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ABSTRACT

Pre-trained deep protein models have become essential tools in fields such as
biomedical research, enzyme engineering, and therapeutics due to their ability
to predict and optimize protein properties effectively. However, the diverse and
broad training data used to enhance the generalizability of these models may also
inadvertently introduce ethical risks and pose biosafety concerns, such as the en-
hancement of harmful viral properties like transmissibility or drug resistance. To
address this issue, we introduce a novel approach using knowledge unlearning to
selectively remove virus-related knowledge while retaining other useful capabil-
ities. We propose a learning scheme, PROEDIT, for editing a pre-trained protein
language model toward safe and responsible mutation effect prediction. Extensive
validation on open benchmarks demonstrates that PROEDIT significantly reduces
the model’s ability to enhance the properties of virus mutants without compro-
mising its performance on non-virus proteins. As the first thorough exploration of
safety issues in deep learning solutions for protein engineering, this study provides
a foundational step toward ethical and responsible AI in biology.

1 INTRODUCTION

Figure 1: Positive Relationship of A
model’s overall performance vs Virus-
related performance on mutation effect
prediction. Data source: https://
proteingym.org/benchmarks

Pre-trained deep protein models are playing an increas-
ingly important role in biological research (Narayanan
et al., 2021; Pucci et al., 2022). By learning from massive
amounts of existing protein data, these models uncover
hidden relationships between protein sequences, struc-
tures, functions, and dynamics. Remarkable successes
have been witnessed in diverse applications, such as en-
zyme design (Madani et al., 2023; Zhou et al., 2024b) and
antibody screening (Wang et al., 2024a; He et al., 2024).

Similar to natural language processing, pre-trained pro-
tein models often require training on billions of sequences
with large-scale models to enhance expressivity and gen-
eralizability, achieving top performance across down-
stream tasks (Laine et al., 2019; Notin et al., 2022b; Lin
et al., 2023b). This framework has been widely applied
in solving problems in molecule design, where labels are
usually scarce, expensive, or nonexistent. For instance,
in enzyme engineering, mutation effect prediction (Notin
et al., 2024) uses pre-trained models to score and rank the fitness of mutants relative to arbitrary
wild-type proteins. Deep learning models guide proteins to modify toward enhanced functionali-
ties such as activity, stability, and yield. Compared to previous rational design or simulation-based
methods, they significantly improve mutation design success rates and reduce experimental costs
by recommending better mutation strategies, while not relying on specific biological knowledge or
experimental data (Lu et al., 2022; Li et al., 2023; Zhou et al., 2024a).

As is well known, a model’s output is directly influenced by its training data. To improve expressiv-
ity and generalization, pre-trained models typically incorporate a large and diverse dataset to learn
the parameters of the model. However, some of this knowledge may inevitably contain factual er-
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Figure 2: Illustration of the proposed PROEDIT. A pre-trained PLM is updated using three datasets
to selectively forget virus-related knowledge while retaining non-virus information. To further en-
hance PROEDIT’s ability to distinguish between virus and non-virus data, an additional dataset of
virus-like proteins is specifically prepared to guide the optimization.

rors, biases, or even harmful information. These misleading elements can severely undermine the
reliability and ethical integrity of the content generated by models pre-trained on such data. This
issue is prevalent across many domains, such as natural language processing (Wang et al., 2024b)
and computer vision (Golatkar et al., 2021).

The same concern has been raised in mutation effect prediction tasks. Figure 1 analyzes the
performance of existing models on ProteinGym leaderboard (https://proteingym.org/
benchmarks) for mutation effect prediction. It is evident that these powerful models show a strong
positive correlation between reliability in modifying arbitrary enzymes and viruses. Designing tools
capable of enhancing viral properties (e.g., transmission, immune evasion, and drug resistance) and
offering them to the public poses significant biosafety and ethical risks, such as disrupting ecological
balance, triggering severe pandemics, and fostering biological weapons.

Therefore, it is urgent and important to develop corresponding techniques to edit protein models and
allow the final models to retain their ability to effectively improve other enzymes while significantly
reducing their capacity to enhance viruses, thereby mitigating ethical risks and enhancing the safety
of research. While this issue has been preliminarily discussed in recent studies (Truong Jr & Bepler,
2023; Tan et al., 2023; Ouyang-Zhang et al., 2024; Liu et al., 2024), to the best of our knowledge,
no solution has been developed to edit the pre-trained model and address this problem.

To this end, we employ the knowledge unlearning technique (Sinitsin et al., 2019; Wang et al., 2023)
and propose PROEDIT, a learning scheme for safe and responsible protein language models (PLMs)
for mutation effect prediction. We distinguish three types of data from the UniRef database: “virus”,
“non-virus”, and “virus-like non-virus”, and construct corresponding learning objectives. A pre-
trained PLM is guided to retain its understanding of non-virus data within the retention scope while
forgetting virus-related information within the unlearning scope (Figure 2). Notably, we introduce
an additional corruption scope to ensure that the unlearned model retains the ability to understand
virus-like non-virus data. Empirically, we validate that PROEDIT significantly reduces prediction
performance on virus mutants across various virus assays while maintaining strong performance on
non-virus mutants. In contrast, existing models either improve or degrade performance on both virus
and non-virus assays simultaneously.

In summary, this work addresses mutation effect prediction–a core challenge in protein engineering–
and presents the first detailed discussion of safety issues in deep learning solutions for this task. We
propose a knowledge unlearning-based approach, which refines pre-trained models by distinguishing
among three sets of training data and unlearning specific targets. This approach reduces ethical risks,
specifically the ability of deep learning models to enhance the properties of viruses, while maintain-
ing the model’s overall performance in designing normal, non-harmful proteins. Comprehensive
validation on multiple open benchmarks demonstrates the empirical significance of our proposed
PROEDIT compared to existing solutions and ablation models in terms of effectiveness, consistency,
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and efficiency. Although this work is an initial exploration, we believe that safety concerns in AI for
biology are critically important and merit greater attention and discussion.

2 PRELIMINARY: MODEL PRE-TRAINING AND KNOWLEDGE UNLEARNING

2.1 PRE-TRAINED PROTEIN LANGUAGE MODEL FOR MUTATION EFFECT PREDICTION

PLMs are the mainstream approach for learning protein sequence representations, including both
BERT-style and GPT-style pre-training schemes. The former learns to recover masked tokens in the
input sequence, and the latter generates tokens autoregressively. For mutation effect prediction, we
implement the BERT-style approach. During training, a BERT-style model applies random masks
to the input sequence. The training objective is to find θ, the optimal parameters that minimize the
difference between the prediction of the masked amino acids (AAs) and the corresponding ground
truth, i.e.,

argmin
θ

Ex∼XEM −
∑
i∈M

log P(xi|x/M ;θ). (1)

The conditional probability P(xi|x/M ) of the i-th token xi in the sequence is based on the unmasked
part x/M . The model learns to interpret the interactions of AAs within the protein sequence.

The trained model PLMo, obtained from (1), provides a summary matrix of the probability distri-
bution for each AA in the sequence. This distribution has been shown to be effective for scoring
mutation effects, especially when there is insufficient experimental data to support supervised learn-
ing. Given the AA probability distribution obtained from a pre-trained model PLMo for a wild-
type protein, it can score relevant mutants of interest. Denote a |F |-site mutant by a set of triplets
F = {(i,Fi,wi)|i = 1, 2, . . . , |F |}, where Fi and wi are the residue types of the ith AA after and
before the point mutation, respectively. The fitness score of the mutant F is:

score(F ) =

|F |∑
i=1

log P(xi = Fi|x; PLMo)− log P(xi = wi|x; PLMo). (2)

The above zero-shot scoring function provides the log-odds ratio of mutants. Since most enzymes
lack sufficient experimental labels to train a supervised learning model, this strategy is currently the
most widely used scoring function in related research (Meier et al., 2021; Notin et al., 2024).

2.2 KNOWLEDGE UNLEARNING FOR PROTEIN LANGUAGE MODEL

Suppose an initial PLMo is trained on a collection of protein sequences with arbitrary properties Do.
For a new input x, this well-trained model can provide the corresponding output y = PLMo(x),
regardless of whether x and the associated property to modify is desired or undesired.

However, as mentioned in the previous section, protein engineering tasks desire a safe and re-
sponsible model to provide reliable enhancement strategies for normal proteins (such as industrial
enzymes), while being incapable of modifying harmful proteins (such as viruses). Formally, if
there is a set of desired normal proteins (xnorm,ynorm) ∈ Dnorm and a set of undesired proteins
(xfgt,yfgt) ∈ Dfgt, we aim to learn a modified PLMnew, which reduces the effectiveness of PLMo

in understanding undesirable instances while maintaining its ability to infer desired instances, i.e.,

yfgt ̸= PLMnew(xfgt)

and ynorm = PLMnew(xnorm).
(3)

3 KNOWLEDGE UNLEARNING VIA MODEL RETRAINING

3.1 GENERAL OBJECTIVE

The overall goal of model unlearning in the context of mutation effect prediction is to reduce the
model’s ability to represent viruses while minimally affecting its representation capabilities for nor-
mal (non-virus) proteins. Methodologically, the aim is to update a pre-trained model PLMo into a
new model PLMnew, i.e., updating the parameters from θo to θ. To achieve this, we prepare three
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training datasets corresponding to three optimization objectives: the unlearning scope, the retention
scope, and the corruption scope. The unlearned model PLMnew is expected to forget the knowledge
in the unlearning scope while retaining the knowledge in the retention scope. Additionally, we de-
fine a corruption scope for virus-like proteins, on which we expect the unlearned model to maintain
similar performance to the original model. Formally, we define the objective function as follows:

argmax
θ

−Ex∼Dfgt log Pθ(x|xM )︸ ︷︷ ︸
Unlearn Scope

+Ex∼Dnorm log Pθ(x|xM )︸ ︷︷ ︸
Retention Scope

+ Ex∼DsimKL (Pθ(x|xM )∥Pθo(x|xM ))︸ ︷︷ ︸
Corruption Scope

.
(4)

Unlearn Scope The first term, −Ex∼Dfgt log Pθ(x|xM ), measures the representation ability of
PLMnew in recovering masked tokens in viruses. The model’s parameters are updated based
on a virus dataset Dfgt to ensure the knowledge is forgotten. A model is considered to have
effectively forgotten undesired virus knowledge if the recovery performance is poor, i.e., if
−Ex∼Dfgt log Pθ(x|xM ) is maximized.

Retention Scope The second term, Ex∼Dnorm log Pθ(x|xM ), measures the effectiveness of
PLMnew in recovering masked tokens in xnorm, a set of non-virus normal proteins that are mu-
tually exclusive to Dfgt. A well-unlearned model is expected to minimize Ex∼Dnorm log Pθ(x|xM ),
indicating it retains knowledge relevant to normal proteins.

Corruption Scope The third term, Ex∼DsimKL (Pθ(x|xM )∥Pθo(x|xM )), focuses on a challeng-
ing subset of virus-like proteins Dsim ⊂ Dnorm. As an augmentation, this term requires the un-
learned model to minimize the difference (measured by the KL divergence) between PLMnew and
the original model PLMo, ensuring that forgetting viral knowledge does not disrupt the knowledge
of virus-like normal proteins.

3.2 TRAINING SCHEME

Data Preparation To implement the untraining scheme, we divide the UniRef50 dataset 1 into
three sets. The first two sets, Dfgt and Dnorm, are directly split from the processed UniRef50 dataset
based on their annotated Taxon IDs. Specifically, Dfgt includes proteins whose Taxon IDs indicate
a biological lineage of viruses 2. The remaining proteins form Dnorm. These two datasets, after pro-
cessing, contain 65, 511, 306 and 564, 268 sequences, respectively. The statistics of these sequences
are detailed in Appendix A.1. For the virus-like proteins Dsim, we extract them from Dnorm using
a retrieval module. Specifically, for each virus protein xfgt ∈ Dfgt, we pair the k-nearest proteins
from Dnorm based on the cosine similarity of their ESM-2 (650M) sequence embeddings. After
preparing all three datasets, we conduct a random split on each of them, resulting in corresponding
training, validation, and test sets with a ratio of 8:1:1.

Model Optimization The trainable parameters θ of PLMnew are updated iteratively based on (4).
To enhance training stability, we adopt an alternating micro-batch training strategy. Samples from
the same batch originate exclusively from one of the datasets Dfgt, Dnorm, or Dsim, as defined in (5):

Lbatch =


− 1

|B|
∑

x∈B log Pθ(x|xM ), if B ⊂ Dnorm

1
|B|

∑
x∈B log Pθ(x|xM ), if B ⊂ Dfgt

1
|B|

∑
x∈B KL (Pθ(x|xM ) ∥Pθo(x|xM )) , if B ⊂ Dsim.

(5)

This approach ensures that the model focuses on a single objective at a time, thereby improving
convergence and preventing interference between different learning objectives. The stopping criteria
include four key considerations concerning perplexity and Spearman’s ρ:

1. Perplexity of sampled data from Dnorm (smaller is better);

1https://www.uniprot.org/help/downloads
2The biological lineage of a Taxon ID can be obtained from NCBI at https://www.ncbi.nlm.nih.

gov/
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2. Perplexity of sampled data from Dfgt (larger is better);

3. Spearman’s ρ for assays of virus from ProteinGym (smaller is better);

4. Spearman’s ρ for assays of normal proteins from ProteinGym (larger is better).

We randomly sample 10% of instances as validation set. At the end of each epoch, we compute
these metrics and the training will be stopped if any of the four metrics decreases for ten consecutive
epochs.

3.3 ALTERNATIVE UNLEARNING METHODS

In addition to the optimization method we proposed above, strategies from other frameworks can
also be adopted to unlearn PLMs. Below we brief four alternative strategies employed in unlearning
LLMs. Their performance in unlearning PLMs will be compared in the subsequent section.

Gradient Ascent The first method uses gradient ascent (Tian et al., 2024) to forget learned knowl-
edge. The learning objective remains consistent with the pre-training stage. When untraining a
pre-trained MLM, this method trains on Dnorm and updates the model parameters by performing
gradient ascent, i.e., the opposite of descent, on (1).

Model Corruption with Random Labels The second approach is to fine-tune the model using
randomly generated labels (Golatkar et al., 2020). Intuitively, by associating the data to be forgotten
with random or incorrect labels, the model is expected to unlearn the associations it had previously
made. In our case, this method trains using both Dfgt and Dnorm. The ground truth labels from Dfgt

are randomly replaced with uniformly sampled tokens from the vocabulary, while the labels from
Dnorm remain unchanged and are used to train with gradient descent.

Joint Gradient Ascent and Descent The third hybrid method leverages gradient ascent to forget
undesired information and gradient descent to retain useful knowledge (Yao et al., 2023). By al-
ternating between the two, the model aims to forget specific information while retaining as much
overall performance as possible. We apply this strategy to untrain a PLM on both Dfgt and Dnorm,
using (1) as the training objective. Gradient ascent is applied to Dfgt, while gradient descent is
applied to Dnorm. It can be considered as a variant of PROEDIT that omits the corruption scope.

Gradient Ascent with KL Constraint The last strategy uses KL-divergence (Yao et al., 2023)
to constrain the model’s outputs, ensuring they do not stray too far from the original knowledge
during the unlearning process. This approach helps balance the unlearning task by maintaining a
good trade-off between forgetting and retaining information. The model is updated by performing
gradient ascent on Dfgt and using KL divergence on Dnorm. Notably, the KL divergence on Dnorm

ensures that the model’s outputs remain consistent with those of the original model. The key dif-
ference between this method and the second method (joint gradient ascent and descent) is that the
former uses KL divergence to maintain output consistency, whereas the latter employs the MLM
pre-training objective to prevent forgetting knowledge of normal (non-virus) proteins.

4 EXPERIMENTS

4.1 EXPERIMENTAL PROTOCOL

Setup We compare the performance of PROEDIT and baseline methods on different benchmark
datasets. We use pre-trained ESM-2 (150M) and ESM-2 (650M) (Lin et al., 2023b) as the two base
models and apply PROEDIT for editing. To improve training efficiency, we limit each epoch to a
maximum of 2, 000 batches, with each batch containing 4 samples. All trainable parameters are
updated using the ADAM (Kingma & Ba, 2015) optimizer with a learning rate of 1 × 10−5. The
MLM pre-training objective remains consistent with that of ESM-2, as defined in (1). Specifically,
15% of the tokens in each sequence are selected for masking: 80% are replaced with the “[MASK]”
token, 10% are substituted with a random token, and the remaining 10% are left unchanged. For the
four alternative unlearning methods introduced in Section 3.3, we adopt the same hyper-parameter
configurations as PROEDIT. All implementations are done using PyTorch (version 1.7.0), and the
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Table 1: Statistics Summary on the three benchmarks.

Name Type # Assays (virus) # Assays (non-virus) # Mutations # Train Samples # Test Samples
ProteinGym Zero-Shot 30 187 2,465,767 - 2,465,767

AAV Supervised 1 0 82,583 1,170 81,413
GB1 Supervised 0 1 8,733 5,089 3,644

experiments are run on an NVIDIA® RTX 4090 GPU with 24GB VRAM, mounted on a server with
Ubuntu 22.04 LTS operating system. All the details to reproduce our results are included in the
submission, and the code will be made publicly available upon acceptance.

Benchmark Datasets We conduct a comprehensive evaluation of PROEDIT’s editing capabilities,
including both zero-shot and fine-tuning performance. The zero-shot prediction is evaluated on
217 deep mutational scanning (DMS) assays from ProteinGym (Notin et al., 2024), while fine-
tuning is assessed on two supervised learning tasks: a viral dataset (AAV, Adeno-associated virus)
and a non-viral dataset (GB1, binding domain of protein G, from Streptococcal bacteria) (Dallago
et al., 2021). The statistics of these three benchmarks are summarized in Table 1. The training and
evaluation procedures for these three tasks are as follows:

1. ProteinGym includes 30 viral assays and 187 non-viral assays. For each model, including
PROEDIT, we score mutants using (2) and calculate the Spearman’s ρ correlation between the
predicted and experimental mutational scores. In evaluating model performance, we aim for a
high (closer to 1) Spearman’s ρ on non-viral assays and a low Spearman’s ρ on viral assays.

2. AAV is used for the first supervised learning task, which is a viral protein dataset originating from
the FLIP benchmark. We use the “one-vs-rest” split, which consists of 1, 170 single-order muta-
tions for training and 81, 413 high-order mutations for testing. Model performance is evaluated
using Spearman’s ρ, where a good model should have a lower Spearman’s ρ.

3. GB1, a binding protein from Streptococcal bacteria, is used for the second supervised learning
task. It is another dataset from the FLIP benchmark. We use the “low-vs-high” split from the
FLIP benchmark, which includes 5, 089 low-fitness mutations for training and 3, 644 high-fitness
mutations for testing. Similar to AAV, model performance is evaluated using Spearman’s ρ. In
this case, a good model should have a higher Spearman’s ρ.

For both supervised learning tasks, GB1 and AAV, we added a regression MLP head to the model,
which was fine-tuned on the respective training sets. The fine-tuning process used the following
hyperparameters: the ADAMW (Kingma & Ba, 2015; Loshchilov et al., 2017) optimizer with a
learning rate of 0.0005, a weight decay of 0.01, a batch size of 16, and a dropout rate of 0.1 for the
output layer.

4.2 RESULTS ANALYSIS

We evaluate the performance of the proposed PROEDIT from three dimensions: effectiveness, con-
sistency, and efficiency. The performance comparison of PROEDIT and baseline methods on mu-
tation effect prediction tasks is reported in Table 2. We use ESM-2 (650M) and ESM-2 (150M) as
our two base models. We also compare several other pre-trained PLM models, including MIF-ST
Yang et al. (2023), CARP Yang et al. (2024), and ESM-1v Meier et al. (2021). Additionally, we
include a vanilla Transformer Vaswani et al. (2017) for the two supervised learning tasks. The archi-
tecture of vanilla Transformer is the same as ESM-2 and the only difference is that the parameters
of the vanilla Transformer are randomly initialized before training. The initialization configuration
is according to ESM-2 and the random seed is 42.

Effectiveness. From the results reported in Table 2, it can be observed that PROEDIT significantly
reduces the performance of the base model on ProteinGym-virus and AAV, while maintaining
performance on ProteinGym-non-virus and GB1. This indicates that PROEDIT effectively assists
the pre-trained base model in unlearning viral knowledge in both zero-shot and fine-tuning tasks.
Specifically, for PROEDIT (650M), compared to ESM-2 (650M), the Spearman’s ρ correlation on
ProteinGym-virus dropped from 0.24 to 0.08, retaining only 30% of the original performance. On
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Table 2: Spearman’s ρ correlation of mutation effect prediction by different methods.

zero-shot prediction fine-tuning

Model version ProteinGym (virus) ↓ ProteinGym (non-virus) ↑ AAV ↓ GB1 ↑
Transformer vanilla - - 0.30 0.08

MIF-ST - 0.40 0.43 - 0.22
CARP 640M 0.27 0.37 0.43 0.48

ESM-1v - 0.28 0.44 0.37 0.27
ESM-2 150M 0.13 0.45 0.08 0.15
ESM-2 650M 0.24 0.48 0.35 0.17

PROEDIT 150M 0.08 0.43 -0.16 0.13
PROEDIT 650M 0.07 0.47 -0.18 0.24

† The top two are highlighted by First and Second.

Figure 3: Individual prediction of assays in ProteinGym (virus) by PROEDIT and ESM-2.

Figure 4: (a) Validation curves and (b) UMAP embedding of PROEDIT (650M) and ESM-2 (650M).

the viral protein AAV, PROEDIT (650M) dropped to −0.18 and PROEDIT (150M) dropped to −0.16,
which are significantly lower than the original scores at 0.34 and 0.08, respectively. The detailed
prediction performance on individual assays in ProteinGym (virus) is visualized in Figure 3, where
PROEDIT greatly reduces the Spearman’s ρ on the majority of the assays in comparison to the perfor-
mance of the base model (ESM-2-650M), with specific numbers provided in Appendix A.2. Addi-
tionally, comparing the results in Figures 4(b)-(c) shows that PROEDIT successfully scrambled viral
information after unlearning. Here, we randomly selected 1, 000 virus and 1, 000 non-viral protein
sequences and extracted hidden representations using both PROEDIT (650M) and ESM-2 (650M),
followed by dimension reduction with UMAP (McInnes et al., 2018). It is evident that, compared
to ESM-2, the representations of virus and non-viral proteins encoded by PROEDIT are more indis-
tinguishable, further indicating the successful unlearning of viral proteins by PROEDIT. Similarly,
Figure 4(a) displays the validation curves for PROEDIT (650M) and ESM-2 (650M) trained on AAV
(virus) in a supervised learning setup. It shows clearly that the performance of PROEDIT remains
constantly at a low level during training on this virus dataset, demonstrating the effectiveness of the
unlearning process.

Consistency When the model forgets viral knowledge, it should minimize any negative impact on
general protein knowledge. Specifically, the performance reduction in scoring non-viral proteins be-
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Table 3: Zero-shot prediction performance on ProteinGym by PROEDIT and alternative unlearning
methods.

Base Model Edit Method ProteinGym (Virus) ProteinGym (non-Virus)

Perplexity ↑ Spearman’s ρ ↓ Perplexity ↓ Spearman’s ρ ↑

ESM-2-650M

No Edit 1.27e+00 0.238 1.18e+00 0.475
Gradient Ascent 2.22e+15 -0.123 3.92e+15 -0.110

Joint Gradient Ascent and Descent 1.18e+14 0.073 1.46e+03 0.309
Random Labels 3.58e+00 0.116 1.81e+00 0.415

Gradient Ascent with KL Constraint 1.94e+14 0.065 1.24e+02 0.383

PROEDIT 9.06e+07 0.073 1.66e+00 0.470

ESM-2-150M

No Edit 1.34e+00 0.135 1.23e+00 0.449
Gradient Ascent 1.11e+12 0.136 1.15e+12 0.122

Joint Gradient Ascent and Descent 5.70e+10 -0.087 2.19e+03 0.232
Random Labels 2.93e+00 0.094 1.36e+00 0.433

Gradient Ascent with KL Constraint 7.89e+10 -0.065 1.04e+02 0.383

PROEDIT 9.05e+06 0.083 1.75e+00 0.430

Figure 5: Performance of PROEDIT at different values of k in the retrieval module on ProteinGym.

Figure 6: Parameter differences between ESM-2 and PROEDIT (650M).

fore and after unlearning should be minimized. This performance can be observed by analyzing the
scores in Table 2 for ProteinGym (non-virus) and GB1. On the ProteinGym (non-virus), the score
of PROEDIT (650M) decreased by only 0.01 compared to ESM-2 (650M), and PROEDIT (150M)
decreased by merely 0.02 compared to ESM-2 (150M). Furthermore, on GB1, comparing the same
parameter versions of ESM-2 and PROEDIT reveals that the unlearned model achieves better perfor-
mance on this non-viral protein than the base model, surpassing all other baseline models. This is
evident that the unlearning method is capable of retaining general protein knowledge when removing
undesired virus knowledge.

Efficiency We show that editing pre-trained PLMs with PROEDIT would not introduce significant
additional computational costs. In our experiments, training PROEDIT costs 7.27 GPU hours for
updating parameters in ESM-2 (650M), and 5.25 GPU hours for updating parameters in ESM-2
(150M).

4.3 ADDITIONAL INVESTIGATIONS

Alternative Unlearning Methods Table 3 compares the zero-shot prediction performance of four
alternative unlearning strategies mentioned in Section 3.3 on ProteinGym. Although all five un-
learning methods (including ours) can assist a pre-trained PLM in forgetting harmful knowledge
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about viruses, the alternative methods significantly reduce performance on non-viral proteins at the
same time. In contrast, our PROEDIT is more practically meaningful. It is capable of maintaining
both effectiveness and consistency, thereby enhancing model safety while preserving reliability on
general protein tasks.

Construction of the Virus-Like Dataset Figure 5 explores the impact of different choices on k
in the retrieval module when constructing Dsim on the results. Panels (a) and (b) report the changes
in Spearman’s ρ and perplexity as k varies, with k = 0 indicating the scores without editing. As k
increases gradually from 1 to 5, the model’s performance on non-viral proteins slowly declines. A
possible explanation is that increasing k would directly enlarge Dsim, causing some normal proteins
that are not very similar to viruses to be included in the corruption scope, thus interfering with
the model parameter updates. Additionally, in ProteinGym (virus), increasing k does not help the
model forget viral information more effectively. Therefore, in practice, we set k = 1 to perform an
effective and efficient unlearning scheme.

Change of Parameters Before and After Unlearning Figure 6 further investigates the changes in
learnable parameters of the Transformer layers before and after editing to provide additional insights
on the overall impact of the unlearning module. Taking PROEDIT (650M) and ESM-2 (650M) as
examples, Figure 6(a) displays the ten network layers with the largest and smallest differences in L2
norm. The specific L2 norm of all parameters of the Transformer layers are provided in Appendix
A.3. Overall, among the 33 Transformer layers, parameters of layers closer to the output show
greater changes, while layers closer to the input exhibit smaller changes. This indicates that the
model’s forgetting primarily occurs in the last few layers of the Transformer. Figure 6(b) illustrates
the parameter changes of the layers with the largest and smallest variations. Despite the differing
magnitudes of change, both exhibit a symmetric bell-shaped distribution.

5 RELATED WORK

Pre-trained Protein Language Models Analogous to NLP models, PLMs typically treat AAs
as tokens and use Transformer-based layers (Vaswani et al., 2017) to analyze co-evolutionary in-
formation from millions to billions of protein sequences and summarize vector representations for
sequences. Pre-trained PLMs can be categorized into three types. The most common are encoder-
only models, which follow the BERT framework (Devlin et al., 2018) and train the model to recover
randomly masked AA types (Meier et al., 2021; Rives et al., 2021; Elnaggar et al., 2021; Tan et al.,
2024b). Decoder-only models, in comparison, are trained to optimize next-token prediction, which
is frequently used for sequence design (Ferruz et al., 2022; Notin et al., 2022a; Madani et al., 2023).
Other models adopt hybrid encoder-decoder architectures to learn outputs that are sufficiently simi-
lar to the input sequences (Du et al., 2022; Elnaggar et al., 2023; Heinzinger et al., 2023).

Mutation Effect Prediction When applying models to enhance protein properties and function-
alities, some studies adopt a “pre-training then fine-tuning” approach to enhance the model’s un-
derstanding of a particular protein assay, such as using existing experimental data for supervised
learning (Li et al., 2023; Zhou et al., 2024c; Tan et al., 2024a) or incorporating homologous se-
quences during training (Rao et al., 2021; Notin et al., 2022b). However, due to the lack of publicly
available mutation effect data for most proteins and the variability among assays, the mainstream
approach remains zero-shot methods for mutation effect prediction. Considering the pivotal role of
structure in determining a protein’s function, many recent methods integrate geometric deep learning
methods (Lu et al., 2022; Tan et al., 2023; Zhou et al., 2024a; Tan et al., 2024c) or extract structure
tokens (Su et al., 2023; Li et al., 2024a) to enhance the local interaction of spatially connected AAs.
With the introduction of large-scale deep mutational scanning benchmark datasets like ProteinGym
(Notin et al., 2024), an increasing number of models have been developed and extensively validated
on a wide range of protein assays to demonstrate their effectiveness and generalizability.

Knowledge Unlearning and AI Safety As emerging models grow larger and training data be-
comes more diverse, increasing attention is being directed toward developing approximate unlearn-
ing algorithms, such as data-reversed training (Chundawat et al., 2023) and optimization-based un-
learning (Guo et al., 2020; Neel et al., 2021). In the NLP field, particularly with LLMs, AI safety has
caught increasing attention. Knowledge unlearning, in this context, trains models to reject sensitive

9
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responses (Yu et al., 2023; Yao et al., 2023; Tian et al., 2024; Li et al., 2024b). Similar discus-
sions have emerged in other fields such as Computer Vision (Kim & Woo, 2022; Lin et al., 2023a;
Tarun et al., 2023). However, in AI for biology, particularly in protein engineering, the safety and
responsibility of developed deep learning models remain under-explored.

6 CONCLUSION AND DISCUSSION

This study addresses a critical safety concern in mutation effect prediction, a core task in protein en-
gineering, by proposing a novel knowledge unlearning-based framework, PROEDIT. Our approach
enables pre-trained PLMs to selectively forget virus-related information while preserving their ca-
pacity to predict and design non-viral proteins. Through empirical validation on multiple bench-
marks, we demonstrated that PROEDIT effectively reduces the risk of enhancing viral properties
without compromising the performance of beneficial proteins. This contributes to the growing need
for ethical and responsible AI in scientific applications, particularly in biosafety-sensitive domains
like protein engineering.

The rapid development of deep learning techniques in recent years has led to an increasing number
of powerful solutions to biological challenges. The growing attention to these advancements has
significantly driven improvements in the prediction and generation performance of biological en-
tities, such as drug discovery, enzyme engineering, and protein design. However, alongside these
technological advancements, we emphasize that ensuring their ethical and responsible use is equally
crucial. We hope this work inspires more researchers to explore safety concerns in AI-driven pro-
tein engineering and to extend the unlearning framework to other safety-critical applications. By
developing models that excel in predictive power while also addressing potential risks, the scientific
community can promote safer and more responsible advancements in AI-driven biological research.
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A APPENDIX

A.1 DATASET STATISTICS

This section presents statistics of the viral sequences and non-viral sequences in UniRef50, includ-
ing the number of sequences, amino acid distribution, sequence lengths, and more.

Virus Sequences There are a total of 564,268 sequences. The length distribution and amino acid
distribution of them are shown in Table 7 and Table 8, respectively.
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Figure 7: Length distribution of virus sequences in UniRef50.
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Figure 8: Amino acid distribution of virus sequences in UniRef50.

Non-virus Sequences There are a total of 65,511,306 sequences. The length distribution and
amino acid distribution of them are shown in Table 9 and Table 10, respectively.
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Figure 9: Length distribution of non-virus sequences in UniRef50.
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Figure 10: Amino acid distribution of non-virus sequences in UniRef50.

Virus-like non-virus Sequences There are a total of 564,268 sequences (equal to virus sequences
since k = 1) . The length distribution and amino acid distribution of them are shown in Table 11
and Table 12, respectively.

A.2 INDIVIDUAL PREDICTION OF ASSAYS IN PROTEINGYM (VIRUS).

Table 4 shows the detailed prediction performance on individual assays in ProteinGym (virus).

A.3 PARAMETER DIFFERENCES OF ESM-2 (650M) AND PROEDIT (650M)

Table 5 shows the detailed prediction performance on individual assays in ProteinGym (virus).
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Figure 11: Length distribution of virus-like non-virus sequences in UniRef50.
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Figure 12: Amino acid distribution of virus-like non-virus sequences in UniRef50.
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Table 4: Spearman’s ρ correlation of mutation effect prediction by PROEDIT in ProteinGym (virus).

DMS ID PROEDIT (650M) ESM-2 (650M)
A0A140D2T1 ZIKV Sourisseau 2019 0.084 0.071
A0A192B1T2 9HIV1 Haddox 2018 -0.037 0.064
A0A2Z5U3Z0 9INFA Doud 2016 -0.047 0.492
A0A2Z5U3Z0 9INFA Wu 2014 0.039 0.452

A4D664 9INFA Soh 2019 0.118 0.137
C6KNH7 9INFA Lee 2018 0.041 0.464
CAPSD AAV2S Sinai 2021 -0.127 0.200

ENV HV1B9 DuenasDecamp 2016 0.006 0.042
ENV HV1BR Haddox 2016 -0.015 0.036

HCP LAMBD Tsuboyama 2023 2L6Q 0.471 0.695
I6TAH8 I68A0 Doud 2015 0.023 0.017
NCAP I34A1 Doud 2015 0.070 0.020
NRAM I33A0 Jiang 2016 0.040 0.166

PA I34A1 Wu 2015 0.079 0.038
POLG CXB3N Mattenberger 2021 0.092 0.349
POLG DEN26 Suphatrakul 2023 0.105 0.143

POLG HCVJF Qi 2014 0.106 0.127
POLG PESV Tsuboyama 2023 2MXD 0.100 0.406

Q2N0S5 9HIV1 Haddox 2018 -0.037 0.028
R1AB SARS2 Flynn 2022 0.003 0.118

RDRP I33A0 Li 2023 0.038 0.290
REV HV1H2 Fernandes 2016 0.133 0.227

RPC1 BP434 Tsuboyama 2023 1R69 0.534 0.705
SPIKE SARS2 Starr 2020 binding -0.129 -0.015

SPIKE SARS2 Starr 2020 expression -0.057 0.030
TAT HV1BR Fernandes 2016 -0.081 -0.045

VG08 BPP22 Tsuboyama 2023 2GP8 0.450 0.662
VRPI BPT7 Tsuboyama 2023 2WNM 0.029 0.576
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Table 5: Parameter differences’ L2 norm between the hidden and output of transformer layers of
ESM-2 (650M) and PROEDIT (650M).

Parameter L2 Norm Parameter L2 Norm
32 (output) 1.916 20 (hidden) 0.934

prediction head 1.724 21 (output) 0.933
32 (hidden) 1.458 19 (hidden) 0.932
31 (output) 1.348 7 (hidden) 0.932
31 (hidden) 1.260 11 (output) 0.932
30 (output) 1.140 10 (output) 0.931
30 (hidden) 1.105 9 (output) 0.928
29 (output) 1.058 17 (hidden) 0.928
28 (output) 1.048 20 (output) 0.928
29 (hidden) 1.030 19 (output) 0.926
28 (hidden) 1.005 18 (hidden) 0.925
10 (hidden) 0.993 6 (hidden) 0.923
9 (hidden) 0.984 13 (output) 0.918
11 (hidden) 0.982 12 (output) 0.918
27 (hidden) 0.981 17 (output) 0.914
27 (output) 0.976 18 (output) 0.914
26 (hidden) 0.965 16 (output) 0.912
26 (output) 0.960 15 (output) 0.911
25 (hidden) 0.956 14 (output) 0.910
12 (hidden) 0.955 7 (output) 0.907
24 (hidden) 0.948 8 (output) 0.904
23 (hidden) 0.947 5 (hidden) 0.904
25 (output) 0.945 6 (output) 0.898
13 (hidden) 0.945 5 (output) 0.888
8 (hidden) 0.945 4 (hidden) 0.863
22 (hidden) 0.943 4 (output) 0.855
24 (output) 0.943 3 (output) 0.748
23 (output) 0.941 3 (hidden) 0.745
22 (output) 0.940 2 (output) 0.720
15 (hidden) 0.938 2 (hidden) 0.719
14 (hidden) 0.938 1 (hidden) 0.603
21 (hidden) 0.937 1 (output) 0.596
16 (hidden) 0.935 0 (output) 0.560

0 (hidden) 0.544
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