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Abstract 

How do biological systems learn continuously throughout their lifespans, adapting to change while 

retaining old knowledge, and how can these principles be applied to artificial learning systems? Here, 

we outline challenges and strategies of "lifelong learning" in biological and artificial systems, and 

argue that a collaborative study of each system’s failure modes can benefit both. 
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The problem of lifelong learning 

 

Humans and other biological learning systems display the astounding ability to continually accumulate 

knowledge over their entire lifetime. One remarkable feature of this form of learning is that even 

though experiences over a lifetime are sequentially sampled from changing (non-stationary) 

environments, organisms can adapt quickly to changes while retaining old knowledge. This contrasts 

with many contemporary machine-learning algorithms, which rely on independent, identically 

distributed samples from a stationary distribution to learn successfully, often failing to learn anew or 

forgetting old knowledge catastrophically when presented with incremental data from changing 

distributions [1]. What computational principles support effective learning and long-term knowledge 

retention in the face of change? The modern machine-learning subfields of continual and lifelong 

learning have taken inspiration from biological systems at multiple levels of abstraction to tackle this 

problem [1,2], and aim to rival human-level performance. The goal of such approaches is to learn 

continuously in non-stationary data regimes, avoid catastrophic forgetting and running out of capacity, 

and — more ambitiously — enable knowledge transfer and generalization between past and future 

tasks to improve learning efficiency. 

 

Learning strategies observed in biological agents 

 

Given the ever-changing natural world, it is perhaps no surprise that humans and other biological 

systems have evolved multiple mechanisms for lifelong learning. These include synaptic plasticity rules 

that protect previously learned associations, mechanisms that create new neural structures or 

representations when drastic changes are encountered, built-in neuromodulatory drives for persistent 

exploration, and architectural schemes that use multiple interacting learning and memory systems to 

balance generalization and segregation [2]. 

 

At a high level, these mechanisms can all be understood as inductive biases, or assumptions that 

learners bring to a problem, which shape learning and restrict the space of solutions. In particular, 

these mechanisms all embody the assumption that environments may not be stationary (hence, for 

example, the need to continuously explore new solutions), but may nevertheless have modular and/or 

recurring structure (i.e. changes may indicate a new task needs to be learned, but old knowledge 

should be retained as it may be useful for old tasks that resurface, or for generalizing to new problems 

that are similar). 

 

One useful framework that has helped translate several of these mechanisms into a common language 

is the contextual or latent-cause framework. Here, the learner is assumed to constantly segment its 

experience into “contexts," “tasks" or “latent causes," discovering new contexts as well as inferring the 

recurring presence of old ones, and learning separate associations for each [3]. This reformulates the 

learning problem from one that involves using experiences to learn or track a fixed set of static or 

dynamic associative parameters (the typical assumption underlying Bayesian, gradient-based, or 

reinforcement-learning formulations; Figure 1a,b), to one that additionally involves partitioning 

experiences into (an unknown number of) contexts, each with their own set of learned parameters 

(Figure 1c). 



 

Given an inferred partition, experiences can be used to selectively modify context-specific parameters, 

while these parameters are protected from erasure outside the relevant context. This means that new 

knowledge can be acquired quickly, and at the same time, old knowledge can be remembered and 

reused long into the future, if and when similar contexts are encountered (unlike, for example, 

standard reinforcement learning, where fast learning implies fast forgetting). Bayesian non-

parametric models are a popular choice for the partitioning process since they allow flexible but 

judicious expansion of learnt latent structure. Such models avoid running out of capacity by using 

priors (such as the Chinese Restaurant Process prior) that constrain the number of latent causes 

inferred – a principle of parsimony that reflects humans’ and animals’ inductive biases across many 

different domains [3] and naturally emerges from efficient coding objectives [4]. 

 

The latent-cause framework has been used to successfully account for previously puzzling features of 

learning in humans and animals, such as their ability to learn and remember multiple conflicting 

beliefs or behavioral policies, and enhanced learning speeds and accuracy when encountering 

successive new tasks or previously learned ones [3,5]. Neurally, this framework has been used to 

understand synaptic processes of memory modification and protection [6], circuit-level gating of 

learning updates by latent-cause representations in the prefrontal cortex and/or hippocampus [3], and 

global, long-term interactions between learning and episodic memory in replay, consolidation, and 

retrieval [7]. 

 

Biologically inspired strategies in artificial agents 

 

To engineer artificial agents capable of continual learning, artificial intelligence research has taken 

inspiration from biological inductive biases at several levels. Particularly within deep learning, these 

efforts roughly fall under four approaches: gradient-based approaches inspired by synaptic plasticity 

rules, modular architectures that add capacity when new tasks are encountered, memory-based 

approaches that store and/or replay past experiences, and meta-learning approaches that attempt to 

learn useful inductive biases by optimizing an evolution-like "outer-loop" [1,2]. Many of these 

approaches leverage sparse, modular latent causal structure, with some solutions explicitly 

formulating this structure in probabilistic terms [8]. In particular, approaches that eschew expensive 

storage of past experiences in favor of a more compressed solution in the form of discrete, low 

dimensional "anchors" representing abstractions of past tasks [1] closely resemble latent-cause models 

of context-bound episodic memory and cortico-hippocampal interactions. 

 

Failure modes of lifelong-learning agents 

 

As with all inductive biases, those that allow for lifelong learning in changing natural environments 

induce particular failure modes when their assumptions are not met. Humans’ and animals’ naturally 

adaptive inductive biases about non-stationarity are perhaps no more evident than in unnaturally 

stationary laboratory tasks, where such implicit assumptions may hamper task performance, 

manifesting as sequential dependencies or persistent exploration [9-11]. 

 



Even in tasks that truly do involve a change in environmental statistics, the assumption of recurrence 

of old contexts may not be accurate, and the same lifelong-learning mechanisms that successfully 

protect old knowledge for future reuse may prove to be maladaptive. This is evident in fear-extinction 

paradigms, where expectations of outdated threats may resurface long after the threat has been 

removed, revealing intact associations bound to old latent causes [3]. 

 

Indeed, a number of psychiatric conditions are thought to involve mismatches between assumptions 

about distribution shifts and reality. For instance, certain forms of anxiety may reflect over-

segmentation of threat experiences and/or over-enthusiastic protection of long outdated threat 

associations, making them stubbornly resistant to updating [12]. A similar over-active protection of 

early drug-related associations has been proposed to underlie addiction phenomenology such as 

relapse. Conversely, mechanisms that enable forward or backward transfer by generalizing knowledge 

between past and future contexts may inappropriately generalize negative experiences to neutral 

situations, giving rise to the widespread biased evaluations observed in post-traumatic stress disorder 

(PTSD) and depression [7, 13]. 

 

Such dramatic failure modes of powerful biological learning systems could offer valuable lessons for 

the safety analysis of new artificial systems capable of continual learning [14], and help anticipate 

situations that may lead to maladaptive behaviors before they occur, diagnose those that do occur, and 

perhaps even build in compensatory safety mechanisms to protect against them. In parallel, lifelong-

learning algorithms could serve as powerful models of biological systems for the purposes of 

computational psychiatry, particularly for chronic conditions that recur over an individual’s lifetime 

and reflect over-protection of old knowledge or over-generalization to new situations. 

 

Looking ahead: a joint investigation of challenges? 

 

Biological and artificial agents run up against similar challenges when attempting to remain adaptive 

throughout their lifetimes in non-stationary environments with recurring structure. These include the 

need to accurately recognize changes in one’s environment, quickly update one’s knowledge when this 

happens, judiciously protect old knowledge while doing so without running out of capacity, and 

appropriately reuse past learning to make smart generalizations about the future. Biological systems 

seem to be equipped with a number of inductive biases that help them solve this problem, and 

artificial systems have taken inspiration from these at various levels of granularity to arrive at 

algorithmic solutions. Beyond cross-inspiration from each system’s successes, studying the inevitable 

failure modes of these inductive biases in both systems offers a fruitful avenue for potential future 

collaboration between the two fields, with mutual benefits: to the study of biological systems, it could 

offer a computational understanding of recurrent maladaptations commonly encountered in 

psychiatry, and inspire treatments that tame these mechanisms; and to the study of artificial systems, 

it could offer the ability to anticipate, diagnose and protect against maladaptive behaviors in lifelong 

learning agents. 
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Figure 1. Three commonly encountered online learning settings. a. Static setting, the standard for 

most optimization problems: A stationary environment (variously referred to as a task, context, or 

latent cause) with a fixed set of learnable parameters produces an independently and identically 

distributed set of samples, even when encountered sequentially. Illustrated is a grocery store 

environment c0 with a cookie reward in one location, where the learnable parameters θ0 determine 

the optimal behavioral policy required to arrive at the cookie (shortest path from entrance, denoted in 

the image below), and the learner’s task is to acquire an estimate of these parameters that converges 

to the true values. b. Dynamic setting with coupled learning and forgetting: A non-stationary 

environment ct with a single set of parameters θt that undergoes (possibly unsignalled) changes. In 

this scenario, the cookie’s location changes every so often (illustrated: different batches of episodes), 

with only its current location relevant for optimal performance. The learner must therefore track only 

the current value of the parameters, and may forget previous values since they are no longer relevant. 

c. Continual learning setting, requiring learning without forgetting: A non-stationary environment 

with recurrent structure. Here, past contexts may reappear in the future, or be relevant to future 

generalization. This requires the learner to partition their experiences into the appropriate contexts ci, 

entertain the possibility of new contexts appearing, and maintain context-specific parameters θi in 

memory, implying a clustering problem with an unknown number of clusters. Failure to segregate 

learning in this way will result in forgetting of old knowledge, necessitating relearning if the old 

context resurfaces. Appropriately clustering the data can improve learning efficiency, and allows 

knowledge transfer between past and future tasks. Depicted is a case where the cookie has been 

moved due to construction in the cookie aisle (a second latent cause c2). By protecting learning 

acquired in c1, the learner can instantly reuse it when the construction is over. 






