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ABSTRACT

Recent advances in zero-shot affine-invariant depth estimation have achieved re-
markable progress. However, extending relative depth to metric depth remains
challenging due to the absence of reliable metric-scale guidance within existing
depth foundation models. Building on this, we introduce a novel depth estima-
tion paradigm—anchor–multiplier factorization—as an alternative to conven-
tional approaches such as direct depth regression, depth completion, or feature-
fusion methods. Our key insight is that sparse point anchors supply indispensable
metric-scale cues, while relative-scale geometric structure can be stably regulated
via Gaussian-splatted multiplication conditioned on image semantics. Accord-
ingly, we implement GSD—an anchor-based Gaussian Splatting Depth Regulator
for universal metric-depth restoration. We also propose the first theoretical anal-
ysis showing how anchor–multiplier factorization mitigates training divergence,
and thereby improves metric restoration accuracy. Extensive experiments across
diverse datasets demonstrate substantial accuracy gains over state-of-the-art base-
lines, highlighting the benefits of treating 3DGS not merely as a renderer, but as
a versatile regulator for visual representation learning.

1 INTRODUCTION

Universal depth estimation plays a critical role in 3D vision, enabling myriad downstream applica-
tions in 3D reconstruction, autonomous driving, and robotics. Current monocular foundation mod-
els (Yang et al., 2024b; Ke et al., 2024) have reached a Eureka moment in zero-shot affine-invariant
relative depth estimation, which can produce high-resolution and well-structured depth maps for
wild images. However, bridging the gap from relative depth to metric depth remains challenging.
Fine-tuning these models on metric depth data often causes catastrophic forgetting of previously
learned relative geometry. As the metric-scale supervision loss converges, previously sharp depth
boundaries become blurred, and the overall depth generalization capability deteriorates.

Prior efforts to achieve universal depth estimation have primarily followed three major pipelines:
1) direct depth regression with large transformer (Yang et al., 2024a; Hu et al., 2024) or diffusion
models (Ke et al., 2024; Guizilini et al., 2025) ; 2) geometry estimation guided by semantic or
multi-modal prompts (Wang et al., 2025a;b; Fu et al., 2024); and 3) post-processing or explicit
scaling (e.g., 3D Gaussian Splatting (3DGS) for self-supervised refinement or least-squares scale
alignment (Charatan et al., 2024; Xu et al., 2025)). While these methods generally focus on affine-
invariant relative depth, some of the expansion methods (Yang et al., 2024b; Lin et al., 2025; Viola
et al., 2024) incorporate information from sparse anchors to restore the metric depth in the real
scale(Figure 1). However, hey still suffer from geometric degradation and knowledge forgetting,
even with sparse depth anchors provided (e.g., comparing Depth Anything v2 + Least Squares post
processing [DAv2+LS] and finetuned Depth Anything v2 Metric depth [DAv2 Metric] in Table 2).
This raises a fundamental question: can we establish a theoretically grounded paradigm leveraging
sparse 3D cues to convert universal relative depth predictions into metric scale?

We address this question in the affirmative by introducing anchor–multiplier factorization (illus-
trated in Figure 1 and Figure 3). In this novel paradigm, metric-scale depth is estimated as the
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Figure 1: Overview of the Anchor-Multiplier Paradigm. The left part illustrates the differences
between our paradigm and the previous three pipelines. The right part displays the visualization
of our 3DGS multiplier map, interpolated anchor map, and the factored result of high-accuracy
predicted metric-depth.

product of an interpolated sparse-anchor depth map (providing coarse metric scale) and a learn-
able dense multiplier map (refining relative geometry details). This decoupling of metric scale and
relative geometric structure largely alleviates the “mutual cancellation” effect that causes spatial
knowledge to be forgotten. Although some prior research (Yin et al., 2023; Piccinelli et al., 2024;
Wang et al., 2025c) has also noticed such benefits, they undertake this problem via outside cam-
era metric information injection (Piccinelli et al., 2024), field-of-view augmentation (Saxena et al.,
2023), canonical 3D space design (Yin et al., 2023), or extra scale estimation networks Wang et al.
(2025c) etc. We observe that these strategies partially disentangle scale from structure but do not
fully resolve the issue. The primary goal of our anchor-multiplier schema is to learn the per-pixel
multiplier map that stretches or compresses the coarsely interpolated anchor map to align with the
ground truth, which is the underlying difference compared to the three paradigms above. We further
provide a theoretical analysis showing that learning the multiplier is statistically easier and yields
more stable gradients than direct depth regression (Section 3.2).

To implement the multiplier, we repurpose 3D Gaussian Splatting (3DGS) as a regulator (Section 4).
In previous work, 3DGS is utilized through its Gaussian primitives (each with a 3D center, covari-
ance, opacity, etc.) to render RGB images, yet we adopt 3DGS feature representation here to produce
the multiplier map for coarse depth regulation. This choice is motivated by 3DGS’s ability to capture
rich spatial textures—orientation, scale, transparency—beyond what point or voxel representations
can offer. After training, the multiplier maps delineate semantic boundaries (see Figure 1) and a rel-
ative geometric structure, remarkably resembling the output of dedicated relative-depth foundation
models, demonstrating 3DGS’s role as a versatile regulator for depth representation.

Our contribution can be summarized as follows: 1) We propose a novel anchor-multiplier
paradigm that cleanly disentangles the relative geometry from metric-scale information; 2) We
provide the first theoretical analysis of this factorization, proving that multiplier learning is statis-
tically easier and stabilizes training; 3) We introduce GSD, the first framework to employ a 3DGS
representation as a depth regulator and achieves geometric fidelity competitive with depth foun-
dation models. 4) Extensive quantitative and qualitative experiments on diverse benchmarks show
significant improvements over state-of-the-art baselines, validating the effectiveness of our innova-
tive approach.

2 RELATED WORK

Due to space constraints, we will briefly discuss the technical roadmap and emphasize its represen-
tative features here. A detailed literature review is described in the Appendix A.1.
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2.1 MONOCULAR DEPTH ESTIMATION AND DEPTH COMPLETION

Monocular depth estimation aims to predict per-pixel depth from a single image, whereas depth
completion refines this prediction using sparse anchor depth cues. Earlier work typically employs
task-specific modules, including confidence-based propagation (Park et al., 2020; Tang et al., 2024),
multi-resolution geometric priors (Bartolomei et al., 2024; Zuo et al., 2024), or sparse cues operator-
level enhancement (Conti et al., 2023; Zhang et al., 2023). Recent efforts converge on foundation-
scale models pursued along four axes: 1) camera-aware representations that resolve scale ambiguity
(Yin et al., 2023; Hu et al., 2024; Piccinelli et al., 2024), 2) transformer (Yang et al., 2024a;b;
Lin et al., 2025) or diffusion (Guizilini et al., 2025; Ke et al., 2024; Fu et al., 2024; Viola et al.,
2024) backbones trained for affine-invariant prediction, 3) boundary-aware gradient losses design
(Bochkovskii et al., 2024) and specific temporal matching architectures (Gui et al., 2025) tuned
for fidelity or speed, and 4) multi-task geometry estimation frameworks that jointly optimize depth
with surface normals or point maps (Wang et al., 2025a;b; Keetha et al., 2025). In contrast, our
anchor–multiplier distinguishes itself from the formulations above by explicitly factoring the metric
scale from relative geometry, rather than relying on regressing metric depth.

2.2 DEPTH ESTIMATION WITH 3DGS

Contemporary 3D Gaussian Splatting (3DGS) increasingly leverages monocular depth to stabilize
scale and sharpen geometry for rendering, including depth-conditioned initialization or supervision
(Xu et al., 2025; Chung et al., 2024; Zheng et al., 2025), depth confidence thresholding and multi-
cue fusion (Zhang et al., 2025; Deng et al., 2025), geometric regularization from relative normal
cues for consistent novel-view synthesis (Zhan et al., 2025; Hu et al., 2025; Lee et al., 2024), and
etc. To compare with, our Gaussian Splatted Depth (GSD) network applies 3DGS as a constraint co-
efficient under our anchor-multiplier paradigm, instead of explicitly leveraging its rendering ability
for regression metric-value.

3 PROBLEM SETUP AND THEORETICAL JUSTIFICATION

3.1 NOTATION AND SETUP

Given an image sample with pixel coordinates I = I(u, v) and ground-truth depth Dgt = Dgt(u, v),
conventional depth regression directly predicts depth via D̂ = fθ(I), where fθ denotes a depth
regression network parameterized by θ. Depth completion can be viewed as an extension of depth
regression, parameterized as D̂ = fθ(I, S), where S ∈ {(u, v)} is defined as the projection of a set
of anchor points carrying metric depths, resulting in a sparse depth map where unprojected areas are
void. The general loss and its gradient are then

L = Loss(fθ(I, S), Dgt), (1)

gtrad
θ =

∂L
∂θ

=
∂L
∂f

· ∂f
∂θ

, (2)

where gtrad
θ denotes the gradient with respect to the tradtional methods for model parameter θ.

In contrast, we propose an anchor–multiplier factorization of depth completion that rewrites D̂ as

D̂ = fθ(I, S) = α̂ · I(S), (3)
α̂ = αθ(I, S), (4)

where I(S) is a dense scalar matrix obtained by interpolating S to fill void values, and α̂ is a pixel-
wise scale multiplier that modulates I(S) to match Dgt. Intuitively, I(S) provides a coarse global
metric scale, while α̂ captures fine-grained, affine-invariant local geometry (See visualizations
of I(S) and αθ in Figure 3). In practice, α̂ is produced by a neural network αθ(·). The resulting
gradient becomes

3
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gnew
θ =

∂L
∂θ

= I(S) · ∂L
∂f

· ∂α
∂θ

. (5)

It can be observed that ∂L
∂f denotes supervision-driven derivatives with respect to prediction errors,

while ∂α
∂θ reflects model sensitivity derivatives with respect to image input. In between, I(S) acts

as a known sample-dependent constant that splits the gradient gnew
θ into a product of a triplet and

reduces the correlation degree of the ∂L
∂f and ∂α

∂θ (See Assumption 3).

3.2 GRADIENT STABILITY AND THEORETICAL JUSTIFICATION

Let U = ∂L
∂f , V = ∂f

∂θ , and W = ∂α
∂θ , we have

Assumption 1 (Bounded Multiplier Assumption). Given an image sample I with sparse anchors S,
the function αθ is usually bounded and smooth over the continuous depth domain. Specifically, we
assume that αθ admits a Lipchitz-type boundary: 0 < αmin ≤ αθ(I, S) ≤ αmax < ∞, and there
exists 0 < κ < ∞ such that ||W || ≤ κ.
Assumption 2 (Metric-Depth Variation Assumption). For the traditional direct depth regression
approach, the magnitude V = ∂f

∂θ largely increases due to the large variations of metric-depth
scales across various scenes (e.g. indoor v.s. outdoor scenery). Specifically, there exists 0 < Λ < ∞
such that ||V || ≥ Λ.
Assumption 3 (Weak Dependence Assumption). We assume U (supervision-driven gradients)
and V or W (model-sensitivity gradients) are weakly correlated, i.e., |Corr(U, V )| → 0 or
|Corr(U,W )| → 0.
Theorem 1 (Variance Reduction Theorem, VRT). Under Assumptions 1–3, if for some κ,Λ < ∞,

E[||W 2||] ≤ κ2 and E[||V 2||] ≥ Λ2, (6)

then

E
[
Var[gnew

θ ]

Var[gtrad
θ ]

]
≲ E[I(S)2] · κ

2

Λ2
, (7)

where E(·) abbreviates the statistical expectations over the whole dataset samples. A detailed
proof is provided in the Appendix Section A.2. Especially, under mild conditions κ ≪ Λ ⇒
E
[
Var[gnew

θ ]

Var[gtrad
θ ]

]
< 1, it indicates that factorization can give a more constrained and stable gradient,

which improves model convergence. Moreover, our factorization formulation also explicitly injects
3D prior information, I(S), directly into back-propagated gradients via equation 5.

Figure 2: Histogram comparison of per-image means and standard deviations for depth D vs.
multiplier α. Left two images: mean and std distributions for D; right two images: mean and std
distributions for α. The red dashed line shows the dataset-wide expectation.

As illustrated in Figure 2, statistical results on Hyersim dataset (Roberts et al., 2021) also support
our proposed anchor–multiplier VRT (Theorem 1). We compute, per each image, the mean and
standard deviation of the depth ground truth D and of α, and then plot the resulting histograms
over the entire dataset. The distributed ranges for α (Mean[α] ≲ 3.5, Var[α] ≲ 8.5) are markedly
smaller and tighter than those for depth (Mean[D] ≲ 50.4, Var[D] ≲ 17.8), indicating that learning
α is statistically easier than directly regressing D.
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Figure 3: Overview of the GSD Architecture. Following the Anchor-Multiplier design merits, we
adopt 3DGS as the multiplier regressor αθ. The whole network can be decomposed into two mod-
ules: the Gaussian Sphere Prediction Module (GSPM) and the Depth Regulation Module (DRM).
GSPM takes an RGB image and sparse anchors to form the interpolated anchor map I(S) and pre-
dict 3DGS parameters. Then, DRM is designed to splat gaussian spheres into a multiplier map αθ.
Finally, multiplying αθ by I(S) yields the final dense metric depth D̂.

4 METHODOLOGY

4.1 OVERALL FRAMEWORK

The overall architecture is exhibited in Figure 3. We instantiate the multiplier network αθ with 3D
Gaussian Splatting (3DGS) to modulate/edit the interpolated anchor map I(S) into metric depth
D̂, because 3DGS can provide strong alignment to semantic textures, while jointly incorporating
representation from the RGB image and the 3D anchor prior. The whole network factorizes into
two modules: the Gaussian Sphere Prediction Module (GSPM) and the Depth Regulation Mod-
ule (DRM). GSPM comprises a semantic feature extractor and a Gaussian-parameter regressor. It
first encodes the RGB image and sparse depth anchors into features with residual, then regresses
Gaussian parameters: sphere centers (carrying implicit depth), covariances (defining each sphere’s
spatial support), opacities, and spherical harmonics (SH) coefficients (controlling local multiplica-
tive value). Based on predicted Gaussian parameters, DRM performs differentiable rendering to
produce a dense multiplier map, which is applied to I(S) to obtain the final metric prediction D̂.

4.2 GAUSSIAN SPHERE PARAMETERS PREDICTION

Sparse anchor projection & interpolation. Sparse depth anchors may come from LiDAR, RGB-D
sensors, SLAM, sparsification ground truth, or simulated LiDAR. Given a sparse anchor point set
{Pi ∈ R4} (represented by quaternion), camera extrinsic matrix E ∈ R4×4 and intrinsic matrix K ∈
R3×4, we compute the interpolated depth map initialization dinit at the resolution of I ∈ RH×W ,

S = KEPi (8)
dinit = I(S,H,W ). (9)

For the interpolation function I, we adopt a combined strategy: linear interpolation for inner values
and nearest-neighbor interpolation for the boundary.

Initial depth back-projection.

5
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Using the pinhole camera model, the homogeneous pixel coordinates (u, v, 1)T are back-projected
to ray vectors under the camera coordinate system:

ray(u, v) = K−1(u, v, 1)T . (10)

So the mean position pu,v of 3D Gaussian kernel corresponding to each pixel in the camera frame is

pu,v = dinit · ray(u, v) = dinit ·K−1(u, v, 1)T . (11)

Through such a back-projection procedure, we have the means of all 3D Gaussian spheres.

Semantic feature extraction. We design to let our feature extractors have both global awareness
(spatial layouts and geometric structure) and local awareness (boundary and texture). Therefore,
we adopt a ViT-CNN hybrid encoder to capture both scene-level context and fine-grained features.
The ViT branch inherits the frozen weights of the pretrained DINOv2 to provide global semantics
and long-range dependencies, whereas the other branch employs a learnable convolution network
and focuses on localized cues. The concatenated features Frgb from two branches are upsampled to
obtain Fup to align with the resolution of I, and then passed to the U-Net fusion encoder.

Gaussian parameter regression. Following MVSplat (Chen et al., 2024), we utilize a U-Net for
multimodal fusion and refinement. The inputs—Fup, raw image input I, interpolated anchor depth
map dinit, and the anchor mask Manchor—are fused with residual connections:

Frefined = UNet(F θ
up, I, dinit,Manchor). (12)

Subsequently, a Gaussian decoder transforms Frefined to Gaussian parameters:

G
.
= (Gmeans,Gcovariances,Gharmonics,Gopacities), (13)

Gmeans = c(u, v), (14)
{Gcovariances,Gharmonics,Gopacities} = GS-Decoder(Frefined). (15)

With these Gaussian parameters, the following splatting procedure proceeds analogously to RGB-
space rendering.

4.3 DEPTH REGULATION MODULE

Gaussian-splatting rendering.

Remember that we use 3DGS as a regulator to render the multiplier αθ. Following typical RGB
rendering practice, we adopt a pixel-wise feed-forward parallel differentiable rendering pipeline

αθ
res = Feed-Forward Render(G), (16)

since feed-forward splatting approach eliminates the need for lengthy iterative optimization and
enables a much faster training/inference speed in an end-to-end manner. Gaussian primitives are first
rasterized using their 3D means, covariances (represented by upper triangular elements), opacities,
and spherical harmonics (SH) coefficients. The rasterization process produces a rendered depth
image for each Gaussian, which is accumulated to obtain the rendered multiplication factor αθ

res.

Metric multiplier transformation. Although we intend for the output αθ
res to serve directly as

a multiplicative factor, it is observed that the rendered result has a limited numerical range, i.e.
αθ

res ∈ [0, 1], due to the Gaussian Rasterization property with SH and normalization pipeline. To
compare with, the real multiplier αgt value is defined by the ratio of the ground-truth metric depth
Dgt and the interpolated anchor depth map dinit from Equation (3)

αgt
.
=

Dgt

dinit
, (17)

which may have a different numerical range: αgt ∈ [0, αmax], αmax ̸= 1. Therefore, we need to
re-map αθ

res to a new value range [0, αmax]. We note that the Gaussian Splatting pipeline responds

6
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with 0.5 uniformly to the initial all-zero parameter input so that when αθ
res = 0.5, the actual de-

rived multiplier should be αθ = ϕ(αθ
res) = 1, which keeps an identity transformation and does not

compress or stretch the dinit. Therefore, we define ϕ(·) as

αθ = ϕ(αθ
res)

.
=


(αmax − 1)2·α

θ
res − 1

αmax − 2
, if αmax > 2

2 · αθ
res, αmax ≤ 2,

(18)

subject to ϕ(0) = 0, ϕ(0.5) = 1, and ϕ(1) ≥ αmax.

Finally, we obtain the dense metric prediction via pixel-wise multiplication:

D̂ = dinit ⊗ αθ. (19)

4.4 LOSS FUNCTION AND TRAINING PARADIGM

Loss Function. Following previous practice (Eigen et al., 2014), we adopt the Scale-Invariant Log-
arithmic (SILog) loss for depth regression. Interestingly, we find that the original SILog loss super-
vision over metric-depth has a close connection with the supervision over the multiplier α

ru,v = log D̂ − logDgt = log
dinit · αθ

Dgt
= log

αθ

αgt
, (20)

LSILog = r2u,v − λ · (ru,v)2, (21)

where λ = 0.5. Therefore, by applying SILog loss over D̂, we implicitly supervise αθ with αgt.

For synthetic datasets, such as Hypersim and Virtual KITTI (Cabon et al., 2020), which have dense
ground-truth labels, we adopt the Sobel operator-based gradient loss to enhance the edge sharpness

∇xD = conv(D,Fx), ∇yD = conv(D,Fy), (22)

LSobel = AVERAGEu,v(|∇xD̂ −∇xD|+ |∇yD̂ −∇yD|), (23)

where Fx and Fy are Sobel Kernels. As for real datasets that only have sparse annotations, we can
also utilize gradient loss by first scaling the predicted depth to an affine-invariant scale, and then
supervising it with pseudo labels generated by affine-invariant depth foundation models.

Finally, our training loss formula is

L = LSILog + 0.1 · LSobel. (24)

5 EXPERIMENTS

5.1 DATASETS AND EXPERIMENTAL SETUP

We train our GSD model on the Hypersim (Roberts et al., 2021) training set and evaluate the in-
domain results on the validation set. Following previous works (Viola et al., 2024; Lin et al., 2025;
Liu et al., 2024b), we sample anchor points from the ground truth depth to generate LiDAR-like
sparse depth input under several stride settings mentioned Section A.3. We also train GSD from
scratch on the KITTI Completion dataset (Geiger et al., 2013)—a real-world driving scene dataset
with paired RGB images and sparse LiDAR depth.

We evaluate our GSD model in a zero-shot manner on five unseen real-world datasets
NYUV2(Silberman et al., 2012), KITTI(Geiger et al., 2013), Scannet(Dai et al., 2017),
ETH3DSchops et al. (2017) and DIODE(Vasiljevic et al., 2019). The training configurations and
detailed datasets description are illustrated in Section A.3. It is worth noting that the Hypersim
training set is a indoor synthetic dataset with only 59k training samples.

We also trained GSD from scratch on the KITTI Completion dataset—a real driving-scene dataset
with paired RGB images and sparse LiDAR depth. Its semi-dense ground truth is derived from
temporal accumulation of consecutive LiDAR frames. For outdoor zero-shot setting we trained
GSD on Virtual KITTI dataset with about 21k samples.

7
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5.2 QUANTITATIVE COMPARISON

Comparison methods. We compare our method to various baselines as shown in Table 1 and
Table 2. All the methods have been trained on Hypersim (Roberts et al., 2021), and we have fine-
tuned them on KITTI (Geiger et al., 2013) for a fair comparison.

The post fusion method of Depth Anything v2 refers to scale and shift based least squares alignment
with relative depth prediction. We follow the official codebase to fine-tune Depth Anything V2 for
metric depth estimation on their provided checkpoints for indoor and outdoor scenes respectively,
as DAv2 Metric.

According to Prompting Depth Anything, their released checkpoint is pretrained on Hypersim and
then other two datasets, and we reproduce the training process of PromptDA according to its paper,
which achieves a much better result. The detailed evaluation protocol can be found in Section A.3.

Table 1: Quantitative comparison on the Hypersim dataset and the KITTI Completion dataset of in-
domain metric depth completion. All of the methods have been pretrained on Hypersim. Methods
marked with * are finetuned with their released models and code on KITTI. All metrics are presented
in percentage terms, and the unit of RMSE is meters.

Method
dataset Hypersim val KITTI completion val

anchor stride/prompt res. 7, 192×256 16, 518×686 —, 378×1246

fusion method retrained AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ Rmse↓ δ1 ↑

DAv2+LS (Yang et al., 2024b) post no 24.9 67.6 25.3 67.1 27.9 — —
DAv2 Metric* (Yang et al., 2024b) post yes 18.6 75.2 19.0 74.8 10.9 3.846 89.8

Marigold-DC (Viola et al., 2024) model optimize 8.0 97.1 7.1 97.1 4.9 1.823 97.4
PromptDA* (Lin et al., 2025) model yes 3.1 98.1 3.0 98.1 2.0 1.229 99.1

Ours(ViT-S) GS regulate yes 3.0 97.7 3.0 97.7 2.4 1.667 98.1
Ours(ViT-L) GS regulate yes 1.7 98.5 1.7 98.6 2.0 1.348 98.7

Qualitative comparison As presented in Table 1, our GSD achieves competitive results under in-
domain prediction compared with other depth estimation or completion baselines. Notably, our
approach inherits the rich priors from the pre-trained image encoder and is solely trained on 59k
synthetic samples. We believe that the excellent performance stems from the paradigm regulated by
3DGS. This aligns with our hypothesis that depth completion gains greater benefits from decoupling
the global scale and the local geometric structure via sparse anchors and a residual multiplier.

Table 2: Zero-shot performance with stride of 16. Metrics in gray are from their original papers.
Best results are bold, second-best are underlined.

Method NYUv2 KITTI ScanNet ETH3D DIODE

AbsRel↓ Rmse↓ AbsRel↓ Rmse↓ AbsRel↓ Rmse↓ AbsRel↓ Rmse↓ AbsRel↓ Rmse↓

NLSPN (Park et al., 2020) — 0.716 — 2.076 — 0.127 — — — —
SpAgNet (Conti et al., 2023) — 0.292 — 1.788 — — — — — —
CompletionFormer (Zhang et al., 2023) — 0.374 — 1.935 — 0.232 — — — —
VPP4DC (Bartolomei et al., 2024) — 0.247 — 1.609 — 0.076 — — — —
DepthSplat (Xu et al., 2025) — — 10.7 — 3.8 0.144 — — — —
DepthLab (Liu et al., 2024b) 2.5 0.276 7.2 2.171 2.3 0.081 3.1 — 17.6 —
OMNI-DC (Zuo et al., 2024) 2.3 0.225 — 2.058 — — 5.3 1.069 — —
Depth prompting (Park et al., 2024) — 0.144 — 1.351 — — — — — —

DAv2+LS (Yang et al., 2024b) 12.0 0.384 31.0 6.751 9.1 0.215 16.2 1.297 39.0 4.367
DAv2 Metric (Yang et al., 2024b) 5.6 0.206 4.5 1.861 21.2 0.406 30.4 2.278 44.1 7.827
PromptDA (Lin et al., 2025) 2.0 0.132 5.9 4.011 2.2 0.094 2.8 0.453 15.1 1.733
Marigold-DC (Viola et al., 2024) 1.9 0.119 10.6 3.575 1.6 0.079 — 2.008 14.4 2.659

Ours 1.8 0.130 6.4 3.570 1.6 0.086 2.6 0.503 13.1 2.560

The zero-shot performance with a stride of 16 is presented in Table 2. Our GSD attains the best
balance in terms of accuracy and efficiency across these zero-shot scenes, highlighting the general-
ization ability of introducing a 3DGS regulator.
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Quantitative comparison As shown in Figure 4 and Figure 5, we mark the anchor points with
various strides and visualize the initial coarse depth. The error map is presented on the top-left
while significant errors areas are highlighted with boxes and arrows. The result of our method
demonstrates significantly better geometric coherence with the sparse inputs. More visualization
comparisons are shown in Section A.5.

Figure 4: Qualitative comparisons with the latest state-of-the-art methods. PromptDA refers
to Prompting Depth Anything (Lin et al., 2025), and Marigold-DC (Viola et al., 2024) denotes the
depth completion variant of Marigold (Ke et al., 2024). We compare full-depth predictions, zoomed-
in local regions, and corresponding error maps based on normalized absolute depth errors.

Figure 5: Qualitative comparisons under varying anchor densities. Normalized absolute depth-
error maps are shown in the top-left of each panel. Across all density settings, our method consis-
tently produces the most accurate results. Zoom in for better results.

5.3 ABLATION STUDIES

Table 3: Ablation of modules.

modules absrel rmse δ1

(a) Interpolation 4.3% 0.621 0.961
(b) a + predict metric 3.6% 0.566 0.970
(c) b + UNet 3.3% 0.524 0.973
(d) c + *multiplier 3.1% 0.517 0.974
(e) d + GS decoder 2.8% 0.502 0.977

Table 4: Ablation on anchors.

Interp GSD
s res train rel rmse rel rmse

7 low ✓ 4.8 0.636 1.7 0.378
7 high ✓ 2.6 0.468 1.4 0.336
16 high ✗ 4.3 0.621 1.7 0.384
32 high ✗ 6.9 0.796 2.9 0.493
64 high ✗ 11.3 1.054 8.2 0.865

Table 5: Ablation of
backbones.

encoder Hyersim KITTI-DC
absrel rmse absrel rmse

ViT-S 3.4% 0.530 2.4% 1.667
ViT-L 3.2% 0.495 2.0% 1.348

Table 3 validates the effectiveness of our proposed modules and methods when evaluated with a
stride of 32 at the resolution of 518 × 686 on Hypersim validation set. (a) shows the quantitative
indicators through interpolation. (b) adds the semantic feature extraction module and mlp layers
to predict the metric depth itself with training procedure, and (c) refines the features through UNet
fusion module. In configuration (d) we use our anchor–multiplier factorization instead of regressing
the metric depth directly. Consistent with our theory, the gradient of multiplier is smoother and it is
the faster to achieve convergence while the performance has also improved. Finally in (d) we add
the 3DGS regulator, and it shows that 3DGS beats an equally pure 2D α-predictor and achieves the
best performance.
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Table 4 shows the performance of GSD with fewer metric clues. The resolution of sparse depth map
dinit is 256 × 192 for low and 686 × 518 for high, while the resolution of RGB image is 686 ×
518. The ✓ refers that GSD is trained under the stride while using them for evaluation on others ✗
settings. The metric ”rel” refers to absolute relative error expressed in percentage, and root mean
square error is measured in meters.

Experiments in Table 5 are conducted under the resolution of 256 × 192 with a stride of 16, demon-
strating the significance of high quality features. The total parameters of our model are 308 mil-
lion(3.8 million trainable) for ViT-L and 25 million(3.1 million trainable) for ViT-S.

Our model architecture is highly flexible, allowing the combination of feature extraction backbone,
(un)freezing encoders for semantic enhancement, such as replacing the ViT encoder with DINOv3
(Siméoni et al., 2025) or introducing another branch from SigLIP2 (Tschannen et al., 2025). Actu-
ally the trainable parameters of our GSD of ViT-L is only 3.8 million while the other 300 million
parameters are frozen. Equipped with the prior injection of the image encoding module pretrained
on large-scale real-world datasets, we expect to achieve better experimental results.

6 CONCLUSION

In this work, we establish a novel anchor–multiplier factorization paradigm which effectively de-
couples metric scale and relative geometry by leveraging sparse point anchors for metric guidance
and a Gaussian-splatted multiplier for structural refinement. The proposed GSD framework demon-
strates how 3D Gaussian Splatting can be utilized as a powerful and versatile depth regulator. A
supporting theoretical analysis further confirms that the proposed factorization promotes training
stability and facilitates easier convergence. Comprehensive experiments demonstrate the viability
of our approach compared to state-of-the-art baselines across multiple benchmarks, underscoring
the potential of 3DGS as a effective representation for scene-related 2D dense prediction tasks.

Ethics Statement

We acknowledge our adherence to the ICLR Code of Ethics and address the following points:
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Experimental Setup and Methodology. Our proposed GSD framework is described in detail in
Section 4. The implementation details, including network architectures, hyperparameters, and train-
ing configurations for all experiments, are thoroughly documented in Section A.3.

Data and Processing. The datasets used in our experiments are publicly available and provided in
Section A.4.

We are committed to supporting the research community and believe these resources will enable the
replication of our results.
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A APPENDIX

A.1 DETAILED LITERATURE REVIEW

Monocular Depth Estimation. Recently, monocular depth estimation has advanced rapidly to-
wards foundation-scale models. Metric3D (Yin et al., 2023; Hu et al., 2024) proposes a canonical
camera space transformation to solve the depth ambiguity caused by various focal lengths. Unidepth
(Piccinelli et al., 2024) introduces pseudo-spherical output space representation to disentangle cam-
era and depth representations, and a self-prompting camera module to support camera-free inference.
Depth Anything (Yang et al., 2024a) and its successor Depth Anything V2 (Yang et al., 2024b) es-
tablish foundation models for monocular depth estimation through large-scale pretraining. Depth
Pro (Bochkovskii et al., 2024) synthesizes high-resolution depth predictions based on a multi-scale
vision transformer and an edge gradient loss. Marigold (Ke et al., 2024) presents a fine-tuning pro-
tocol for Stable Diffusion and a model for affine-invariant depth estimation. Geowizard (Fu et al.,
2024) also distills the rich knowledge in the pre-trained Stable Diffusion. It proposes a geome-
try switcher that jointly produces depth and normal using a single model. DepthFM (Gui et al.,
2025) presents a flow matching approach that improves sampling, data fidelity, training, and data
efficiency. VGGT (Wang et al., 2025a) introduces a feed-forward neural network that can directly
estimate all key 3D scene properties, including depth estimation. MoGe (Wang et al., 2025b) in-
troduces an affine-invariant point map representation, an efficient point map alignment solver, and
a multi-scale geometry loss for accurate monocular geometry estimation of open-domain images.
Map Anything (Keetha et al., 2025) unifies local estimates into a global metric frame by using a
factored representation of multi-view geometry (depth maps, ray maps, poses, and a global scale
factor).

Monocular Depth Completion. Depth completion aims to predict a dense depth map from an
RGB image guided by a sparse depth map. NLSPN (Park et al., 2020) proposes a non-local spatial
propagation module with confidence-aware affinity normalization to enhance relevant interactions
and mitigate errors in depth propagation. SpAgNet (Conti et al., 2023) injects sparse depth points
into a Scale-and-Place module instead of convolutions to handle uneven and sparse input distribu-
tions more robustly. CompletionFormer (Zhang et al., 2023) proposes a Joint Convolution-Attention
and Transformer block that integrates local connectivity with global context. VPP4DC (Bartolomei
et al., 2024) leverages the generalization capability of modern stereo networks to address depth com-
pletion by processing fictitious stereo pairs generated through a virtual pattern projection paradigm.
BP-Net (Tang et al., 2024) propagates depth at the earliest stage to avoid directly convolving on
sparse data. OMNI-DC (Zuo et al., 2024) introduces a multi-resolution depth integrator to handle ex-
tremely sparse inputs and employs a Laplacian loss to better model training ambiguity. Marigold-DC
(Viola et al., 2024) builds on a pretrained latent diffusion model and injects the depth observations
as test-time guidance via an optimization scheme that runs in tandem with the iterative inference of
denoising diffusion. PromptDA (Lin et al., 2025) utilizes a low-cost LiDAR as a prompt to guide the
Depth Anything model, enabling accurate metric depth output with resolutions of up to 4K. Prior
Depth Anything (Wang et al., 2025d) introduces a coarse-to-fine pipeline that integrates precise but
incomplete metric depth with complete but relative geometric predictions.

Depth Estimation with 3DGS. 3D Gaussian Splatting (3DGS) represents a cutting-edge paradigm
in 3D reconstruction, where contemporary approaches increasingly exploit monocular depth esti-
mation to enhance reconstruction fidelity and geometry. DepthSplat (Xu et al., 2025) leverages
pre-trained monocular depth features for high-quality 3D Gaussian splatting and demonstrates its
use as an unsupervised pre-training objective for depth models. CDGS (Zhang et al., 2025) lever-
ages multi-cue confidence maps from monocular depth and sparse Structure-from-Motion depth to
adjust supervision, thereby enhancing adaptive 3D Gaussian splatting. Mode-GS (Lee et al., 2024)
integrates pixel-aligned anchors from monocular depth and generates Gaussian splats around them
via residual-form Gaussian decoders. DHGS (Deng et al., 2025) combines 3D Gaussian splatting
with depth-supervised learning using homogeneous coordinate embedding and adaptive monocular-
SfM depth fusion, resolving scale ambiguity in distant views and enhancing local geometry via
confidence-aware loss weighting. RDG-GS (Zhan et al., 2025) utilizes relative depth guidance
to refine the Gaussian field, steering it towards view-consistent spatial geometric representations.
CODN-GS (Hu et al., 2025) employs a normal-depth-normal transformation for accurate geomet-
ric feature capture and uses robust monocular depth supervision refined through global and local
adjustments. 3DGS-Enhancer (Liu et al., 2024a) leverages 2D video diffusion priors to tackle 3D
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view consistency by enforcing temporal consistency within video generation. Chung et al. (Chung
et al., 2024) utilize an adjusted depth map from a pre-trained monocular model, which is aligned
with sparse Structure-from-Motion points as a geometric reference. NexusGS (Zheng et al., 2025)
leverages optical flow and camera poses to generate accurate depth maps, ensuring dense point cloud
coverage and stable 3DGS training under sparse views. MoDGS (Qingming et al., 2025) introduces
a 3D-aware initialization for learning deformation fields and employs a robust depth loss to guide
the learning of dynamic scene geometry.

A.2 PROOF OF VRT THEOREM

The basic notation is defined in Section 3.2. Now, we aim to characterize the formulation VAR[gnew
θ ]

VAR[gtrad
θ ]

step by step. For clarity, we begin with a single image sample for derivation. Based on Equation (2),
the traditional paradigm gradient gtrad

θ = ∂L
∂θ is determined by ∂L

∂f · ∂f
∂θ . Hence, if we define the

expectation over the gradient for each image sample as E[∂L∂θ ], then the variance VAR[gtrad
θ ] can be

represented by

VAR[gtrad
θ ] = VAR

[(
∂L
∂f

· ∂f
∂θ

)]
(25)

= E

[(
∂L
∂f

· ∂f
∂θ

)2
]
− E

[(
∂L
∂f

· ∂f
∂θ

)]2
. (26)

Under the Weak Dependence Assumption (Assumption 3), we have |Corr(∂L∂f ,
∂f
∂θ )| → 0, indicating

that the two terms can be regarded as nearly independent, and thus

E
[(

∂L
∂f

· ∂f
∂θ

)]
≈ E

[
∂L
∂f

]
· E

[
∂f

∂θ

]
. (27)

Since the model weights θ are usually randomly initialized at the beginning of training, the positive
and negative gradients of ∂f

∂θ are approximately symmetric around 0. Therefore, we can believe

E
[
∂f
∂θ

]
≈ 0, indicating that the model sensitivity is approaching zero at the initialization period.

And thus, we get E
[(

∂L
∂f · ∂f

∂θ

)]2
≈ 0, and

VAR[gtrad
θ ] ≈ E

[(
∂L
∂f

· ∂f
∂θ

)2
]

(28)

= E

[(
∂L
∂f

)2

·
(
∂f

∂θ

)2
]

(29)

≈ E

[(
∂L
∂f

)2
]
· E

[(
∂f

∂θ

)2
]
, (30)

because |Corr(∂L∂f ,
∂f
∂θ )| → 0, we can believe that ∂L

∂f and ∂f
∂θ are almost independent, as well as the

squares of them.

Following the same property, we can derive a similar formulation of VAR[gnew
θ ] such that

VAR[gnew
θ ] ≈ E[I(S)2] · E

[(
∂L
∂f

)2
]
· E

[(
∂α

∂θ

)2
]
, (31)

and thus
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VAR[gnew
θ ]

VAR[gtrad
θ ]

≈ E[I(S)2] ·
E
[(

∂α
∂θ

)2]
E
[(

∂f
∂θ

)2
] . (32)

Finally, under the Bounded Multiplier Assumption (Assumption 1) and the Metric-Depth Variation
Assumption (Assumption 2), we can derive an approximated upper boundary over the whole dataset
samples as

E
[
Var[gnew

θ ]

Var[gtrad
θ ]

]
≲ E[I(S)2] · κ

2

Λ2
. (33)

A.3 IMPLEMENTATION DETAILS

Metric multiplier transformation. In practice, according to statistical counting (see the third sub-
figure of Figure 2), we find that most of the αgt values concentrate around 1. Moreover, given input
resolution as 518 × 686 with only 86 anchor points (fairly sparse), αgt mostly (within 3 · std(αgt))
falls into the interval of [0, 2], and thus we set the hyperparameter αmax = 2 and ϕ(αθ

res) = 2 · αθ
res

over most datasets to avoid multiple setting across different datasets.

Stride for sparse anchors. Following PromptDA, we introduce a sparse anchor interpolation
method for synthetic datasets as mentioned above Equation (8). To align with PromptDA (Lin
et al., 2025), we also downsample the GT depth map to low resolution (192 × 256) and sample
points with a stride of 7 under the first configuration, which has about 1,000 anchors per image.
Since PromptDA and Marigold-DC have not released their training or sampling code, we reproduce
the sampling method of PromptDA, simulating the noise of real LiDAR data, and expand it to more
sparse settings. We also conduct the experiments for more sparse anchors with higher resolution(518
× 686), with each being a stride of 16(about 1,000 anchors), a stride of 32(about 300 anchors) and
a stride of 64(about 80 anchors).

Notably, the number/percentage of depth anchors has a direct and significant impact on the results.
For DepthLab (Liu et al., 2024b), it selected combinations of strokes, circles, and squares with 0.5%
to 1% of pixels in the depth map, while Marigold-DC sampled 150 to 1,500 points at a resolution of
640×480. Our GSD can outperform with even fewer anchors. The sparsity of our sampling method
can be found in Table 6.

Table 6: Stride, points and pct relationship

stride resolution #points percentage

7 192 × 256 1000 2.0%
16 480 × 640 1200 0.39%
32 480 × 640 300 0.098%
64 480 × 640 75 0.0024%

Figure 6: α distribution over pixels

Training configurations. Our model was trained on 8 NVIDIA V100 GPUs with 32GB of memory
for 30 epochs, using a batch size of 2 and the AdamW optimizer with a learning rate of 2e-4. For
Hypersim (Roberts et al., 2021) the image resolution is 518 × 686 downscaling to 192 × 256 and
a LiDAR stride of 7 following PromptDA. For KITTI DC dataset we trained 10 epochs with the
resolution of 378 × 1252. For VKITTI we trained 10 epochs with the resolution 364 × 1204
downscaling to 264 × 912 and a LiDAR stride of 7.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Evaluation protocol and further discussions. We compare our method to various baselines as
shown in Table 1. All the methods have been trained on Hypersim, and we have fine-tuned them
on KITTI Completion dataset for a fair comparison. The post-fusion method of Depth Anything
v2 refers to scale and shift-based least squares alignment with relative depth prediction. We follow
the official codebase to fine-tune Depth Anything V2 for metric depth estimation on their provided
checkpoints for indoor and outdoor scenes, respectively, as DAv2 Metric. According to Prompting
Depth Anything, their released checkpoint is pretrained on Hypersim and then the other two datasets.
We reproduce the training process of PromptDA according to its paper, which achieves a much better
result. Marigold-DC is a test-time training method that optimizes each dense depth map for several
steps. As it is time-consuming, we only select one out of ten samples while taking the standard 50
inference steps for optimal performance.

Since most methods have not released their sampling sparse depth code for depth estimation datasets,
it is a challenging task to align the anchor setting and re-evaluate all the metrics. We only conduct
and re-evaluate four methods under our sampling and interpolation paradigm.

Model details. We inherit the pre-trained visual encoder DINOv2 from Depth Anything v2, using
Vision Transformer Large, and take the last feature layer as a 1024-dimensional vector, denoted as
Fvit. The CNN encoder has a downscale factor of 4, and the output Fcnn dimension is 128. The
channels of our fusion UNet are 128 for ViT-Large. Our Gaussian head decodes the refined features
into 37 channels in detail: 1 for opacity, 2 for the origin offset of the ray, 3 for sphere scale (variance),
4 for quaternions related to the orientation/covariance, and 27 for SH coefficients (SH degree is 2).
The total number of parameters in our model is 308 million (3.8 million trainable) for ViT-L and
25 million (3.1 million trainable) for ViT-S. Our model architecture is highly flexible, allowing for
the replacement of the ViT with state-of-the-art DINOv3 or SAM modules. The CNN encoder can
be replaced by a pre-trained ResNet, and the ViT encoder can be unfrozen for fine-tuning. We can
even introduce another branch of image feature from CLIP or SigLIP2 for semantic enhancement.
Equipped with the prior injection of the image encoding module pretrained on large-scale real-world
datasets, we expect to achieve better experimental results.

A.4 DATASET DETAILS

Training dataset. Our checkpoint is trained only on Hypersim (Roberts et al., 2021) for visualiza-
tion and is compared with other methods in 1 and 2. It is worth noting that the Hypersim training set
is an indoor synthetic dataset with only 59k training samples. We also train GSD from scratch on
the KITTI Completion (Geiger et al., 2013) dataset—a real-world driving scene dataset with paired
RGB images and sparse LiDAR depth for comparison, as shown in 1. Its semi-dense ground truth
is derived from the temporal accumulation of consecutive LiDAR frames. For the outdoor zero-shot
setting, we trained GSD on the Virtual KITTI dataset (Cabon et al., 2020) with about 21k samples.

Evaluation datasets In alignment with Prompting Depth Anything, we first make a comparison
on the setting that downscales the ground-truth to the resolution of 192 × 256 with a stride of 7.
Considering the potential application to high-resolution and authentic images, we also evaluated
several stride settings on the Hypersim validation set. For outdoor scenes with irregular LiDAR
anchors, we utilize the full validation split of 6,694 samples for the KITTI DC dataset (Cabon et al.,
2020).

We also evaluated our GSD model in a zero-shot manner on five unseen real-world datasets. The
evaluation datasets encompass both indoor and outdoor scenarios, covering a diverse range of image
resolutions, sparse depth densities, acquisition devices, and noise levels. For NYUv2 (Silberman
et al., 2012) and ScanNet Scannet(Dai et al., 2017), we evaluate at a resolution of 640×480. For
KITTI (Cabon et al., 2020), we use a resolution of 352×1216, ETH3D Schops et al. (2017) uses
756×1134, and DIODE (Vasiljevic et al., 2019) uses 768×1024. All of the datasets above, except
for KITTI DC, do not have LiDAR anchors; therefore, we sample the ground-truth with a stride of
16 for evaluation. KITTI Completion dataset is different from the KITTI dataset with sparse anchors
and relatively denser depth ground truth. The zero-shot performance in 2 was trained on Hypersim
from scratch.
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A.5 MORE VISUALIZATION RESULTS

Figure 7: More visualization results compared with PromptDA. The first line of each scene cov-
ers RGB, GSD prediction and errors; the second line covers GT, PromptDA prediction and errors;
stride=7, dinit 192×256. Due to the opacity attribution of 3DGS, our GSD can better recognize
transparent objects as shown in the above two images than PromptDA.
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Figure 8: More visualization results compared with PromptDA. The first line of each scene cov-
ers RGB, GSD prediction and errors; the second line covers GT, PromptDA prediction and er-
rors;stride=7, dinit 192×256. Due to our strong regulation of depth anchors, GSD can follow the
lidar prompt better, whereas PromptDA attempts to judge the distance by intuition such as the table
behind the chair and the farther side of sofa.

A.6 LLM USAGE STATEMENT

We acknowledge the use of large language models (LLMs) to assist in polishing the writing and
improving the grammatical fluency of this manuscript. The human authors performed all ideation,
technical development, experimental analysis, and final editing.
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