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Abstract
We present a new method for generating confi-
dence sets within the split conformal prediction
framework. Our method performs a trainable
transformation of any given conformity score to
improve conditional coverage while ensuring ex-
act marginal coverage. The transformation is
based on an estimate of the conditional quantile
of conformity scores. The resulting method is par-
ticularly beneficial for constructing adaptive con-
fidence sets in multi-output problems where stan-
dard conformal quantile regression approaches
have limited applicability. We develop a theo-
retical bound that captures the influence of the
accuracy of the quantile estimate on the approxi-
mate conditional validity, unlike classical bounds
for conformal prediction methods that only of-
fer marginal coverage. We experimentally show
that our method is highly adaptive to the local
data structure and outperforms existing methods
in terms of conditional coverage, improving the
reliability of statistical inference in various appli-
cations.

1. Introduction
The widespread deployment of AI models emphasizes the
need for reliable uncertainty quantification (Gruber et al.,
2023). Although highly flexible in capturing complex statis-
tical dependencies, these models can produce unreliable or
overly confident predictions (Nalisnick et al., 2018). Con-
formal prediction (CP; Vovk et al. (2005); Shafer & Vovk
(2008)) offers a robust, distribution-free framework for pre-
dictions with finite-sample validity guarantees (Angelopou-
los et al., 2023; 2024).
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Classical CP approaches guarantee marginal validity but
fail to ensure the more desirable property of conditional
validity, which customizes prediction regions to specific co-
variates. Prior studies have shown constructing meaningful
prediction regions with exact conditional validity is infea-
sible without additional distributional assumptions (Vovk,
2012; Lei & Wasserman, 2014; Foygel Barber et al., 2021).
Consequently, current research emphasizes developing con-
formal methods that maintain marginal validity and achieve
approximate conditional validity (Colombo, 2024; Gibbs
et al., 2025).

A typical relaxation of exact conditional coverage in earlier
work involves group-conditional guarantees (Jung et al.,
2023; Ding et al., 2024), which provide coverage guarantees
for a predefined set of groups. Another branch of work
partitions the covariate space X into multiple regions and
applies CP within each set in the partition (LeRoy & Zhao,
2021; Alaa et al., 2023; Kiyani et al., 2024). However, such
partitioning based on the calibration set often leads to overly
large prediction regions (Bian & Barber, 2023; Plassier et al.,
2024).

An alternative approach weights the empirical cumulative
distribution function with a “localizer” function that quan-
tifies the similarity between calibration points and the test
sample (Guan, 2023). Although this method improves the
localization of predictions, it has significant limitations, es-
pecially in high-dimensional covariate spaces.

Finally, several methods focus on the transformation of con-
formity scores (Han et al., 2022; Dey et al., 2022; Izbicki
et al., 2022; Deutschmann et al., 2023; Dheur et al., 2024;
Colombo, 2024). These techniques adjust conformity scores
to better approximate the conditional coverage. However,
they usually require estimating the conditional distribution
of conformity scores, which is both computationally inten-
sive and difficult to perform accurately.

In this paper, we propose a novel CP method, Rectified
Conformal Prediction (RCP), extending normalized noncon-
formity scores; see, e.g., (Papadopoulos et al., 2008; Pa-
padopoulos & Haralambous, 2011). RCP aims to enhance
conditional coverage while preserving exact marginal cov-
erage guarantees. By constructing a new conformity score
whose quantile at a given coverage level is independent
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of covariates, RCP achieves both marginal and improved
conditional validity.

A significant benefit of RCP is its capacity to generate predic-
tion sets without fully modeling the conditional distribution
of conformity scores. Instead, RCP concentrates on quan-
tile regression to ensure approximate conditional coverage.
The main contributions of this work can be summarized as
follows.

• We introduce Rectified Conformal Prediction (RCP),
a new conformal method designed to enhance condi-
tional validity by refining conformity scores (see Sec-
tions 3 and 4). The proposed method avoids the need
to estimate the full conditional distribution of a multi-
variate response, relying instead on estimating only the
conditional quantile of a univariate conformity score.

• We provide a theoretical lower bound on the condi-
tional coverage of the prediction sets generated by RCP
(see Section 6). This conditional coverage is explicitly
governed by the approximation error in estimating the
conditional quantile of the conformity score distribu-
tion.

• We evaluate our method on several benchmark datasets
and compare it against state-of-the-art alternatives1

(see Section 7). Our results demonstrate improved per-
formance, particularly in terms of conditional coverage
metrics such as worst slab coverage (Romano et al.,
2020) and conditional coverage error (Dheur et al.,
2024).

2. Background
Consider a regression problem that aims to estimate a d-
dimensional response vector y ∈ Y = Rd based on a feature
vector x ∈ X ⊆ Rp to predict. We denote by PX,Y the joint
distribution of (X,Y ) over X × Y .

Construction of prediction regions for regression problems
is often based on distributional regression that focuses on
fully characterizing the conditional distribution of a re-
sponse variable given a covariate (Klein, 2024). This ap-
proach improves uncertainty quantification and decision-
making (Berger & Smith, 2019). From the conditional pre-
dictive distribution, prediction regions can be derived to
capture values likely to occur with a given probability. How-
ever, these regions rely heavily on the predictive model’s
quality, and poorly estimated models can result in unreliable
predictions. In the following, we present split-conformal
prediction (SCP; Papadopoulos et al., 2002), a computation-
ally efficient variant of the conformal prediction framework

1The code to reproduce main experiments is available at
https://github.com/stat-ml/rcp

that allows generating reliable prediction regions, even when
the predictive model is misspecified or inaccurate.

Split conformal prediction (SCP). Given a possibly mis-
specified predictive model g(x), for any input x ∈ X ,
SCP (Papadopoulos et al., 2002) generates a prediction set
Cα(x) at a user-specified confidence level α ∈ (0, 1) with
marginal validity (Papadopoulos, 2008):

P
(
Y ∈ Cα(X)

)
≥ 1− α. (1)

To do so, SCP relies on a conformity score function, V : X×
Y → R, assigning larger value to worse agreement between
g(X) and Y . Let {(Xk, Yk)}nk=1 be a calibration set, with
X ⊆ Rp and Y ⊆ Rd. SCP generates a prediction set Cα(x)
by computing an empirical quantile of the conformity scores
V (Xk, Yk), k = 1, . . . , n:

Cα(x) =
{
y : V (x, y) ≤ Q1−α

(∑n
k=1

δV (Xk,Yk)

n+1 + δ∞
n+1

)}
,

where δv is the Dirac mass at v, and Q1−α (P) denotes the
(1− α)-quantile for any distribution P on R.

Towards conditional validity of CP methods. In many
applications, conditional validity is a natural requirement,
i.e., for all x ∈ X ,

P (Y ∈ Cα(X) | X = x) ≥ 1− α. (2)

Conditional coverage (2) is stronger and implies marginal
coverage (1). While classical conformal methods provide
marginal validity (1), they do not ensure conditional validity.

Let us denote the conditional distribution PV|X=x with V
being a shorthand for V (X,Y ). The following oracle pre-
diction set

Cα(x) =
{
y ∈ Y : V (x, y) ≤ Q1−α(PV|X=x)

}
(3)

trivially satisfies conditional coverage (2) by the definition
of conditional quantile Q1−α(PV|X=x). However, exact
conditional validity is not achievable within conformal pre-
diction framework (Vovk, 2012; Lei & Wasserman, 2014;
Foygel Barber et al., 2021). In what follows we will present
a new conformal prediction method that will achieve approx-
imate conditional validity while satisfying exact marginal
guarantees.

3. Rectified Conformal Prediction
The primary objective of our Rectified Conformal Predic-
tion (RCP) method is to enhance the conditional coverage
of any given conformity score while maintaining their exact
marginal validity. Expression (3) suggests that one could
approximate the (1− α)-quantile of the conditional distri-
bution of the scores to construct the prediction set:

C̃α(x) =
{
y ∈ Y : V (x, y) ≤ Q̂1−α

(
PV|X=x

)}
.
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This prediction set provides approximate conditional guar-
antees that depend on the accuracy of the quantile estimator.
However, it fails to ensure exact marginal coverage which
is an essential property for conformal prediction methods.

A motivation for RCP. Our RCP method is specifically
designed to achieve both exact conformal marginal validity
and approximate conditional coverage. To achieve this, RCP
first constructs specially transformed (rectified) scores to en-
hance conditional coverage. To construct the rectified scores,
it builds on the key observation that marginal and condi-
tional coverage coincide precisely when the conditional
(1 − α)-quantile of the conformity score is independent
of the covariates. RCP then applies the SCP procedure to
these rectified scores, ensuring the classical exact conformal
marginal validity.

For any given score V (x, y), referred to as the basic score,
RCP computes a rectified score Ṽ (x, y), which is a transfor-
mation of the basic score that satisfies, for PX -a.e. x ∈ X ,

Q1−α

(
PṼ (X,Y )

)
= Q1−α

(
PṼ (X,Y )|X=x

)
. (4)

Below we present two examples that show how one can
construct the rectified scores satisfying (4).

Example 1. Consider the rectified score Ṽ (x, y) =
V (x, y)/Q1−α(PV|X=x), with the assumption that
Q1−α(PV|X=x) > 0 for any x ∈ X . We can de-
fine the following prediction set, equivalent to (3):
Cα(x) = {y ∈ Y : Ṽ (x, y) ≤ 1}. This prediction set satis-
fies conditional coverage. Furthermore, in Appendix B.1,
we prove that this rectified score satisfies the equality in (4).

Example 2. Consider the rectified score Ṽ (x, y) =
V (x, y)−Q1−α(PV|X=x). The corresponding prediction
set, also equivalent to (3), is: Cα(x) = {y ∈ Y : Ṽ (x, y) ≤
0}, and it satisfies conditional coverage. Furthermore, in
Appendix B.2, we prove that this rectified score satisfies the
equality in (4).

In the following, we generalize over these two basic exam-
ples and present a rich family of general score transforma-
tions that allow for score rectification.

RCP with general transformations. Recall that starting
from a basic score function V (x, y), we develop a trans-
formed score Ṽ (x, y) to achieve conditional validity at a
given confidence level α. To do so, we introduce a transfor-
mation to rectify the basic conformity score V .

Consider a parametric family {ft}t∈T with (t, v) ∈ T ×
R 7→ ft(v) ∈ R and T ⊆ R. For convenience, we define
f̃v(t) = ft(v) and proceed under the following assumption.

H1. The function v ∈ R ∪ {∞} 7→ ft(v) is increasing for
any t ∈ T. There exists φ ∈ R such that f̃φ is continuous,
increasing, and surjective on R.

Under H1, we denote by f̃−1
φ the inverse of the function f̃φ,

i.e., f̃−1
φ ◦ f̃φ(t) = t, for all t ∈ T. Let φ ∈ R be such that

f̃φ is invertible (see H1). Set

Vφ(x, y) = f̃−1
φ

(
V (x, y)

)
(5)

and denote V = V (X,Y ), and Vφ = Vφ(X,Y ). We now
define the following prediction set

C∗α(x) =
{
y ∈ Y : V (x, y) ≤ fτ⋆(x)(φ)

}
, (6)

where

τ⋆(x) = Q1−α

(
PVφ

| X = x
)
= f̃−1

φ

(
Q1−α

(
PV|X=x

))
,

(7)
i.e., the (1−α) conditional quantile of the transformed score
Vφ given X = x. We retrieve Example 1 with ft(v) = vt,
φ = 1. In this case f̃−1

1 (t) = t and V1(x, y) = V (x, y).
Similarly, for Example 2, ft(v) = v + t, φ = 0. In such a
case, f̃−1

0 (t) = t and V0(x, y) = V (x, y).

In the following, we show that the prediction set in (6)
satisfies the conditional validity guarantee in (2) and, subse-
quently, the marginal coverage guarantee in (1). In fact, we
can write

P(Y ∈ C∗α(X) | X = x) = P(V ≤ fτ⋆(X)(φ) | X = x)

(a)
= P(V ≤ f̃φ(τ⋆(X)) | X = x)

(b)
= P(Vφ ≤ τ⋆(X) | X = x)

(c)

≥ 1− α,

where we have used in (a) that f̃v(t) = ft(v), in (b) that
f̃φ is invertible and the definition of Vφ, and in (c) the
definition of τ⋆(x). We may rewrite the prediction set (6) in
terms of the rectified score Ṽ⋆(x, y) = f−1

τ⋆(x)

(
V (x, y)

)
:

C∗α(x) =
{
y ∈ Y : Ṽ⋆(x, y) ≤ φ

}
. (8)

In Appendix B.4, we establish that the rectified score sat-
isfies (4), more precisely, setting Ṽ⋆ = Ṽ⋆(X,Y ), for all
x ∈ X ,

φ = Q1−α

(
PṼ⋆|X=x

)
= Q1−α

(
PṼ⋆

)
. (9)

With the rectified score, conditional and unconditional cover-
age coincide. However, while the oracle prediction set in (6)
provides both conditional and marginal validity, it requires
the precise knowledge of the pointwise quantile function
τ⋆(x). In practice, τ⋆(x) is not known and one must con-
struct an estimate τ̂(x) using some hold out dataset. Below
we discuss the resulting data-driven procedure.

4. Implementation of RCP

The RCP algorithm. Rectified conformal prediction ap-
proach, as discussed above, requires a basic conformity
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Algorithm 1 The RCP algorithm

Input: Calibration datasetD, miscoverage level α, con-
formity score function V , transformation function ft,
test input x.
▷ Calibration Stage
Split D into {(Xk, Yk)}nk=1 and {(X ′

k, Y
′
k)}mk=1.

Dτ ← {(X ′
k, V (X ′

k, Y
′
k))}mk=1

q̂1−α ← conditional quantile estimate on Dτ .
τ̂ ← f̃−1

φ

(
q̂1−α

)
for k = 1 to n do
Ṽk ← f−1

τ̂(X′
k)

(
V (Xk, Yk)

)
.

end for
kα ← ⌈(1− α)(n+ 1)⌉.
Ṽ(kα) ← kα-th smallest value in {Ṽk}k∈[n] ∪ {+∞}.
▷ Test Stage
Cα(x)←

{
y ∈ Y : f−1

τ̂(x)

(
V (x, y)

)
≤ Ṽ(kα)

}
.

Output: Cα(x).

score function V , a transformation function ft, and a cal-
ibration dataset of N = n + m points. A critical step
in the RCP algorithm is estimating the conditional quantile
τ̂(x) ≈ Q1−α

(
PVφ|X=x

)
, which we discuss in detail below.

τ̂ is learned on a separate part of calibration dataset com-
posed of m data points {(X ′

k, Y
′
k) : k = 1, . . . ,m}. Subse-

quently, RCP uses SCP with the rectified scores Ṽ (x, y) :=
f−1
τ̂(x)

(
V (x, y)

)
instead of the basic scores V (x, y). SCP is

applied to the rectified scores computed on the second part
of the calibration dataset: Ṽk = Ṽ (Xk, Yk), k = 1, . . . , n.

Finally, for a given test input x and miscoverage level α,
RCP computes the prediction set as

Cα(x) =
{
y ∈ Y : Ṽ (x, y) ≤ Q1−α

( n∑
k=1

δṼk

n+ 1
+

δ∞
n+ 1

)}
.

(10)
The resulting RCP procedure is summarized in Algorithm 1.

We show exact marginal validity of RCP and give a bound
on its approximate conditional coverage in Section 6 below.

Estimation of τ⋆(x). We present below several methods
for estimating τ⋆(x). Interestingly, even coarse approxima-
tions of this conditional quantile can significantly improve
conditional coverage; see the discussion in Section 7.

Quantile regression. For any x ∈ Rd, the conditional
quantile, denoted by τ⋆(x), is a minimizer of the expected
pinball loss:

τ⋆(x) = argmin
τ

E
[
ρ1−α

(
Vφ(X,Y )− τ(X)

)]
, (11)

where the minimum is taken over the function τ : X → R
and ρ1−α is the pinball loss (Koenker & Bassett Jr, 1978;
Koenker & Hallock, 2001): ρ1−α(τ) = (1 − α)τ1τ>0 −
ατ1τ≤0. In practice, the empirical quantile function τ̂ is

obtained by minimizing the empirical pinball loss:

τ̂ ∈ argmin
τ∈C

1

m

m∑
k=1

ρα
(
Vφ(X

′
k, Y

′
k)− τ(X ′

k)
)
+ λg(τ),

(12)
where g is a penalty function and C is a class of functions.
When τ(x) = θ⊤Φ(x) where Φ is a feature map, and g
is convex, the optimization problem in (12) becomes con-
vex. Theoretical guarantees in this setting, are given, e.g.,
in (Chen & Wei, 2005; Koenker, 2005).

Non-parametric methods have also been extensively ex-
plored, see, e.g., (Chernozhukov & Hansen, 2005; Cher-
nozhukov et al., 2022). Takeuchi et al. (2006) introduced
the kernel quantile regression (KQR) framework, formu-
lating quantile regression as minimizing the pinball loss
in an RKHS with Tikhonov (squared-norm) regularization.
It established some of the first theoretical guarantees for
RKHS-based quantile models, deriving finite-sample gener-
alization error bounds using Rademacher complexity; these
results were later improved in (Li et al., 2007)

Local quantile regression. The local quantile can be
obtained by minimizing the empirical weighted expected
value of the pinball loss function ρ1−α, defined as follows:

τ̂(x) ∈ argmin
t∈R

{
m∑

k=1

wk(x)ρ1−α (Vφ(X
′
k, Y

′
k)− t)

}
,

(13)
where {wk(x)}mk=1 are positive weights; see (Bhattacharya
& Gangopadhyay, 1990). For instance, we can set wk(x) =
m−1KhX

(∥x − X ′
k∥), where for h > 0, Kh(·) =

h−1K1(h
−1·) is a kernel function satisfying

∫
K1(x)dx =

1,
∫
xK1(x)dx = 0 and

∫
x2K1(x)dx < ∞; hX , the ker-

nel bandwidth is tuned to balance bias and variance. With
appropriate adaptive choice of h(x), this approach can be
shown to be asymptotically minimax over Hölder balls;
see (Bhattacharya & Gangopadhyay, 1990; Spokoiny et al.,
2013; Reiß et al., 2009). More recently, Shen et al. (2024) in-
troduced a penalized non-parametric approach to estimating
the quantile regression process (QRP) using deep neural net-
works with rectifier quadratic unit (ReQU) activations. Shen
et al. (2024) derives upper bounds on the mean-squared
error for quantile regression using deep ReQU networks,
depending only on the approximation error and network.
The bounds are shown to be tight for broad function classes
(e.g., Hölder compositions, Besov spaces), implying that
ReQU neural networks achieve minimax-optimal conver-
gence rates for conditional quantile estimation. Notably,
the theory requires minimal assumptions and holds even for
heavy-tailed error distributions.
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5. Related Work
It is well known that obtaining exact conditional cover-
age for all possible inputs within the conformal prediction
framework is impossible without making distributional as-
sumptions (Foygel Barber et al., 2021). However, the litera-
ture has proposed various relaxations of exact conditional
coverage, focusing on different notions of approximate con-
ditional coverage.

A first class of methods involves group-conditional guaran-
tees (Jung et al., 2023; Ding et al., 2024), which provide
coverage guarantees for a predefined set of groups. Another
class partitions the covariate space into multiple regions
and applies classical conformal prediction within each re-
gion (LeRoy & Zhao, 2021; Alaa et al., 2023; Kiyani et al.,
2024). The significant limitation of these methods lies in
the need to specify the groups or regions in advance.

Other conformal methods aim to approximate conditional
coverage by leveraging uncertainty estimates from the base
predictor. When d = 1, Conformalized Quantile Regres-
sion (CQR; Romano et al., 2019) suggests constructing a
conformalized prediction interval Cα(x) by leveraging two
quantile estimates of Y | X = x, denoted as q̂α/2(x) and
q̂1−α/2(x). This approach yields prediction intervals that
adapt to heteroscedasticity (Kivaranovic et al., 2020). By
considering a version of CQR by Sesia & Candès (2020)
whose conformity score is positive, we can draw a connec-
tion with RCP. The conformity score is

V (x, y) = |y − µα(x)| /δα(x),

with µα(x) = (q̂1−α/2(x) + q̂α/2(x))/2 and δα(x) =
q̂1−α/2(x)−q̂α/2(x). Applying RCPwith ft(v) = tv yields
the following scaled transformed conformity scores:

Ṽ (x, y) = |y − µα(x)| /τ̂(x),

where τ̂(x) is an estimator of the conditional (1 − α)-
quantile of |Y − µα(x)| given X = x. Thus, this particular
variant of RCP closely resembles the CQR approach but
uses a different quantile estimate.

In the context of multivariate prediction sets, given a pre-
dictor µ(·), a natural choice for the conformity score is
V∞(x, y) = ∥y−µ(x)∥∞, where ∥u∥∞ = max1≤t≤d(|ui|)
(Diquigiovanni et al., 2024). This conformity score mea-
sures the prediction error associated with the predictor
µ (Nouretdinov et al., 2001; Vovk et al., 2005; 2009).
Setting ft(v) = tv and φ = 1, the rectified confor-
mity scores are given by Ṽ (x, y) = V (x, y)/τ̂(x) where
τ̂(x) ≈ Q1−α

(
PV∞|X=x

)
, with V∞ = V∞(X,Y ). Thus,

RCP is similar to the approach proposed in (Lei et al., 2018),
but with a different choice of scaling function.

Methods utilizing conditional density estimation have been
proposed to produce conformal prediction intervals that

adapt to skewed data (Sesia & Romano, 2021), to min-
imize the average volume (Sadinle et al., 2019, denoted
DCP in our paper) or to define more flexible highest-density
regions (Izbicki et al., 2022; Plassier et al., 2025). Proba-
bilistic conformal prediction (PCP; Wang et al., 2023) by-
passes density estimation by constructing prediction sets as
unions of balls centered on samples from a generative model.
All these methods are either tailored to handle the scalar
response (d = 1) or require an accurate conditional distri-
bution estimate which might be hard to obtain in practical
scenarios.

Guan (2023) introduces a localized conformal prediction
framework that adapts to data heterogeneity by weighting
calibration points based on their similarity to the test sample.
To do so, kernel-based localizers assign greater importance
to nearby points, tailoring prediction intervals to local data
patterns. Amoukou & Brunel (2023) extend Guan’s ap-
proach by replacing kernels with quantile regression forest
estimators for improved performance. Although effective,
these methods face challenges in high-dimensional or mixed-
variable settings.

Several methods aim to transform conformity scores to im-
prove approximate conditional coverage. For example, Jo-
hansson et al. (2021), following earlier works by Papadopou-
los & Haralambous (2011); Johansson et al. (2014); Lei et al.
(2018), investigate normalized conformity scores (NCF),
which enhance standard conformal prediction by adjusting
prediction set according to instance difficulty. NCF can be
represented within our framework through a specific choice
of the function fτ (v) = v/(τ + β), where β-values will put
a greater emphasis on the difficulty estimation. Notably, the
estimation approach employed in these papers uses least-
squares regression on residuals, in contrast to the quantile
regression approach adopted in RCP, which is essential to
satisfy (4). Han et al. (2022) presents an approach that uses
kernel density estimation to approximate the conditional
distribution. Similarly, Deutschmann et al. (2023) rescales
the conformity scores based on an estimate of the local
score distribution using the jackknife+ technique. However,
these methods generally rely on estimating the conditional
distribution of conformity scores, which is challenging in
practice. Dewolf et al. (2025) studies conditional validity
of normalized conformal predictors in oracle setting, i.e.,
when the optimal normalization is known.

Recent work by Colombo (2024) suggests to transform the
conformity score employing a normalizing flow: Ṽ (x, y) =
b(V (x, y), x). The normalizing flow is trained to map the
joint distribution PV,X of the conformity score and attributes
into a product distribution, PṼ ⊗ PX , where PṼ is an ar-
bitrary univariate distribution. Notably, this condition is
stricter than the conditional coverage criterion (4), as it
enforces PṼ|X=x = PṼ for almost every x under PX . Con-
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sequently, learning such a transformation typically necessi-
tates a larger sample size; see Section 7.

One method (Xie et al., 2024) proposes to use a cross-
validated boosting procedure to learn a new score func-
tion to be used in split-conformal prediction. The authors
consider a specific family of possible score functions and
corresponding loss functions tailored either to deviation
from conditional coverage or interval length. This method
has several limitations compared to our approach: limited
set of score functions, tailored to one-dimensional targets,
requires access to the train set, and high computation cost.

RCPmethod shares some similarities with that of Gibbs et al.
(2025), which also performs a quantile regression of the
conformity score with respect to the attribute X . There are
two essential differences: firstly, Gibbs et al. (2025) work
directly with the conformity score V , whereas we regress
on a transformed score Vφ. Secondly, the manner in which
the quantile regression result is used differs significantly.
RCP uses the quantile estimator to define the rectified score
Ṽ , to which the standard CP procedure, while Gibbs et al.
(2025) propose a considerably more complex procedure; see
Section 7.

Finally, various recalibration methods have been proposed
to improve marginal coverage (Dheur & Taieb, 2023) or
conditional coverage (Dey et al., 2022). While these meth-
ods can also be interpreted within the conformal prediction
framework (Marx et al., 2022; Dheur & Taieb, 2024), they
often require modifications to the training procedure, mak-
ing them less broadly applicable than purely conformal
methods.

6. Theoretical Guarantees
In this section, we study the marginal and conditional valid-
ity of the predictive set Cα(x) defined in (10). Due to space
constraints, we present simplified versions of the results.
Full statements and rigorous proofs can be found in the sup-
plement materials. Many of the results hold independently
of the specific method used to construct the conditional
quantile estimator τ̂(x). The only assumption we impose is
minimal

H2. For any x ∈ X , we have τ̂(x) ∈ T.

The following theorem establishes the standard conformal
guarantee. We stress that for this statement, the definition
of τ̂(x) is not essential. The result is valid for any function
τ(x), and the proof follows directly from classical argu-
ments demonstrating the validity of split-conformal method.

Theorem 1. Assume H1-H2 hold and suppose the rectified
conformity scores {Ṽk}n+1

k=1 are almost surely distinct. Then,

for any α ∈ (0, 1), it follows

1− α ≤ P (Yn+1 ∈ Cα(Xn+1)) < 1− α+
1

n+ 1
.

The proof is postponed to Appendix B.3. We will now ex-
amine the conditional validity of the prediction set. To do
so, we will explore the relationship between the conditional
coverage of Cα(x) and the accuracy of the conditional quan-
tile estimator τ̂(x). To simplify the statements, we assume
that the distribution of PVφ|X=x, where Vφ = Vφ(X,Y ) is
continuous. Define

ϵτ (x) = P (Vφ(X,Y ) ≤ τ(x) |X = x)− 1 + α. (14)

The function ϵτ represents the deviation between the current
confidence level and the desired level 1 − α. Define the
conditional pinball loss

Lx(τ) = E
[
ρ1−α

(
Vφ(X,Y )− τ(X))|X = x

)]
. (15)

It is shown in Theorem 6 (see Appendix B.6 ) that, under
weak technical conditions, ϵτ satisfies the following prop-
erty: for all x ∈ X ,

|ϵτ (x)| ≤
√

2× {Lx(τ(x))− Lx(τ⋆(x))},

where τ⋆(x) is defined in (7). The previous equation bounds
ϵτ (x) as a function of the quantile estimate τ(x). If τ(x) is
close to the minimizer of the loss function Lx (as defined
in (15)), then ϵτ (x) is expected to approach zero.

The c.d.f function of the rectified conformity score is defined
as FṼ = P(Ṽ (X,Y ) ≤ ·). We denote its conditional
version by FṼ |X=x = P(Ṽ (x, Y ) ≤ · | X = x).

Theorem 2. Assume that H1-H2 and FṼ is continuous and
that, for any x ∈ X , FṼ |X=x ◦ F−1

Ṽ
is L-Lipschitz. Then,

for any α ∈ [{n+ 1}−1, 1) it holds

P (Yn+1 ∈ Cα(Xn+1) |Xn+1 = x) ≥ 1− α
+ ϵτ̂ (x)− αL× [FṼ (φ)]

n+1. (16)

The proof is postponed to Appendix B.5. According to The-
orem 2, the conditional validity of the prediction set Cα(x)
directly depends on the accuracy of the quantile estimate
τ̂(x). If τ̂(x) closely approximates the conditional quantile
Q1−α

(
PVφ(x,Y )|X=x

)
, then (16) ensures that conditional

coverage is approximately achieved.

Local quantile regression. We will now explicitly control
ϵτ̂ (x) when the estimate τ̂(x) is obtained using the local
quantile regression method outlined in (13). For any x ∈ Rd,
we define ChX

(x) as ChX
(x) = E[KhX

(∥x−X∥)].
H3. There exists M ≥ 0, such that for all v ∈ R, x̃ 7→
FVφ(x̃,Y )|X=x̃(v) is M-Lipschitz. Moreover, t ∈ R+ 7→
KhX

(t) is non-increasing.
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Figure 1: Oracle data distribution, sample data and predictor
for the toy dataset.

Proposition 1. Assume H3 holds. With probability at most
m−1 × {1 + 4ChX

(x)−1 Var[KhX
(∥x−X∥)]}, it holds

|ϵτ̂ (x)| ≥ ChX
(x)−1

√
K1(0) logm

hXm

+ 4ChX
(x)−1 sup

0≤t≤1
{tKhX

(M−1t)}.

The proof is postponed to Appendix B.7. Proposition 1
highlights the trade-off associated with the bandwidth pa-
rameter hX . Ideally, we would like to choose hX ≪ 1
to minimize sup0≤t≤1{tKhX

(L−1t)}. However, this re-

sults in an increase of
√

logm
mhX

. Consequently, there ex-
ists an optimal bandwidth parameter hX that depends on
both the number of available data points m and the regu-
larity of the conditional cumulative distribution function
x 7→ FVφ(x,Y )|X=x(v).

Finally, for the optimal choice of bandwidth hX one can
prove the asymptotic validity of RCP:

P (Y ∈ Cα(X) |X)→ 1− α, n,m→∞. (17)

The exact formulation and its proof are given in Ap-
pendix B.8.

7. Experiments
7.1. Toy example

Let us consider the following data-generating process:

X ∼ Beta(1.2, 0.8), Y | X = x ∼ N (µ(x), x4).

where µ(x) = x sin(x). Figure 1 shows a realization with
n = 100 data points. Our goal is to investigate the influ-
ence of the quality of the (1 − α)-quantile estimate τ̂ on
performance.

We set α = 0.1 and consider the conformity score
V (x, y) = |y − µ(x)|. In this case, the (1− α)-quantile of

ω 0 1/3 2/3 1

COVERAGE 90± 01 84± 01 75± 03 59± 07

Table 1: Local coverage on the adversarially selected 10%
of the data, ω corresponds to the level of contamination of
the score quantile estimate.

V (x, Y ) | X = x is known and we denote it by Q1−α(x).
Given ω ∈ [0, 1], we set τ̂(x) ∼ (1− ω)Q1−α(x) + ωϵ(x),
where we consider ϵ(x) ∼ N (0, x4). We perform 1000 ex-
periments and report the 10% lower value of x ∈ [0, 1] 7→
P(Yn+1 ∈ Cα(x) | X = x); the results can be found
in Table 1. If ω = 0, τ̂(x) corresponds to the true (1− α)-
quantile. In this case, our method is conditionally valid, as
Theorem 2 shows. However, while all settings of ω yield
marginally valid prediction sets, the conditional coverage
decreases as the quantile estimate τ̂(x) deteriorates.

7.2. Real-world experiment

We use publicly available regression datasets which are also
considered in (Tsoumakas et al., 2011; Feldman et al., 2023;
Wang et al., 2023) and only keep datasets with at least 2
outputs and 2000 total instances. The characteristics of the
datasets are summarized in Appendix C.

Base predictors. We consider two base predictors, both
parameterized by a fully connected neural network with
three layers of 100 units and ReLU activations.

The mean predictor estimates the mean µ̂i(x) of the distribu-
tion for each dimension i ∈ [d] given x ∈ X . Since it only
provides a point estimate, it does not capture uncertainty.

The mixture predictor models a mixture of K Gaussians,
enabling it to represent multimodal distributions. Given
x ∈ X , the model outputs z(x) ∈ RK (logits for mix-
ture weights), µ(x) ∈ RK×d (mean vectors), and L(x) ∈
RK×d×d (lower triangular Cholesky factors). The mix-
ture weights π(x) ∈ RK are obtained by applying the
softmax function to z(x), and the covariance matrices
Σ(x) ∈ RK×d×d are computed as Σk(x) = Lk(x)Lk(x)

⊤.
The conditional density at y ∈ Y , given x ∈ X , is:

p̂(y | x) =
K∑

k=1

πk(x) · N
(
y | µk(x),Σk(x)

)
,

where N
(
y | µk(x),Σk(x)

)
is a Gaussian density with

mean µk(x) and covariance matrix Σk(x).

Methods. We compare RCP with four split-conformal pre-
diction methods from the literature: ResCP (Diquigiovanni
et al., 2024), PCP (Wang et al., 2023), DCP (Sadinle et al.,
2019), and SLCP (Han et al., 2022). ResCP uses residuals
as conformity scores. To handle multi-dimensional outputs,
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Figure 2: Examples of prediction sets on synthetic dataset where the output has a bivariate and bimodal distribution.

we follow (Diquigiovanni et al., 2024) and define the con-
formity score as the l∞ norm of the residuals across dimen-
sions, i.e., V (x, y) = maxi∈[d] |µ̂i(x)−yi|. PCP constructs
the prediction set as a union of balls, while DCP defines the
prediction set by thresholding the density. ResCP is com-
patible with the mean predictor, whereas PCP and DCP are
compatible with the mixture predictor. Finally, SLCP, like
RCP, is compatible with any conformity score and base
predictor. For RCP, we compute an estimate τ̂(x) (see Sec-
tion 4) using quantile regression with a fully connected
neural network composed of 3 layers with 100 units.

Visualization on a synthetic dataset. Figure 2 illustrates
example prediction sets for different methods. The orange
and black contour lines represent confidence levels of α =
0.1 and α = 0.8, respectively. The first panel shows the
highest density regions of the oracle distribution, while the
subsequent panels display prediction regions obtained by
different methods, both before and after applying RCP. We
can see that combining RCP with ResCP, PCP, or DCP
results in prediction sets that more closely align with those
of the oracle distribution.

Experimental setup. We reserve 2048 points for calibra-
tion. The remaining data is split between 70% for training
and 30% for testing. The base predictor is trained on the
training set, while the baseline conformal methods use the
full calibration set to construct prediction sets for the test
points. In RCP, the calibration set is further divided into two
parts: one for estimating τ̂(x) and the other as the proper
calibration set for obtaining intervals. This ensures that
all methods use the same number of points for uncertainty
estimation. When not specified, we used the adjustment
ft(v) = t + v. Additional details on implementation and

hyperparameter tuning are provided in Appendix C.

Evaluation metrics. To evaluate conditional coverage, we
use worst-slab coverage (WSC, Cauchois et al., 2020; Ro-
mano et al., 2020) with δ = 0.2 and the conditional cover-
age error, computed over a partition of X , following Dheur
et al. (2025). To evaluate sharpness, we also report the me-
dian of the logarithm of the prediction set volume, scaled
by the dimension d.

Main results. Figure 3 presents the worst-slab coverage
and volume for different conformity scores, both with and
without RCP. Similarly, Figure 4 compares worst-slab cov-
erage between SLCP and RCP. Additional results, including
conditional coverage error and marginal coverage, are pro-
vided in Appendix A.1.

In the left panel of Figure 3, we observe that ResCP, PCP,
and DCP fail to reach the nominal level of conditional cov-
erage for most datasets. In contrast, all variants of RCP
significantly improve coverage across all datasets. Similarly,
Figure 4 shows that RCP often achieves better conditional
coverage than SLCP, particularly on larger datasets. Fig-
ure 5 in Appendix A.1 confirms these findings with the
conditional coverage error. Finally, as expected, all methods
achieve marginal coverage.

In the right panel of Figure 3, we observe that RCP improves
the median prediction set volume compared to non-RCP
variants in addition of improving conditional coverage.

Finally, Appendix A.6 compares average and median vol-
umes of prediction sets produced by direct conformal meth-
ods and their RCP counterparts. Direct methods obtain a
smaller average volume while RCP obtains a smaller median

8
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Figure 3: Worst-slab coverage and volume for three conformal methods and their RCP counterparts, on datasets sorted by
total size.
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Figure 4: Worst-slab coverage for RCP and SLCP in combi-
nation with different conformity scores, on datasets sorted
by total size.

volume.

Additional experiments. We complement main results
with multiple experiments aiming at studying variations of
the proposed method and comparing it with some additional
competitors.

Appendix A.2 discusses the estimation of τ̂(x) using either
a neural network or local quantile regression for which we
have bounds the conditional coverage. On most datasets,
the neural network slightly outperforms local quantile re-
gression, which is expected due to its flexibility. Appen-
dices A.3 and A.4 discuss the choice of adjustment function.
For certain adjustment functions, the domain of the scores
v = V (x, y) must be restricted to a subset of R to satisfy
H2. Notably, ft(v) = tv requires v > 0, ft(v) = exp(tv)
requires require v > 1.

Appendix A.5 directly compares the proposed method with

CQR, showing that CQR already obtains a competitive con-
ditional coverage but is outperformed by RCP-DCP in av-
erage volume. Appendix A.7 presents an additional study
comparing RCP with CP and CQR methods, that we adapted
to multidimensional target setting. For these experiments,
the model predicts parameters of a multivariate normal dis-
tribution and we use the score based on the corresponding
Mahalanobis distance. We demonstrate that RCP improves
conditional coverage over classic CP and also benefits from
the custom score to outperform CQR.

Appendix A.8 considers an approach to improve data effi-
ciency. Instead of dividing the calibration dataset D into
two parts to estimate τ̂ , we compute out-of-sample con-
formity scores on the training dataset Dtrain using K-fold
cross-validation. This results in improved conditional cover-
age at the cost of training K additional models.

Appendix A.9 provides an additional comparison with Con-
ditional Prediction with Conditional Guarantees (CPCG;
Gibbs et al. (2025)). CPCG obtains a competitive condi-
tional coverage but is 200-100000 times slower than RCP
overall, limiting its applicability.

8. Conclusion
We present a new approach to improve the conditional
coverage of the conformal prediction set while preserving
marginal convergence. Our method constructs prediction
sets by adjusting the conformity scores using an appropri-
ately defined conditional quantile, allowing RCP to automat-
ically adapt the prediction sets against heteroscedasticity.
Our theoretical analysis supports that this approach produces
approximately conditionally valid prediction sets; further-
more, the theory provides lower bounds on the conditional
coverage, which explicitly depends on the distribution of
the conditional quantile estimator τ̂(x).
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regression. Journal of Statistical Planning and Inference,
143(7):1109–1129, 2013.

Takeuchi, I., Le, Q. V., Sears, T. D., Smola, A. J., and
Williams, C. Nonparametric quantile estimation. Journal
of machine learning research, 7(7), 2006.

Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., and
Vlahavas, I. Mulan: A java library for multi-label learn-
ing. The Journal of Machine Learning Research, 12:
2411–2414, 2011.

Vovk, V. Conditional validity of inductive conformal pre-
dictors. In Asian conference on machine learning, pp.
475–490. PMLR, 2012.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world, volume 29. Springer, 2005.

Vovk, V., Nouretdinov, I., and Gammerman, A. On-line
predictive linear regression. The Annals of Statistics, pp.
1566–1590, 2009.

Wang, Z., Gao, R., Yin, M., Zhou, M., and Blei, D. Prob-
abilistic conformal prediction using conditional random
samples. In International Conference on Artificial Intelli-
gence and Statistics, pp. 8814–8836. PMLR, 2023.

Xie, R., Barber, R. F., and Candès, E. J. Boosted conformal
prediction intervals. In Neural Information Processing
Systems, 2024.

12



Rectifying Conformity Scores for Better Conditional Coverage

A. Additional Experiments
A.1. Additional results on marginal coverage and conditional coverage error

Figure 5 extends the results of Figure 3 by displaying additionally the marginal coverage and conditional coverage error.
As expected, all methods obtain a correct marginal coverage. Furthermore, the methods with the best worst slab coverage
(closest to 1− α) also obtain a small conditional coverage error, supporting our conclusions in Section 7.
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Figure 5: Marginal coverage and conditional coverage error for three conformal methods and their RCP counterparts, on
datasets sorted by total size.

A.2. Estimation of conditional quantile function

Figure 6 compares two ways of estimating τ̂ (see Section 4). RCPMLP corresponds to quantile regression based on a neural
network as in Section 7, while RCPlocal corresponds to local quantile regression. On many datasets, the more flexible
RCPMLP is able to obtain better conditional coverage. However, local quantile regression has theoretical guarantees on its
conditional coverage (see Section 6).
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Figure 6: Marginal coverage and conditional coverage error for two types of quantile estimators in combination with
different conformal methods, on datasets sorted by total size.
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A.3. Choice of adjustment function

Figure 7 compares RCP with difference (−) and linear (∗) adjustments when combined with the DCP method. Since RCP
with any adjustment function adheres to the SCP framework, marginal coverage is guaranteed, as shown in Panel 1.

The conformity score for DCP is defined as V (x, y) = − log p̂(y | x), which can take negative values, implying that T = R.
However, the linear adjustment requires T ⊆ R∗

+, violating H1 and resulting in a failure to approximate conditional coverage
accurately. This issue is evident in Panel 2. In contrast, the difference adjustment does not impose such a restriction.

Panel 3 compares PCP and ResCP when used with difference and linear adjustments. Since the conformity scores for these
methods are always positive, i.e., T = R∗

+, both adjustment methods satisfy H1. In general, we observe no significant
differences between the two adjustment methods.
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Figure 7: Marginal coverage and conditional coverage error obtained for two types of adjustments.

A.4. Additional adjustment functions

We consider two additional adjustments functions, namely ft(v) = exp (t+ v), denoted exp−, and ft(v) = exp (tv),
denoted exp ∗. To apply these custom adjustment functions we need to ensure that the conditions H1 and H2 are satisfied.
For the first function we have: f̃−1

φ (v) = (ln v) − φ ∈ T and φ = 0. Then f̃−1
φ (v) > 0 ⇒ ln v > 0 ⇒ v > 1. For

the second function we can take φ = 1 and by similar argument we arrive at the same requirement v > 1. In practice,
conformity scores are usually non-negative as is the case with PCP and residual scores that we consider here, and we can
always add a constant 1 to satisfy this requirement.

Figures 8 and 9 show the marginal coverage and conditional coverage error obtained with these adjustment functions.
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Figure 8: Marginal coverage and conditional coverage error for two additional types of adjustments combined with the
method PCP.
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Figure 9: Marginal coverage and conditional coverage error for two additional types of adjustments combined with the
method ResCP.

A.5. Direct comparison with CQR

Here we present a direct comparison of RCP with Conformalized Quantile Regression (CQR; Romano et al. (2019)). We use
the same underlying neural network architectures for the models as in our main experiment. Similarly to ResCP, to handle
multi-dimensional outputs, we follow (Diquigiovanni et al., 2024) and define the conformity score of CQR as the l∞ norm
of the CQR conformity scores across dimensions. Specifically, we compare CQR to DCP and its RCP-DCP counterpart,
which achieves the best median volume overall.

Figure 10 shows that CQR matches the conditional coverage of RCP-DCP. However, it produces larger median prediction
sets due to less flexible shapes.
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Figure 10: Worst slab coverage and (logarithm) median prediction set volume (scaled by d).
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A.6. Comparison of prediction set volumes

Table 2 shows the average volume obtained by the methods compared in Section 7. Non-RCP methods obtain a smaller
average volume across all datasets. The larger average volume of RCP is explained by the larger regions produced for
instances with larger uncertainty.

Table 2: Mean prediction set volume per dataset.

dataset PCP RCP-PCP DCP RCP-DCP ResCP RCP-ResCP

households 88.3 1.33e+02 47.4 1.02e+02 1.81e+02 4.51e+02
scm20d 4.26e+05 7.92e+06 1.11e+06 3.95e+07 5.22e+05 7.15e+12
rf1 0.0274 0.190 0.000562 4.35e+04 0.0276 7.94e+08
scm1d 1.92e+04 1.30e+08 2.30e+04 1.67e+08 6.27e+04 2.04e+15
meps 21 1.65 10.0 0.746 6.07 5.35 8.32e+12
meps 19 90.0 3.27e+04 3.64 3.27e+04 5.56 3.56e+22
meps 20 1.68 5.50 0.761 6.20 5.38 6.27e+13
house 0.676 0.936 0.519 0.751 2.92 3.88
bio 0.579 1.12 0.414 0.645 1.05 1.16
blog data 0.459 8.45e+02 0.143 6.37e+02 1.26 6.79e+21
calcofi 3.47 4.12 2.45 3.06 4.53 4.47
taxi 9.21 9.63 5.69 6.40 12.4 12.8

In contrast, Table 3 shows that RCP obtains smaller regions across most datasets when comparing the median volume,
avoiding outliers.

Table 3: Median prediction set volume per dataset.

dataset PCP RCP-PCP DCP RCP-DCP ResCP RCP-ResCP

households 67.4 56.5 39.2 32.1 1.81e+02 1.67e+02
scm20d 3.11e+04 1.42e+04 7.03e+05 7.74e+04 5.22e+05 2.00e+05
rf1 0.0110 0.00525 0.000583 33.1 0.0276 0.0231
scm1d 1.16e+02 2.05 1.01e+04 25.7 6.27e+04 1.70e+03
meps 21 1.04 0.704 0.433 0.227 5.35 2.42
meps 19 3.85 0.754 2.10 0.303 5.56 2.54
meps 20 1.05 0.616 0.416 0.254 5.38 2.51
house 0.596 0.519 0.471 0.386 2.92 2.67
bio 0.507 0.435 0.374 0.344 1.05 0.829
blog data 0.229 0.209 0.0869 0.0597 1.26 1.16
calcofi 3.83 3.98 2.85 2.77 4.53 4.75
taxi 8.67 8.25 5.22 5.27 12.4 10.1
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A.7. Case of ellipsoidal prediction sets

In this section, we will investigate how all parts of our proposed RCP method contribute to the performance. Additionally,
we demonstrate the wider applicability of our approach: in this section, we use a different score and ellipsoid prediction sets.
To achieve this, we modify our base models to predict parameters of the multivariate normal distribution. As a baseline
method, we have selected CQR because of its popularity and ease of use.

Figure 11 demonstrates improvements of RCP over simpler methods, with CQR serving as a strong contemporary alternative.
Each of these simpler methods employs a consecutively more complex model and/or calibration procedure. The first part of
the name corresponds to the base prediction model, and the second part after the dash denotes the calibration procedure:

• Const: the base model for these methods is a constant prediction of multivariate normal distribution parameters
estimated on the train set.

• MLP: the base model is a multidimensional perceptron that predicts the parameters of multivariate normal distribution.

• CP: classic conformal prediction using full calibration set. We estimate a fixed prediction ellipsoid size using
Mahalanobis distance-based nonconformity score.

• RCP: our usual RCP procedure where we split the calibration set and fit a quantile regression model to predict the
(1− α) quantile of the Mahalanobis score. Similarly to the other experiments, quantile regression is fit using MLP
underlying model.

The alternative method CQR is based on quantile regression estimates for each dimension of the output variable. First,
(univariate) conformalized quantile regression scores (Romano et al., 2019) are computed for each dimension. Then, they
are aggregated by taking the maximum score over each dimension, similarly to ResCP in the main text. The resulting
prediction set in this case is a hyperrectangle. Its size is adaptive to the input, but the conformal correction is isotropic and
constant for all input points.
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Figure 11: Worst slab coverage and logarithm of prediction set volume (divided by number of dimensions of the response).

The graphs on Figure 11 provide some important insights:

• Methods based on classic conformal prediction (Const-CP, MLP-CP) often struggle to maintain conditional coverage.

• RCP improves conditional coverage: Const-RCP outperforms Const-CP in conditional coverage and set size.

• RCP in combination with a better predictive model either maintains or improves conditional coverage and volume.

17



Rectifying Conformity Scores for Better Conditional Coverage

A.8. Improved data efficiency using cross-validation

As explained in Section 7, RCP requires to divide the calibration dataset D into two parts, one to estimate τ̂ , and one for
SCP.

In this section, we consider a more data-efficient approach using the training dataset Dtrain. Using K-fold cross-validation
on Dtrain, for each fold index k, we train a model on the K − 1 remaining folds and evaluate the conformity score on the fold
k. This yields a dataset Dτ of size |Dtrain| with inputs and their associated conformity scores based on which τ̂ is estimated.
This also removes the need to split the calibration dataset. An additional model is fitted on the complete training data set
Dtrain to produce the non-rectified conformity scores.

Figure 12 shows a comparison of learning τ̂ on half the calibration dataset (cal), or using 10-fold cross-validation (CV).
The cross-validation approach yields improved worst-slab coverage on most datasets. This improved conditional coverage
comes at the computational cost of training K additional models.
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Figure 12: Worst-slab coverage of RCP with τ̂ trained on half the calibration dataset (cal) or using 10-fold cross-validation
(CV).
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A.9. Comparison with CPCG

We conduct an additional experiment comparing RCP with Conditional Prediction with Conditional Guarantees (CPCG;
Gibbs et al. (2025)). We evaluate RCP using both the full calibration dataset (RCPcal) and cross-validation (RCPCV), as
described in Appendix A.8. All methods are run on CPU (AMD Ryzen Threadripper PRO 5965WX) with 6 CPU threads
per experiment.

Table 4 shows that all methods achieve comparable worst-slab coverage, close to the nominal level. However, Table 5
reveals a stark contrast in computational efficiency: CPCG is 200-100,000 times slower than RCPcal and 10-100 times
slower than RCPCV overall. This significant overhead is because CPCG must solve an optimization problem involving
the entire calibration set for each test instance. Consequently, CPCG’s computational demands become prohibitive for
large calibration and test sets, hindering its practical application. Moreover, CPCG failed to find a solution on the “house”
and “calcofi” datasets, precluding results for these cases. These factors highlight RCP’s substantial practical advantage in
efficiency, especially for large-scale datasets.

Table 4: Comparison of worst-slab coverage on multi-output datasets.

PCP RCPcal-PCP RCPCV-PCP CPCG-PCP DCP RCPcal-DCP RCPCV-DCP CPCG-DCP

households 0.825 0.905 0.899 0.888 0.853 0.891 0.900 0.900
scm20d 0.830 0.892 0.891 0.897 0.877 0.877 0.868 0.899
rf1 0.731 0.830 0.877 0.838 0.715 0.863 0.827 0.872
scm1d 0.758 0.882 0.895 0.910 0.756 0.902 0.896 0.882
meps 21 0.739 0.874 0.904 0.881 0.789 0.881 0.879 0.905
meps 19 0.762 0.875 0.867 0.880 0.788 0.884 0.889 0.878
meps 20 0.731 0.842 0.871 0.890 0.719 0.880 0.884 0.892
house 0.835 0.895 0.903 / 0.817 0.878 0.906 /
bio 0.784 0.860 0.900 0.887 0.774 0.879 0.880 0.880
blog data 0.770 0.877 0.893 0.886 0.749 0.844 0.888 0.888
calcofi 0.810 0.889 0.888 / 0.828 0.885 0.892 /
taxi 0.837 0.885 0.884 0.881 0.846 0.872 0.879 0.879

Table 5: Comparison of computational time (in seconds) on multi-output datasets.

PCP RCPcal-PCP RCPCV-PCP CPCG-PCP DCP RCPcal-DCP RCPCV-DCP CPCG-DCP

households 0.258 0.604 104 8840 0.00759 0.531 104 8164
scm20d 2.63 4.22 772 6409 0.0182 0.852 766 6012
rf1 0.667 1.35 340 10682 0.00836 0.348 339 9674
scm1d 2.27 3.57 1209 4971 0.0133 0.867 1205 4692
meps 21 0.236 0.607 581 6283 0.0123 0.261 581 6031
meps 19 0.272 0.515 493 6411 0.0123 0.184 492 6128
meps 20 0.255 0.520 621 7147 0.0119 0.238 621 7032
house 0.315 0.594 1034 / 0.0159 0.327 1033 /
bio 0.630 1.22 3161 79422 0.0279 0.782 3163 63178
blog data 0.752 0.850 1119 41192 0.0336 0.155 1121 43289
calcofi 0.699 1.02 456 / 0.0356 0.200 455 /
taxi 0.680 1.17 866 77828 0.0269 0.276 866 70139
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B. Proofs
B.1. Proof for the first example

We provide here a completely elementary proof. The result actually follows from Theorem 4. In this example, we set
τ⋆(x) = Q1−α(PV|X=x), where V = V (X,Y ). We assume that for all x ∈ X , τ⋆(x) > 0. We denote Ṽ (x, y) =

V (x, y)/τ⋆(x) and Ṽ = Ṽ (X,Y ).

Q1−α(PṼ) = inf{t ∈ R : P(V (X,Y ) ≤ tτ⋆(X)) ≥ 1− α}.

We will first prove that, for all x ∈ X , we get that 1 = Q1−α(PV|X=x), for all x ∈ X :

Q1−α(PV|X=x) = inf{t ∈ R : P(V (X,Y ) ≤ tτ⋆(X)|X = x) ≥ 1− α}
= inf{t ∈ R : PV|X=x((−∞, tQ1−α(PV|X=x)]) ≥ 1− α} = 1.

We then show that Q1−α(PṼ) ≤ 1. Indeed, for any s > 1, by the tower property of conditional expectation, we get:

P(V (X,Y ) ≤ sτ⋆(X)) = P(V ≤ sQ1−α(PV|X))

= E[P(V ≤ sQ1−α(PV|X)|X)] ≥ 1− α.

Assume now that Q1−α(PṼ) < 1. Then for any s ∈ (Q1−α(PṼ), 1), using again the tower property of conditional
expectation, we get

1− α ≤ P(V (X,Y ) ≤ sτ⋆(X)) = E[P(V ≤ sQ1−α(PV|X)|X)] (18)
= E[PV|X((−∞, sQ1−α(PV|X)))] < 1− α (19)

by the definition of the conditional quantile. This yields a contradiction. Therefore, for PX -a.e. x ∈ X ,

Q1−α(PṼ) = Q1−α(PṼ|X=x).

B.2. Proof for the second example

We set in this case Ṽ (x, y) = V (x, y) − τ⋆(x), where τ⋆(x) = Q1−α(PV|X=x) and Ṽ = Ṽ (X,Y ). We will show that
Q1−α(PṼ|X=x) = 0 for all x ∈ X . We have indeed:

Q1−α(PṼ|X=x) = inf{t ∈ R : P(Ṽ (X,Y ) ≤ t|X = x) ≥ 1− α} (20)

= inf{t ∈ R : P(V (X,Y ) ≤ τ⋆(X) + t|X = x) ≥ 1− α} = 0. (21)

We will now show that Q1−α(PṼ) ≤ 0. Indeed, for all s > 0, by the tower property of conditional expectation and the
definition of the conditional quantile, we get

P(Ṽ (X,Y ) ≤ s) = E[P(V (X,Y ) ≤ τ⋆(X) + s|X)] ≥ 1− α. (22)

On the other hand, assume Q1−α(PṼ) < 0. Set s ∈ (Q1−α(PṼ, 0). We get

1− α ≤ P(Ṽ (X,Y ) ≤ s) = P(V (X,Y ) ≤ s+ τ⋆(X)) (23)
= E[P(V (X,Y ) ≤ s+ τ(X)|X)] < 1− α, (24)

which leads to a contradiction.

We first show that Q1−α(PṼ ) ≤ 0. Indeed, by the tower property of conditional expectation, using again the definition of
the conditional quantile, we get

P(Ṽ (X,Y ) ≤ 0) = E[P(V (X,Y ) ≤ τ(X)|X)] < 1− α, (25)

which leads to a contradiction and concludes the proof.
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B.3. Proof of Theorem 1

We will now proceed with the proof of Theorem 1, which verifies the marginal validity of our proposed approach. First, recall
that V : X×Y → R is a conformity score function to which we apply a measurable transformation (t, x) ∈ T×X → f−1

t (x).
Recall that RCP constructs the following prediction sets for x ∈ X

Cα(x) =
{
y ∈ Y : f−1

τ(x) ◦ V (x, y) ≤ Q(1−α)(1+n−1)

(
1

n

∑n

k=1
δf−1

τ(Xk)
◦V (Xk,Yk)

)}
.

For any k ∈ {1, . . . , n+ 1}, denote Ṽk = f−1
τ(Xk)

◦ V (Xk, Yk).

Theorem 3. Assume H1-H2 hold, and let α ∈ [{n+ 1}−1, 1). If Ṽ1, . . . , Ṽn+1 are almost surely distinct, then it yields

1− α ≤ P (Yn+1 ∈ Cα(Xn+1)) < 1− α+
1

n+ 1
. (26)

Proof. By definition, we have

P (Yn+1 ∈ Cα(Xn+1)) = P
(
f−1
τ(Xn+1)

◦ V (Xn+1, Yn+1) ≤ Q(1−α)(1+n−1)(
1
n

∑n
k=1 δṼk

)
)

(27)

= P
(
Ṽn+1 ≤ Q(1−α)(1+n−1)(

1
n

∑n
k=1 δṼk

)
)
. (28)

Denote by FṼ the cumulative density function of f−1
τ(Xn+1)

◦ V (Xn+1, Yn+1) and consider {U1, . . . , Un+1} a family of
mutually independent uniform random variables. Given α ∈ [{n+ 1}−1, 1), define

kα =
⌈
n(1 + n−1)(1− α)

⌉
.

Since by assumption α ≥ {n+ 1}−1, we have kα ∈ {1, . . . , n}. Additionally, remark that Ṽk has the same distribution that
F−1

Ṽ
(Uk). Therefore, by independence of the data, we can write

P
(
Ṽn+1 ≤ Q(1−α)(1+n−1)(

1
n

∑n
k=1 δṼk

)
)
= P

(
F−1

Ṽ
(Un+1) ≤ F−1

Ṽ
(U(kα))

)
,

where U(1), . . . , U(n) denotes the order statistics. Additionally, since the scores Ṽ1, . . . , Ṽn+1 are almost surely distinct, we
deduce that

P
(
F−1

Ṽ
(Un+1) ≤ F−1

Ṽ
(U(kα))

)
= P

(
Un+1 ≤ U(kα)

)
= E

[
U(kα)

]
.

Since U(kα) follows a beta distribution with parameters (kα, n+ 1− kα), we obtain that E
[
U(kα)

]
= (n+ 1)−1kα.

B.4. Proof of equality (9)

Theorem 4. Assume H1-H2 hold. For x ∈ X , set τ⋆(x) = Q1−α(PVφ|X=x), where Vφ(x, y) = f̃−1
φ ◦ V (x, y). Set

Ṽφ(x, y) = f−1
τ⋆(x)

◦ V (x, y) and Ṽφ = Ṽφ(X,Y ). Then, for all x ∈ X ,

φ = Q1−α(PṼφ|X=x) = Q1−α(PṼφ
).

Proof. Set ψ(x) = Q1−α(PṼφ|X=x). We must prove that ψ(x) = ϕ for all x ∈ X . First, we will show ψ(x) ≤ φ. Note
indeed

P(Ṽφ(X,Y ) ≤ φ|X = x) = P(V (X,Y ) ≤ fτ⋆(X)(φ)|X = x)
(a)
= P(V (X,Y ) ≤ f̃φ(τ⋆(X))|X = x) (29)

(b)
= P(f̃−1

φ ◦ V (X,Y ) ≤ τ⋆(X)|X = x)
(c)

≥ 1− α, (30)

where (a) follows from ft(φ) = f̃φ(t), (b) from the fact that f̃φ is invertible, and (c) from the definition of τ⋆(x).
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Now, suppose that ψ(x) < φ. Since for any t, ft is increasing, we get that fτ(x)(ψ(x)) < fτ(x)(φ). Moreover, using that
τ(x) belongs to the interior of T, combined with the continuity of t ∈ T 7→ f̃φ(t); it implies the existence of t̃ ∈ T such
that t̃ < τ(x) and also fτ(x)(ψ(x)) < ft̃(φ). We can rewrite

1− α ≤ P
(
V (X,Y ) ≤ fτ⋆(X)(ψ(X)) | X = x

)
≤ P (V (X,Y ) ≤ ft̃(φ) | X = x)

= P
(
f̃−1
φ ◦ V (X,Y ) ≤ t̃ | X = x

)
< 1− α.

which yields to a contradiction.

We now show that Q1−α(PṼφ
) = φ. We first show that Q1−α(PṼφ

) = φ. We first show that Q1−α(PṼφ
) ≤ φ. This

follows from

P(Ṽφ(X,Y ) ≤ φ) (a)
= E[P(Ṽφ(X,Y ) ≤ φ|X)]

(b)

≥ 1− α,

where (a) follows from the tower property of conditional expectation and (b) from ϕ = Q1−α(PṼφ|X=x) for all x ∈ X .

Assume now that Q1−α(PṼφ
) < φ. Choose s ∈ (Q1−α(PṼφ

), φ). Then,

1− α ≤ P(Ṽφ(X,Y ) ≤ s) (a)
= E[P(Ṽφ(X,Y ) ≤ s|X)]

(b)
< 1− α,

where (a) follows from the tower property of conditional expectation and (b) s < ϕ = Q1−α(PṼφ|X=x) for all x ∈ X . This
yields to a contradiction which conclides the proof.

B.5. Proof of Theorem 2

This section is devoted to the proof of the conditional guarantee given in Section 6. In this section, we denote Ṽ (x, y) =
f−1
τ̂(x)(V (x, y)) and for each t ∈ R, we denote

FṼ|X=x(t) = P(Ṽ (X,Y ) ≤ t |X = x) and FṼ(t) = P(Ṽ (X,Y ) ≤ t).

For any x ∈ X , we assess the quality of the quantile estimate τ(x) via

ϵτ (x) = P
(
f̃−1
φ (V (x, Y )) ≤ τ̂(x) |X = x

)
− 1 + α.

For all n ∈ N, note that α(1 − α)n+1 ≤ e
n+2 . If α ≥ 0.1 and n ≥ 100, then α(1 − α)n+1 ≤ 1

4183n . In addition, if
FṼ (φ) ≤ 1− α, then αLFṼ (φ) ≤ L

4183n .

Theorem 5. Assume that H1-H2 hold. Assume in addition that, for any x ∈ X , FṼ is continuous and FṼ |X=x ◦ F−1

Ṽ
is

L-Lipschitz. Then for α ∈ [{n+ 1}−1, 1) it holds

1− α+ ϵτ (x)− αL× [FṼ (φ)]
n+1 ≤ P (Yn+1 ∈ Cα(Xn+1) |Xn+1 = x)

≤ 1− α+ ϵτ (x) + L(1− α+ (n+ 1)−1)× [1− FṼ (φ)]
n+1.

Proof. Let t ∈ R be fixed. A first calculation shows that

P
(
f−1
τ(X)(V (X,Y )) ≤ t

)
=

∫
P
(
f−1
τ(x)(V (x, Y )) ≤ t |X = x

)
PX(dx)

=

∫
P
(
f̃−1
t (V (x, Y )) ≤ τ(x) |X = x

)
PX(dx).

Now, we introduce the notation ∆t(x), which quantifies the discrepancy between substituting φ with t:

∆t(x) = P
(
f̃−1
t (V (x, Y )) ≤ τ(x) |X = x

)
− P

(
f̃−1
φ (V (x, Y )) ≤ τ(x) |X = x

)
.
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Let’s PQ denote the distribution of the empirical quantile Q(1−α)(1+n−1)(
1
n

∑n
k=1 δṼk

). We can rewrite the conditional
coverage as follows

P (Y ∈ Cα(X) |X = x) =

∫
P
(
f−1
τ(x)(V (x, Y )) ≤ t |X = x

)
PQ(dt)

=

∫
P
(
f̃−1
t (V (x, Y )) ≤ τ(x) |X = x

)
PQ(dt)

= P
(
f̃−1
φ (V (x, Y )) ≤ τ(x) |X = x

)
+

∫
∆t(x)PQ(dt)

= 1− α+ ϵτ (x) +

∫
∆t(x)PQ(dt).

Moreover, consider a set of n i.i.d. uniform random variables {Uk}1≤k≤n, and let U(1) ≤ . . . ≤ U(n) denote their order
statistics. Since Ṽ1, . . . , Ṽn are i.i.d., their joint distribution is the same as (F−1

Ṽ
(U1), . . . , F

−1

Ṽ
(Un)). Therefore, PQ is also

the distribution of the (1 + n−1)(1− α)-quantile of 1
n

∑n
k=1 δF−1

Ṽ
(Uk)

. Thus, there exists an integer kα ∈ {1, . . . , n} such
that

F−1

Ṽ
(U(kα)) = Q(1−α)(1+n−1)

(
1

n

∑n

k=1
δF−1

Ṽ
(Uk)

)
.

Moreover, using that {Ṽk : k ∈ [n]} are almost surely distinct, we deduce the existence of the minimal integer kα ∈ [n] such
that

1

n

∑n

k=1
1U(k)≤U(kα)

≥
(
1 +

1

n

)
(1− α).

Since
∑n

k=1 1U(k)≤U(kα)
= kα almost surely, we deduce that kα = ⌈(n+ 1)(1− α)⌉. We also get that F−1

Ṽ
(U(kα)) ∼ PQ.

In the following, we provide a lower bound on ∆t(x). Since FṼ |X=x is increasing, we can write∫
∆t(x)PQ(dt) = E

[
FṼ |X=x ◦ F−1

Ṽ
(U(kα))− FṼ |X=x(φ)

]
. (31)

Lower bound. First, using (31) implies that∫
∆t(x)PQ(dt) ≥ −E

[
1φ≥F−1

Ṽ
(U(kα))

×
{
FṼ |X=x(φ)− FṼ |X=x ◦ F−1

Ṽ
(U(kα))

}
+

]
.

Moreover, by definition of the cumulative density function and its inverse, we have FṼ |X=x ◦ F−1

Ṽ
◦ FṼ (φ) ≤ FṼ |X=x(φ).

Thus, it follows that

E
[
1φ≥F−1

Ṽ
(U(kα))

×
{
FṼ |X=x(φ)− FṼ |X=x ◦ F−1

Ṽ
(U(kα))

}
+

]
≤ FṼ |X=x(φ)− FṼ |X=x ◦ F−1

Ṽ
◦ FṼ (φ)

+ E
[
1φ≥F−1

Ṽ
(U(kα))

×
{
FṼ |X=x ◦ F−1

Ṽ
◦ FṼ (φ)− FṼ |X=x ◦ F−1

Ṽ
(U(kα))

}
+

]
. (32)

If FṼ (φ) = 1, then FṼ |X=x(φ) = 1 PX -almost everywhere. Let’s now suppose that FṼ (φ) < 1 and let’s define
φ⋆ = sup{t ∈ R : FṼ (t) = FṼ (φ)}. For any ϵ > 0, note that FṼ (φ⋆ + ϵ) > FṼ (φ⋆). This leads to

F−1

Ṽ
◦ FṼ (φ⋆ + ϵ) = inf {t ∈ R : FṼ (t) ≥ FṼ (φ⋆ + ϵ)} > φ⋆.

Furthermore, using the L-Lipschitz assumption on FṼ |X=x ◦ F−1

Ṽ
implies that

0 ≤ FṼ |X=x(φ)− FṼ |X=x ◦ F−1

Ṽ
◦ FṼ (φ)

≤ lim inf
ϵ→0+

{
FṼ |X=x ◦ F−1

Ṽ
◦ FṼ (φ⋆ + ϵ)− FṼ |X=x ◦ F−1

Ṽ
◦ FṼ (φ)

}
≤ L lim inf

ϵ→0+
{FṼ (φ⋆ + ϵ)− FṼ (φ)} . (33)
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From the continuity of F , we deduce that FṼ (φ) = FṼ (φ⋆). Therefore, we can conclude that lim infϵ→0+{FṼ (φ⋆ + ϵ)−
FṼ (φ)} = 0. This computation combined with (33) shows that FṼ |X=x(φ) = FṼ |X=x ◦ F−1

Ṽ
◦ FṼ (φ). Lastly, it just

remains to upper bound the last term of (32). Once again, using that FṼ |X=x ◦ F−1

Ṽ
is Lipschitz gives

E
[
1φ≥F−1

Ṽ
(U(kα))

×
{
FṼ |X=x ◦ F−1

Ṽ
◦ FṼ (φ)− FṼ |X=x ◦ F−1

Ṽ
(U(kα))

}
+

]
≤ LE

[{
FṼ (φ)− U(kα)

}
+

]
.

Finally, applying Lemma 1 with β = FṼ (φ) and k = kα yields the lower bound.

Upper bound. From (31), we deduce that∫
∆t(x)PQ(dt) ≤ E

[
1φ≤F−1

Ṽ
(U(kα))

×
{
FṼ |X=x ◦ F−1

Ṽ
(U(kα))− FṼ |X=x(φ)

}
+

]
. (34)

By definition of F−1

Ṽ
, we get φ ≥ F−1

Ṽ
◦ FṼ (φ). Since FṼ |X=x is increasing and FṼ |X=x ◦ F−1

Ṽ
is L-Lipschitz, it follows

that ∫
∆t(x)PQ(dt) ≤ E

[
1φ≤F−1

Ṽ
(U(kα))

×
{
FṼ |X=x ◦ F−1

Ṽ
(U(kα))− FṼ |X=x(φ)

}
+

]
≤ LE

[{
U(kα) − FṼ (φ)

}
+

]
= LE

[{
1− FṼ (φ)− (1− U(kα))

}
+

]
.

Since the distribution of 1− U(kα) is the same that the distribution of U(n+1−kα), applying Lemma 1 with β = 1− FṼ (φ)
and k = n+ 1− kα yields the upper bound.

Let’s denote by U(k) the kth order statistic of the i.i.d. uniform random variables U1, . . . , Un.

Lemma 1. For any β ∈ [0, 1] and k ∈ [n], it holds that

E
[(
β − U(k)

)
+

]
= βn+1

(
1− k

n+ 1

)
.

Proof. Let β ∈ [0, 1] be fixed. For any (i, j) ∈ N2, define

I(i, j) =

∫ β

0

ui(1− u)jdu.

By applying integration by parts for j ≥ 1, we obtain

I(i, j)

i!j!
=

I(i+ 1, j − 1)

(i+ 1)!(j − 1)!
= · · · = I(i+ j, 0)

(i+ j)!
=

βi+j+1

(i+ j + 1)!
.

Since U(k) follows a beta distribution with parameters (k, n+ 1− k), it follows that

E
[(
β − U(k)

)
+

]
=

∫ β

0

n!(β − u)
(k − 1)!(n− k)!u

k−1(1− u)n−kdu. (35)

Furthermore, we have the following derivations:∫ β

0

(β − u)uk−1(1− u)n−kdu

= β

∫ β

0

uk−1(1− u)n−kdu−
∫ β

0

(β − u)uk(1− u)n−kdu

= βI(k − 1, n− k)− I(k, n− k). (36)
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Lastly, combining (35) with (36) yields the next result

E
[(
β − U(k)

)
+

]
= β

n!I(k − 1, n− k)
(k − 1)!(n− k)! −

n!I(k, n− k)
(k − 1)!(n− k)! = βn+1 − βn+1k

n+ 1
.

For any β ∈ [0, 1], observe that

(1− β)βn+1 ≤ exp
(
(n+ 1) log(1− (n+ 2)−1)

)
n+ 2

.

Noting that log(1− (n+ 2)−1) =
∑

k≥1 k
−1(n+ 2)−k, we can show that:

(n+ 1) log

(
1− 1

n+ 2

)
= 1− 1

n+ 2
+

n+ 1

(n+ 2)2

∑
k≥0

(n+ 2)−k

k + 2
≤ 1.

Consequently, this implies that (1− β)βn+1 ≤ (n+ 2)−1e.

B.6. Pointwise control of ϵτ

In this section, we control the quality of the (1− α)-conditional quantile estimator τ(x). To do this, recall that Vφ(x, y) =
f̃−1
φ ◦ V (x, y) and consider the following error

ϵτ (x) = P (Vφ(x, Y ) ≤ τ(x) |X = x)− 1 + α.

Moreover, in this section we denote by q1−α(x) the conditional (1− α)-quantile of Vφ(x, Y ) given X = x.

Theorem 6. For x ∈ X , assume that Vφ(x, Y ) has a 1-st moment. If for any t ∈ R, P(Vφ(x, Y ) = t |X = x) = 0, then

|ϵτ (x)| ≤
√
2 {Lx(τ(x))− Lx(q1−α(x))}.

Proof. Let x ∈ X be fixed. By definition of ϵτ , we can write

E
[
ϵτ (X)2

]
= E

[
(P (Vφ(x, Y ) ≤ τ(x) |X = x)− 1 + α)

2
]
.

Moreover, for any t ∈ R \ {0}, it holds that

ρ′1−α(t) = 1t≤0 − 1 + α.

By extension, consider ρ′1−α(0) = 1. Hence, we get

ϵτ (x) = P (Vφ(x, Y ) ≤ τ(x) |X = x)− 1 + α

= E
[
1Vφ(x,Y )≤τ(x) |X = x

]
− 1 + α

= E
[
ρ′1−α(Vφ(x, Y )− τ(x)) |X = x

]
.

For t ∈ R, define the loss Lx(t) as follows

Lx(t) = E [ρ1−α(Vφ(x, Y )− t) |X = x] .

Since Lx(t) is convex with Lipshitz continuous gradient, applying Theorem 2.1.5 from (Nesterov, 1998), it follows that

|L′
x(t1)− L′

x(t0)|
2 ≤ 2L×DLx

(t1, t0),

where L denotes the Lipschitz constant of L′
x, and where DLx

is the Bregman divergence associated with Lx. For t0, t1 ∈ R,
the expression of the Bregman divergence is given by

DLx(t1, t0) = Lx(t1)− Lx(t0)− L′
x(t0)(t1 − t0).
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Let t0 = q1−α(x), which represents the true quantile. Given that Vφ(x, Y ) has no probability mass at q1−α(x), we have
L′
x(q1−α(x)) = 0. Moreover, by setting t1 = τ(x), we can observe that

|L′
x(τ(x))|

2 ≤ 2L× (Lx(τ(x))− Lx(q1−α(x))) .

Note that L′
x(τ(x)) = −ϵτ (x), therefore, the previous line shows

|ϵτ (x)| ≤
√

2L× {Lx(τ(x))− Lx(q1−α(x))}.

Finally, since the derivative of the Pinball loss function is 1-Lipschitz, it follows that L ≤ 1.

In the following, we denote for any t ∈ R

FVφ|X=x(t) = P
(
f̃−1
φ ◦ V (X,Y ) ≤ t |X = x

)
.

Moreover, let’s denote by F̂Vφ|X=x an estimator of the cumulative density function FVφ|X=x. For x ∈ X , define

τ(x) = inf
{
t ∈ R : F̂Vφ|X=x(t) ≥ 1− α

}
.

Lemma 2. For x ∈ X , assume that F̂Vφ|X=x is continuous. Then, for any α ∈ (0, 1),

|ϵτ (x)| ≤ ∥FVφ|X=x − F̂Vφ|X=x∥∞.

Proof. Let x be in X . Since F̂Vφ|X=x is supposed continuous, we have F̂Vφ|X=x(τ(x)) = 1− α. Furthermore, using that
ϵτ (x) = FVφ|X=x(τ(x))− α+ 1, we obtain that

|ϵτ (x)| =
∣∣∣FVφ|X=x ◦ F̂−1

Vφ|X=x(1− α)− α+ 1
∣∣∣

=
∣∣∣FVφ|X=x ◦ F̂−1

Vφ|X=x(1− α)− F̂Vφ|X=x ◦ F̂−1
Vφ|X=x(1− α)

∣∣∣
≤ ∥FVφ|X=x − F̂Vφ|X=x∥∞.

B.7. Uniform convergence of cumulative density estimator

For any k ∈ [m], set Ṽφ,k = f̃−1
φ ◦ V (Xk, Yk). In the whole section, we assume that the random variables X1, . . . , Xm

are i.i.d. Therefore, the random variables w̃k(x) = KhX
(∥x − Xk∥) defined for all k ∈ [m] are mutually independent.

Moreover, let’s consider the empirical cumulative function given for x ∈ X and v ∈ R, by

F̂Ṽφ|X(v | x) =
m∑

k=1

wk(x)1Ṽφ,k≤v.

Theorem 7. If H3 holds, then, it holds that

P

(∥∥∥F̂Ṽφ|X(v | x)− FṼφ|X(v | x)
∥∥∥
∞
≥
(√

2∥K1∥∞
hX

+ supt∈R+
{MtK1(t)}

)√
2 logm

mE[w̃k(x)]2
+

2DhX
(x)

Ew̃k(x)

)

≤ 2 + 4E[w̃k(x)]
−1 Var[w̃k(x)]

m
,

where DhX
(x) is defined in (46).
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Proof. Let x ∈ X and v ∈ R be fixed. First, recall that FṼφ|X(v | x) = P(V (X,Y ) ≤ v | X = x). We will now control

F̂Ṽφ|X(v | x)− FṼφ|X(v | x) as below:

F̂Ṽφ|X(v | x)− FṼφ|X(v | x) =
m∑

k=1

wk(x)
{
1Ṽφ,k≤v − FṼφ|X(v | Xk)

}
+

m∑
k=1

wk(x)P
(
Ṽφ(Xk, Yk) ≤ v |Xk

)
− P

(
Ṽφ(X,Y ) ≤ v |X = x

)
. (37)

We now apply several results demonstrated later in this section:

• Applying Lemma 3 shows that

P

(
2

m∑
k=1

w̃k(x) ≤ mE[w̃k(x)]

)
≤ 4Var[w̃k(x)]

mE[w̃k(x)]
.

• Applying Theorem 8, for any γ ∈ (0, 1), with probability at least 1− γ, it holds that

sup
v∈R

{
m∑

k=1

w̃k(x)
{
1Ṽφ,k≤v − FṼφ|X(v | Xk)

}}
<
√
m∥KhX

∥∞ log (1/γ).

• Applying Lemma 7, for any γ ∈ (0, 1), with probability at least 1− γ, it follows that

sup
v∈R

∣∣∣∣∣
m∑

k=1

w̃k(x)
{
FṼφ|X(v | Xk)− FṼφ|X(v | x)

}∣∣∣∣∣ ≤ mDhX
(x) + sup

t∈R+

{MtK1(t)}
√
m log(1/γ)

2
,

where DhX
(x) is defined in (46).

Lastly, set γ = m−1 and remark that ∥KhX
∥∞ = h−1

X ∥K1∥∞. Combining all the above bullet points with (37) implies,
with probability at most 2

m + 4Var[w̃k(x)]
mE[w̃k(x)]

, that

sup
v∈R

∣∣∣∣∣
m∑

k=1

w̃k(x)1Ṽφ,k≤v − FṼφ|X(v | x)
∣∣∣∣∣ ≥

√2∥K1∥∞
hX

+ sup
t∈R+

{MtK1(t)}

√ 2 logm

mE[w̃k(x)]2
+

2DhX
(x)

Ew̃k(x)
.

Corollary 1. If H3 holds, then, it holds that

P

(
|ϵτ (x)| ≥

(√
2∥KhX

∥∞ + sup
t∈R+

{MtK1(t)}
)√ 2 logm

mE[w̃k(x)]2
+

2DhX
(x)

Ew̃k(x)

)
≤ 2 + 4E[w̃k(x)]

−1 Var[w̃k(x)]

m
, (38)

where DhX
(x) is defined in (46), and limhX→0DhX

(x) = 0.

Proof. For x ∈ X , since F̂Ṽφ|X=x is continuous, applying Lemma 2 with Theorem 7 implies that (38) holds. Moreover, a
calculation shows that

lim sup
hX→0

DhX
(x) ≤ ∥FX(·, x)∥∞

∫ ∞

0

td−1K1(t)dt× lim sup
hX→0

{
hd−1
X

}
.

Finally, by H3 we know that ∥FX(·, x)∥∞ < ∞ and
∫
R+
td−1K1(t)dt < ∞. Therefore, it follows that

lim suphX→0DhX
(x) = 0.
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The next result shows that
∑m

k=1 w̃k(x) concentrates around its mean with high probability.

Lemma 3. If E[w̃k(x)
2] <∞, then

P

(
2

m∑
k=1

w̃k(x) ≤ mE[w̃k(x)]

)
≤ 4Var[w̃k(x)]

mE[w̃k(x)]
.

Proof. Since the random variables X1, . . . , Xm are i.i.d., using the Bienaymé-Tchebychev inequality, we obtain

P

(
2

m∑
k=1

w̃k(x) ≤ mE[w̃k(x)]

)
≤ 4Var (

∑m
k=1 w̃k(x))

(
∑m

k=1 Ew̃k(x))
2 =

4Var[w̃k(x)]

mE[w̃k(x)]
.

B.7.1. STEP 1: INTERMEDIATE RESULTS FOR THEOREM 7

For any k ∈ [m] and v ∈ R, let’s recall that w̃k(x) = KhX
(∥x−Xk∥) and let’s define

G(v) =
m∑

k=1

w̃k(x)
{
1Ṽφ,k≤v − P

(
Ṽφ,k ≤ v |Xk

)}
. (39)

Theorem 8. Let x ∈ X and γ ∈ (0, 1). With probability at least 1− γ, the following inequality holds

sup
v∈R

{
m∑

k=1

w̃k(x)
{
1Ṽφ,k≤v − FṼφ|X(v | Xk)

}}
<
√
m∥KhX

∥∞ log (1/γ).

Proof. Let θ > 0, and denote by {ϵk}k∈[m] a sequence of i.i.d. Rademacher random variables. The independence of
{w̃k(x)}k∈[m] implies that

m∏
k=1

E [cosh (θw̃k(x))] =

m∏
k=1

(
2−1E [exp (θw̃k(x))] + 2−1E [exp (−θw̃k(x))]

)
=

m∏
k=1

E [exp (θϵkw̃k(x))] .

For all x ∈ R, note that cosh(x) ≤ exp(x2/2). Thus, we deduce that

E [exp (θϵkw̃k(x))] ≤ exp
(
2−1θ2w̃2

k(x)
)
.

Hence, the previous lines yields that

m∏
k=1

E [cosh (θw̃k(x))] ≤ exp
(
2−1mθ2∥KhX

∥2∞
)
. (40)

Set ∆ > 0, applying Lemma 4 with G defined in (39) gives

P
(
sup
v∈R
{G(v)} ≥ ∆

)
≤ 2 inf

θ>0

{
e−θ∆

m∏
k=1

E [cosh (θw̃k(x))]

}
. (41)

Now, consider the specific choice of θm given by

θm =
∆

m∥KhX
∥∞

.

Combining (40) with the expression of θm, it follows that

inf
θ>0

{
e−θ∆

m∏
k=1

E [cosh (θw̃k(x))]

}
≤ exp

(
− ∆2

m∥KhX
∥∞

)
.
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Therefore, combining (41) with the previous inequality implies that

P
(
sup
v∈R
{G(v)} ≥ ∆

)
≤ exp

(
− ∆2

m∥KhX
∥∞

)
. (42)

For any γ ∈ (0, 1), setting ∆ =
√
m∥KhX

∥∞ log(1/γ) gives

P
(
sup
v∈R
{G(v)} <

√
m∥KhX

∥∞ log(1/γ)

)
≥ 1− γ. (43)

The following statement controls P(supv∈R{G(v)} ≥ ϵ). Its proof is similar to the extension of the Dvoretzky–Kiefer–
Wolfowitz inequality provided in Appendix B of (Plassier et al., 2024).

Lemma 4. For any ∆ > 0, the following inequality holds

P
(
sup
v∈R
{G(v)} ≥ ∆

)
≤ 2 inf

θ>0

{
e−θ∆

m∏
k=1

E [cosh (θw̃k(x))]

}
,

where G is defined in (39).

Proof. First, for any θ > 0, applying Markov’s inequality gives

P
(
sup
v∈R
{G(v)} ≥ ∆

)
≤ e−θ∆E

[
exp

(
θ sup
v∈R
{G(v)}

)]
. (44)

Moreover, Lemma 5 shows that

E
[
exp

(
θ sup
v∈R
{G(v)}

)]
≤ 2

m∏
k=1

E [cosh (θw̃k(x))] .

Plugging the previous inequality into (44), and minimizing the resulting expression with respect to θ yields:

P
(
sup
v∈R
{G(v)} ≥ ∆

)
≤ 2 inf

θ>0

{
e−θ∆

m∏
k=1

E [cosh (θw̃k(x))]

}
.

Lemma 5. Let θ > 0, we have

E
[
exp

(
θ sup
v∈R
{G(v)}

)]
≤ 2

m∏
k=1

E [cosh (θw̃k(x))] .

Proof. Let θ > 0 be fixed, since t 7→ eθt is continuous and increasing, the supremum can be inverted with the exponential:

E
[
exp

(
θ sup
v∈R
{G(v)}

)]
= E

[
sup
v∈R

exp (θG(v))

]
.

For any k ∈ [m], consider Ỹk an independent copy of the random variable Yk, and denote V̄φ,k = Ṽφ(Xk, Ỹk). The linearity
of the expectation gives

m∑
k=1

w̃k(x)
(
1Ṽφ,k≤v − E

[
1Ṽφ,k≤v |Xk

])
= E

[
m∑

k=1

w̃k(x)
(
1Ṽφ,k≤v − 1V̄φ,k≤v

) ∣∣∣ {Xk, Yk}mk=1

]
.
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Therefore, the Jensen’s inequality implies

E
[
exp

(
θ sup
v∈R
{G(v)}

)]
= E

[
sup
v∈R

exp

(
θE

[
m∑

k=1

w̃k(x)
{
1Ṽφ,k≤v − 1V̄φ,k≤v

} ∣∣∣∣ {Xk, Yk}mk=1

])]

≤ E

[
sup
v∈R

exp

(
θ

m∑
k=1

w̃k(x)
{
1Ṽφ,k≤v − 1V̄φ,k≤v

})]
.

Let {ϵk}k∈[m] be i.i.d. random Rademacher variables independent of {(Xk, Yk, Ỹk)}mk=1. Since 1Ṽφ,k≤v − 1V̄φ,k≤v is
symmetric, we have

E

[
sup
v∈R

exp

(
θ

m∑
k=1

w̃k(x)
{
1Ṽφ,k≤v − 1V̄φ,k≤v

})]
= E

[
sup
v∈R

exp

(
θ

m∑
k=1

ϵkw̃k(x)
{
1Ṽφ,k≤v − 1V̄φ,k≤v

})]
.

Using the Cauchy-Schwarz’s inequality, we deduce that

E
[
exp

(
θ sup
v∈R
{G(v)}

)]
≤ E

[
sup
v∈R

exp

(
2θ

m∑
k=1

ϵkw̃k(x)1Ṽφ,k≤v

)]
.

Given the random variables {Ṽφ,k}mk=1, denote by σ the permutation of [m] such that Ṽφ,σ(1) ≤ · · · ≤ Ṽφ,σ(m). In particular,
it holds

m∑
k=1

ϵkw̃k(x)1Ṽφ,k≤v =


0 if v < Ṽφ,σ(1)∑i

j=1 ϵσ(j)w̃σ(j)(x) if Ṽφ,σ(i) ≤ v < Ṽφ,σ(i+1)∑m
j=1 ϵσ(j)w̃σ(j)(x) if v ≥ Ṽφ,σ(m)

.

Thus, can rewrite the supremum as

sup
v∈R

exp

(
2θ

m∑
k=1

ϵkw̃k(x)1Ṽφ,k≤v

)
≤ sup

0≤i≤n
exp

2θ

i∑
j=1

ϵσ(j)w̃σ(j)(x)

 .

Applying Lemma 6, we finally obtain that

E

[
sup
v∈R

exp

(
2θ

m∑
k=1

ϵkw̃k(x)1Ṽφ,k≤v

) ∣∣∣∣ {Xk, Yk}mk=1

]

≤ E

 sup
0≤i≤m

exp

2θ

i∑
j=1

ϵσ(j)w̃σ(j)(x)

 ∣∣∣∣ {Xk, Yk}mk=1

 ≤ 2

m∏
k=1

cosh (θw̃k(x)) .

Lemma 6. Let {ϵi}i∈[n] be i.i.d Rademacher random variables taking values in {−1, 1}, then for any θ > 0 and
{pj}j∈[m] ∈ Rm, we have

E

exp
θ sup

0≤i≤m

i∑
j=1

pjϵj

 ≤ 2

m∏
k=1

cosh (θpk) .

By convention, we consider
∑0

j=1 pjϵj = 0.

B.7.2. STEP 2: INTERMEDIATE RESULTS FOR THEOREM 7

For all x ∈ X and v ∈ R, define the conditional cumulative density function FṼφ|X(v | x) as

FṼφ|X(v | x) = P
(
Ṽφ(X,Y ) ≤ v |X = x

)
.
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Moreover, recall that we denote by fX the density with respect to the Lebesgue measure of the random variable X . Using
the spherical coordinates, we write by x̃t,θ = (t cos θ1, t sin θ1 cos θ2, . . . , t sin θ1 · · · sin θd−1) the coordinate of x̃ ∈ X ,
where ∥x̃∥ = t. Additionally, we define

FX(t, x) =

∫
[0,π]d−2×[0,2π)

fX(x− x̃t,θ)
d−2∏
i=1

sin(θi)
d−1−idθ1 · · · dθd−1. (45)

Note that ∫
R+

td−1FX(t, x)dt =

∫
X
fX(x− x̃)dx̃ = 1.

Under H3 the cumulative density function x 7→ FṼφ|X(v | x) is M-Lipschitz. In this case, for any hX > 0, let’s consider

DhX
(x) = hd−1

X ∥FX(·, x)∥∞
∫ ∞

0

td−1K1(t)dt. (46)

Lemma 7. Assume that H3 holds and let γ ∈ (0, 1). With probability at least 1− γ, it holds

sup
v∈R

∣∣∣∣∣
m∑

k=1

w̃k(x)
{
FṼφ|X(v | Xk)− FṼφ|X(v | x)

}∣∣∣∣∣ ≤ mDhX
(x) + sup

t∈R+

{MtK1(t)}
√
m log(1/γ)

2
.

Proof. First of all, using H3 implies that

sup
v∈R

∣∣∣∣∣
m∑

k=1

w̃k(x)
{
FṼφ|X(v | Xk)− FṼφ|X(v | x)

}∣∣∣∣∣ ≤
m∑

k=1

w̃k(x)min {1,M∥x−Xk∥} .

For every k ∈ [m], let’s consider Zk = w̃k(x)min {1,M∥x−Xk∥}. Since w̃k = KhX
(∥x−Xk∥), we have

Zk ≤ max

(
sup

0≤Mt≤1
{MtKhX

(t)} , sup
Mt>1

{KhX
(t)}

)
. (47)

By calculation, we get

sup
0≤Mt≤1

{MtKhX
(t)} = M sup

0≤Mt≤1

{
t

hX
K1

(
t

hX

)}
= M sup

0≤t≤(hXM)−1

{tK1 (t)} . (48)

We also have

sup
Mt>1

{KhX
(t)} = sup

Mt>1

{
1

hX
K1

(
t

hX

)}
≤ M sup

Mt>1

{
t

hX
K1

(
t

hX

)}
= M sup

t>(hXM)−1

{tK1 (t)} . (49)

Thus, combining (47)-(48) with (49) yields

0 ≤ Zk ≤ M sup
t∈R+

{tK1(t)}.

Applying Hoeffding’s inequality, for any t > 0, it follows

P

(
m∑

k=1

(Zk − EZk) ≥ t−mEZ1

)
≤ exp

(
− 2(t−mEZ1)

2

m supt∈R+
{MtK1(t)}2

)
. (50)

Let γ ∈ (0, 1) and set:

tγ = mEZ1 + sup
t∈R+

{MtK1(t)}
√
m log(1/γ)

2
.

Using (50), it holds that

P

(
m∑

k=1

(Zk − EZk) ≥ tγ −mEZ1

)
≤ γ.
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We will now bound tγ . To do this, we will control EZ1:

E [w̃k(x)min {1,M∥x−Xk∥}] =
∫
x̃∈X

(M∥x̃∥ ∧ 1)KhX
(∥x̃∥)fX(x− x̃)dx̃. (51)

Using the spherical coordinates, a change of variables gives∫
x̃∈X

(M∥x̃∥ ∧ 1)KhX
(∥x̃∥)fX(x− x̃)dx̃ =

∫ ∞

t=0

td−1(Mt ∧ 1)KhX
(t)FX(t, x)dt,

where FX(t, x) is given in (45). Therefore, it immediately follows that∫
x̃∈X

(M∥x̃∥ ∧ 1)KhX
(∥x̃∥)fX(x− x̃)dx̃ ≤ hd−1

X

∫ ∞

t=0

td−1K1(t)FX(hXt, x)dt.

Plugging the previous bound in (51) shows that

EZ1 ≤ DhX
(x), where DhX

(x) is provided in (46).

B.8. Asymptotic conditional validity

Theorem 9. Assume that H1-H2-H3 hold, and let m be of the same order as n. If FṼ (φ) /∈ {0, 1} and for every x ∈ X ,
FṼ |X=x ◦ F−1

Ṽ
is Lipschitz and fX is continuous, then, for α ∈ [{n+ 1}−1, 1) and ρ > 0, it follows

lim
hX→0

lim
n→∞

P (|P (Y ∈ Cα(X) |X)− 1 + α| ≤ ρ) = 1.

Proof. First, let’s fix α ∈ [{n+ 1}−1, 1) and ρ > 0. Our proof is based on the following set:

An =
{
x ∈ X : FṼ |X=x ◦ F−1

Ṽ
is 4−1ρ[FṼ (φ)]

−n ∧ [1− FṼ (φ)]
n+1-Lipschitz

}
.

This set contains every point x ∈ X whose Lipschitz constant of FṼ |X=x ◦ F−1

Ṽ
is smaller than a certain threshold which

tends to∞ as n→∞. Let’s also define the two following sets

Bm,hX
=

{
x ∈ X :

√
2∥KhX

∥∞ + supt∈R+
{MtK1(t)}

ChX
(x)

√
2 logm

m
+

2DhX
(x)

ChX
(x)

≤ ρ

2

}
,

B∞,hX
=

{
x ∈ X :

2DhX
(x)

ChX
(x)

≤ ρ

2

}
.

Lastly, for all r > 0, consider

Em,hX
=
{
x ∈ X : 2 + 4ChX

(x)−1 Var[KhX
(∥x−X∥)] ≤ mr

}
,

G = {x ∈ X : fX(x) ≥ r} .

Using basic computations, we obtain the following line

P (|P (Y ∈ Cα(X) |X)− 1 + α| > ρ) ≤ P (X /∈ An ∩Bm,hX
∩ Em,hX

;X ∈ G)
+ P (X /∈ G) + P (|P (Y ∈ Cα(X) |X)− 1 + α| > ρ;X ∈ An ∩Bm,hX

∩ Em,hX
) . (52)

Since m is of the same order as n, which means that 0 < lim infm/n ≤ lim supm/n <∞, it holds

1X/∈An∩Bm,hX
∩Em,hX

1X∈G −−−−→
n→∞

1X/∈B∞,hX
1X∈G.

Moreover, since KhX
is an approximate identity and fX is continuous and bounded, we have limhX→0 ChX

(x) = fX(x).
As stated in Proposition 1, it also holds that limhX→0DhX

(x) = 0. Therefore, it follows

1X/∈B∞,hX
1X∈G −−−−→

hX→0
0.
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Using the dominated convergence theorem, it yields that

lim sup
hX→0

lim sup
n→∞

P (X /∈ An ∩Bm,hX
∩ Em,hX

;X ∈ G) = 0. (53)

Given a realization x ∈ X , denoting by Lx the Lipschitz constant of FṼ |X=x ◦ F−1

Ṽ
, the application of Theorem 2 shows

that

P (|P (Y ∈ Cα(X) |X)− 1 + α| > ρ;X ∈ An ∩Bm,hX
∩ Em,hX

)

≤ P
(
ρ < |ϵτ (X)|+ 2LX × [FṼ (φ)]

n+1 ∨ [1− FṼ (φ)]
n+1;X ∈ An ∩Bm,hX

∩ Em,hX

)
.

Since X ∈ An, we deduce that LX ≤ 4−1ρ[FṼ (φ)]
−n ∧ [1− FṼ (φ)]

n+1, and thus it yields that 2LX × [FṼ (φ)]
n+1 ∨

[1− FṼ (φ)]
n+1 ≤ 2−1ρ. Therefore, it follows

P
(
ρ < |ϵτ (X)|+ 2LX × [FṼ (φ)]

n+1 ∨ [1− FṼ (φ)]
n+1;X ∈ An ∩Bm,hX

∩ Em,hX

)
≤ P

(
2−1ρ < |ϵτ (X)|;X ∈ An ∩Bm,hX

∩ Em,hX

)
.

Since x ∈ Bm,hX
∩ Em,hX

, applying Proposition 1 gives that

P
(
2−1ρ < |ϵτ (X)|;X ∈ An ∩Bm,hX

∩ Em,hX

)
≤ r.

Equation (52) implies

P (|P (Y ∈ Cα(X) |X)− 1 + α| > ρ) ≤ P (X /∈ An ∩Bm,hX
∩ Em,hX

) + P (X /∈ G) + r.

Lastly, (53) combined with the previous inequality shows

lim sup
hX→0

lim sup
n→∞

P (|P (Y ∈ Cα(X) |X)− 1 + α| > ρ) ≤ E
[
1fX(X)<r

]
+ r.

As r is arbitrary fixed, from the dominated convergence theorem we can conclude that

lim sup
hX→0

lim sup
n→∞

P (|P (Y ∈ Cα(X) |X)− 1 + α| > ρ) = 0.
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C. Details on Experimental Setup
This section aims to provide additional details on our experimental setup and implementation of the RCP algorithm.

Models. To facilitate fair comparison of different uncertainty estimation methods, we assume that the base prediction
models are already trained. We focus on the regression problem and aim to construct prediction sets for these pre-trained
models. All our models are based on a fully connected neural network of three hidden layers with 100 neurons in each layer
and ReLU activations. We consider three types of base models with appropriate output layers and loss functions: the mean
squared error for the mean predictor, the pinball loss for the quantile predictor or the negative log-likelihood loss for the
mixture predictor. Training is performed with Adam optimizer.

Each dataset is split randomly into train, calibration, and test parts. We reserve 2048 points for calibration and the remaining
data is split between 70% for training and 30% for testing. Each dataset is shuffled and split 10 times to replicate the
experiment. This way we have 10 different models for each dataset and these models’ prediction are used by every method
that is tailored to the corresponding model type to estimate uncertainty. One fifth of the train dataset is reserved for early
stopping.

RCPMLP. This variation reserves a part (50%) of the original calibration set to train a quantile regression model for the
(1 − α)-level quantile of the scores V . We again use a three hidden layers with 100 units per layers for that task. The
remaining half of the calibration set forms the “proper calibration set” and is used to compute the conformal correction.

RCPlocal. The local quantile regression variant is similar to the previous one, so we use the same splitting of the available
calibration data. Since only one bandwidth needs to be tuned, we use a simple grid search on a log-scale grid in the interval
[10−3, 1].

Datasets. Table 6 presents characteristics of datasets from (Tsoumakas et al., 2011; Feldman et al., 2023; Wang et al.,
2023), restricting our selection to those with at least two outputs and a total of 2000 instances. For data preprocessing, we
follow the procedure of (Grinsztajn et al., 2022).

Paper Dataset n p d

Tsoumakas et al. (2011) scm20d 8966 60 16
rf1 9005 64 8
rf2 9005 64 8
scm1d 9803 279 16

Feldman et al. (2023) meps 21 15656 137 2
meps 19 15785 137 2
meps 20 17541 137 2
house 21613 14 2
bio 45730 8 2
blog data 50000 55 2

Wang et al. (2023) taxi 50000 4 2

Table 6: List of datasets with their characteristics.
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