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Abstract

How do biological systems learn continuously throughout their lifespans, adapting to change while
retaining old knowledge, and how can these principles be applied to artificial learning systems? Here,
we outline challenges and strategies of "lifelong learning" in biological and artificial systems, and
argue that a collaborative study of each system’s failure modes can benefit both.
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The problem of lifelong learning

Humans and other biological learning systems display the astounding ability to continually accumulate
knowledge over their entire lifetime. One remarkable feature of this form of learning is that even
though experiences over a lifetime are sequentially sampled from changing (non-stationary)
environments, organisms can adapt quickly to changes while retaining old knowledge. This contrasts
with many contemporary machine-learning algorithms, which rely on independent, identically
distributed samples from a stationary distribution to learn successfully, often failing to learn anew or
forgetting old knowledge catastrophically when presented with incremental data from changing
distributions [1]. What computational principles support effective learning and long-term knowledge
retention in the face of change? The modern machine-learning subfields of continual and lifelong
learning have taken inspiration from biological systems at multiple levels of abstraction to tackle this
problem [1,2], and aim to rival human-level performance. The goal of such approaches is to learn
continuously in non-stationary data regimes, avoid catastrophic forgetting and running out of capacity,
and — more ambitiously — enable knowledge transfer and generalization between past and future
tasks to improve learning efficiency.

Learning strategies observed in biological agents

Given the ever-changing natural world, it is perhaps no surprise that humans and other biological
systems have evolved multiple mechanisms for lifelong learning. These include synaptic plasticity rules
that protect previously learned associations, mechanisms that create new neural structures or
representations when drastic changes are encountered, built-in neuromodulatory drives for persistent
exploration, and architectural schemes that use multiple interacting learning and memory systems to
balance generalization and segregation [2].

At a high level, these mechanisms can all be understood as inductive biases, or assumptions that
learners bring to a problem, which shape learning and restrict the space of solutions. In particular,
these mechanisms all embody the assumption that environments may not be stationary (hence, for
example, the need to continuously explore new solutions), but may nevertheless have modular and/or
recurring structure (i.e. changes may indicate a new task needs to be learned, but old knowledge
should be retained as it may be useful for old tasks that resurface, or for generalizing to new problems
that are similar).

One useful framework that has helped translate several of these mechanisms into a common language
is the contextual or latent-cause framework. Here, the learner is assumed to constantly segment its
experience into “contexts," “tasks" or “latent causes," discovering new contexts as well as inferring the
recurring presence of old ones, and learning separate associations for each [3]. This reformulates the
learning problem from one that involves using experiences to learn or track a fixed set of static or
dynamic associative parameters (the typical assumption underlying Bayesian, gradient-based, or
reinforcement-learning formulations; Figure 1a,b), to one that additionally involves partitioning
experiences into (an unknown number of) contexts, each with their own set of learned parameters
(Figure 10).



Given an inferred partition, experiences can be used to selectively modify context-specific parameters,
while these parameters are protected from erasure outside the relevant context. This means that new
knowledge can be acquired quickly, and at the same time, old knowledge can be remembered and
reused long into the future, if and when similar contexts are encountered (unlike, for example,
standard reinforcement learning, where fast learning implies fast forgetting). Bayesian non-
parametric models are a popular choice for the partitioning process since they allow flexible but
judicious expansion of learnt latent structure. Such models avoid running out of capacity by using
priors (such as the Chinese Restaurant Process prior) that constrain the number of latent causes
inferred - a principle of parsimony that reflects humans’ and animals’ inductive biases across many
different domains [3] and naturally emerges from efficient coding objectives [4].

The latent-cause framework has been used to successfully account for previously puzzling features of
learning in humans and animals, such as their ability to learn and remember multiple conflicting
beliefs or behavioral policies, and enhanced learning speeds and accuracy when encountering
successive new tasks or previously learned ones [3,5]. Neurally, this framework has been used to
understand synaptic processes of memory modification and protection [6], circuit-level gating of
learning updates by latent-cause representations in the prefrontal cortex and/or hippocampus [ 3], and
global, long-term interactions between learning and episodic memory in replay, consolidation, and
retrieval [7].

Biologically inspired strategies in artificial agents

To engineer artificial agents capable of continual learning, artificial intelligence research has taken
inspiration from biological inductive biases at several levels. Particularly within deep learning, these
efforts roughly fall under four approaches: gradient-based approaches inspired by synaptic plasticity
rules, modular architectures that add capacity when new tasks are encountered, memory-based
approaches that store and/or replay past experiences, and meta-learning approaches that attempt to
learn useful inductive biases by optimizing an evolution-like "outer-loop" [1,2]. Many of these
approaches leverage sparse, modular latent causal structure, with some solutions explicitly
formulating this structure in probabilistic terms [8]. In particular, approaches that eschew expensive
storage of past experiences in favor of a more compressed solution in the form of discrete, low
dimensional "anchors" representing abstractions of past tasks [1] closely resemble latent-cause models
of context-bound episodic memory and cortico-hippocampal interactions.

Failure modes of lifelong-learning agents

As with all inductive biases, those that allow for lifelong learning in changing natural environments
induce particular failure modes when their assumptions are not met. Humans’ and animals’ naturally
adaptive inductive biases about non-stationarity are perhaps no more evident than in unnaturally
stationary laboratory tasks, where such implicit assumptions may hamper task performance,
manifesting as sequential dependencies or persistent exploration [9-11].



Even in tasks that truly do involve a change in environmental statistics, the assumption of recurrence
of old contexts may not be accurate, and the same lifelong-learning mechanisms that successfully
protect old knowledge for future reuse may prove to be maladaptive. This is evident in fear-extinction
paradigms, where expectations of outdated threats may resurface long after the threat has been
removed, revealing intact associations bound to old latent causes [3].

Indeed, a number of psychiatric conditions are thought to involve mismatches between assumptions
about distribution shifts and reality. For instance, certain forms of anxiety may reflect over-
segmentation of threat experiences and/or over-enthusiastic protection of long outdated threat
associations, making them stubbornly resistant to updating [12]. A similar over-active protection of
early drug-related associations has been proposed to underlie addiction phenomenology such as
relapse. Conversely, mechanisms that enable forward or backward transfer by generalizing knowledge
between past and future contexts may inappropriately generalize negative experiences to neutral
situations, giving rise to the widespread biased evaluations observed in post-traumatic stress disorder
(PTSD) and depression [7, 13].

Such dramatic failure modes of powerful biological learning systems could offer valuable lessons for
the safety analysis of new artificial systems capable of continual learning [14], and help anticipate
situations that may lead to maladaptive behaviors before they occur, diagnose those that do occur, and
perhaps even build in compensatory safety mechanisms to protect against them. In parallel, lifelong-
learning algorithms could serve as powerful models of biological systems for the purposes of
computational psychiatry, particularly for chronic conditions that recur over an individual’s lifetime
and reflect over-protection of old knowledge or over-generalization to new situations.

Looking ahead: a joint investigation of challenges?

Biological and artificial agents run up against similar challenges when attempting to remain adaptive
throughout their lifetimes in non-stationary environments with recurring structure. These include the
need to accurately recognize changes in one’s environment, quickly update one’s knowledge when this
happens, judiciously protect old knowledge while doing so without running out of capacity, and
appropriately reuse past learning to make smart generalizations about the future. Biological systems
seem to be equipped with a number of inductive biases that help them solve this problem, and
artificial systems have taken inspiration from these at various levels of granularity to arrive at
algorithmic solutions. Beyond cross-inspiration from each system’s successes, studying the inevitable
failure modes of these inductive biases in both systems offers a fruitful avenue for potential future
collaboration between the two fields, with mutual benefits: to the study of biological systems, it could
offer a computational understanding of recurrent maladaptations commonly encountered in
psychiatry, and inspire treatments that tame these mechanisms; and to the study of artificial systems,
it could offer the ability to anticipate, diagnose and protect against maladaptive behaviors in lifelong
learning agents.
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Figure 1. Three commonly encountered online learning settings. a. Static setting, the standard for
most optimization problems: A stationary environment (variously referred to as a task, context, or
latent cause) with a fixed set of learnable parameters produces an independently and identically
distributed set of samples, even when encountered sequentially. Mlustrated is a grocery store
environment ¢, with a cookie reward in one location, where the learnable parameters 6, determine
the optimal behavioral policy required to arrive at the cookie (shortest path from entrance, denoted in
the image below), and the learner’s task is to acquire an estimate of these parameters that converges
to the true values. b. Dynamic setting with coupled learning and forgetting: A non-stationary
environment ¢; with a single set of parameters 6; that undergoes (possibly unsignalled) changes. In
this scenario, the cookie’s location changes every so often (illustrated: different batches of episodes),
with only its current location relevant for optimal performance. The learner must therefore track only
the current value of the parameters, and may forget previous values since they are no longer relevant.
c. Continual learning setting, requiring learning without forgetting: A non-stationary environment
with recurrent structure. Here, past contexts may reappear in the future, or be relevant to future
generalization. This requires the learner to partition their experiences into the appropriate contexts c;,
entertain the possibility of new contexts appearing, and maintain context-specific parameters 6; in
memory, implying a clustering problem with an unknown number of clusters. Failure to segregate
learning in this way will result in forgetting of old knowledge, necessitating relearning if the old
context resurfaces. Appropriately clustering the data can improve learning efficiency, and allows
knowledge transfer between past and future tasks. Depicted is a case where the cookie has been
moved due to construction in the cookie aisle (a second latent cause ¢;). By protecting learning
acquired in ¢, the learner can instantly reuse it when the construction is over.








