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Figure 1: ET-SEED is a visual imitation learning algorithm that marries SE(3) equivariant visual
representations with diffusion policies. (a) ET-SEED achieve surprising efficiency and spatial gen-
eralization than baselines. (b) When the input object observation is rotated or translated, the output
action sequence change equivariantly. (c) Visualizations of simulation environments.

Abstract: Imitation learning, e.g., diffusion policy, has been proven effective
in various robotic manipulation tasks. However, extensive demonstrations are
required for policy robustness and generalization. To reduce the demonstra-
tion reliance, we leverage spatial symmetry and propose ET-SEED, an effi-
cient trajectory-level SE(3) equivariant diffusion model for generating action se-
quences in complex robot manipulation tasks. Further, previous equivariant dif-
fusion models require the per-step equivariance in the Markov process, making
it difficult to learn policy under such strong constraints. We theoretically extend
equivariant Markov kernels and simplify the condition of equivariant diffusion
process, thereby significantly improving training efficiency for trajectory-level
SE(3) equivariant diffusion policy in an end-to-end manner. We evaluate ET-
SEED on representative robotic manipulation tasks, involving rigid body, artic-
ulated and deformable object. Experiments demonstrate superior data efficiency
and manipulation proficiency of our proposed method, as well as its ability to
generalize to unseen configurations with only a few demonstrations. Website:
https://et-seed.github.io/
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1 Introduction

Imitation learning has achieved promising results for acquiring robot manipulation skills [1, 2, 3].
Though, one of the main challenges of imitation learning is that it requires extensive demonstra-
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tions to learn a robust manipulation policy [4, 5, 6]. Especially once the spatial pose of the object
to be manipulated runs out of the demonstration distribution, the policy performance will easily
decrease. Although some works seek to tackle these issues through data augmentation [7] or con-
trastive learning [8], they usually require task-specific knowledge or extra training, and without
theoretical guarantee of spatial generalization ability.

Another promising idea is to leverage symmetry. Symmetry is ubiquitous in the physical world,
and many manipulation tasks exhibit a specific type of symmetry known as SE(3) Equivariance.
SE(3) is a group consisting of 3D rigid transformations. For example, as shown in fig. 1(b), a real
robot arm is required to write characters “ICLR” on a paper or fold a garment, when the pose of
the paper or the garment changes, the manipulation trajectories of the end-effector should transform
equivalently. Employing such symmetries into policy learning can not only improve the data effi-
ciency but also increase the spatial generalization ability. Recent works on 3D manipulation have
explored using SE(3) equivariance in the imitation learning process. Most of these works focus on
equivariant pose estimation of the target object or end-effector [9, 10, 11]. Trajectory-level imita-
tion learning has achieved state-of-the-art performances on diverse manipulation tasks [3, 12]. By
generating a whole manipulation trajectory, this kind of method is capable to tackle more complex
manipulation task beyond pick-and-place. For trajectory-level equivariance, Equivariant Diffusion
Policy [13] and Equibot [14] propose equivariant diffusion process for robotic manipulation tasks.

However, previous trajectory-level diffusion models for robotic manipulation have two key limita-
tions. First, to maintain equivariance throughout the diffusion process, these models assume that
every transition step must preserve equivariance. As we will show in section 3.1, training neu-
ral networks with equivariance is more challenging than neural networks with invariance, requir-
ing additional computational resources and leading to slower convergence. This design constrains
the model’s efficiency, making it hard for tackling complex long-horizon manipulation tasks. Sec-
ond, these models define the diffusion process in Euclidean space, which is not a natural defini-
tion, and limits the expressiveness. Since the focus is on equivariant diffusion processes within the
SE(3) group, it is more natural to define both the diffused variables and the noise as elements of
the SE(3) group, which will lead to better convergence and multimodal distributions representa-
tion [15].

In this work, we propose ET-SEED, a new trajectory-level SE(3) equivariant diffusion model
for manipulation tasks. ET-SEED improves the sample efficiency and decreases the training dif-
ficulty by restricting the equivariant operations during the diffusion denoising process. We ex-
tend the equivaraint Markov kernels theory and prove that during the full denoising process, at
least only one equivariant transition is required. Then, we integrate the diffusion process on
SE(3) manifold [16] and SE(3) transformers [17] to design a new trajectory-level equivariant dif-
fusion model on SE(3) space. In experiment, we evaluate our method on several common and
representative manipulation tasks, as shown in fig. 1(c), including rigid body manipulation (rotate
triangle, open bottle cap), articulated object manipulation (open door), long-horizon tasks (robot
calligraphy), and deformable object manipulation (fold and fling garment). Experiments show our
method outperforms SOTA methods in terms of data efficiency, manipulation proficiency and spa-
tial generalization ability (fig. 1(a)). Further, in real-world experiments, with only 20 demonstration
trajectories, our method is able to generalize to unseen scenarios.

In summary, our contributions are mainly as followed:

• We propose ET-SEED, an efficient trajectory-level SE(3) equivariant diffusion policy de-
fined on SE(3) manifold, which achieves a proficient and generalizable manipulation pol-
icy with only a few demonstrations.

• We extend the theory of equivariant diffusion processes and derive a novel
SE(3) equivariant diffusion process, for simplified modeling and inference.

• We extensively evaluate our method on standard robot manipulation tasks in both simu-
lation and real-world settings, demonstrating its data efficiency, manipulation proficiency,
and spatial generalization ability, significantly outperforming baseline methods.
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2 Related work

2.1 Leveraging Equivariance for Robotic Manipulation

Previous research has demonstrated that leveraging symmetry or equivariance in 3D Euclidean space
can improve spatial generalization in a variety of robotic manipulation tasks. Lim et al. [18], Hu
et al. [10], Simeonov et al. [19], Xue et al. [20], Gao et al. [11] proposed SE(3) equivariant model
for grasp pose prediction. Other works have also leveraged this symmetry in tasks such as part
assembly [21, 22], object manipulation on desktop [13], articulated and deformable object manip-
ulation [12] and affordance learning [23]. Most of these studies either focus solely on generating
a single 6D pose or fail to guarantee end-to-end equivariance across the entire SE(3) space. In this
paper, our proposed method is capable of generating manipulation trajectories while theoretically
maintaining end-to-end equivariance over the entire SE(3) group.

2.2 Equivariant Diffusion Models

Diffusion models [24, 25] compose a powerful family of generative models that have proven
effective in robotic manipulation tasks [3]. Previous studies [26, 27] have investigated the ef-
fectiveness of combining spatial equivariance in the diffusion process to increase data efficiency
and improve the spatial generalization ability of the model. GeoDiff [28] gave a theoretical
proof of SE(3) equivariant Markov process. Diffusion-EDFs [9] and Orbitgrasp [10] introduced
SE(3) equivariant diffusion processes for target grasp pose prediction, but lack the capability to
generate entire manipulation trajectories. Wang et al. [13] proposed an equivariant diffusion pol-
icy capable of addressing SO(2) equivariant tasks. EquiBot [14] extended equivariant diffusion
policies to SIM(3) transformations, with the assumption that every transition step in the diffusion
process is equivariant, which demands a high training cost. We further discuss the conditions of
SE(3) equivariant diffusion process and prove that not each, but at least one equivariant step is
required. Based on this condition, we propose a novel SE(3) equivariant diffusion model achieving
better performance than previous works.

2.3 Diffusion on SE(3) manifold

Most diffusion models define the diffusion process on pixel space [25] or 3D Euclidean space [3].
Leach et al. [29] introduces a denoising diffusion model on SO(3) group. SE(3)-Diffusion Fields
[15] suggests that in 6-DoF grasp pose generation scenarios, formulating the diffusion process in
SE(3) manifold provides better coverage and representation of multimodal distributions, resulting
in improved sample efficiency and performance. Jiang et al. [16] proposes a SE(3) diffusion model
for robust 6D object pose estimation. In this work, we introduce an equivariant diffusion model on
SE(3) manifold for robot manipulation, revealing the superiority of defining equivariant diffusion
process on SE(3) over Euclidean space.

3 Method

Problem Formulation. We formulate the problem as an imitation learning setting, aiming to learn a
mapping from observation O to action sequence A, with some demonstrations from an expert policy.
In our setting, the observation O is colored point clouds P = {(x1, c1), · · ·, (xN , cN )} ∈ RN×6.
The action is defined directly as the desired 6D pose H ∈ SE(3) of the end-effectors. So in our
setting, the action sequence means to the trajectory of end-effectors. This experimental setup does
not require additional input information, and the action definition is both intuitive and consistent
with real robot control, making it applicable to a wide range of robotic manipulation tasks.

In this paper, we propose ET-SEED, a trajectory-level end-to-end SE(3) equivariant diffusion model
for robotic manipulation. ET-SEED can theoretically guarantee the output action is equivariant
to any SE(3) transformation applied on the input observation, while only involving one equiv-
ariant denoising step. As shown in fig. 3 , given an observation and a noisy action sequence, our
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model first implement K − 1 invariant denoising steps, and pass the result into the last equivariant
denoising step to generate a SE(3) equivariant denoised trajectory.

We will discuss equivariant Markov processes further to explain the correctness and advantages of
our proposed diffusion process in section 3.1 , with only one denoising step SE(3) equivariant and
the rest SE(3) invariant. Then introduce our modified SE(3) invariant and equivariant backbones
in section 3.2 , and illustrate our SE(3) equivariant diffusion process in section 3.3 . Finally we
prove end-to-end SE(3) equivariance of our pipeline in section 3.4 .

3.1 Equivariant Markov Process

For a Markov process xK:0, and any roto-translational transformation T ∈ SE(3). Geodiff [28]
shows that if the initial probabilistic distribution is SE(3) invariant, i.e., p(xK) = p(TxK), and
the Markov transitions p(xk−1|xk) are SE(3) equivariant for any 1 ≤ k ≤ K, i.e., p(xk−1|xk) =
p(Txk−1|Txk), then the density of x0 satisfies p(x0) = p(Tx0). Equibot [14] adapts the theory
and makes it more consistent with the robotics setting. They involve an additional condition c (can
be seen as an observation) and show that if the initial distribution p(xK |c) and transitions are all
equivariant, i.e., p(xK |c) = p(TxK |Tc), p(xk−1|xk, c) = p(Txk−1|Txk, T c) then the marginal
distribution satisfies p(x0|c) = p(Tx0|Tc).

In this paper, we discover that the condition of getting an equivariant marginal distribution p(x0|c)
can be weaker. Formally, we first define three Markov transitions with different properties.

p1(x
k−1|xk, c) = p1(x

k−1|xk, T c)

p2(x
k−1|xk, c) = p2(Tx

k−1|xk, T c)

p3(x
k−1|xk, c) = p3(Tx

k−1|Txk, T c)

(1)

Then we derive the marginal distribution using the three types of Markov transitions. We have the
following statement. See appendix C for the detailed proof.

Proposition 1 For a Markov process xK:0, if the initial distribution p(xK |c) = p(xK |Tc),
first K − n+ 1 transitions follow the property of p1, the middle 1 transition follows p2, and
the last n − 2 transitions follow p3, then the final marginal distribution satisfies p(x0|c) =
p(Tx0|Tc).

Previous works [13, 14] make all transitions p3-like, which is a special case of proposition 1 . In
practice, we observe that training neural networks to approximate the properties of p2 and p3 is
much more challenging compared to p1, both in terms of final performance and training cost. When
the condition c is transformed by a SE(3) element, the distributions in p2 and p3 change equiva-
lently, while the distribution in p1 remains unchanged. Learning to output an equivariant feature
is clearly more challenging for neural networks than producing an invariant feature. Additionally,
in most of implementations of equivariant networks, building and training a model whose output is
SE(3) equivariant to the input takes up more computing resources than a SE(3) invariant version.
We design experiments to validate these facts, with details in appendix E .

In ET-SEED, we set the parameter n = 2, meaning there are K − 1 p1-like transitions (re-
ferred to as “SE(3) Invariant Denoising Steps”) and one p2-like transition (referred to as the
“SE(3) Equivariant Denoising Step”). This key design choice significantly reduces the training
complexity, thereby enhancing the overall performance of our method.

3.2 SE(3) equivariant backbone

In order to generate whole manipulation trajectories, it’s necessary that the network has the ability
to output a translation vector at anywhere in the 3D space (even beyond the convex hull of the ob-
ject), which can not be achieved by directly using existing equivariant backbones [17, 30, 31]. In
this paper, based on SE(3) Transformer [17], we propose SE(3) equivariant and invariant back-
bones suitable for predicting SE(3) action sequences, which theoretically satisfy definition 1 and 2
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. The implementation details can be found at appendix F . The input of backbone is a set of points
coordinates X ∈ RN×3, with some type-0 features Din

0 and type-1 features Din
1 attached on each

point. Type-0 vectors are invariant under roto-translation transformations and type-1 vectors rotate
and translate according to SE(3) transformation of point cloud. The output is an element of SE(3) ,
represented as a 4× 4 matrix. For the SE(3) equivariant model (denoted as Eequiv), we have

∀T∈SE(3) : TEequiv(X ;Din
0 , Din

1 ) = Eequiv(TX ;Din
0 , TDin

1 ) (2)
And for the SE(3) invariant model (denoted as Einv), we have

∀T∈SE(3) : Eequiv(X ;Din
0 , Din

1 ) = Einv(TX ;Din
0 , TDin

1 ) (3)

Algorithm 1 Training phase
repeat

Sample A0, O ∼pdata
Sample k ∼ Uniform({1, ...,K})
for Hi ∈ A0 do

Sample ε ∼ N (0, I)
Hk

i = Exp
(
γ
√
1− ᾱtε

)
F
(√

ᾱt;H
0,H

)
Predict Ĥk→0

i = sθ(O,Hk
i ;k, i)

end for
Optimize loss L = loss(Ĥk→0

i ,Hi(H
k
i )

−1)
until converged

Algorithm 2 Inference phase
for HK

i ∈ AK do
for k = K, ..., 2 do

Predict Ĥk→0
i = Einv(O,Hk

i ; k, i)

Update Hk−1
i = Exp(λ0 Log(Ĥ

k→0
i Hk

i )
+ λ1 Log(H

k
i )))

end for
Predict Ĥ1→0

i = Eequiv(O,Hk
i ; 1, i)

Assign H0
i = Ĥ1→0

i Hk
i

end for
Return: A0 =

⋃
i H

0
i

3.3 SE(3) Diffusion Models
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Figure 2: Overview of our pipeline. A colored point cloud and a random sampled action sequence
are first passed through K − 1 SE(3) invariant denoising steps and then a SE(3) equivariant de-
noising step to generate a noise free action sequence.

Inspired by standard diffusion model, ET-SEED progressively disturbs the action H0 into a noisy
action HK . As standard diffusion process assume the final noisy variable xT follows the standard
Gaussian distribution N (0, I), we assume the noisy action HK follow a Gaussian distribution on
SE(3) , centered at the identity transformation H. So we use an interpolation-based SE(3) diffusion
formula, which represent the Hk ∼ q(Hk|H0) at noise step k(1 ≤ k ≤ K) as

Hk = Exp
(
γ
√
1− ᾱtε

)︸ ︷︷ ︸
Perturbation

F
(√

ᾱt;H
0,H

)︸ ︷︷ ︸
Interpolation

, ε ∼ N (0, I) (4)
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The interpolation function F
(√

ᾱt;H
0,H

)
is an intermediate transformation between the origin

action H0 and the identity transformation H. By adding a perturbation noise Exp
(
γ
√
1− ᾱtε

)
on

the intermediate transformation, we get a diffused action Hk. The training process of ET-SEED is
shown in algorithm 1 . More explanation about 4 can be found in Jiang et al. [16] or appendix G.

This formulation is an analogy of DDPM [25], which represent the noisy image as

xt = ᾱtx0 + β̄tε̄, ε̄ ∼ N (0, I) (5)

We can treat the first term of 5 as interpolation between x0 and 0, second term as external noise.

The goal of SE(3) reverse process is to train a denoising network, gradually refine the noisy ac-
tion to the optimal ones. In this paper, we propose a novel SE(3) equivariant denoising process,
which theoretically keeps the equivariance property while reducing the training difficulty. As il-
lustrated in fig. 2 , the input of reverse process is an observation O, an noisy action sequence
AK = [HK

0 ,HK
1 , ...,HK

Tp
], where Tp is the action prediction horizon, and each HK

i is drawn from
a SE(3) Gaussian distribution centered at identity transformation H. The denoising process forms
a reverse Markov chain AK → AK−1 → · · · → A0. In our setting, we design a model to predict
a probability distribution of the action sequence Ak−1 given current observation O and the action
sequence Ak of the last denoising step. So the input of our denoising network sθ consists of obser-
vation O, noisy action Hk

i , and scalar condition k, i, outputs the predicted relative transformation
between Hk

i and ground truth. Formally, we have

Ĥk→0
i = sθ(O,Hk

i ;k, i) (6)

To ensure the overall SE(3) equivariance of our pipeline, we propose a novel design of denoising
network sθ. It is consists of one SE(3) invariant backbone Einv and one SE(3) equivariant back-
bone Eequiv . We use Einv to denoise in the first K− 1 iterations and use Eequiv to denoise in the last
iteration. Formally, our denoising network sθ is

sθ(O,Hk
i ;k, i) =

{
Einv(O,Hk

i ;k, i),k > 1
Eequiv(O,Hk

i ;k, i),k = 1
(7)

As illustrated in algorithm 2 , in the first K−1 denoising iteration, we use SE(3) invariant backbone
Einv to predict noise, and implement a denoise step by

Hk−1
i = Exp(λ0 Log(Ĥ

k→0
i Hk

i ) + λ1 Log(H
k
i ) (8)

This formulation, by minimizing the KL divergence of the posterior distribution and prior distribu-
tion of Hk−1

i , is able to infer a more reliable distribution for Hk−1
i [16].

In the last denoising iteration, we use a SE(3) equivariant backbone Eequiv to predict noise and
directly apply the predicted transformation on current action.

H0
i = Ĥ1→0

i Hk
i (9)

3.4 Proof of end-to-end Equivariance

In this paper, we derive equivariant Markov process from a weaker condition, and build up a prac-
tically feasible framework. In this part, we will prove that our proposed denoising process is theo-
retically SE(3) equivariant. When the input observation O is transformed by any SE(3) element
T , the output denoised action sequence A0 will be equivariantly transformed. Denote the denoising
process as A0 = ETSEED(AK ;O), we have the following statement

Proposition 2 For a Markov process AK:0, if AK is sampled from Gaussian distribution,
A0 = ETSEED(AK ;O). Then, ∀T ∈ SE(3) : TA0 = ETSEED(TO,AK).

A detailed proof is attached in appendix D . Here we briefly introduce the intuition. In the first
K − 1 denoising steps, as we use SE(3) invariant backbone to predict noise, the predicted noise
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Ĥk→0
i is SE(3) invariant, thus the updated Hk−1

i is also invariant. After the first K − 1 steps, we
get an invariant H1

i . Because of the equivariance property of our last noise prediction backbone, the
predicted noise of last step Ĥ1→0

i is SE(3) equivariant. Carried into 9 , we get a SE(3) equivariant
H0

i for all 0 ≤ i ≤ Tp. It means the final denoised action sequence A0 is SE(3) equivariant to the
input observation O.

4 Experiments

We systematically evaluate ET-SEED through both simulation and real-world experiments, aim-
ing to address the following research questions: (1) Does our method demonstrate superior spatial
generalization compared to existing imitation learning approaches? (2) Can our method achieve
comparable performance with fewer demonstrations? (3) Is our method applicable to real-world
robotic manipulation tasks?

4.1 Simulation Experiments

Tasks. We design six representative robot manipulation tasks: Open Bottle Cap, Open Door, Rotate
Triangle, Calligraphy, Cloth Folding, and Cloth Fling. These tasks encompass manipulation of rigid
bodies, articulated bodies, and deformable objects, as well as dual-arm collaboration, long-horizon
tasks, and complex manipulation scenarios. A brief overview is illustrated in fig. 1. For each task,
we set up multiple cameras to capture full point clouds of the objects to be manipulated. We assume
each robot manipulator operates within a complete 6DoF SE(3) action space. Further expeirments
details and discussions of their equivariant properties can be found in appendix H .

Baselines. We compare our method against the following baselines:

• 3D Diffusion Policy (DP3) [32]: A diffusion-based 3D visuomotor policy.

• 3D Diffusion Policy with Data Augmentations (DP3+Aug): Same architecture as DP3,
with SE(3) data augmentation added.

• EquiBot [14]: A baseline combines SIM(3)-equivariant neural network architectures with
diffusion policy.

DP3 and DP3+Aug are used to compare ET-SEED with baseline methods that utilize data augmen-
tation to achieve spatial generalization, while EquiBot allows for a comparison between different
architectures of equivariant diffusion process.

Augmentations. The DP3+Aug baseline utilizes augmentations during training. In all environ-
ments, training data is augmented by (1) rotating the observation along all three axes by random
angles between 0◦ and 90◦, and (2) applying a random Gaussian offset to the observation. The
standard deviation of the Gaussian noise is set to 10% of the workspace size.

Evaluation. Following the setup of Gao et al. [11], we collect demonstrations and train our policy
under the Training setting (T), subsequently testing the trained policy on both T and New Poses
(NP), where target object poses undergo random SE(3) transformations. We evaluate all methods
using two metrics, based on 20 evaluation rollouts, averaged over 5 random seeds. Since we generate
complete manipulation trajectories, the final success rate alone is inadequate for fully assessing the
trajectory’s quality. We calculate the geodesic distance between each step of the predicted trajectory
and the ground truth trajectory, providing a more comprehensive reflection of the trajectory’s overall
quality. The geodesic distance between each step of the predicted trajectory and the ground truth
trajectory, we can obtain a more accurate reflection of the trajectory’s overall quality. The definition
of geodesic distance between T, T̂ ∈ SE(3) is

Dgeo(T, T̂) =

√∥∥∥Log(R⊤R̂)
∥∥∥2 + ∥∥t̂− t

∥∥2, (10)

where R and t are the rotation and translation parts of T . We report Dgeo in the same manner as
success rates.
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Results. Table 2 and 3 provide a quantitative comparison between our method and the baseline.
Both DP3 and its augmented variant demonstrate strong performance in the training setting (T), but
they exhibit a significant drop in performance when faced with New Poses (NP) scenarios. This
highlights that merely incorporating data augmentation is insufficient for the model to generalize
effectively to unseen poses. Instead, leveraging equivariance proves essential for enhancing spatial
generalization.

While EquiBot achieves commendable results in both success rate and Dgeo, it struggles with more
complex, long-horizon tasks such as Calligraphy and Fold Garment. Also, when less demonstrations
are given, the performance is not satisfactory. These challenges stem from the inherent complex-
ity of its diffusion process design, where maintaining equivariance in each Markov transition adds
substantial difficulty to the learning task.

In contrast, ET-SEED consistently outperforms across all six tasks, with minimal performance drop
when facing unseen object poses. This advantage is especially pronounced when using a limited
number of demonstrations, showcasing T-SEED’s superior data efficiency, manipulation proficiency,
and spatial generalization ability.

4.2 Real-Robot Experiment

Setup. We test the performance of our model on four tasks on real scenarios. All the tasks are
visualized in Figure 5 . We use Segment Anything Model 2 (SAM2) [33] to segment the object from
the scene and project the segmented image with depth to point cloud. Please refer to appendix I and
our website for more details and videos of real-world manipulations.

Expert demonstrations are collected by human tele-operation. The Franka arm and the gripper are
teleoperated by the keyboard. Since our tasks contain more than one stage and include two robots
and various objects, making the process of demonstration collection very time-consuming, we only
provide 20 demonstrations for each task.

In test setting, We place the object at 10 different positions with different poses that are unseen in
the training data. Each position is evaluated with one trial.

Results. Results for our real robot tasks are given in Table 4. Consistent with our simulation
findings, in real world experiments, ET-SEED performs better than baselines in all the four tasks,
given only 20 demonstrations. The evaluation shows the effectiveness and spatial generalization
ability of our method.

5 Conclusion

In this paper, we propose ET-SEED, an efficient trajectory-level SE(3) equivariant diffusion pol-
icy. By leveraging SE(3) symmetries, our method enhances both data efficiency and spatial gen-
eralization while reducing the training complexity typically encountered in diffusion-based meth-
ods. Through theoretical extensions of equivariant Markov kernels, we demonstrated that the
SE(3) equivariant diffusion process can be achieved given a weaker condition, significantly sim-
plifying the learning task. Experimental results on diverse robotic manipulation tasks show that
ET-SEED performs better than SOTA methods. Real-world experiments further validate the gen-
eralization ability of our model to unseen object poses with only 20 demonstrations. Our work
presents a novel approach for data efficient and generalizable imitation learning, paving the way for
more capable and adaptive robots in real-world applications.
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A Preliminary Background
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Figure 3: Left: Given a point cloud observation, the model outputs a trajectory of 6D pose. Right:
For a noisy trajectory, an SE(3) invariant denoise module generates SE(3) invariant trajectories,
followed by an SE(3) equivariant module to produce noise free equivariant trajectories on the
SE(3) manifold. The model can generate corresponding trajectories even for unseen poses.

SE(3) Group and its Lie Algebra. SE(3) (Special Euclidian Group) is a group consisting of 3D
rigid transformations. Each SE(3) transformation can be represented as a 4 × 4 matrix (denoted
as T ), indicating linear transformation on homogeneous 4-vectors. Formally, T = [R t

0 1 ] , where
R ∈ R3×3 is a rotation matrix, t ∈ R3 is a translation vector. The Lie algebra se(3) is a linear
6D vector space corresponding to the tangent space of SE(3) . Each element of se(3) is a 6D
vector δ ∈ R6. The mutual mapping between SE(3) and se(3) is achieved by the logarithm map
Log : SE(3) → R6 and the exponential map Exp : R6 → SE(3). More information about
SE(3) and se(3) can be found in appendix B .

SE(3) Equivariant Function. Generally, we call a function f : X → Y that maps elements from
input space X to output space Y is equivariant to a group G if there are group representations of G
on X and Y respectively denoted by ρX and ρY such that ∀g∈G : ρY(g) ◦ f = f ◦ ρX (g)

In other words, the function f commutes with representations of the group G. In this paper, we
focus on SE(3) group, and represent elements of SE(3) as 4 × 4 matrixes. As special cases of
general equivariance, we can define SE(3) equivariant and invariant functions as:

Definition 1 SE(3) Equivariant Function.
A function f : X → Y is called SE(3) equivariant if

∀T∈SE(3) : T ◦ f = f ◦ T (11)

Definition 2 SE(3) Invariant Function.
A function f : X → Y is called SE(3) invariant if

∀T∈SE(3) : f = f ◦ T (12)

SE(3) Equivariant Trajectory. In many robotic manipulation tasks, the trajectories of the manip-
ulator show a certain symmetry. If the representation of a trajectory under certain coordinate frame
is SE(3) invariant, we call the trajectory as SE(3) Equivariant. Formally, it can be defined as

Definition 3 SE(3) Equivariant Trajectory.
A trajectory {si}ni=1 is called SE(3) equivariant if exists a coordinate frame A, such that
for any transformation T ∈ SE(3) applied on both the trajectory and the coordinate
frame(denoted as {s′i}ni=1 = T{s′i}ni=1 and A′ = TA), the representation of {s′i}ni=1 by
the basis of A′ is same as the representation of {si}ni=1 by the basis of A.
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This property means the trajectory is “attached” on a certain frame, and when the frame trans-
forms, the trajectory transforms accordingly. To demonstrate the universality of such symmetrical
trajectories, we use a general example in fig. 3 . For planes at different position and orientation,
the representations of “turning right” trajectories appear identical in each plane’s body coordinate
frame. In our experiments, we select 6 representative manipulation tasks showing this symmetry.
Further discussion can be found in appendix H .

B SE(3) group and se(3) algebra

B.1 Basic Terms

An element in SE(3) can be represented as a 4× 4 matrix

R ∈ SO(3), t ∈ R3

C =

(
R t
0 1

)
(13)

This representation means we can compute the composition and inversion of elements in SE(3) by
matrix multiplication and inversion.

An element δ = se(3) can be represented by multiples of the generators

δ = (u, ω)T ∈ R6 (14)

u is the translation, u ∈ R3

ω is the rotation (exactly the axis-angle representation, its normal is the rotation angle, and its
direction is the rotation axis), ω ∈ R3

There’s a 1-1 map between SE(3) and se(3)

δ = ln(C)

C = exp(δ)
(15)

B.2 Adjoint

consider left-multiplication and right-multiplication in SE(3) group

C · exp(δ) = exp(AdjC · δ)C (16)

AdjC =

(
R t×R
0 R

)
(17)

c.f. Skew-symmetric matrix of a vector α := [a, b, c]T , β := [l,m, n]T

α× β =

[
bn− cm
cl − an
am− bl

]
=

[
0 −c b
c 0 −a
−b a 0

][
l
m
n

]
(18)

So we define α×([α]×) as the skew-symmetric matrix in 18

B.3 Interpolation

two elements a, b ∈ G, we would like to interpolate between the two elements according to a
parameter t ∈ [0, 1], define an interpolation function

f : G×G× R → G (19)

13



First define a group element that tasks a to b

d := b · a−1d · a = b (20)

Compute the corresponding Lie algebra vector and scale it by t

d(t) = t · ln(d); dt = exp(d(t))
f(a, b, t) = dt · a (21)

B.4 Gaussian Distribution

Consider a Lie group G and its Lie algebra vector space g, with k DoF. A mean transformation µ ∈ G
and a covariance matrix Σ ∈ Rk×k. We can sample an element from the Gaussian distribution on G

δ ∼ N (0; Σ)(δ ∈ g)

x = exp(δ) · µ
(22)

c.f. Gaussian in RD

N(x | µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(23)

C Proof of proposition 1

p(x0|c) =
∫

p(xK |c)p(x0:K−1|xK , c)dx1:K

=

∫
p(xK |c)

K∏
k=1

p(xk−1|xk, c)dx1:K

=

∫
p(xK |c)(

K∏
k=n

p(xk−1|xk, c))p(xn−2|xn−1, c)(

n−2∏
i=1

p(xi−1|xi, c))dx1:K

=

∫
p(xK |Tc)[

K∏
k=n

p1(x
k−1|xk, T c)]p2(Tx

n−2|xn−1, T c)

[

n−2∏
i=1

p3(Tx
i−1|Txi, T c)]dx1:K

= p(xn−1|Tc) p(Txn−2|xn−1, T c) p(Tx0|Txn−2, T c)

= p(Tx0|Tc)

(24)

D Proof proposition 2

As shown in 2 and 3, our backbones are theoretically SE(3) equivariant and invariant, i.e.

Einv(O,Hk
i ; k, i) = Einv(TO,Hk

i ; k, i)

TEequiv(O,Hk
i ; k, i) = Eequiv(TO,Hk

i ; k, i)
(25)

For each element HK
i in AK , we firstly use Einv to denoise K − 1 steps, so for any 1 < k ≤ K, the

denoise iteration satisfies
Ĥk→0

i = Einv(O,Hk
i ; k, i) (26)

When the input observation is transformed by SE(3) element, for the property of Einv , we have

∀T∈SE(3) : Ĥ
k→0
i = Einv(TO,Hk

i ; k, i) (27)

It means the predicted noise Ĥk→0
i keeps invariant no matter what SE(3) transformation is applied

on the input observation. And then we carry the predicted noise into 8 , it’s obvious that Hk−1
i is
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also SE(3) invariant. So we can infer that H1
i is SE(3) invariant to input observation. In terms of

Markov transition, the first K − 1 transitions are p1-like.

p(Hk−1
i |Hk

i , O) = p(Hk−1
i |Hk

i , TO), 1 < k ≤ K (28)

For the last denoising iteration, we use a SE(3) equivariant model to predict noise, so when the
input observation is transformed, we have

∀T∈SE(3) : T Ĥ
1→0
i = Eequiv(TO,H1

i ; 1, i) (29)

Carry the result into 9, we will discover the final denoised action Ĥ0
i is SE(3) Equivariant. In

another word, the last Markov transition is p2-like.

p(H0
i |H1

i , O) = p(TH0
i |H1

i , TO) (30)

Additionally, as the initial noisy action HK
i is sampled from Gaussian distribution, it’s not condi-

tioned on the observation.
p(HK

i |O) = p(HK
i |TO) (31)

Combine 28, 30, 31 together and put them back into 24, we find the whole diffusion process for
single action is SE(3) equivariant. Joint all the H0

i (0 ≤ i ≤ Tp) into a sequence A0, it’s easy
to verify proposition 2 holds. In other word, our predicted action sequence is theoretically
SE(3) equivariant to input observations.

E Experiments showing p1-like transition is easier to learn

The properties of three different Markov transitions can be described as

p(y|x, c) = p1(y|x, Tc)
p(y|x, c) = p2(Ty|x, Tc)
p(y|x, c) = p3(Ty|Tx, Tc)

(32)

In practice, we use the SE(3) Transformer [17] with different input and output feature types to
approximate the three types of transitions(Denoted as P1Net, P2Net and P3Net). In this validation
experiment, we take a point cloud P with random orientation as observation (focusing solely on
rotation for simplicity). The detailed input and output feature types are shown in table 1 . According
to the features of SE(3) Transformer, it’s easy to verify the networks satisfy the corresponding
equivariant properties.

Table 1: Input and Output Feature Types

Input Feature Output Feature Supervision Final Loss
P1Net 3 type-0 9 type-0 identity matrix 0.0002
P2Net 3 type-0 3 type-1 Pose of input pts 0.25
P3Net 1 type-1 3 type-1 Pose of input pts 0.27

For all three networks, the input feature consists of 3 scalar values attached to each point, and the
output feature consists of 9 scalar values (after pooling across all points). For P1Net, the output is
set as nine type-0 features, meaning the output remains invariant to the rotation of the input point
cloud. We supervise the output by computing the L2 loss between it and a fixed rotation matrix. In
contrast, for P2Net and P3Net, the output is treated as three type-1 features, which are supervised
using the pose of the input point cloud. The only difference among the three networks is the input
and output feature types, while all other hyperparameters remain the same.

After training for the same number of epochs, the loss curve of the three networks is shown in
fig. 4. The experiments demonstrate that the invariant model (P1Net) is significantly easier to train
compared to the equivariant models (P2Net and P3Net), as it is expected to output the same values
regardless of the transformation applied to the input point cloud. Additionally, we observe that the
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Figure 4: Loss curve of P1Net, P2Net and P3Net. After only several gradient descent, the loss of
P1Net converges almost to 0, while the losses of P2Net and P3Net do not decrease obviously.

use of higher-type features in P2Net and P3Net results in increased memory requirements and longer
inference times.

Therefore, in ET-SEED, the diffusion process consists of K − 1 p1-like denoising steps and only
one p2-like step.

F Implementation of SE(3) equivariant and invariant backbones

Here we introduce the implementation of our true SE(3) equivariant backbone Eequiv and invariant
backbone Einv SE(3) Transformer [17].

In general, each module consists of 2 SE(3) Transformers, called as pos net and ori net, outputing
translation and rotation separately. As the output of SE(3) Transformer is per-point features, we
implement a mean pooling over all points to get global features.

F.1 Invariant module

We set the output of ori net as 6 type0 features, and then implement Schimidt orthogonalization to
get rotation matrix. As the 6 type0 features are SE(3) invariant, the rotation matrix is also invariant.

We set the output of pos net as 3 type0 features, which is naturally invariant to any SE(3) transfor-
mation of the point cloud, guaranteed by the translation invariance of SE(3) Transformer.

Finally we combine the translation and rotation parts to a 4 × 4 matrix, and it is invariant to any
SE(3) transformations of input point cloud.

F.2 Equivariant module

We set the output of ori net as 2 type1 features, and then implement Schimidt orthogonalization
to get rotation matrix. As the 2 type1 features are SE(3) equivariant, the rotation matrix is also
equivariant.

We set the output of pos net as 2 type1 feature and 3 type0 feature(denoted as offset). First we
implement Schimidt orthogonalization on the 2 type1 feature, get a rotation matrix (denoted as R).
Additionally, we denote the mass center of the input point cloud as M := 1

NΣN
i=1xi, xi is the

coordinate of the i− th point. Then we can write the predicted translation t as

t(X ) = M+R · offset (33)
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We can prove this translation vector is equivariant to any SE(3) transformation of the input point-
cloud X . When the input point cloud is transformed, X ′ = RdataX + tdata.

t′(X ) = (RdataM+ tdata) +RdataR · offset

= Rdata(M+R · offset) + tdata

= Rdatat(X ) + tdata

(34)

Finally we combine the translation and rotation parts to a 4 × 4 matrix, and it is equivariant to any
SE(3) transformations of input point cloud.

G Equivariant Diffusion on SE(3) manifold

The noisy action of step k can be represented as

Hk = Exp
(
γ
√
1− ᾱtε

)︸ ︷︷ ︸
Perturbation

F
(√

ᾱt;H
0,H

)︸ ︷︷ ︸
Interpolation

, ε ∼ N (0, I) (35)

The first term, Exp(γ
√
1− ᾱtε) is a random noise on SE(3) manifold, aiming to randomize the dif-

fusion process. According to the Gaussian distribution on SE(3) (appendix B.4), a SE(3) Gaussian
variable can be written as the Exp of a Gaussian variable on se(3) . So we first randomly sample a
6D noise ε ∈ R6 from unit Gaussian distribution, then scale it by a scheduler factor γ

√
1− α̂t to

control the magnitude of the perturbation at different steps. Finally we use the Exp map to convert
the variable back to SE(3) .

The second term is an interpolation on SE(3) manifold between H0 and H. The idea behind this
function is, first project the SE(3) transformation to se(3) , perform linear interpolation in this
tangent space, and then convert the interpolated vector back to SE(3) to obtain the interpolated
transformation. One can refer to Jiang et al. [16] for more details. Formally, the interpolation
funcion F can be expressed as

F
(√

ᾱt;H0,H
)
= Exp

((
1−

√
ᾱt

)
· log

(
HH−1

0

))
H0 (36)

H Simulation Experiments– Further Details

Table 2: Success rates (↑) and standard deviation of different tasks in simulation.

Open Bottle Cap Open Door Rotate Triangle

T NP T NP T NP

Method 25 50 25 50 25 50 25 50 25 50 25 50

DP3 [32] 65±4.5 76±5.5 11±4.2 14±6.5 61±2.24 72±2.74 9±3.54 16±5.48 67±2.74 89±2.24 5±2.24 10±2.74
DP3+Aug 35.0±5.0 44±4.2 38±4.47 46±7.42 43±8.37 54±6.52 30±4.18 40±8.22 35±3.54 42±4.47 32±5.70 41±4.18
EquiBot [14] 63±2.74 73±2.74 63±5.70 77±7.58 56±2.24 72±2.24 58±7.58 77±7.58 67±2.74 84±2.24 64±8.66 86±5.48
ET-SEED(Ours) 67±2.74 81±2.24 74±6.52 82±2.74 66±2.24 75±2.74 66±2.74 76±2.24 83±2.24 93±2.74 85±2.24 89±4.18

Calligraphy Fold Garment Fling Garment

T NP T NP T NP

Method 25 50 25 50 25 50 25 50 25 50 25 50

DP3 [32] 28±2.74 50±3.54 0±0.00 3±2.74 44±2.24 60±4.18 4±5.48 8±4.48 36±5.48 67±4.48 4±5.48 9±8.22
DP3+Aug 8±2.74 21±4.18 3±2.24 12±11.51 13±5.70 27±7.58 17±10.37 31±9.62 28±7.58 38±4.48 11±4.18 31±2.24
EquiBot [14] 24±5.48 43±8.37 14±10.84 40±10.61 34±4.18 58±2.74 33±2.74 60±7.90 35±6.12 61±6.52 36±6.52 64±8.22
ET-SEED(Ours) 38±2.74 55±3.54 36±6.52 54±8.22 47±2.74 67±2.74 49±2.24 69±4.18 50±5.00 67±4.48 48±4.47 62±5.70

17



Table 3: SE(3) Geodesic distances (↓) of different tasks in simulation.

Open bottle cap Open Door Rotate Triangle

T NP T NP T NP

Method 25 50 25 50 25 50 25 50 25 50 25 50

DP3 [32] 0.257 0.197 1.413 1.785 0.384 0.354 0.478 0.442 0.265 0.192 1.812 1.627
DP3+Aug 0.283 0.234 0.276 0.218 0.391 0.315 0.442 0.329 0.247 0.187 0.578 0.447
EquiBot [14] 0.194 0.151 0.197 0.170 0.241 0.224 0.266 0.228 0.197 0.107 0.214 0.099
ET-SEED (Ours) 0.133 0.114 0.127 0.124 0.127 0.101 0.121 0.128 0.098 0.082 0.104 0.087

Calligraphy Fold Garment Fling Garment

T NP T NP T NP

Method 25 50 25 50 25 50 25 50 25 50 25 50

DP3 [32] 0.305 0.241 4.988 4.662 0.479 0.298 4.466 4.179 0.529 0.348 4.993 4.365
DP3+Aug 0.354 0.337 4.752 4.365 1.318 0.976 1.524 1.219 1.318 0.976 1.524 1.219
EquiBot [14] 0.291 0.117 0.282 0.129 0.368 0.293 0.387 0.288 0.418 0.343 0.437 0.338
ET-SEED (Ours) 0.124 0.083 0.121 0.089 0.299 0.149 0.287 0.136 0.349 0.179 0.337 0.186

H.1 Task Setting:

• Rotate Triangle: A robotic arm with 2D anchor pushes the triangle to a target 6D pose.
The task reward is computed as the percentage of the Triangle shape that overlaps with the
target Triangle pose.

• Open Bottle Cap: A bottle with a cap is placed at a random position in Workspace, and
a robot arm is tasked with opening the cap. In this task, the demonstrations show robots
Unscrewing bottle cap with parallel gripper. Success in this task depends on whether the
bottle cap is successfully opened. Note that, due to simulator constraints, opening the bottle
cap simply involves lifting it upward without the need to twist it first.

• Open Door: This task evaluates the manipulation of articulated objects. The model is re-
quired to generate trajectories to open doors positioned at various orientations. The demon-
stration is given as: We initialize the gripper at a point p sampled on the handle of the door
and set the forward orientation along the negative direction of the surface normal at p. And
then we pull the door by a degree. Different from door pushing, we perform a grasping at
contact point p for pulling. Success in this task is determined by the opening angle of the
door.

• Robot Calligraphy: This long-horizon task involves using a robot arm to write complex
Chinese characters on paper, accounting for different orientations. Success in this task
is determined by the aesthetic quality and accuracy of the characters or patterns formed,
which should closely resemble the target trajectory.

• Fold Garment: A long-horizon task involving deformable object manipulation, where a
robot folds a long-sleeved garment. The robot folds the sleeves inward along the garment’s
central axis, then gathers the lower edge of the garment and folds it upward, aligning it with
the underarm region. A folding succeeds when the Intersection-over-Union (IOU) between
the target and the folded garments exceeds a bar [34, 35, 36, 37].

• Fling Garment: A dual-arm task for manipulating deformable objects. The robot grasps
the two shoulder sections of a wrinkled dress, lifting it to allow the fabric is clear of the
surface. Then flings the garment it to flatten the fabric, and then places it back onto a flat
surface. Success is determined by the projection area of the flattened garment.

Some of the six tasks are exactly SE(3) equivariant, and some are partially. In the Open Door task,
the manipulation trajectory is exactly equivariant with the point cloud of the door. In the Robot
Calligraphy task, the manipulation trajectory is exactly equivariant with the point cloud of the paper
and the handwriting that has been written. In the Open Bottle Cap task, the manipulation trajectory
is exactly equivariant with the point cloud of the bottle. In the Rotate Triangle task, as we always
add same transformation on initial pose and target pose of the triangle, the manipulation trajectory
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is exactly equivariant with the point cloud of the triangle. In the Fling Garment and Fold Garment
tasks, the trajectories are not exactly equivariant with the initial observation of the garment, as the
deformation differs in each initialization. But even so, our method can also outperform baselines.

The intuition is, by ensuring end-to-end SE(3) equivariance, our model treats a point cloud in
the observation space and all the point clouds possible by SE(3) transformation as an equivalence
class, so the observation space is reduced to the quotient space of the observation space over the
SE(3) group. Once the SE(3) equivariance is naturally ensured, the network can focus on the geo-
metric features of the object, so it still has the ability to generalize to the deformation and geometry
of objects.

H.2 Qualitative Results.

Table 2 and 3 provide a quantitative comparison between our method and the baseline. Both
DP3 and its augmented variant demonstrate strong performance in the training setting (T), but they
exhibit a significant drop in performance when faced with New Poses (NP) scenarios. This highlights
that merely incorporating data augmentation is insufficient for the model to generalize effectively to
unseen poses. Instead, leveraging equivariance proves essential for enhancing spatial generalization.

While EquiBot achieves commendable results in both success rate and Dgeo, it struggles with more
complex, long-horizon tasks such as Calligraphy and Fold Garment. Also, when less demonstrations
are given, the performance is not satisfactory. These challenges stem from the inherent complex-
ity of its diffusion process design, where maintaining equivariance in each Markov transition adds
substantial difficulty to the learning task.

In contrast, ET-SEED consistently outperforms across all six tasks, with minimal performance drop
when facing unseen object poses. This advantage is especially pronounced when using a limited
number of demonstrations, showcasing T-SEED’s superior data efficiency, manipulation proficiency,
and spatial generalization ability.

I Real World Experiments– Further Details

Open Bottle Cap Open Door Fold Garment Calligraphy
Figure 5: Visualizations of the real-world environments used in our experiments. The tasks are
performed using multiple Microsoft Azure Kinect cameras and Intel® RealSense for point cloud
fusion and a Panda robotic arm for execution.

Table 4: Success rates in real-world robot experiments.

Method Open Bottle Cap Open Door Calligraphy Fold Garment

DP3 0.2 0.2 0.0 0.1
DP3+Aug 0.2 0.3 0.0 0.2
EquiBot 0.6 0.5 0.0 0.3
ET-SEED (Ours) 0.8 0.6 0.4 0.6

Task Description. In the task of Open Bottle Cap, unlike in a simulator, the process in the real
world involves first twisting the cap and then lifting it off to open. The bottle is initially placed at
a random position on the table. For Opening Door, the initial position of the cabinet is randomly
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determined. In Calligraphy, we use flat-bristled brushes and watercolor paper, which is randomly
positioned on the table. In Cloth Folding, the limited workspace of the Franka robot means it cannot
reach every possible location. Therefore, the placement of clothes is not random but is instead based
on locations accessible to the robot.

Qualitative Results. Results for our real robot tasks are given in Table 4. Consistent with our sim-
ulation findings, in real world experiments, ET-SEED performs better than baselines in all the four
tasks, given only 20 demonstrations. The evaluation shows the effectiveness and spatial generaliza-
tion ability of our method.

J Abalation Study

Table 5: Ablation studies.

Design Average

Ours w/o SE(3) 24±4.48
Ours w/o Eqv-Diff 57±6.52
Ours 76±2.24

Ablation Studies. We conduct ablation studies on the New Pose (NP) scenario of the representative
Opening Door task to evaluate the effectiveness of different components of our approach:

• Ours w/o SE(3): Our method without SE(3) invariance and equivariance in the backbone
architecture. In this variant, we use a standard PointNet++ to predict noise at each step.

• Ours w/o Eqv-Diff: Our method without the SE(3) equivariant denoising process. In-
stead, we use a non-equivariant diffusion process (DDIM), following the approach of Ze
et al. [32].

Table 5 shows quantitative comparisons with ablations. Clearly each component improves our
method’s capability.
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