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Abstract

Predicting stroke risk is a complex challenge that can be enhanced by integrating1

diverse clinically available data modalities. This study introduces a self-supervised2

multimodal framework that combines 3D brain imaging, clinical data, and image-3

derived features to improve stroke risk prediction prior to onset. By leveraging4

large unannotated clinical datasets, the framework captures complementary and5

synergistic information across image and tabular data modalities. Our approach is6

based on a contrastive learning framework that couples contrastive language-image7

pretraining with an image-tabular matching module, to better align multimodal8

data representations in a shared latent space. The model is trained on the UK9

Biobank, which includes structural brain MRI and clinical data. We benchmark10

its performance against state-of-the-art unimodal and multimodal methods using11

tabular, image, and image-tabular combinations under diverse frozen and trainable12

model settings. The proposed model outperformed self-supervised tabular (image)13

methods by 2.6% (2.6%) in ROC-AUC and by 3.3% (5.6%) in balanced accuracy.14

Additionally, it showed a 7.6% increase in balanced accuracy compared to the15

best multimodal supervised model. Through interpretable tools, our approach16

demonstrated better integration of tabular and image data, providing richer and17

more aligned embeddings. Gradient-weighted Class Activation Mapping heatmaps18

further revealed activated brain regions commonly associated in the literature19

with brain aging, stroke risk, and clinical outcomes. This robust self-supervised20

multimodal framework surpasses state-of-the-art methods for stroke risk prediction21

and offers a strong foundation for future studies integrating diverse data modalities22

to advance clinical predictive modeling.23

∗Corresponding author

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



1 Introduction24

Stroke ranks as the second leading cause of death worldwide, responsible for 11.6% of global25

fatalities in 2019. It often results in neurological damage and long-term disability in adults, imposing26

significant health and economic challenges [1, 2]. Early detection through predictive models is crucial27

in preventing severe outcomes, as cerebrovascular events can cause irreversible brain damage within28

hours [3]. The complexity of stroke, driven by multiple risk factors, highlights the importance of29

integrating multi-modal data to improve diagnostic accuracy and treatment strategies. Among the30

various imaging techniques, Magnetic Resonance Imaging (MRI) stands out as a highly effective31

tool, offering high-resolution, non-invasive assessments of structural abnormalities and detailed32

visualization of the brain’s vascular network [4].33

Uni-modal predictive models Prior works mainly use convolutional neural networks (CNN) that34

can leverage the high-dimensional imaging information for diagnosing patients [5]. Yu et al. applied35

deep learning algorithms to extract meaningful imaging features in an increasing order of hierarchical36

complexity to make predictions of the infarct volume [6]. Other models that use only clinical data,37

often assume linear relationships between traditional risk factors such as age, gender, smoking38

status, blood pressure, diabetes, cholesterol levels, and body mass index [7, 8, 9]. Alaa et al. used39

AutoPrognosis, an ensemble machine learning approach, to outperform conventional models like40

the Framingham score and Cox models [10]. A major limitation of these models is that they don’t41

integrate complementary information from other modalities, similar to how clinicians diagnose using42

multiple data sources. Biobanks like the UK Biobank (UKB) have become invaluable in this context,43

providing vast datasets integrating imaging and clinical information to train machine learning models44

for disease prediction [11, 12].45

Multi-modal predictive models Several studies have employed multi-modal data to improve diag-46

nostic capabilities by integrating diverse data types [13]. For example, MultiSurv model has shown47

success by fusing image and tabular data for cancer survival prediction [14]. multi-modal models48

combining image and clinical data have demonstrated better prediction performance for disability49

prediction in stroke patients [15, 16]. However, CNNs tend to prioritize image features, and simple50

image-tabular CNN concatenation fails to enhance predictive models due to insufficient cross-modal51

interactions. To address this, Wolf et al. developed the Dynamic Affine Feature Map Transform52

(DAFT), which conditions convolutional feature maps on both image and tabular data, enabling a two-53

way information exchange via an auxiliary neural network [17]. While DAFT reduces issues related54

to the large number of trainable parameters in standard 3D CNNs and the curse of dimensionality,55

it may sacrifice some predictive power compared to deeper models like ResNet. Although recent56

models show promise in biomedical prediction tasks, their clinical translation is hindered by limited57

annotated datasets, low disease prevalence, and the risk of overfitting. Self-supervised learning (SSL)58

is a powerful technique for extracting representative features from unlabeled data, making it valuable59

for early disease risk identification.60

Self-supervised models Unlike traditional supervised learning, SSL defines pretext tasks that allow61

models to learn meaningful representations from raw data [18]. One prominent SSL technique is62

contrastive learning, which trains encoders to generate augmented views of a sample, maximizing63

similarity between these views while minimizing similarity with other samples [18]. Popular methods64

such as SimCLR [19], BYOL [20], and MOCO [21] have demonstrated success in imaging tasks,65

while VIME [22] and SCARF [23] are leading approaches for tabular data. Emerging approaches,66

like contrastive language-image pre-training (CLIP) strategy, have evolved from unimodal methods67

to integrate diverse modalities. While there was an extensive work done for cardiovascular diseases68

prediction [24, 25, 26], stroke risk prediction through volumetric brain images and clinical health69

records remains underexplored.70

We present for the first time, to the best of our knowledge, a self-supervised multi-modal approach71

integrating 3D brain MRIs with clinical tabular data for stroke risk prediction. As depicted in Figure 1,72

our methodology incorporates cross-modal interactions via CLIP loss [27] and image-tabular matching73

(ITM) loss [28, 25]. We demonstrate that our learning strategy outperforms leading (self-)supervised74

unimodal methods and that multi-modal image-tabular pre-training leads to better representations and75

improved downstream performance. Lastly, we validate the model’s learned features through visual76

activation maps, which align with established clinical and neurological findings on stroke-related77

brain pathology. Code is available at https://github.com/CamilleDelgrange/SSMSRPM.78
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2 Materials and Methods79

2.1 Dataset80

Our analyses are performed on T2-Fluid Attenuation Inversion Recovery (FLAIR) brain volumes,81

and over a subset of clinical information spanning across five categories, extracted from the UKB:82

demographics, lifestyle, biomarkers, comorbidities, and medication. The complete list of features83

is available in the supplementary materials. Continuous features are standardized using z-score84

normalization, while categorical data is one-hot encoded. For our experiments, we use 5000 and 50085

samples for training and validation sets respectively for the model pre-training stage. Train, validation,86

and test subset for the downstream fine-tuning stage use 278, 93, and 93 samples respectively. The87

fine-tuning sets are stratified according to sex, age and stroke diagnosis to account for confounders88

to avoid spurious correlations and class imbalance. To handle missing tabular data, we use an89

iterative multivariate imputer based on Multivariate Imputation by Chained Equations (MICE)90

[29], modelling missing features as a function of existing features over multiple imputation rounds.91

Missing categorical data is replaced by the most frequent category. This step is performed after data92

normalization, to ensure that the means and standard deviations are calculated only from recorded93

values. The 3D brain images are registered to Montreal Neurological Institute brain template (MNI)94

space, have uniform dimensions of 182× 218× 182 and a voxel size of 1mm3 and are processed95

using the UKB imaging pipeline [30]. Key image-derived phenotypes (IDPs), such as segmented96

brain tissue volumes and white matter hyperintensity (WMH) volumes, are extracted and used as97

brain IDPs. Brain lesion segmentation is performed using the BIANCA tool to produce 3D binary98

lesion masks [31]. Furthermore, lesion segmentation masks are characterized by pyradiomics [32]99

through radiomic features such as volume, area, elongation, and sphericity and these features are100

used as lesion IDPs.101

2.2 Multi-modal self-supervised framework102

Our pipeline is split into two sequential steps. First, we pre-train the tabular and imaging encoders103

(Figure 1 A) and then we fine-tune them with labels from downstream task (Figure 1 B). Each batch104

of data contains pairs of imaging xji and tabular xjt samples. These samples are augmented by105

random transformations t ∼ τ from a set of parametric transforms τ , such as random cropping and106

affine transforms for the images, or random feature corruption for the tabular data. We use an image107

augmentation rate of 95% for the model to still occasionally see unaltered data to capture the original108

data distribution for transfering the learnt features to the downstream task. The corruption rate of the109

tabular data is set to 0.3 as in the original tabular method SCARF [23]. For a given reference point,110

known as anchor x, the positive samples are the ones derived from x transformations while other111

samples in the batch are considered as negative samples. Augmented images xji and tabular data112

xjt are passed through the imaging encoder fθI and tabular encoder fθT to generate the embeddings.113

These embeddings are propagated through the separate projection heads fϕI
and fϕT

, and brought114

into a shared latent space as projections zji and zjt , which are L2-normalized onto a unit hypersphere.115

The projections are pulled and pushed in the shared latent space according to the CLIP loss [27],116

which maximizes the cosine similarity of projections from the positive samples and minimizes the117

similarity of projections from the negative samples in the batch. In contrast to the original InfoNCE118

loss used in SimCLR [19], and following the CLIP loss, the projected embeddings similarities are119

contrasted between data modalities. An image projection is therefore defined as :120

zji = fϕI(fθI (xji)) (1)

Considering all N subjects in a batch, the loss for the imaging modality is defined as follows:121

li,t = −
∑
j∈N

log
exp(cos(zji , zjt)/τ)))∑

k∈N,k ̸=j exp(cos(zji , zkt)/τ)))
(2)

where τ is the temperature parameter. In our experiments, a temperature of 0.1 is selected to work122

best, following [19]. lt,i is computed analogously and CLIP loss is defined as follows:123

Lclip = λli,t + (1− λ)lt,i (3)

We choose value of 0.5 for the λ as regularization parameter. The aim is to learn patient-wise124

representations invariant to the variation of the image-tabular pairs. Hard negative samples are crucial125
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in contrastive learning as they help the model distinguish between similar samples, preventing trivial126

solutions and enhancing its robustness. We implement a hard negative mining strategy to predict127

whether image-tabular data pairs are positive or negative, using image-tabular matching (ITM) loss.128

In this approach, for each image or tabular representation, we identify an unmatched tabular or image129

representation from the mini-batch. This selection is based on similarity scores computed using the130

CLIP method, which serves as the sampling weight for the negative pairs [25, 28]. A multi-modal131

interaction module is introduced, as shown in Figure 1, which takes the output of the projector132

heads to perform inter-modality learning and generates a multi-modal representation. It uses a133

cross-attention mechanism [33], enabling tabular embeddings to attend to relevant image embeddings.134

The multi-modal interaction module contains two transformer layers, with four attention heads and a135

hidden dimension of 256, each including self-attention, cross-modal attention, an MLP feed-forward136

module and layer normalization [25]. The output of the multi-modal module is a [CLS] token,137

aggregating the information from the entire sequence, used for downstream classification task, where138

the model needs a single feature vector representing the entire input [34]. The [CLS] embedding is139

capturing a joint representation of the image-tabular pair that is fed into the ITM predictor (a linear140

layer) to match the prediction based on a binary cross-entropy loss LITM . Therefore, the complete141

loss is expressed as:142

L = (LCLIP + LITM )/2 (4)

Downstream task predictions After pre-training, the projection heads were replaced by fully143

connected layers. Extracting the representation before the projector has been shown to improve144

downstream tasks performance [18]. For downstream fine-tuning and binary classification of healthy145

versus stroke (Figure 1 B), we employ ensemble learning to improve model generalization and146

performance by leveraging the rich representations from the image encoder, tabular encoder, and147

the multi-modal transformer interaction module. All pre-trained models are evaluated using linear148

probing (frozen) and fine-tuning (trainable). The frozen models use tuned linear classifiers after the149

feature extractors. The datasets used for model fine-tuning are balanced in each batch of training,150

validation, and test subset. This way, we reduce potential bias due to class-imbalance, as well as151

unstable and slow training due to imbalance batch distributions.152

3 Experiments153

3.1 Benchmarking154

The herein proposed solution is compared against supervised and SSL strategies, each of them using155

imaging, tabular, and integrated imaging-tabular methodologies.156

3.1.1 Supervised learning methods157

To benchmark our proposed method, we implement two state-of-the-art, supervised image-based158

models, namely ResNet50 [21] and DenseNet121 [35], two supervised tabular data approaches,159

namely a two-layer tabular MLP model and a tabular transformer encoder inspired from Du et. al.160

(2024) [25]. We conduct an ablation study using a supervised MLP model with various feature161

combinations to identify the optimal feature set. This process helps us to select the final combination162

of features for improved model performance. The combinations include: i) clinical tabular data only,163

spanning the previously mentioned categories (clinical), ii) clinical data with brain extracted IDPs164

(clinical + brain IDPs), and iii) clinical data, brain IDPs and lesion IDPs (clinical + brain IDPs +165

lesion IDPs). Furthermore, we implement three supervised, multi-modal (imaging-tabular) learning166

models, namely a simple concatenation fusion model (CF) [36], a CF model integrated with the167

tabular transformer encoder inspired by the work from Du et. al. (2024) [25] (CF + Transformer),168

and DAFT model [17]. All models employing an imaging encoder are implemented with ResNet50169

as backbone. DAFT block is integrated within ResNet50 from the third stage onwards. To alleviate170

over-fitting, an early stopping strategy is adopted, with a minimal delta (divergence threshold) of171

1× 10−4, a maximal number of epochs of 50, and a patience of 15 epochs.172

3.1.2 Self-supervised learning methods173

Our model is compared against leading, self-supervised contrastive solutions, including: i) the174

unimodal, image-based SimCLR[19] approach, ii) the unimodal, tabular data-based SCARF [23]175
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Figure 1: Pipeline for joint imaging and tabular data pre-training (A) and downstream fine tuning (B).
CLIP loss is applied on projected data to align the image and tabular representations. Hard negative
pairs are mined through CLIP similarities within the batch. A transformer block with self-attention
and cross-attention layers is used to cross-attend both modalities, resulting in a multi-modal [CLS]
token fed to a classifier and used for further downstream fine tuning. Image-Tabular Matching (ITM)
loss evaluates the image-tabular pair matching. In the downstream task, an ensemble classifier is
fine-tuned to predict healthy versus stroke from pre-trained imaging, tabular and multimodal encoders.

approach, and iii) the multi-modal, CLIP method (without ITM loss). The hyperparameters and176

training configurations for all SSL pre-training approaches are adapted for our specific dataset and177

task, and are obtained through hyper-parameter search. All models are pre-trained for 100 epochs178

using an Adam optimizer [37]. The learning rate is warmed up linearly for 10 epochs and decayed179

following a cosine annealing scheduler. For all methods, as in the CLIP+ITM method, the image180

augmentation rate is 95% and the tabular corruption rate 0.3 during pre-training and 80% and181

0.3 during downstream fine tuning. SimCLR is trained using the NTXent objective [19] and the182

temperature parameter is kept to 0.1. Hidden and projected dimensions are respectively 2048 and183

128 for both modalities [19]. The same parameters are used for SCARF [23]. Learning rates are184

chosen with a sweep through a range of learning rates, by tracking the validation loss. Weight decay185

and dropout rate are added depending on the level of overfitting observed at the validation loss. The186

same early stopping strategy is employed as in the supervised learning methods. The downstream187

fine-tuning is using the same parameters as the presented method, using only a single modality188

classifier for unimodal SSL pre-trained methods and a fused representation vector with a single linear189

classifier for the CLIP only model. Trainable models in each SSL unimodal method means that the190

other modality is incorporated during fine-tuning as a full trainable model. The employed batch size191

for all methods is 6. All SSL models are pretrained on a Tesla V100-SXM2 (32GB, 42 CPUs), and192

inference is performed on an NVIDIA GeForce RTX 4090 (24GB, 62 CPUs). Pretraining took ∼ 24193

hours, while fine-tuning took less than 1 hour.194

3.2 Interpretability and qualitative analysis195

Embeddings visualization is done using a two-dimension Uniform Manifold Approximation and196

Projection (UMAP) technique [38], to evaluate the quality of the generated latent space embedding197

after pre-training, using validation samples. Such approach allows to qualitatively assess the latent198

space representation and data distribution after encoding each modality with either a unimodal or199
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Table 1: Feature selection with supervised MLP results using different combinations of tabular data.
ROC-AUC: area under the receiver operating characteristic curve; bAcc (%): balanced Accuracy;
Se (%): sensitivity. For each metric, the best-performing method is highlighted in bold and the
second-best is underlined.

Model Metrics (%)

AUC bAcc F1 Se
MLP (clinical) 65.36 61.29 60.87 60.87
MLP (clinical + brain IDPs) 71.37 60.31 65.96 67.39
MLP (clinical + brain IDPs + lesion IDPs) 65.63 62.58 68.69 73.91

multi-modal pre-trained model, giving some hints about the successfullness of the learning strategies.200

A latent space embedding size of 2048 dimensions is produced.201

For qualitative analysis, we generated imaging heatmaps using the Gradient-weighted Class Activation202

Mapping (GradCAM) technique [39] to visualize the regions in each slice that contributed most203

significantly to the model’s predictions across given brain MRI volume. GradCAM [39] heatmaps are204

normalized in the range of 0 to 1 and are upsampled with trilinear interpolation to match the original205

image space. The 7th layer of the ResNet50 encoder is used to allow capturing high-level features206

and spatial structure that is suitable for visualization. The most informative slice (defined as the one207

accounting with the highest heatmap activation scores) for each view in axial, sagittal, or coronal208

plane is generated. We use the 3D GradCAM implementation from MONAI.209

3.3 Performance assessment210

All models are evaluated through the area under the Receiver Operating Characteristic (ROC) curve.211

Binary classification metrics, namely balanced accuracy, F1-Score, and sentitivty, are included. Clas-212

sification metrics are reported at the Youden-index operating point (J = Sensitivity+Specificity−1)213

retrieved from the (validation set) ROC curve. The metrics are chosen bearing in mind that potential214

clinical applications of this study could serve as screening and risk stratification tools, where the215

models sensitivity plays an important role to avoid missing positive stroke cases.216

4 Results and Discussion217

4.1 Benchmarking218

To determine which tabular features to include, we conducted a supervised-learning ablation analysis219

using various combinations of tabular data subgroups. As shown in Table 1, the models that220

incorporate clinical and brain IDPs achieve the highest ROC-AUC scores. However, the method221

that also includes lesion IDPs outperforms in binary classification metrics, such as F1-score and222

sensitivity. To prioritize model robustness while maintaining a smaller feature set, the subsequent223

benchmarking of models using tabular data is performed using only clinical and brain IDPs.224

A summary of the different models performance is shown in Table 2. It is observed that the proposed225

multi-modal learning strategy outperforms all other methodologies across all considered metrics,226

with the trainable model setting performing slightly better than the frozen one.227

When comparing models based on learning approach and data modality, it can be observed that228

the best performing imaging supervised learning strategy is DenseNet121 (ROC-AUC 66.79%). In229

DenseNet architectures, layers are densely connected, which improves feature reuse and gradient230

flow, leading to richer feature representations. However, this dense connectivity increases memory231

overhead during training, particularly with the large inputs used in this study. To optimize the trade-off232

between efficiency and memory usage, we selected ResNet50 as the encoder for SSL pre-training,233

accepting a minor reduction in performance.234

When comparing SSL strategies, it is evident that fine-tuning both data modalities in multi-modal235

approaches significantly boosts performance. The performance gap is considerable when comparing236
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these multi-modal models with unimodal image-based models, showing that image data alone is237

insufficient for effectively addressing the task. The best performing method is the CLIP+ITM238

model, performing better than all unimodal (tabular and imaging) SSL methods. Interestingly, DAFT239

performs similar to the multi-modal SSL methods in terms of ROC-AUC and balanced accuracy,240

although exhibits poor F1-score and sensitivity results. There is no clear difference in performance241

between trainable and frozen settings across all models. We hypothesize this is because the pre-trained242

models have already developed robust, transferable representations, making fine-tuning less impactful.243

Additionally, the small size of the fine-tuning dataset may limit the effectiveness of further learning244

beyond what was achieved during pre-training. Besides, it could be hypothesized that freezing the245

model may serve as a form of regularization, helping to mitigate overfitting, particularly in this setting246

with limited labeled data.247

Table 2: Benchmarking performance results. F and T denote frozen and trainable pre-trained encoders.
ROC-AUC: area under the receiver operating characteristic curve; bAcc (%): balanced Accuracy;
Se (%): Sensitivity. For each metric, the best-performing method is highlighted in bold and the
second-best is underlined. The overall best performing method is highlighted in gray.

Model Tabular Image Metrics (%)

AUC bAcc F1 Se
(a) Supervised Image

ResNet-50 [40] - T 63.25 57.08 60.01 65.22
DenseNet121 [35] - T 66.79 66.79 69.90 78.26

(b) Supervised Tabular

MLP T - 71.37 60.31 65.96 67.39
Transformer [25] T - 64.38 62.21 47.62 32.61

(c) Supervised multi-modal

Concat Fuse (CF) [36] T T 65.26 60.29 62.63 67.39
Concat Fuse (CF) [w/ Transformer] [36, 25] T T 63.48 52.08 66.17 95.65
DAFT [17] T T 73.82 63.51 69.57 65.01

(d) SSL Image

SimCLR [19] - F 64.99 52.38 33.33 28.91
SimCLR [19] - T 65.59 55.67 43.83 34.78
SimCLR [19] T F 72.02 65.56 64.44 63.04
SimCLR [19] T T 72.11 65.56 64.44 63.04

(e) SSL Tabular

SCARF [23] F - 71.18 62.42 63.91 67.39
SCARF [23] T - 70.35 64.48 62.92 60.87
SCARF [23] F T 72.16 62.16 43.48 53.34
SCARF [23] T T 72.02 67.85 73.08 78.26

(f) SSL multi-modal

CLIP [26] T T 73.41 61.5 67.24 80.78
CLIP [26] F F 73.54 71.00 70.97 71.74
CLIP+ITM [25, 28] T T 74.42 71.11 74.22 84.78
CLIP+ITM [25, 28] F F 74.75 62.77 67.29 76.60

4.2 Interpretability and qualitative analysis248

4.2.1 Embeddings visualization249

Figure 2 shows the UMAP embeddings distribution for unimodal and multi-modal data models. On250

one hand, it can be observed that in Fig. 2 A, there is a clear distinction between (unimodal learnt)251

tabular and imaging data modalities, with data samples clustered by data-type. In this case, the252

7



C
om

po
ne

nt
 2

 

Component 1 Component 1 

A B

Modality 

Imaging 
Tabular             

Modality 

Imaging
Tabular             

Figure 2: 2D UMAP projections of tabular and imaging embeddings from the validation set, using
(A) unimodal pre-trained tabular and imaging encoders and (B) multi-modal pre-trained tabular and
imaging encoders.

embeddings generated from imaging data and tabular data are significantly different from each other in253

the feature space when generated with a unimodal pre-trained model (i.e., either SCARF or SimCLR).254

The tight clustering of red points suggests that the tabular data embeddings are more homogeneous255

and possibly more concentrated in the feature space compared to the broad representation of brain256

MRI images. Therefore, unimodal-data encoders have learned modality-specific features, without257

capturing interactions between them. On the other hand, in Fig. 2 B the UMAP plot obtained for258

the best performing multi-modal model (CLIP+ITM) is shown. In this case, there is significant259

overlap between the tabular and imaging embeddings, suggesting that the model has found common260

representations for the two different data types, either via shared visual features or via learning261

associated clinical patterns in tabular and brain MRIs. Thus, CLIP+ITM is able to encode the262

underlying patient representation in a common latent space by reducing data augmentation noise.263

Still, there are data-points in the plot having distinct representations within each modality, suggesting264

that the model could not project them to the modality-shared latent space. The broad distribution of265

points across the entire UMAP space suggests that the embeddings capture a wide variety of features266

from both imaging and tabular data, rather than collapsing all data points into a narrow cluster. These267

results expose the enhanced performance of the multi-modal SSL strategy by projecting diverse268

data modalities into a shared embedding space, and thus suggesting a better model starting point for269

downstream analysis.270

4.2.2 Imaging heatmaps271

Figure 3 shows results from the GradCAM experiment obtained over predicted samples. When272

inspecting the positive predicted scans (True Positives and False Positives), the model tends to273

highlight anatomical regions surrounding the lateral ventricles and (periventricular) white matter274

areas. Such patterns could be associated to white matter hyperintensities, which are known predictors275

of brain atrophy and age-related brain alterations [41] and also stroke risk predictors in elderly276

individuals [42]. In different studies, correlations have been observed between common age-related277

structural brain changes and brain pathologies [41, 43, 44]. When assessing scans #2 and #4 of278

the true positive patients in Fig. 3, the activation maps are also showing anatomical regions distant279

from the lateral ventricles, showing high activations. Supported from literature, those activations280

could be related to white matter hyperintensities (deep white matter, in this case), often appearing in281

regions of the brain that are not immediately adjacent to the cortical surface, but commonly located in282

subcortical white matter or in deep white matter tracts [41]. Such deep white matter hyperintensities283

are associated with chronic vascular disease and other chronic pathologies (e.g. multiple sclerosis)284

[41]. When evaluating negatively predicted patients (True Negatives and False Negatives), the scans285

are showing less emphasis on the (periventricular) white matter region but instead highlight areas of286

the lower brain (cerebellum, posterior brain) and the cortex. We hypothesize that these areas may287
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Figure 3: GradCAM-activated brain regions for five patients, categorized as TP (True Positive), TN
(True Negative), FP (False Positive), and FN (False Negative). Red (blue) indicates higher (lower)
activations.

reflect patterns related to normal aging or normal brain atrophy processes, rather than anomalous brain288

conditions. Overall, we can hypothesise from these visualizations that the multi-modal SSL stroke289

risk predictor model focuses on abnormal brain aging patterns for its predictions. We therefore believe290

that future experiments including brain-age and brain structure-age biomarkers could help enhancing291

the models predictability, since they have been shown to be associated with overall cardiovascular292

risk [45], clinical outcome in stroke [46] and overall risk of mortality [47].293

Limitations. Our study is limited by the use of the UK Biobank, whose demographic characteris-294

tics may not fully represent the diversity of global populations, potentially impacting the model’s295

generalizability and clinical utility. Future research should validate our approach using more diverse296

external datasets to improve applicability. Additionally, our test set was constrained by the limited297

availability of pre-stroke imaging samples, as most stroke datasets focus on post-onset cases. Finally,298

the heterogeneity in the time between imaging and stroke onset in the UK Biobank could influence299

model performance, necessitating further experiments to disentangle these effects. Future work could300

also include improving model efficiency by testing further architectures and techniques to reduce301

model parameters (e.g. network pruning).302

5 Conclusion303

We hereby present an SSL model integrating diverse data modalities for predicting stroke risk. The304

model’s performance is compared against state-of-the-art (self-)supervised models employing both305

unimodal and multi-modal data, including tabular and imaging datasets. A comprehensive set of306

experimental settings is utilized, encompassing different subgroupings of tabular features—such307

as clinical data, brain IDPs, and lesion IDPs—as well as various training regimes that combine308

pre-training and fine-tuning based on data modality.309

Our results demonstrate that the CLIP model on multi-modal data, combined with an ITM loss,310

outperforms single-modality alternatives.The CLIP+ITM model surpasses the self-supervised tabular311

(image) data SCARF (SimCLR) model by 2.6% (2.6%) in ROC-AUC, and by 3.3% (5.6%) in balanced312

accuracy terms. Our framework also demonstrated an AUROC improvement of 0.93% and 7.6%313

balanced accuracy from the best multi-modal supervised method. Additionally, the proposed model314

produces well-aligned multi-modal representations in a common, data modality-independent space,315

which is unattainable with unimodal tabular or imaging data models. Thus, CLIP-ITM effectively316

leverages complementary and synergistic information from diverse data modalities.317
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Using interpretable GradCAM heatmaps, we identified activated brain regions commonly associated318

with brain aging, stroke risk, and clinical outcomes. On one hand, the activated areas indicate that319

the model primarily focuses on deep and periventricular white matter hyperintensities for predicting320

positive samples, which may be more common and extensive in patients identified as at risk for stroke.321

On the other hand, the prediction of negative samples highlights the cerebellum, posterior brain322

regions and cortical areas. These results demonstrate the model’s capacity to extract task-specific323

features linked to stroke risk, which are well-supported by existing literature.324

In conclusion, we propose a robust self-supervised multi-modal learning approach for stroke risk325

prediction. Our model offers a strong foundation for future studies that aim to integrate multiple data326

modalities into prediction models.327
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the claims of this work.503

Guidelines:504

• The answer NA means that the abstract and introduction do not include the claims505

made in the paper.506

• The abstract and/or introduction should clearly state the claims made, including the507

contributions made in the paper and important assumptions and limitations. A No or508

NA answer to this question will not be perceived well by the reviewers.509

• The claims made should match theoretical and experimental results, and reflect how510

much the results can be expected to generalize to other settings.511

• It is fine to include aspirational goals as motivation as long as it is clear that these goals512

are not attained by the paper.513

2. Limitations514

Question: Does the paper discuss the limitations of the work performed by the authors?515

Answer: [Yes]516

Justification: Yes, the limitations are discussed after the results in page 8.517

Guidelines:518

• The answer NA means that the paper has no limitation while the answer No means that519

the paper has limitations, but those are not discussed in the paper.520

• The authors are encouraged to create a separate "Limitations" section in their paper.521

• The paper should point out any strong assumptions and how robust the results are to522

violations of these assumptions (e.g., independence assumptions, noiseless settings,523

model well-specification, asymptotic approximations only holding locally). The authors524

should reflect on how these assumptions might be violated in practice and what the525

implications would be.526

• The authors should reflect on the scope of the claims made, e.g., if the approach was527

only tested on a few datasets or with a few runs. In general, empirical results often528

depend on implicit assumptions, which should be articulated.529

• The authors should reflect on the factors that influence the performance of the approach.530

For example, a facial recognition algorithm may perform poorly when image resolution531

is low or images are taken in low lighting. Or a speech-to-text system might not be532

used reliably to provide closed captions for online lectures because it fails to handle533

technical jargon.534

• The authors should discuss the computational efficiency of the proposed algorithms535

and how they scale with dataset size.536

• If applicable, the authors should discuss possible limitations of their approach to537

address problems of privacy and fairness.538

• While the authors might fear that complete honesty about limitations might be used by539

reviewers as grounds for rejection, a worse outcome might be that reviewers discover540

limitations that aren’t acknowledged in the paper. The authors should use their best541

judgment and recognize that individual actions in favor of transparency play an impor-542

tant role in developing norms that preserve the integrity of the community. Reviewers543

will be specifically instructed to not penalize honesty concerning limitations.544

3. Theory Assumptions and Proofs545

Question: For each theoretical result, does the paper provide the full set of assumptions and546

a complete (and correct) proof?547

Answer: [NA]548
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Justification: There is no theoretical assumption or proof in this work.549

Guidelines:550

• The answer NA means that the paper does not include theoretical results.551

• All the theorems, formulas, and proofs in the paper should be numbered and cross-552

referenced.553

• All assumptions should be clearly stated or referenced in the statement of any theorems.554

• The proofs can either appear in the main paper or the supplemental material, but if555

they appear in the supplemental material, the authors are encouraged to provide a short556

proof sketch to provide intuition.557

• Inversely, any informal proof provided in the core of the paper should be complemented558

by formal proofs provided in appendix or supplemental material.559

• Theorems and Lemmas that the proof relies upon should be properly referenced.560

4. Experimental Result Reproducibility561

Question: Does the paper fully disclose all the information needed to reproduce the main ex-562

perimental results of the paper to the extent that it affects the main claims and/or conclusions563

of the paper (regardless of whether the code and data are provided or not)?564

Answer: [Yes]565

Justification: Yes, all the experimental parameters as well as all the models architecture566

details are given in sections 2 and 3. The code will be published open source for full567

reproducibility in the camera-ready version.568

Guidelines:569

• The answer NA means that the paper does not include experiments.570

• If the paper includes experiments, a No answer to this question will not be perceived571

well by the reviewers: Making the paper reproducible is important, regardless of572

whether the code and data are provided or not.573

• If the contribution is a dataset and/or model, the authors should describe the steps taken574

to make their results reproducible or verifiable.575

• Depending on the contribution, reproducibility can be accomplished in various ways.576

For example, if the contribution is a novel architecture, describing the architecture fully577

might suffice, or if the contribution is a specific model and empirical evaluation, it may578

be necessary to either make it possible for others to replicate the model with the same579

dataset, or provide access to the model. In general. releasing code and data is often580

one good way to accomplish this, but reproducibility can also be provided via detailed581

instructions for how to replicate the results, access to a hosted model (e.g., in the case582

of a large language model), releasing of a model checkpoint, or other means that are583

appropriate to the research performed.584

• While NeurIPS does not require releasing code, the conference does require all submis-585

sions to provide some reasonable avenue for reproducibility, which may depend on the586

nature of the contribution. For example587

(a) If the contribution is primarily a new algorithm, the paper should make it clear how588

to reproduce that algorithm.589

(b) If the contribution is primarily a new model architecture, the paper should describe590

the architecture clearly and fully.591

(c) If the contribution is a new model (e.g., a large language model), then there should592

either be a way to access this model for reproducing the results or a way to reproduce593

the model (e.g., with an open-source dataset or instructions for how to construct594

the dataset).595

(d) We recognize that reproducibility may be tricky in some cases, in which case596

authors are welcome to describe the particular way they provide for reproducibility.597

In the case of closed-source models, it may be that access to the model is limited in598

some way (e.g., to registered users), but it should be possible for other researchers599

to have some path to reproducing or verifying the results.600

5. Open access to data and code601
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Question: Does the paper provide open access to the data and code, with sufficient instruc-602

tions to faithfully reproduce the main experimental results, as described in supplemental603

material?604

Answer: [No]605

Justification: The code will be released in the camera-ready version to fully reproduce all606

the experimental results as described. The data is from the UK Biobank and is therefore not607

publicly available.608

Guidelines:609

• The answer NA means that paper does not include experiments requiring code.610

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/611

public/guides/CodeSubmissionPolicy) for more details.612

• While we encourage the release of code and data, we understand that this might not be613

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not614

including code, unless this is central to the contribution (e.g., for a new open-source615

benchmark).616

• The instructions should contain the exact command and environment needed to run to617

reproduce the results. See the NeurIPS code and data submission guidelines (https:618

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.619

• The authors should provide instructions on data access and preparation, including how620

to access the raw data, preprocessed data, intermediate data, and generated data, etc.621

• The authors should provide scripts to reproduce all experimental results for the new622

proposed method and baselines. If only a subset of experiments are reproducible, they623

should state which ones are omitted from the script and why.624

• At submission time, to preserve anonymity, the authors should release anonymized625

versions (if applicable).626

• Providing as much information as possible in supplemental material (appended to the627

paper) is recommended, but including URLs to data and code is permitted.628

6. Experimental Setting/Details629

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-630

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the631

results?632

Answer: [Yes]633

Justification: Yes, every detail is shared concerning the pretraining and training splits,634

hyperparameters and optimizers used in sections 2 and 3.635

Guidelines:636

• The answer NA means that the paper does not include experiments.637

• The experimental setting should be presented in the core of the paper to a level of detail638

that is necessary to appreciate the results and make sense of them.639

• The full details can be provided either with the code, in appendix, or as supplemental640

material.641

7. Experiment Statistical Significance642

Question: Does the paper report error bars suitably and correctly defined or other appropriate643

information about the statistical significance of the experiments?644

Answer: [NA]645

Justification: Error bars or confidence intervals are not really applicable in this con-646

text/case/experiments. Train/test splits and model initialization are precised.647

Guidelines:648

• The answer NA means that the paper does not include experiments.649

• The authors should answer "Yes" if the results are accompanied by error bars, confi-650

dence intervals, or statistical significance tests, at least for the experiments that support651

the main claims of the paper.652
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• The factors of variability that the error bars are capturing should be clearly stated (for653

example, train/test split, initialization, random drawing of some parameter, or overall654

run with given experimental conditions).655

• The method for calculating the error bars should be explained (closed form formula,656

call to a library function, bootstrap, etc.)657

• The assumptions made should be given (e.g., Normally distributed errors).658

• It should be clear whether the error bar is the standard deviation or the standard error659

of the mean.660

• It is OK to report 1-sigma error bars, but one should state it. The authors should661

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis662

of Normality of errors is not verified.663

• For asymmetric distributions, the authors should be careful not to show in tables or664

figures symmetric error bars that would yield results that are out of range (e.g. negative665

error rates).666

• If error bars are reported in tables or plots, The authors should explain in the text how667

they were calculated and reference the corresponding figures or tables in the text.668

8. Experiments Compute Resources669

Question: For each experiment, does the paper provide sufficient information on the com-670

puter resources (type of compute workers, memory, time of execution) needed to reproduce671

the experiments?672

Answer: [Yes]673

Justification: The details for compute resources are elaborated in section 3.1.2.674

Guidelines:675

• The answer NA means that the paper does not include experiments.676

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,677

or cloud provider, including relevant memory and storage.678

• The paper should provide the amount of compute required for each of the individual679

experimental runs as well as estimate the total compute.680

• The paper should disclose whether the full research project required more compute681

than the experiments reported in the paper (e.g., preliminary or failed experiments that682

didn’t make it into the paper).683

9. Code Of Ethics684

Question: Does the research conducted in the paper conform, in every respect, with the685

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?686

Answer: [Yes]687

Justification: Yes, data anonymisation was preserved according to UKB guidelines and688

societal impact was maximized in the context of this research work. No participant was689

harmed and they were all volunteers to the UKB.690

Guidelines:691

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.692

• If the authors answer No, they should explain the special circumstances that require a693

deviation from the Code of Ethics.694

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-695

eration due to laws or regulations in their jurisdiction).696

10. Broader Impacts697

Question: Does the paper discuss both potential positive societal impacts and negative698

societal impacts of the work performed?699

Answer: [Yes]700

Justification: Yes, the discussion and conclusion elaborate on the potential benefits of701

anticipating stroke events in healthy populations.702

Guidelines:703
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• The answer NA means that there is no societal impact of the work performed.704

• If the authors answer NA or No, they should explain why their work has no societal705

impact or why the paper does not address societal impact.706

• Examples of negative societal impacts include potential malicious or unintended uses707

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations708

(e.g., deployment of technologies that could make decisions that unfairly impact specific709

groups), privacy considerations, and security considerations.710

• The conference expects that many papers will be foundational research and not tied711

to particular applications, let alone deployments. However, if there is a direct path to712

any negative applications, the authors should point it out. For example, it is legitimate713

to point out that an improvement in the quality of generative models could be used to714

generate deepfakes for disinformation. On the other hand, it is not needed to point out715

that a generic algorithm for optimizing neural networks could enable people to train716

models that generate Deepfakes faster.717

• The authors should consider possible harms that could arise when the technology is718

being used as intended and functioning correctly, harms that could arise when the719

technology is being used as intended but gives incorrect results, and harms following720

from (intentional or unintentional) misuse of the technology.721

• If there are negative societal impacts, the authors could also discuss possible mitigation722

strategies (e.g., gated release of models, providing defenses in addition to attacks,723

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from724

feedback over time, improving the efficiency and accessibility of ML).725

11. Safeguards726

Question: Does the paper describe safeguards that have been put in place for responsible727

release of data or models that have a high risk for misuse (e.g., pretrained language models,728

image generators, or scraped datasets)?729

Answer: [NA]730

Justification: The paper poses no such risk.731

Guidelines:732

• The answer NA means that the paper poses no such risks.733

• Released models that have a high risk for misuse or dual-use should be released with734

necessary safeguards to allow for controlled use of the model, for example by requiring735

that users adhere to usage guidelines or restrictions to access the model or implementing736

safety filters.737

• Datasets that have been scraped from the Internet could pose safety risks. The authors738

should describe how they avoided releasing unsafe images.739

• We recognize that providing effective safeguards is challenging, and many papers do740

not require this, but we encourage authors to take this into account and make a best741

faith effort.742

12. Licenses for existing assets743

Question: Are the creators or original owners of assets (e.g., code, data, models), used in744

the paper, properly credited and are the license and terms of use explicitly mentioned and745

properly respected?746

Answer: [Yes]747

Justification: All references to data (UK Biobank), codes, and models are referenced748

accordingly.749

Guidelines:750

• The answer NA means that the paper does not use existing assets.751

• The authors should cite the original paper that produced the code package or dataset.752

• The authors should state which version of the asset is used and, if possible, include a753

URL.754

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.755
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• For scraped data from a particular source (e.g., website), the copyright and terms of756

service of that source should be provided.757

• If assets are released, the license, copyright information, and terms of use in the758

package should be provided. For popular datasets, paperswithcode.com/datasets759

has curated licenses for some datasets. Their licensing guide can help determine the760

license of a dataset.761

• For existing datasets that are re-packaged, both the original license and the license of762

the derived asset (if it has changed) should be provided.763

• If this information is not available online, the authors are encouraged to reach out to764

the asset’s creators.765

13. New Assets766

Question: Are new assets introduced in the paper well documented and is the documentation767

provided alongside the assets?768

Answer: [NA]769

Justification: Code, documentations and pre-trained models checkpoints will be released for770

camera-ready version.771

Guidelines:772

• The answer NA means that the paper does not release new assets.773

• Researchers should communicate the details of the dataset/code/model as part of their774

submissions via structured templates. This includes details about training, license,775

limitations, etc.776

• The paper should discuss whether and how consent was obtained from people whose777

asset is used.778

• At submission time, remember to anonymize your assets (if applicable). You can either779

create an anonymized URL or include an anonymized zip file.780

14. Crowdsourcing and Research with Human Subjects781

Question: For crowdsourcing experiments and research with human subjects, does the paper782

include the full text of instructions given to participants and screenshots, if applicable, as783

well as details about compensation (if any)?784

Answer: [NA]785

Justification: The paper does not involve crowdsourcing. We use the data from human786

participants that were already collected by UK Biobank.787

Guidelines:788

• The answer NA means that the paper does not involve crowdsourcing nor research with789

human subjects.790

• Including this information in the supplemental material is fine, but if the main contribu-791

tion of the paper involves human subjects, then as much detail as possible should be792

included in the main paper.793

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,794

or other labor should be paid at least the minimum wage in the country of the data795

collector.796

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human797

Subjects798

Question: Does the paper describe potential risks incurred by study participants, whether799

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)800

approvals (or an equivalent approval/review based on the requirements of your country or801

institution) were obtained?802

Answer: [NA]803

Justification: The paper does not involve crowdsourcing. We use the data from human804

participants that were already collected by UK Biobank.805

Guidelines:806
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• The answer NA means that the paper does not involve crowdsourcing nor research with807

human subjects.808

• Depending on the country in which research is conducted, IRB approval (or equivalent)809

may be required for any human subjects research. If you obtained IRB approval, you810

should clearly state this in the paper.811

• We recognize that the procedures for this may vary significantly between institutions812

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the813

guidelines for their institution.814

• For initial submissions, do not include any information that would break anonymity (if815

applicable), such as the institution conducting the review.816
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