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ABSTRACT

Neurosymbolic (NeSy) artificial intelligence describes the combination of logic
or rule-based techniques with neural networks. Compared to neural approaches,
NeSy methods often possess enhanced interpretability, which is particularly
promising for biomedical applications like drug discovery. However, since in-
terpretability is broadly defined, there are no clear guidelines for assessing the bi-
ological plausibility of model interpretations. To assess interpretability in the con-
text of drug discovery, we devise a novel prediction task, called drug mechanism-
of-action (MoA) deconvolution, with an associated, tailored knowledge graph
(KG), MoA-net. We then develop the MoA Retrieval System (MARS), a NeSy ap-
proach for drug discovery which leverages logical rules with learned rule weights.
Using this interpretable feature alongside domain knowledge, we find that MARS
and other NeSy approaches on KGs are susceptible to reasoning shortcuts, in
which the prediction of true labels is driven by “degree-bias” rather than the
domain-based rules. Subsequently, we demonstrate ways to identify and mitigate
this. Thereafter, MARS achieves performance on par with current state-of-the-art
models while producing model interpretations aligned with known MoAs.

1 INTRODUCTION

Drug discovery (DD), the search for novel drugs or chemical compounds to treat ailments, often
involves the screening of thousands of small compounds (Lin et al., 2020). Many computational
approaches have been developed to accelerate and streamline this screening process (Gottlieb et al.,
2011; Gan et al., 2023). Specifically, hundreds of such approaches operate upon knowledge graphs
(KGs), in which nodes representing drugs, proteins, or medical conditions are connected by edges,
representing the relationships between them (Chen et al., 2020). Typically, DD is formulated on a
KG as a link prediction task between drugs and the corresponding medical conditions (indications)
to be treated (Schultz et al., 2021; Rivas-Barragan et al., 2022).

It is also important to understand each drug’s mechanism-of-action (MoA), the molecular processes
by which it achieves its medicinal effect. For instance, as depicted in Fig. 1, MoAs typically involve
chains or paths of physical, molecular interactions induced by a drug (Crino, 2016). Uncovering
these interactions informs researchers as to how each drug works and de-risks potential side effects
(Palve et al., 2021; Green et al., 2023). Revealing MoAs alongside computational DD, a task we
call MoA deconvolution, requires model interpretability: transparency into the processes or patterns
which led to certain predictions (Molnar, 2022). Unfortunately, most state-of-the-art techniques on
KGs rely on “black-box” models (Wu et al., 2020). Recently, neurosymbolic (NeSy) approaches,
which combine logical rules with neural networks (DeLong et al., 2024) have been positioned as a
promising avenue for MoA deconvolution because they tend to possess enhanced interpretability.

However, interpretability is broadly defined (Molnar, 2022), which poses an additional chal-
lenge: there are no clear guidelines for assessing the plausibility of model interpretations, espe-
cially for this novel task. Although some previous studies present explainable or interpretable
pipelines (Rivas-Barragan et al., 2022; Urbina et al., 2021), the corresponding explanations lever-
age associative patterns: two nodes with mutual connections are likely to share other connec-
tions (Paul et al., 2021). For example, such methods utilize associations regarding a drug’s phar-
macological class (Ratajczak et al., 2022), side effects (Liu et al., 2021), or known indications
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Figure 1: MoA of cortisone acetate. Cortisone acetate upregulates the activity of the glucocorticoid
(GC) receptor protein, which, in turn, downregulates the cyclooxygenase (COX) protein. Since COX
is directly involved in creating inflammation, its inhibition reduces inflammation, thereby treating
keratitis (Gonzalez-Cavazos et al., 2023). Data regarding protein interactions and biological pro-
cesses (left) can be collected in a laboratory setting, whereas physiological effects like indications
(right) are obtained during or after clinical trials.

(Fernández-Torras et al., 2022). Unfortunately, these associative patterns, which are discovered dur-
ing or after clinical trials, are rare or absent for novel compounds. Furthermore, such patterns can
not represent the MoA of a drug; instead, an MoA involves mechanistic patterns, such as the phys-
ical, molecular interactions shown in Fig. 1 (Gonzalez-Cavazos et al., 2023). Therefore, within this
study, we focus upon model interpretability which provides mechanistic insight into drug MoAs.

We propose MoA deconvolution, the prediction of mechanistic paths between drugs and their bio-
logical effects, as a prediction task for evaluating interpretable methods on KGs. To benchmark this
task, we generate a tailored KG, called MoA-net, from real-world, experimental data. To perform
MoA deconvolution, we introduce a NeSy DD approach called the MoA Retrieval System (MARS).
To create MARS, we draw inspiration from previous NeSy methods (Liu et al., 2021; Drancé et al.,
2021). However, unlike its predecessors, MARS achieves enhanced interpretability by learning
weights associated with logical rules which resemble MoAs. Following training, rule weights reflect
relative usefulness to MARS’ reasoning processes.

Alongside biomedical domain knowledge, MARS’ enhanced interpretability reveals a reasoning
shortcut in which predictions are based on unintended semantics (Marconato et al., 2024b). Essen-
tially, predictions upon MoA-net are driven by “degree-bias”, an artifact of node degree variance
(Zietz et al., 2024), rather than the rules representing domain knowledge. Therefore, to address this,
we consider the desiderata from Marconato et al. (2024a) for making NeSy systems shortcut-aware:
(1) calibration, high accuracy on concepts unaffected by reasoning shortcuts, (2) performance, high
accuracy despite reasoning shortcuts being present, and (3) cost effectiveness achieved through sim-
ple mitigation strategies. Using these desiderata as guidelines, we make MARS shortcut-aware for
more insightful predictions involving DD and MoA deconvolution. Ultimately, our study under-
scores the importance of evaluating the capabilities of NeSy models within applied domains: by
evaluating model interpretations against specific domain knowledge, we can more easily identify
and mitigate shortcuts.

2 RELATED WORK AND BACKGROUND

NeSy AI for MoA deconvolution. Several NeSy approaches involve logical rules reflect-
ing path-like patterns in biomedical KGs. For example, Sudhahar et al. (2024) investigates
evidence chains, paths explaining associations between drugs and diseases. However, these expla-
nations are derived separately from indication predictions, using an additional rule-mining model
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(Meilicke et al., 2019). Other approaches (Liu et al., 2021; Drancé et al., 2021) accomplish similar
tasks through deep reinforcement learning (RL), in which a neural network contributes toward the
optimization of a reward function (Acharya et al., 2023). In these specific cases, reasoning is guided
by the path-like rules, and predictions are expected to align, to some extent, with such rules. In
contrast to these previous studies, we focus upon paths representing MoAs, involving mechanistic,
molecular relations. In this study, we also identify a major risk: the approach may neglect to utilize
rules in favor of other semantics for reward optimization. This results in reasoning shortcuts.

Reasoning Shortcuts. Several NeSy approaches are designed to abide by rules and domain knowl-
edge (Drancé et al., 2021; Dash & Goncalves, 2021), which might portray such approaches as more
trustworthy than neural, black box ones (Gaur & Sheth, 2024). Recent studies, however, have found
that NeSy approaches may suffer from reasoning shortcuts, in which a model predicts the correct
outcome via unintended semantics (Marconato et al., 2024b; Li et al., 2024b). While reasoning
shortcuts are not exclusive to NeSy methods (Jiang & Bansal, 2019; Li et al., 2024a), they may be
more easily overlooked when such approaches are portrayed as trustworthy.

3 MARS: A NESY APPROACH FOR MOA DECONVOLUTION

Here, we build the MoA Retrieval System (MARS) to perform MoA deconvolution. MARS im-
proves upon a method called Policy-guided walks with logical rules (PoLo) (Liu et al., 2021) by
introducing dynamic, learned rule weights. This differs from previous approaches, where weights
are static and pre-computed (e.g., mined or literature-derived) (Liu et al., 2021; Drancé et al., 2021).
As discussed further, these learned weights also make MARS shortcut-aware.

As shown in Fig. 2, MARS takes two major inputs. The first involves a KG. A KG uses nodes to
represent entities and edges between them to represent relationships. A KG triple comprises two
nodes connected by an edge of some specific type, or relation. Here, we represent triples as bi-
nary predicates: for example, the binary predicate interacts(Protein, Protein) states that two
Protein nodes are connected via the interacts relation. Node degree describes the number of
edges connected to a node.

Figure 2: Overview of the MoA retrieval system (MARS).

Specifically, the input KG must contain triples involving some relation of interest. As shown in
Fig. 1, some information, such as indications, are discovered during or after clinical trials, so this
information is typically unavailable for novel compounds. Therefore, to understand each MoA as
the biological response to drug administration, we aim to investigate relations between drugs and
biological processes (BPs), such as signal transduction or inflammation (Consortium, 2019) (i.e.,
induces(Drug,BP )). Specifically, we accomplish this through a link prediction task, in which
we predict whether edges of type induces exist between Drug and BP nodes. Thereafter, new
predictions regarding the induces relation serve as potential therapeutic outcomes for the chem-
ical compound represented by the Drug node. As per our knowledge, this is a novel application in
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the KG field. Further details on our KG are introduced within section 3.4. The second input, as
depicted in Fig. 2, includes metapaths of the KG with corresponding weights.

3.1 METAPATH-BASED RULES

Metapaths are abstract representations of instantiated paths in a graph (Sun et al., 2011; Himmelstein
et al., 2017; Noori et al., 2023). For example, given the following path, P , in our KG:

Cortisone acetate
upregulates−−−−−−−−→ GC receptor interacts−−−−−−→ COX protein

participates−−−−−−−−→ Inflammation

the corresponding metapath, P̃ , would be:

Drug
upregulates−−−−−−−−→ Protein interacts−−−−−−→ Protein

participates−−−−−−−−→ Biological Process

Within this study, metapaths can be understood as a sequence of triples within the KG structure,
making them inherently interpretable. In MARS, metapaths are used as the bodies of logical rules,
in which triples are connected by logical conjunctions (∧). Conjunctions indicate that, if all triples
in the rule body are true, then the rule head is evaluated as true. The rule head, the left side of the
implication arrow (⇐), is a single triple representing the relation of interest between the first and
last node types of the metapath, e.g.,:

induces(Drug,BP)⇐ upregulates(Drug,ProteinA) ∧
interacts(ProteinA,ProteinB) ∧ participates(ProteinB ,BP)

If a rule head is evaluated as true, then the rule is satisfied. For each metapath-based rule, Mi,
in a set of rules, M = {M1,M2, ...,Mm}, we denote the rule weight by w(Mi) ∈ R, where
0 ≤ w(Mi) ≤ 1. Such a weight indicates the relative usefulness of the metapath-based rule to the
prediction task. In Section 3.3, we discuss how we initialize and compute these weights.

3.2 OVERVIEW OF MARS.

Using a deep RL process, MARS trains an agent to take walks of length L through the KG to connect
pairs of nodes having the pre-defined relation of interest. Here, that relation is induces(Drug,BP),
which are masked from the agent during training. Each walk generates a path, P , such as the
one in the previous section 3.1. This path, P , can also be understood as a series of L transitions:
P := (ec

r1−→ e2
r2−→ ...

rL−→ eL+1). The agent may also remain at its current node. Ultimately, the
goal of the agent is episodic: to find paths in which the starting node, ec (the drug), and the terminal
node, eL+1 (the BP) have the induces relation. By training the agent to do so, it can identify node
pairs with the desired relationship, thus generalizing beyond the training set to predict novel pairs in
a holdout, test set. In other words, while true positive predictions in the test set serve as validation,
false positives are positioned as potentially novel induces(Drug,BP) predictions.

Similarly to a Markov Decision Process (Bellman, 1957), the agent moves based on its current
position and the next possible actions. Additionally, however, the history of the agent’s previous
actions are encoded with an LSTM (Hochreiter & Schmidhuber, 1997; Sherstinsky, 2020), whose
parameters are trained to optimize the reward function (Eq. 5 in Appendix A.4), which is evaluated
each time the agent completes L transitions from some starting node.

In short, the reward function, originally from Liu et al. (2021), quantifies how successful P is ac-
cording to two rewards (Fig. 2). The first, base reward indicates whether the terminal node in the
path, eL+1, is one of the desired target (BP) nodes (ed) that forms a true pair with the starting
(drug) node, ec. Put simply: “given an induces(Drug,BP) triple, did the agent make a successful
traversal between the drug and BP nodes?”

The second, supplementary reward, contingent upon the first, indicates whether the corresponding
metapath, P̃ , matches any metapath-based rule, Mi. The second reward is also proportional to the
rule’s corresponding weight, and MARS updates these weights during training. We accomplish
these updates through a novel algorithm we call two-hop joint probability, or P2H . Therefore, the
agent is not only encouraged to find connections between true pairs of nodes, but it is also guided
toward paths which resemble known MoAs. Thus, MARS has two key interpretable features: (1)
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paths between nodes which as potential MoA predictions, and (2) learned rule weights which serve
as a proxy for the importance of each rule.

3.3 MARS DYNAMICALLY UPDATES RULE WEIGHTS

After MARS is executed, its learned rule weights reflect each rule’s relative usefulness in the pre-
diction task. Additionally, during training, weight updates drive the agent toward more informative
paths and bypass the assumptions that pre-assigned rule weights are correct. This eliminates the
need for pre-computed or literature-derived rule weights; thus, we initialize all weights uniformly
as 0.5, a medium level of importance. We test two approaches for updating rule weights.

Naive updates. The naive way to implement weight updates (MARSnaive) is to increase weights
according to the frequency at which each metapath-based rule is satisfied. We record observed
frequency, O, at which each metapath-based rule is satisfied. This is normalized by the batch-
specific expected frequency, E, which assumes that every rule has a uniform probability across the
total number of occurrences in that batch. If the agent finds zero occurrences, no weight updates are
made. Ultimately, this produces a metric, µ (Eq. 1) in which µ > 1 indicates usefulness (the agent
used that rule more than others), and µ < 1 indicates otherwise.

µMi
= OMi

/EMi
(1)

Notably, the value of µ is bound to avoid division by zero and extreme values. To adjust weight
updates relative to batch size and rollouts, we define the minimum and maximum bounds on µ in
Eqs. 2 and 3, where ρ is the total number of metapath-based rules:

µmin =
ρ

batch size× rollouts
(2)

µmax = ρ× batch size× rollouts (3)

Using Eq. 4, denoted by Φ, µ (Eq. 1) is used to update the weight of a rule, w(Mi). Eq. 4 is
regularized by the hyperparameter α ∈ R, where 0 ≤ α ≤ 1 to control how subtle or drastic the
weight update is, respectively. If α = 0, no weight updates are made. Therefore, α can be selected
based on user needs or via hyperparameter optimization.

Φ(µ,w(Mi)) = w(Mi)× 2α(
µ− 1

µ+ 1
) (4)

2-hop joint probability P2H updates. The second, more complex method to update weights is
based on a term we coined, two-hop joint probability, P2H . Pseudocode for P2H can be found in
Algorithm 1 below. This metric approximates the usefulness of metapath-based rules based on full
and partial matches. Since the metapaths constituting rule bodies contain several consecutive triples,
each two-hop fragment is extracted as in the following example:

Mexample := induces(A,E)⇐ upregulates(A,B) ∧ interacts(B,C) ∧
interacts(C,D) ∧ participates(D,E)

where two-hop fragments are pairs of binary predicates which share a variable:

• Fragment1 : upregulates(X,Y ) ∧ interacts(Y, Z)

• Fragment2 : interacts(X,Y ) ∧ interacts(Y,Z)

• Fragment3 : interacts(X,Y ) ∧ participates(Y,Z)

Here, the probability of each metapath-based rule is computed as the joint probability of its frag-
ments. For example, the P2H metric for the above metapath-based rule would be computed as
P2H(Mexample) = p(Fragment1) × p(Fragment2) × p(Fragment3). We note two caveats.
Firstly, to account for partial metapath matches, we relax our definition of conjunction here, allow-
ing truth to be evaluated on the fragment level. Secondly, metapath fragments do not necessarily
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represent independent events. To avoid complex computation involving conditional probabilities
(Russell & Norvig, 2010), we assume independence, and the P2H metric serves as an approxima-
tion for the empirical probabilities of metapath-based rules.

Ultimately, MARS with P2H updates (MARSP2H
) uses all information from successful trajectories.

Compared to naive updates, P2H updates differ in that (1) Eq. 1 is computed based on the observed
and expected probabilities of two-hop fragments, rather than whole metapaths, and (2) ρ within
Equations 2 and 3 is the number of unique two-hop fragments possible.

Algorithm 1 P2H weight updates

for each batch, β do
F ← [empty list]
for each path, P , that the agent traverses, do

if the agent found a true pair then
P̂ ← metapath(P) ▷ extract the metapath
F ← F + extract fragments(P̂ ) ▷ a list of two-hop fragments seen

end if
end for
E ← 1/ num. unique fragments in F
for each unique fragment, f , in F do

Of ← count(f)
end for
for each metapath-based rule body, Mi, inM do

θ ← extract fragments(Mi) ▷ a list of the fragments in the metapath
P2H(Mi)←

∏len(θ)
f=1

Of

E ▷ ratio of observed / expected frequency, as in Eq. 1
w(Mi)← Φ(P2H(Mi), w(Mi)) ▷ use Eq. 4 to adjust rule weight

end for
end for

Implementation details and hyperparameter selection are described in Appendices A.2 and A.6,
respectively.

3.4 DATASETS: MoA-net AND ITS VARIANTS

We design our KG, MoA-net, specifically for MoA prediction. MoA-net consists of drugs, proteins,
and BPs (Appendix A.5). We assemble it using the causal relations between drugs and proteins from
several real-world datasets comprising experimental data, including Custom KG (Rivas-Barragan
et al., 2020) and OpenBioLink KG (Breit et al., 2020). The BP nodes come from experimentally-
derived and expert-curated molecular function annotations in UniProt (Consortium, 2015).

To predict drug-BP triples, which are unique to MoA-net, we make use of publicly available func-
tional and biochemical assays in ChEMBL (v33), an open access database of bioactive compounds
(Gaulton et al., 2012). Of the 1,622 drug-BP triples obtained, 48 also had known MoAs in Drug-
MechDB (Gonzalez-Cavazos et al., 2023), a manually-curated compendium of MoAs. Between the
three node types, we define five unique edge types, or relations, shown in Appendix A.5. We also
include all inverse relations, running in the opposite direction of causality.

Using the hetnetpy package (Himmelstein et al., 2021), we extract all metapaths (see Section 3.1)
from MoA-net which we considered to be valid MoAs: those comprising directed, mechanistic paths
between drug and BP nodes (see Appendix A.1). We exclude metapaths depicting associative pat-
terns, such as those leveraging information about shared BP targets, from our set of metapath-based
rules. Based on MoAs found in DrugMechDB, we limit metapaths to a maximum length of four
relations (or hops).

Finally, we create variants of MoA-net. To investigate reasoning shortcuts, we use the Zietz et al.
(2024) implementation of XSwap (Hanhijärvi et al., 2009), which swaps edges in a KG without af-
fecting the distribution of node degrees. We call the resultant KG MoA-net-permuted. Additionally,
we implement an automatic trimming step, which reduces edges of each class to below a user-
specified threshold by iteratively removing those between the highest-degree nodes. By setting the
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threshold to 10,000 (thereby reducing protein-protein interactions to∼ 50% of edges), our approach
can work on a subgraph of the MoA-net, which we refer to as MoA-net-10k.

3.5 EVALUATION

We split the drug-BP triples within MoA-net into training (60%), validation (20%), and test (20%)
sets. We evaluate the models using Hits@k, where k ∈ {1, 3, 10} and mean reciprocal rank (MRR),
optimizing for the latter. Hits@k reports the proportion of times the correct results are in the top k
ranked entries, while MRR reports how highly ranked the first correct item is amongst ranked results
(Chen et al., 2020). In addition to these standard metrics, we report the pruned metrics: these are
computed on a subset of the predictions that utilized one of the pre-defined metapath-based rules
(see Appendix A.1), excluding all predictions which did not satisfy a rule. Notably, pruned metrics
help us assess the calibration desideratum, as introduced in Section 1, since rule-based predictions
follow the expected model semantics.

We conduct an extensive benchmark of our method against nine different baseline KG embedding
(KGE) models, two state-of-the-art NeSy methods, and one network measure (Appendix ??). We
train and evaluate these models on the same data splits as MARS on MoA-net-10k.

Finally, MARSP2H
has two key interpretable features: firstly, all successful trajectories are recorded,

serving as potential MoA predictions. This allows us to compare the predicted MoAs of 48 drug-BP
pairs against their known MoAs (see Section 3.4). Secondly, learned rule weights serve as a proxy
for the importance of each metapath-based rule. This helps determine whether agent trajectories
are biased toward certain types of paths. Alongside the pruned metrics, these features help evaluate
MARS’ alignment with domain knowledge.

4 RESULTS

4.1 ASSOCIATIVE PATTERNS IMPROVE ACCURACY BUT OFFER LIMITED PRACTICAL USE

In an initial set of experiments on MoA-net, we observed that pruned metrics were consistently lower
than standard ones (Fig. 3-A), indicating that the metapath-based rules were not being utilized in
most predictions. This can happen because rule-based rewards are contingent upon a true pair being
found (Eq. 5). Additionally, amongst recorded trajectories, most did not follow our metapath-based
rules; instead, most trajectories used the following associative pattern, involving inverse edges:

induces(Drug1,BP2)⇐ induces(Drug1,BP1) ∧
induces(Drug2,BP1) ∧ induces(Drug2,BP2)

This associative pattern indicates that two drugs inducing a common BP also likely induce another
BP. This type of pattern is also present in Liu et al. (2021), in which the most used pattern was the
following:

treats(Drug1,Disease)⇐ causes(Drug1, Side Effect) ∧
causes(Drug2, Side Effect) ∧ treats(Drug2,Disease)

However, when we reproduced the results from Liu et al. (2021), we achieved the same reported
metrics even in the absence of the above, associative rule (See Appendix A.8). This suggests that,
although the associative rule may serve as a plausible model explanation, it does not necessarily
guide model training. Furthermore, as stated in Section 1, MoAs, like those in DrugMechDB, in-
volve physical, molecular interactions, rather than associative ones.

4.2 P2H UPDATES REVEAL REASONING SHORTCUTS VIA DEGREE BIAS

In addition to analyzing the agent trajectories, we used P2H to assess how informative each of the
metapath-based rules is in making predictions. In particular, MARSP2H

weights showed that paths
involving consecutive protein-protein interactions (PPIs) (i.e., interacts(Protein, Protein)),
were consistently less important (Fig. 4). This indicated that the agent avoided exploring consecutive
PPIs.
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Figure 3: Hits@10 and MRR for MARSP2H
compared to PoLo and MARSnaive upon several variants

of MoA-net. Each bar is the average and standard deviation across five independent training and
testing iterations. From left to right: Little change between initial metrics upon MoA-net (A) in
comparison to the standard MoA-net-permuted metrics (B) provides evidence that predictions are
influenced by degree bias, resulting in a reasoning shortcut. Thereafter, inverse edges were removed
to prohibit the reasoning shortcut, hindering performance (C). Performance was restored upon MoA-
net-10k with the KG trimming step (D), with MARSP2H

showing the best standard and pruned
metrics. Finally, MARSP2H

maintains high pruned metrics even when inverse edges (and reasoning
shortcuts) are re-introduced (E).

Figure 4: Metapath-based rule weights from MARSP2H
on MoA-net (Fig. 3-A). Each bar is the

average and standard error across five independent training and testing iterations. Paths involving
consecutive PPIs (interacts(Protein, Protein)), the most common relation type, have consis-
tently lower weights.

Previous research on KGs has shown that node degree distribution, the number of adjacent edges
for each KG node, can significantly bias predictions (Tang et al., 2020; Ju et al., 2024). Specif-
ically, inspection bias, a type of degree bias, occurs when the KG is not uniformly inspected or
sampled (Zietz et al., 2024). Since PPIs are the most common relation type in MoA-net (90% of
edges) (Appendix A.5), protein nodes have a higher degree distribution than other node types. We
hypothesized, therefore, that the agent circumvents denser parts of the KG, creating an inspection
bias. Although rule-based predictions merit a larger reward, the MARS agent exploits associative
patterns for a more reliable reward. To confirm the existence of degree bias, we tested our approach
upon MoA-net-permuted. As explained in Section 3.4, MoA-net-permuted is a variant of MoA-net in
which edges are swapped while preserving node degree distribution. This tests the extent to which
node degree drives predictions. Indeed, the lack of change amongst standard performance metrics
suggested that node degree was largely responsible for predictions (Fig. 3-B). Put simply, the agent
gets lost when exploring the PPIs, so it avoids them.
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4.3 IDENTIFYING AND MITIGATING DEGREE BIAS IMPROVES PERFORMANCE

To temporarily prohibit the models from using associative patterns as in Section 4.1, we removed in-
verse edges from MoA-net and corresponding metapath-based rules. Consequently, the performance
metrics were poor, (e.g., MRR consistently < 0.1 (Fig. 3-C)). This confirmed that the models relied
on associative patterns for predictions.

Next, we wanted to confirm that the agent was getting lost within the PPIs. As explained in Sec-
tion 3.4, MoA-net-10k is a variant of MoA-net with fewer PPIs. We tested MARSP2H

, MARSnaive,
and PoLo with the same parameters upon on MoA-net-10k (Fig. 3-D). As before, we excluded in-
verse edges. Since we set trajectory length L = 4, our approach automatically removed drug-BP
triples from the validation/test sets that were no longer connected via directed paths of length ≤ 4,
resulting in 100 and 90 triples, respectively. Metrics were markedly improved for PoLo, MARSnaive,
and particularly for MARSP2H

, in comparison to the full MoA-net without inverse edges (Fig. 3-C).
To ensure this improvement was not simply the result of a reduced test set, we also tested the ap-
proaches upon MoA-net with 100 sampled test triples, which showed no change (see Appendix A.9).

While removing inverse edges improved metrics, a shortcut-aware system should achieve high per-
formance even with the shortcut present (Marconato et al., 2024a). We addressed this next.

4.4 MARSP2H
RETAINS PERFORMANCE AMONGST RULE-BASED PREDICTIONS

We re-introduced inverse edges to MoA-net-10k, thereby restoring the ability to use reasoning short-
cuts. Thereafter, we tested each of MARSP2H

, MARSnaive, and PoLo again (Fig. 3-E). While each
approach was optimized for standard MRR, pruned metrics indicated how well positive predictions
aligned with rules. In Fig. 3-E, we show that both MARS variants and PoLo achieved standard met-
rics on par with or better than MoA-net-10k without inverse edges (Fig. 3-D). However, MARSP2H

also achieved pruned metrics comparable to its standard metrics, showing improved calibration rel-
ative to PoLo and MARSnaive. Finally, as in section 4.2, we used XSwap on MoA-net-10k to assess
the susceptibility of MARSP2H

to degree bias. Unlike in Section 4.2, we found no evidence for
degree bias (see Appendix A.10).

4.5 EXTERNAL VALIDATION OF MARSP2H
ON MoA-net-10k

In comparison to baseline methods, MARSP2H
’s metrics outperformed all but MINERVA’s, with

which they were comparable (Table 1). However, since MINERVA does not, by design, utilize
rules for guidance, it suffers the same reasoning shortcuts as PoLo and MARSnaive. In contrast to
MINERVA, DWPC suffers the opposite limitation: predictions are based only on metapath-based
rules. MARSP2H

’s pruned metrics, which are directly comparable, also outperform DWPC. Fi-
nally, as mentioned in Section 3.4, several drug-BP pairs corresponding to known MoAs in Drug-
MechDB were included in the MoA-net test set. Of these, 33 pairs remained within MoA-net-10k’s
test set, and MARSP2H

recovered the correct MoA for all of them. Thus, this comprehensive bench-
mark highlights MARS’ ability to achieve near state-of-the-art performance by effectively balancing
domain-specific knowledge with the capacity to generalize beyond it.

5 DISCUSSION

NeSy approaches are sometimes portrayed as more trustworthy than their black-box counterparts,
partially due to increased interpretability (Gaur & Sheth, 2024; DeLong et al., 2024). Here, we
presented a NeSy RL approach, MARSP2H

, which promotes interpretability by deconvoluting drug
MoAs. Specifically, through our novel algorithm, two-hop joint probabilities (P2H ), MARS learned
weights corresponding to rules representing MoA patterns; each weight served as a proxy for each
rule’s importance. However, these insights revealed a new issue: NeSy RL approaches on KGs are
susceptible to reasoning shortcuts. Specifically, in our study, predictions were driven by node degree
bias. Ultimately, MARS’ interpretability called the trustworthiness of such approaches to question.

To address this, we considered Marconato et al. (2024a)’s desiderata for a shortcut-aware NeSy
system. Specifically, on MoA-net-10k, MARSP2H

showed both competitive performance as well as
calibration in comparison to other models. Notably, however, measuring calibration is challenging

9
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Table 1: Performance of MARS upon MoA-net-10k against baseline models. Metrics are presented
as (average, standard deviation) across five independent training/testing iterations for all but DWPC,
which is deterministic. The best of each standard (top) and pruned (bottom) metric are in bold.

Model metric type Hits@1 Hits@3 Hits@10 MRR
CompGCN standard (0.093, 0.010) (0.212, 0.031) (0.428, 0.043) (0.201, 0.011)
ComplEx standard (0.141, 0.025) (0.287, 0.020) (0.517, 0.007) (0.258, 0.018)
MuRE standard (0.066, 0.020) (0.157, 0.043) (0.377, 0.025) (0.160, 0.023)
PairRE standard (0.131, 0.023) (0.296, 0.035) (0.601, 0.028) (0.271, 0.022)
RotatE standard (0.132, 0.040) (0.190, 0.042) (0.349, 0.022) (0.198, 0.031)
MINERVA standard (0.342, 0.016) (0.516, 0.042) (0.66, 0.066) (0.45, 0.026)
PoLo standard (0.272, 0.041) (0.462, 0.054) (0.606, 0.061) (0.387, 0.044)
MARSnaive standard (0.33, 0.031) (0.482, 0.066) (0.664, 0.036) (0.433, 0.036)
MARSP2H standard (0.23, 0.007) (0.492, 0.027) (0.684, 0.03) (0.395, 0.016)
Metapaths with DWPC pruned 0.370 0.560 0.780 0.508
PoLo pruned (0.17, 0.049) (0.228, 0.061) (0.228, 0.061) (0.198, 0.052)
MARSnaive pruned (0.22, 0.049) (0.238, 0.048) (0.238, 0.048) (0.229, 0.048)
MARSP2H pruned (0.394, 0.026) (0.644, 0.034) (0.788, 0.018) (0.535, 0.02)

in this domain. While rule-based predictions, measured through pruned metrics, follow the expected
semantics for MoA deconvolution, we can not determine whether every other prediction follows
unintended semantics. For example, in the classic MNIST addition task, popularly used to assess
NeSy methods (Manhaeve et al., 2018), a model is trained to determine the sum of two handwritten
digits. In this toy example, the misclassification of a handwritten ‘2’ as ‘3’ and vice versa would still
amount to the same sum. Thus, reasoning shortcuts can be objectively identified. On the contrary,
while we provide evidence that predictions using associative patterns are largely affected by node
degree bias, we can not determine whether such patterns always reflect a reasoning shortcut.

Finally, regarding cost effectiveness, MARSP2H
can be applied to any KG, serving as a general-

izeable mitigation strategy. However, we also note that this was achieved upon MoA-net-10k, a
trimmed version of MoA-net. While we automated this trimming step, such a strategy does not
make use of all available information. To scale MARSP2H

to denser KGs and maintain its shortcut-
aware status, several future directions could be explored. For instance, one could merge similar,
high-degree nodes or rely upon domain knowledge, like the identification of promiscuous proteins
(Copley, 2020), to make more informed choices about edge trimming or masking. In addition to ad-
dressing these methodological limitations, prospective studies could explore more complex MoAs,
include binding or expression values, or involve a variety of protein subclasses.

In summary, our study highlights a key concern in which the behavior of some NeSy RL approaches
could be attributed to node degree bias, rather than meaningful, domain-specific concepts. The
interpretability of our approach, MARSP2H

, allowed insight into this reasoning shortcut. Therefore,
we question whether such shortcuts are identifiable amongst black-box approaches. Additionally,
by testing a NeSy approach upon a novel applied task, MoA deconvolution, we could flag down
patterns, like associative ones, which were plausible yet arguably less meaningful to biomedical
researchers. Therefore, our study emphasizes the importance of testing interpretable models, like
NeSy ones, in an applied domain. Finally, while our study honors the desiderata for shortcut-aware
NeSy systems, we also examined the extent to which they were applicable to a biomedical domain.

6 CONCLUSIONS

We propose a novel prediction task for NeSy approaches on biomedical KGs: mechanism-of-action
(MoA) deconvolution. In contrast to previous DD approaches, MoA deconvolution utilizes model
interpretability to uncover the molecular mechanisms behind medicinal drugs. We also constructed
a publicly available KG, MoA-net, for evaluating this task. To predict drug MoAs alongside indi-
cations, we designed the MoA Retrieval System (MARS). Relative to previous NeSy approaches,
MARS has enhanced interpretability as it dynamically learns weights corresponding to logical rules.
We showed that, with respect to the three desiderata for reasoning-aware NeSy systems, MARS has
improved calibration and cost effectiveness compared to its predecessors, thereby enabling the iden-
tification and mitigation of a reasoning shortcut based on node degree bias.
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A APPENDIX

A.1 SELECTED METAPATHS

Table A1: Metapaths representing MoAs. Drugs are represented with a D, proteins with a P , and
biological processes with BP .

downregulates(D,P ) → participates(P,BP )
upregulates(D,P ) → participates(P,BP )
downregulates(D,P ) → interacts(P, P ) → participates(P,BP )
upregulates(D,P ) → interacts(P, P ) → participates(P,BP )
downregulates(D,P ) → interacts(P, P ) → interacts(P, P ) → participates(P,BP )
upregulates(D,P ) → interacts(P, P ) → interacts(P, P ) → participates(P,BP )

We use the MoAs in DrugMechDB (Gonzalez-Cavazos et al., 2023) as guidance for the types of
MoA patterns which should exist within our selected metapaths. To get MoAs most relevant for our
study, we extracted paths between drugs and BPs within DrugMechDB. All of such paths were ≤ 4
hops long, justifying the maximum length of paths in Table A1:

Figure 5: DrugMechDB paths extracted between drugs and BPs.

A.2 IMPLEMENTATION

We implemented MARS using TensorFlow (version 2.10). The method is packaged in Python and
released here [hidden]. The neural network structure is implemented as in Liu et al. (2021), which is
also drawn from Das et al. (2018). We used the Adam optimizer (Kingma & Ba, 2015) with REIN-
FORCE (Williams, 1992) to maximize rewards. We used a grid search hyperparameter optimization
(Feurer & Hutter, 2019); further details are within Appendix A.6. MARS was trained to optimize
MRR, with early stopping determined by validation MRR (Fig. 6).

Partially based on previous biomedical KG benchmarks (Rivas-Barragan et al., 2022), the KGE
baseline models include ComplEx (Trouillon et al., 2016), RotatE (Sun et al., 2019), MuRE (Bal-
azevic et al., 2019), CompGCN (Vashishth et al., 2020), and PairRE (Chao et al., 2021). We also
compare against PoLo (Liu et al., 2021) and its predecessor MINERVA (Das et al., 2018), which is
not guided by rules. Additionally, we test prioritization of drug-BP triples based on degree-weighted
path count (DWPC) using 0.4 as damping exponent (Himmelstein & Baranzini, 2015).

The baseline KGE models were trained using the PyKEEN framework (v1.10.1) (Ali et al., 2021).
KGEMs were trained using PyKEEN’s hyperparameter optimization pipeline over 30 trials using as
initial parameters the best configurations from (Rivas-Barragan et al., 2022). The evaluation in the
hyperparameter optimization was conducted using Hits@10 for all the models on a link prediction
task for the previously-described splits. Network algorithms were implemented in NetworkX (v3.1)
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Figure 6: Validation MRR over training epochs.

(Hagberg et al., 2008) and metapaths were calculated using the hetnetpy Python package (Himmel-
stein et al., 2021; Himmelstein & Baranzini, 2015). Lastly, source code and data are available at
[hidden].

A.3 HARDWARE AND RESOURCES

For training MARS, we used one A40 Nvidia GPU (NVIDIA Corporation, 2021) and two AMD
EPYC Milan 7413 CPU nodes (AMD, 2021). On MoA-net, MARS used up to 90 Gigabytes of
memory and took up to 1.5 hours between beginning training and concluding testing.

A.4 REWARD FUNCTION

Using a deep RL process, MARS trains an agent to take walks of length L through the KG to connect
pairs of nodes having the pre-defined relation of interest (e.g., induces); such edges are masked
from the agent during training. Each walk generates a path, P , which can be understood as a series
of L transitions: P := (ec

r1−→ e2
r2−→ ...

rL−→ eL+1). The agent may also remain at its current
node. Ultimately, the goal of the agent is episodic: to find paths in which the starting node, ec,
and the terminal node, eL+1, make up one of the true input pairs. By training the agent to do so,
it can identify node pairs with some desired relationship, thus generalizing beyond the training set
to predict novel pairs. Through a process akin to a Markov Decision Process (Bellman, 1957), the
agent makes decisions about its next move based on information about its current position and the
next possible actions. Additionally, however, the history of the agent’s previous actions are encoded
with an LSTM (Hochreiter & Schmidhuber, 1997; Sherstinsky, 2020), whose parameters are trained
to optimize the reward function, R(SL+1) (Eq. 5), which is evaluated each time the agent completes
L transitions from some starting node, reaching a state SL+1. MARS uses the same reward function
as Liu et al. (2021):

R(SL+1) = 1{eL+1=ed} + 1{eL+1=ed}λ

m∑
i=1

w(Mi)1{P̃=Mi} (5)

1{A} =

{
1 if A = true
0 if A = false

(6)
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This reward function which quantifies how successful P is according to two summands, where the
hyperparameter λ influences the balance between them. The first summand indicates whether the
terminal node in the path, eL+1, is one of the desired target (BP) nodes (ed) that forms a true pair
with the starting (drug) node, ec. The second summand, contingent upon the first, indicates whether
the corresponding metapath, P̃ , matches any metapath-based rule, Mi. Therefore, the agent is not
only encouraged to find connections between true pairs of nodes, but it is also guided toward paths
which resemble known MoAs. Of note, the second summand is proportional to some metapath-
based rule weight, which is learned by MARS.
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A.5 NODE AND EDGE TYPE DISTRIBUTION

Node type Count

Drug 300
Protein 9,301
Biological Process (BP ) 86

Edge type Count

interacts(Protein, Protein) 86,786
participates(Protein,BP ) 4,325
downregulates(Drug, Protein) 2,205
upregulates(Drug, Protein) 1,631
induces(Drug,BP ) 1,622

A.6 HYPERPARAMETER SELECTION

Here, we describe hyperparameter selection. Table A2 describes the hyperparameter search space
for optimization, and Table A3 describes the hyperparameters which were fixed for every model.
Table A4 describes the best hyperparameters for the final results in Fig. 3-E.

Table A2: Hyperparameter search space for grid search optimization (Feurer & Hutter, 2019)

Hyperparameter Description Search space

λ (Lambda) ratio at which the second summand, or reward, is
applied relative to the first summand, or reward,
in the reward function

{5, 8, 10}

α (alpha) how dramatically weight updates should be made
(if applicable)

{0.001, 0.01, 0.1}

learning rate learning rate of the optimizer {0.0001, 0.001, 0.01}
hidden size size of hidden layers {64, 128, 256}
batch size size of sampled mini-batch for training {128, 256}
rollouts number of times each query (source-terminal node

pair) is made or attempted during training
{50, 100}

γbaseline (gamma base-
line)

discount factor for the baseline as implemented in
MINERVA (Das et al., 2018)

{0.05, 0.5}

β (beta) entropy regularization factor as implemented in
MINERVA (Das et al., 2018)

{0.025, 0.05}

Table A3: Fixed hyperparameter settings

Hyperparameter Description Value

embedding size size of the relation and entity embeddings 256
LSTM layers number of LTSM layers 2
test rollouts number of times each query (source-terminal node

pair) is made or attempted during testing
50

max branching maximum number of outgoing edges per node
shown to the agent in an episode

150

γ (gamma) discount factor as implemented in REINFORCE
(Williams, 1992)

1

positive reward reward for finding a true pair 1
negative reward penalty for failing to find a true pair 0
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Table A4: Best hyperparameters from Table A2 for the experiments in Fig. 3-E.

Hyperparameter MARSP2H
MARSnaive PoLo

λ 10 5 5
α 0.001 0.001 -
learning rate 0.0001 0.0001 0.0001
hidden size 256 256 64
batch size 128 256 256
rollouts 100 100 50
γbaseline 0.05 0.5 0.5
β 0.025 0.05 0.05

A.7 ADDITIONAL PERFORMANCE METRICS

Within Fig. 7, we report Hits@1 and Hits@3 as in Fig. 3:

Figure 7: Hits@1 and Hits@3 for MARSP2H
compared to PoLo and MARSnaive upon several vari-

ants of MoA-net. Each bar is the average and standard deviation across five independent training
and testing iterations. From left to right: Little change between initial metrics upon MoA-net (A)
in comparison to the standard MoA-net-permuted metrics (B) provides evidence that predictions
are influenced by degree bias, resulting in a reasoning shortcut. Thereafter, inverse edges were
removed to prohibit the reasoning shortcut, hindering performance (C). Performance was restored
upon MoA-net-10k with the KG trimming step (D), with MARSP2H

showing the best standard and
pruned metrics. Finally, MARSP2H

maintains high pruned metrics even when inverse edges (and
reasoning shortcuts) are re-introduced (E).

A.8 POLO METRICS WITHOUT ASSOCIATIVE RULES

We ran PoLo on the Hetionet KG (Himmelstein et al., 2017) using the same parameters and data
splits as reported by Liu et al. (2021). In contrast to Liu et al. (2021), we input all directed metapaths
of length L ≤ 4 as rule bodies (as in Appendix A.1). These metapaths served as the metapath-
based rules for PoLo. Notably, these metapaths excluded the associative metapath mentioned in
section 4.1:

treats(Drug1,Disease)⇐ causes(Drug1, Side Effect) ∧
causes(Drug2, Side Effect) ∧ treats(Drug2,Disease)

Despite the most-used metapath-based rule being absent, PoLo achieved the same standard metrics
as previously reported (Table A5).
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Table A5: Performance evaluations of PoLo upon Hetionet as reported in Liu et al. (2021) (average
across five independent training/testing iterations) and PoLo upon Hetionet without associative rules
((average, standard deviation) across four independent training/testing iterations.)

rule types Hits@1 Hits@3 Hits@10 MRR
associative ((Liu et al., 2021)) 0.314 0.428 0.609 0.402
mechanistic (this study) (0.328, 0.046) (0.465, 0.037) (0.656, 0.044) (0.431, 0.035)

A.9 ABLATION STUDY

Here, we tested the effects of reducing the test set size (n=100) on performance. The lack of change
between Fig. 8-C and C (test=100) indicates that a reduction in test set size is not responsible for
improvements observed in Fig. 8-D.

Figure 8: Performance evaluations upon MoA-net (no inverse edges) with a test set of 100 triples.
Metrics are presented as the average, with error bars representing standard deviation across five
independent training/testing iterations. The lack of change between C and C (test=100) indicates
that a reduction in test set size is not responsible for improvements observed in D.
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A.10 XSWAP PERMUTATIONS: MARSP2H
ON MoA-net-10k

Using the XSwap algorithm as in Section 4.2, we checked, once again, whether the prediction met-
rics achieved using MARSP2H

on MoA-net-10k were influenced by degree bias. This time, there
was a stark decrease in performance metrics upon the permuted KG (Fig. 9). This showed that
predictions made by MARSP2H

were due to factors beyond node degree bias.

Figure 9: Performance evaluations of MARSP2H
on MoA-net-10k as well as a permuted variant of

MoA-net-10k via the XSwap algorithm. Metrics are presented as the average, with error bars repre-
senting standard deviation across five independent training/testing iterations. A drop in performance
metrics (E (permuted)) indicates that node degree was not the main driver in predictions made in E.
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