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Table 10: Performance of Resa-DeepScaleR-v1 Each epoch contains 2630 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
500 30.00 30.00 67.50 84.00 28.68 32.32 45.42

1000 16.67 10.00 67.50 83.00 30.15 37.88 40.87

1500 23.33 20.00 70.00 84.40 27.57 37.88 43.86

2000 33.33 23.33 70.00 86.00 29.04 36.87 46.43

2500 36.67 23.33 85.00 83.00 32.35 33.33 48.95

3000 20.00 26.67 65.00 83.80 30.51 35.86 43.64

3500 23.33 23.33 70.00 81.80 30.15 36.36 44.16

4000 33.33 13.33 72.50 83.80 29.41 36.36 44.79

4500 36.67 13.33 70.00 83.80 27.94 31.31 43.84

5000 30.00 23.33 67.50 84.40 28.68 32.32 44.37

Table 11: Performance of STILL-CoT-free-SFT Each epoch contains 936 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
500 20.00 16.67 60.00 81.20 29.78 26.36 39.00

1000 23.33 16.67 62.50 77.20 26.47 26.26 38.74

1500 13.33 10.00 60.00 74.00 28.68 27.78 35.63

Table 12: Performance of DeepScaleR-CoT-based-SFT Each epoch contains 2520 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 10.00 6.67 57.50 68.60 20.22 36.36 33.22

2000 16.67 6.67 52.50 67.40 21.69 28.28 32.20

3000 10.00 6.67 37.50 64.20 25.37 32.32 29.34

4000 10.00 6.67 35.00 61.80 22.79 27.78 27.34

5000 10.00 0.00 32.50 64.40 23.53 29.29 26.62

6000 0.00 6.67 40.00 64.00 23.53 28.79 27.16

7000 10.00 0.00 42.50 60.20 20.22 25.76 26.45
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B.3 Full Results of Table 2

In the following tables, we present the full performance evaluation results of models in Table 2.

Table 13: Performance of Resa-STILL-Pretrained-SAE Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 23.33 23.33 72.50 85.40 30.51 34.85 44.99

1500 20.00 20.00 75.00 81.40 29.78 30.30 42.75

2000 23.33 23.33 67.50 83.60 29.78 35.86 43.90

2500 23.33 26.67 67.50 83.00 25.74 34.34 43.43

Table 14: Performance of Resa-STILL-Trained-from-Scratch-SAE Each epoch contains 1448
Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 30.00 20.00 67.50 84.40 28.31 34.85 44.18

1500 33.33 33.33 70.00 83.00 30.15 34.34 47.36

2000 33.33 26.67 72.50 81.60 30.51 29.29 45.65

2500 30.00 23.33 70.00 85.60 32.35 33.33 45.77

Table 15: Performance of Resa-STILL-Tina-0-step (Fine-tuned SAE) Each epoch contains 1448
Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 23.33 23.33 77.50 82.20 28.31 31.82 44.42

1500 30.00 16.67 77.50 80.40 31.25 29.80 44.27

2000 33.33 16.67 65.00 83.40 27.21 34.85 43.41

2500 23.33 20.00 77.50 84.60 27.57 35.35 44.73
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Table 16: Performance of Resa-STILL-Tina-1-step (Fine-tuned SAE) Each epoch contains 1448
Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 26.67 20.00 67.50 84.00 29.04 35.35 43.76

1500 40.00 26.67 70.00 83.20 31.62 36.36 47.98

2000 26.67 26.67 65.00 83.40 27.94 36.36 44.34

2500 36.67 23.33 65.00 84.00 30.88 36.36 46.04

Table 17: Performance of Resa-STILL-Tina-10-step (Fine-tuned SAE) Each epoch contains 1448
Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 30.00 16.67 67.50 83.80 31.62 32.32 43.65

1500 23.33 23.33 75.00 82.20 29.41 33.33 44.43

2000 23.33 23.33 62.50 84.20 27.57 34.85 42.63

2500 20.00 20.00 70.00 84.20 27.94 35.86 43.00

Table 18: Performance of Resa-STILL-Tina-50-step (Fine-tuned SAE) Each epoch contains 1448
Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 26.67 23.33 70.00 83.00 28.68 38.89 45.09

1500 20.00 26.67 65.00 84.60 30.51 34.85 43.60

2000 30.00 33.33 67.50 82.80 30.15 36.36 46.69

2500 33.33 26.67 72.50 82.60 27.57 38.89 46.93

Table 19: Performance of Resa-STILL-Tina-100-step (Fine-tuned SAE) Each epoch contains
1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 43.33 23.33 82.50 85.60 28.68 33.33 49.46

1500 40.00 23.33 72.50 84.60 25.74 32.32 46.42

2000 30.00 16.67 70.00 85.40 33.09 33.33 44.75

2500 23.33 23.33 72.50 84.40 30.15 36.36 45.01

Table 20: Performance of Resa-STILL-Tina-500-step (Fine-tuned SAE) Each epoch contains
1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 36.67 26.67 80.00 83.80 31.62 31.82 48.43

1500 30.00 23.33 82.50 84.20 31.62 36.36 48.00

2000 36.67 26.67 70.00 85.60 31.99 38.89 48.30

2500 26.67 20.00 72.50 82.20 28.31 35.86 44.26

Table 21: Performance of Resa-STILL-Tina-3000-step (Fine-tuned SAE) Each epoch contains
1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 30.00 20.00 75.00 83.00 26.84 32.32 44.53

1500 26.67 23.33 72.50 85.40 27.94 34.85 45.11

2000 26.67 26.67 72.50 83.60 27.57 30.81 44.64

2500 23.33 26.67 67.50 82.60 30.51 36.36 44.49
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Table 22: Performance of Resa-STILL-Tina-0-step (Trained-from-Scratch SAE) Each epoch
contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 33.33 26.67 70.00 87.00 29.41 41.92 48.06

1500 23.33 23.33 70.00 84.00 29.78 34.85 44.22

2000 36.67 23.33 72.50 83.40 28.68 36.87 46.91

2500 43.33 23.33 65.00 84.20 27.94 29.80 45.60

Table 23: Performance of Resa-STILL-Tina-1-step (Trained-from-Scratch SAE) Each epoch
contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 30.00 23.33 75.00 83.80 25.74 34.85 45.45

1500 26.67 23.33 72.50 85.00 29.78 38.38 45.94

2000 33.33 23.33 65.00 82.00 29.78 34.85 44.72

2500 33.33 33.33 72.50 82.20 29.41 35.35 47.69

Table 24: Performance of Resa-STILL-Tina-10-step (Trained-from-Scratch SAE) Each epoch
contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 26.67 20.00 67.50 85.80 28.31 36.87 44.19

1500 33.33 16.67 67.50 86.20 30.51 37.37 45.26

2000 33.33 23.33 67.50 84.40 29.41 32.32 45.05

2500 26.67 30.00 62.50 82.20 26.84 34.85 43.84

Table 25: Performance of Resa-STILL-Tina-50-step (Trained-from-Scratch SAE) Each epoch
contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 36.67 23.33 80.00 84.20 28.68 35.86 48.12

1500 23.33 33.33 72.50 84.00 27.21 35.86 46.04

2000 30.00 30.00 70.00 83.20 32.72 37.37 47.22

2500 43.33 23.33 77.50 83.40 29.41 38.89 49.31

Table 26: Performance of Resa-STILL-Tina-100-step (Trained-from-Scratch SAE) Each epoch
contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 33.33 23.33 90.00 82.60 28.68 35.35 48.88

1500 46.67 20.00 62.50 83.00 28.31 31.31 45.30

2000 36.67 20.00 75.00 83.20 30.51 38.38 47.29

2500 30.00 23.33 65.00 83.20 29.04 35.35 44.32

Table 27: Performance of Resa-STILL-Tina-500-step (Trained-from-Scratch SAE) Each epoch
contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 23.33 20.00 75.00 84.60 30.51 33.84 44.55

1500 30.00 20.00 70.00 83.80 30.51 32.32 44.44

2000 36.67 20.00 67.50 84.20 30.88 35.35 45.77

2500 20.00 23.33 67.50 82.80 28.68 35.35 42.94
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Table 28: Performance of Resa-STILL-Tina-3000-step (Trained-from-Scratch SAE) Each epoch
contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 16.67 23.33 65.00 83.60 30.88 34.85 42.39

1500 30.00 20.00 77.50 86.20 31.62 37.88 47.20

2000 33.33 26.67 65.00 85.20 31.62 35.35 46.20

2500 20.00 26.67 67.50 82.40 28.68 32.83 43.01

Table 29: Performance of Resa-DeepScaleR-Best-Tina-1000-step (Trained-from-Scratch SAE)
Each epoch contains 1914 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 30.00 23.33 70.00 86.40 27.94 32.83 45.08

1500 33.33 23.33 80.00 86.00 30.51 31.31 47.41

2000 30.00 16.67 77.50 83.60 28.31 31.82 44.65

2500 23.33 20.00 75.00 82.00 29.78 36.36 44.41

3000 26.67 16.67 72.50 83.20 31.62 33.33 44.00

3500 30.00 23.33 75.00 85.80 27.94 30.80 45.48

Table 30: Performance of Resa-DeepScaleR-Tina-0-step (Trained-from-Scratch SAE) Each
epoch contains 1914 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 26.67 16.67 75.00 84.60 28.68 31.80 43.90

1500 36.67 30.00 77.50 83.80 29.41 31.26 48.11

2000 23.33 20.00 82.50 82.40 28.68 34.36 45.21

2500 33.33 23.33 67.50 83.00 29.04 32.43 44.77

3000 40.00 20.00 72.50 84.40 26.47 35.35 46.45

3500 40.00 30.00 75.00 84.00 30.15 33.33 48.75
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B.4 Full Results of Table 3

Table 31: Performance of Resa-STILL-OctoThinker-3B-Base-Long Each epoch contains 1063
Steps.

CHECKPOINT STEPS AMC23 MATH500
500 10.00 30.20

1000 12.50 30.00

1500 10.00 28.60

2000 22.50 30.00

2500 12.50 30.20

Table 32: Performance of Resa-STILL-OctoThinker-3B-Base-Short Each epoch contains 1063
Steps.

CHECKPOINT STEPS AMC23 MATH500
500 27.50 38.20

1000 20.00 37.60

1500 17.50 38.20

2000 10.00 38.20

2500 22.50 35.80

Table 33: Performance of Resa-STILL-OctoThinker-3B-Base-Hybrid Each epoch contains 1063
Steps.

CHECKPOINT STEPS AMC23 MATH500
500 20.00 34.80

1000 27.50 40.80

1500 20.00 39.20

2000 27.50 37.40

2500 17.50 42.00
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B.5 Full Results of Table 4

In the following tables, we present the full performance evaluation results of models in Table 4.

Table 34: Performance of Resa-STILL2DeepScaleR Each epoch contains 1914 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
500 33.33 30.00 80.00 84.00 29.41 35.86 48.77

1000 33.33 23.33 70.00 84.80 29.41 32.83 45.62

1500 26.67 13.33 67.50 83.80 31.25 36.87 43.24

2000 26.67 23.33 70.00 83.20 28.68 34.34 44.37

2500 33.33 16.67 70.00 82.40 27.57 35.35 44.22

3000 30.00 26.67 57.50 83.20 28.68 37.37 43.90

3500 26.67 13.33 77.50 83.20 28.31 34.85 43.98

4000 30.00 23.33 60.00 84.40 26.84 37.37 43.66

4500 36.67 20.00 75.00 83.80 27.94 37.37 46.80

5000 36.67 20.00 72.50 84.00 26.84 31.82 45.31

Table 35: Performance of Resa-STILL2Open-S1 Each epoch contains 1063 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
500 23.33 20.00 72.50 84.00 30.51 32.83 43.86

1000 36.67 23.33 85.00 84.60 30.88 31.82 48.72

1500 33.33 26.67 72.50 83.40 29.41 39.90 47.54

2000 30.00 26.67 75.00 84.00 30.88 37.88 47.41

Table 36: Performance of Resa-STILL2II-Thought Each epoch contains 2664 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 30.00 20.00 75.00 84.60 27.21 34.34 45.19

2000 40.00 23.33 75.00 83.20 31.25 38.89 48.61

3000 26.67 23.33 75.00 85.20 28.31 36.36 45.81

4000 26.67 13.33 67.50 85.80 27.94 41.41 43.78

5000 26.67 20.00 72.50 85.60 29.41 37.37 45.26
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Table 37: Performance of Resa-STILL2OpenR1 Each epoch contains 4911 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 33.33 16.67 72.50 84.00 31.99 40.91 46.57

2000 33.33 30.00 77.50 86.80 27.21 41.92 49.46

3000 30.00 30.00 72.50 84.60 29.04 33.84 46.66

4000 33.33 23.33 65.00 84.20 29.04 34.34 44.88

5000 33.33 23.33 67.50 84.40 28.68 32.32 44.93

6000 20.00 20.00 72.50 84.20 28.68 31.31 42.78

7000 23.33 20.00 67.50 81.40 30.88 37.88 43.50

8000 33.33 23.33 72.50 80.40 26.10 35.86 45.25

9000 30.00 23.33 70.00 83.60 27.94 30.81 44.28

Table 38: Performance of Resa-STILL-Qwen-Math-Adapter Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 36.67 20.00 82.50 83.40 31.25 33.33 47.86

1500 36.67 16.67 67.50 86.20 31.25 34.85 45.52

2000 40.00 20.00 72.50 84.60 30.15 32.32 46.60

2500 26.67 16.67 72.50 84.60 26.84 35.86 43.86

Table 39: Performance of Resa-STILL-Qwen-Adapter Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 30.00 30.00 72.50 85.60 31.25 35.86 47.54

1500 20.00 20.00 72.50 83.00 30.15 35.35 43.50

2000 26.67 30.00 67.50 84.60 25.74 32.83 44.56

2500 30.00 16.67 70.00 83.60 29.78 34.34 44.07
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B.6 Full Results of Table 8

In the following tables, we present the full performance evaluation results of models in Table 8.

Table 40: Performance of Resa-STILL-2nd-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 26.67 20.00 70.00 85.00 29.41 32.32 43.90

1500 26.67 16.67 70.00 82.40 26.84 31.31 42.31

2000 26.67 30.00 80.00 83.20 29.78 37.37 47.84

2500 16.67 23.33 67.50 86.00 32.35 34.34 43.37

Table 41: Performance of Resa-STILL-3rd-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 20.00 20.00 82.50 84.60 24.26 32.32 43.95

1500 26.67 36.67 70.00 83.40 28.31 33.84 46.48

2000 33.33 23.33 70.00 83.40 28.68 33.84 45.43

2500 26.67 16.67 72.50 84.60 31.25 30.30 43.66

Table 42: Performance of Resa-STILL-4th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 26.67 16.67 67.50 84.20 28.31 40.91 44.04

1500 33.33 20.00 80.00 83.80 28.68 36.87 47.11

2000 36.67 23.33 70.00 83.20 27.57 34.85 45.94

2500 40.00 20.00 72.50 83.80 30.88 31.31 46.42
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Table 43: Performance of Resa-STILL-5th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 26.67 20.00 75.00 80.80 29.41 32.32 44.03

1500 30.00 16.67 72.50 82.80 30.51 30.81 43.88

2000 40.00 23.33 70.00 83.20 26.84 44.95 48.05

2500 33.33 26.67 70.00 83.60 29.41 31.31 45.72

Table 44: Performance of Resa-STILL-6th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 20.00 20.00 75.00 85.60 27.57 39.90 44.68

1500 30.00 20.00 80.00 83.20 30.88 31.31 45.90

2000 33.33 23.33 72.50 83.40 31.62 35.35 46.59

2500 30.00 16.67 72.50 82.60 27.94 38.38 44.68

Table 45: Performance of Resa-STILL-7th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 33.33 20.00 72.50 83.40 31.62 30.30 45.19

1500 26.67 26.67 77.50 81.60 27.94 35.86 46.04

2000 23.33 20.00 70.00 82.60 29.78 40.91 44.44

2500 30.00 33.33 67.50 83.20 24.63 36.36 45.84

Table 46: Performance of Resa-STILL-8th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 20.00 23.33 82.50 85.20 29.78 33.33 45.69

1500 16.67 23.33 70.00 82.60 27.21 34.34 42.36

2000 30.00 20.00 70.00 83.20 28.31 37.88 44.90

2500 16.67 20.00 72.50 81.00 29.04 28.79 41.33

Table 47: Performance of Resa-STILL-9th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 20.00 36.67 77.50 84.20 25.37 37.88 46.94

1500 36.67 20.00 75.00 83.80 28.31 34.34 46.35

2000 36.67 20.00 80.00 84.20 27.57 34.34 47.13

2500 26.67 26.67 67.50 83.80 27.57 38.89 45.18

Table 48: Performance of Resa-STILL-10th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 26.67 23.33 75.00 84.60 27.21 33.84 45.11

1500 36.67 23.33 67.50 84.80 29.78 37.37 46.58

2000 23.33 23.33 75.00 84.20 29.41 25.25 43.42

2500 36.67 23.33 70.00 83.20 29.41 36.36 46.50
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Table 49: Performance of Resa-STILL-11th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 26.67 36.67 77.50 83.80 31.25 32.83 48.12

1500 26.67 33.33 75.00 84.60 30.51 34.34 47.41

2000 30.00 23.33 67.50 84.60 31.99 45.45 47.15

2500 20.00 26.67 72.50 83.60 33.09 33.84 44.95

Table 50: Performance of Resa-STILL-12th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 36.67 23.33 70.00 82.20 29.04 34.34 45.93

1500 20.00 23.33 72.50 84.60 26.84 40.40 44.61

2000 30.00 30.00 72.50 82.60 30.51 32.83 46.41

2500 30.00 26.67 77.50 84.60 31.99 34.85 47.60

Table 51: Performance of Resa-STILL-13th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 20.00 33.33 75.00 82.60 29.78 33.33 45.67

1500 33.33 23.33 75.00 82.80 30.88 30.81 46.03

2000 33.33 33.33 75.00 83.80 29.41 28.79 47.28

2500 30.00 23.33 77.50 84.20 26.47 33.33 45.81

Table 52: Performance of Resa-STILL-14th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 33.33 20.00 77.50 83.60 28.68 29.80 45.48

1500 26.67 26.67 70.00 84.80 26.84 30.81 44.30

2000 23.33 16.67 72.50 83.80 28.31 34.34 43.16

2500 33.33 23.33 65.00 82.80 30.88 32.32 44.61

Table 53: Performance of Resa-STILL-15th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 36.67 23.33 80.00 84.80 30.15 38.89 48.97

1500 26.67 26.67 72.50 84.40 30.51 31.82 45.43

2000 36.67 20.00 72.50 82.00 29.04 36.36 46.10

2500 30.00 16.67 67.50 83.80 32.72 36.87 44.59

Table 54: Performance of Resa-STILL-16th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 23.33 16.67 72.50 85.40 30.15 38.89 44.49

1500 30.00 20.00 65.00 83.40 29.78 32.83 43.50

2000 30.00 20.00 80.00 85.00 30.15 34.85 46.67

2500 30.00 20.00 70.00 82.80 30.15 38.38 45.22
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Table 55: Performance of Resa-STILL-17th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 33.33 30.00 67.50 85.40 30.88 36.36 47.25

1500 33.33 13.33 67.50 83.00 30.88 35.86 43.98

2000 36.67 23.33 65.00 83.20 31.25 34.85 45.72

2500 43.33 16.67 77.50 83.80 30.88 36.36 48.09

Table 56: Performance of Resa-STILL-18th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 43.33 20.00 77.50 84.00 33.82 37.88 49.42

1500 26.67 20.00 75.00 83.00 29.41 35.86 44.99

2000 23.33 23.33 75.00 83.40 33.82 38.38 46.21

2500 43.33 23.33 72.50 84.40 29.04 31.82 47.40

Table 57: Performance of Resa-STILL-19th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 40.00 13.33 75.00 84.20 27.94 38.38 46.48

1500 30.00 23.33 72.50 83.20 30.15 35.35 45.76

2000 33.33 30.00 72.50 84.20 29.04 36.87 47.66

2500 26.67 23.33 75.00 84.80 28.68 35.35 45.64

Table 58: Performance of Resa-STILL-20th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 26.67 33.33 70.00 83.60 27.21 31.82 45.44

1500 33.33 23.33 75.00 85.00 29.04 29.29 45.83

2000 20.00 30.00 65.00 83.60 28.31 27.27 42.36

2500 40.00 20.00 67.50 82.80 27.94 33.84 45.35

Table 59: Performance of Resa-STILL-21st-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 30.00 33.33 75.00 84.60 27.57 36.87 47.90

1500 33.33 16.67 72.50 84.20 30.51 30.81 44.67

2000 40.00 20.00 62.50 81.80 29.41 34.85 44.76

2500 23.33 30.00 70.00 84.00 30.88 33.84 45.34

Table 60: Performance of Resa-STILL-22nd-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 33.33 23.33 75.00 82.20 31.99 34.34 46.70

1500 30.00 26.67 70.00 83.20 31.62 35.86 46.23

2000 23.33 16.67 70.00 83.80 31.25 34.85 43.32

2500 23.33 20.00 72.50 85.80 29.04 39.39 45.01
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Table 61: Performance of Resa-STILL-23rd-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 30.00 20.00 72.50 83.80 28.31 32.32 44.49

1500 30.00 20.00 80.00 82.00 29.04 35.35 46.07

2000 23.33 23.33 60.00 84.80 27.57 37.37 42.73

2500 23.33 23.33 67.50 85.00 29.78 43.43 45.40

Table 62: Performance of Resa-STILL-24th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 36.67 20.00 77.50 83.80 30.51 29.80 46.38

1500 20.00 16.67 65.00 85.20 29.41 34.85 41.86

2000 26.67 33.33 67.50 85.40 30.15 33.33 46.06

2500 33.33 16.67 75.00 82.80 29.78 33.33 45.15

Table 63: Performance of Resa-STILL-25th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 40.00 30.00 70.00 84.20 28.68 37.88 48.46

1500 30.00 26.67 67.50 83.20 29.41 35.86 45.44

2000 23.33 16.67 75.00 82.80 30.88 36.36 44.17

2500 30.00 26.67 67.50 84.60 27.57 34.34 45.11
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Table 64: Performance of Resa-STILL-26th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 36.67 20.00 65.00 85.60 30.88 36.87 45.84

1500 26.67 16.67 75.00 83.60 30.15 33.33 44.24

2000 26.67 23.33 67.50 84.40 27.21 35.86 44.16

2500 30.00 23.33 70.00 83.00 31.62 36.87 45.80

Table 65: Performance of Resa-STILL-27th-Layer Each epoch contains 1448 Steps.

CHECKPOINT STEPS AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
1000 16.67 26.67 65.00 82.80 30.51 34.85 42.75

1500 33.33 23.33 72.50 82.80 31.62 36.87 46.74

2000 36.67 30.00 62.50 83.00 27.94 33.84 45.66

2500 30.00 36.67 67.50 83.00 27.94 40.40 47.59
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