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Abstract

Graphons, as limit objects of dense graph sequences, play a central role in the
statistical analysis of network data. However, existing graphon estimation meth-
ods often struggle with scalability to large networks and resolution-independent
approximation, due to their reliance on estimating latent variables or costly metrics
such as the Gromov-Wasserstein distance. In this work, we propose a novel, scal-
able graphon estimator that directly recovers the graphon via moment matching,
leveraging implicit neural representations (INRs). Our approach avoids latent
variable modeling by training an INR–mapping coordinates to graphon values–to
match empirical subgraph counts (i.e., moments) from observed graphs. This direct
estimation mechanism yields a polynomial-time solution and crucially sidesteps
the combinatorial complexity of Gromov-Wasserstein optimization. Building on
foundational results, we establish a theoretical guarantee: when the observed sub-
graph motifs sufficiently represent those of the true graphon (a condition met with
sufficiently large or numerous graph samples), the estimated graphon achieves
a provable upper bound in cut distance from the ground truth. Additionally, we
introduce MomentMixup, a data augmentation technique that performs mixup in
the moment space to enhance graphon-based learning. Our graphon estimation
method achieves strong empirical performance–demonstrating high accuracy on
small graphs and superior computational efficiency on large graphs–outperforming
state-of-the-art scalable estimators in 75% of benchmark settings and matching
them in the remaining cases. Furthermore, MomentMixup demonstrated improved
graph classification accuracy on the majority of our benchmarks.

1 Introduction

Networks are fundamental structures for representing complex relational data across diverse domains,
from social interactions and biological systems to technological infrastructures [10, 31]. Understand-
ing the underlying principles governing these networks is crucial for tasks such as link prediction [26],
community detection [30], and, more broadly, node or graph classification [25]. Graphons, or graph
limits, have emerged as a powerful mathematical framework for capturing the asymptotic structure of
sequences of dense graphs [19, 18, 5, 2]. They provide a continuous, generative model for graphs,
enabling principled statistical analysis and offering a canonical representation for large networks.
Graphons have been successfully applied to derive controllers for large networks [12], to understand
network games with many actors [23], to perform data augmentation in graph settings [21, 13], and
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to aid in the topology inference of partially observed graphs [28, 20]. As such, developing accurate
and efficient methods for estimating graphons from observed network data is a central problem in
network science and machine learning.

Estimating graphons from finite, potentially noisy graph observations presents significant challenges.
Many existing approaches suffer from computational scalability issues when applied to large net-
works [7, 35]. Furthermore, their resolution is limited by the size of the sample graphs, and obtaining a
resolution-free approximation of the underlying continuous graphon can be difficult [7]. For instance,
implicit neural representations (INRs) have been explored for graphon estimation due to their ability
to model continuous functions [34]. However, estimating the latent variables of the nodes to train the
INRs remains a challenge, and oftentimes the literature resorts to computationally demanding optimal
transport-inspired losses, like the Gromov-Wasserstein (GW) distance for optimization. While recent
scalable methods have made progress [3], there remains a need for estimators that combine high
accuracy, computational efficiency, and direct graphon recovery without complex intermediate steps.

In this paper, we introduce a novel and scalable approach for graphon estimation via moment
matching, designed to overcome these prevalent limitations. Our method directly recovers the
graphon by leveraging subgraph counts (graph moments) from observed data, thereby bypassing
the need for latent variables and their associated complexities. We represent the graphon using
an INR, a continuous function parameterized by a neural network that maps coordinates in [0, 1]2

to the corresponding graphon value. The parameters of this INR are learned by minimizing the
discrepancy between the moments derived from the INR and the empirical moments computed from
the input graph(s). This direct recovery strategy, crucially, leads to a polynomial-time estimation
algorithm and does not rely on combinatorial GW distances, distinguishing it from approaches
like IGNR [34]. Our approach is underpinned by a theoretical result, building upon foundational
work on convergent graph sequences [5], which establishes that if the motifs (subgraph patterns) in
the observed graph data sufficiently represent the motifs present in the true underlying graphon–a
condition met with sufficiently large or numerous graph samples–then the cut distance between the
estimated and true graphons is provably upper bounded. Additionally, we propose MomentMixup, a
novel data augmentation technique that operates by interpolating graph moments between classes
and then learning the corresponding mixed graphons, offering an improvement over existing mixup
strategies in the graphon domain [21, 13].

Our contributions are threefold:

1. We propose MomentNet, a scalable graphon estimator based on moment matching with
INR, offering a resolution-free and estimation recovery mechanism.

2. We provide a theoretical guarantee linking the fidelity of motif representation in observed
data to the estimation accuracy in terms of cut distance.

3. We introduce MomentMixup, an effective data augmentation method in the moment space
for graphon-based learning tasks.

The remainder of this paper is structured as follows: Section 2 presents the necessary background
concepts and related works. Section 3 details our moment-matching INR approach for graphon esti-
mation, including its theoretical characterization. Section 4 introduces MomentMixup, our approach
for data augmentation in graph classification tasks. Section 5 presents our comprehensive empirical
evaluations in both synthetic graphon estimation and data augmentation for graph classification.
Finally, Section 6 concludes the paper and discusses future directions.

2 Background, Related Works and Problem Formulation

In this section, we introduce the foundational concepts of graphons, motif densities, INRs for graphon
estimation, and mixup for data augmentation. We also formally state the graphon estimation problem
addressed in this paper. In all these topics, we provide a summary of the literature, although a detailed
discussion of related works can be found in Appendix A.

Graphons A graphon, short for “graph function,” is a fundamental concept in the theory of graph
limits, serving as a limit object for sequences of dense graphs [18, 5]. Formally, a graphon W is
a symmetric measurable function W : [0, 1]2 → [0, 1]. Intuitively, the unit interval [0, 1] can be
thought of as a latent space for the graph nodes. For any two points x, y ∈ [0, 1] (representing latent
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positions), the value W (x, y) represents the probability of an edge forming between nodes associated
with these latent positions.

A random graph Gn(W ) with n nodes can be generated from a graphon W by sampling n i.i.d. latent
positions η1, η2, . . . , ηn ∼ U [0, 1] and, for each pair of distinct nodes (i, j) with 1 ≤ i < j ≤ n, an
edge (i, j) is included in Gn(W ) independently with probability W (ηi, ηj). Graphons are inherently
invariant to permutations of node labels in the generated graphs, meaning that different orderings
of the latent positions ηi that preserve their relative positions in [0, 1] (or more formally, measure-
preserving bijections of [0, 1]) lead to equivalent graphon representations. The natural distance metric
capturing this invariance is the cut distance [5].

Motif Densities from Graphons A key property of graphons is their ability to characterize
the expected density of small subgraphs, often called motifs [5, 18]. For a simple graph F (the
motif), whose node and edge set are represented by VF and EF , respectively, with k = |VF |, its
homomorphism density in a graphon W , denoted t(F,W ), is defined as

t(F,W ) =

∫
[0,1]k

∏
(i,j)∈EF

W (ηi, ηj)
∏
l∈VF

dηl. (1)

This integral represents the probability that k randomly chosen latent positions from [0, 1] induce a
subgraph homomorphic to F according to the edge probabilities defined by W . For a sufficiently large
graph G sampled from W , the empirical count of motif F in G, normalized appropriately, converges
to t(F,W ). Thus, empirical motif densities from observed graphs can serve as estimators for the true
motif densities of the underlying graphon. The set of all such motif densities {t(F,W )}F∈F (for
some collection of motifs F) is often referred to as the moment vector of the graphon [4]. We also
introduce the induced motif densities as follows

t′(F,W ) =

∫
[0,1]k

∏
(i,j)∈EF

W (ηi, ηj)
∏

(i,j)/∈EF

(1−W (ηi, ηj))
∏
l∈VF

dηi. (2)

This formulation for induced motif density, t′(F,W ), specifically counts instances where the motif F
appears in W with an exact structural match. This means it accounts for both the required presence
of edges specified in F and the required absence of edges between the motif’s vertices that are not
in F . In contrast, a non-induced (or homomorphism) density t(F,W ) only requires the presence of
edges from F in W , without any assumption of the value of the graphon associated with pairs of
nodes not linked by an edge.

Implicit Neural Representations for Graphon Estimation An INR can effectively model a
graphon by learning it as a continuous function [34, 3]. In this setup, the INR, typically a neural
network fθ : [0, 1]2 → [0, 1], is trained to take pairs of latent node coordinates (ηi, ηj) from a
continuous space as input, where ηi and ηj represent the latent positions associated with entities i and
j. Its output is the predicted value of the graphon fθ(ηi, ηj) = Ŵ (ηi, ηj), representing the probability
of an edge existing between these two latent positions. The network fθ learns this mapping from
observed samples, which could be ((ηil , ηjl),W (ηil , ηjl)) pairs derived from a large graph or a target
graphon function, for a set of sample indices l. Crucially, because fθ learns a continuous function
over the entire input coordinate space defined by η·, the resulting graphon representation is inherently
resolution-free. This means it can determine the edge probability for any arbitrary pair of latent
coordinates (ηi, ηj), allowing for the generation or analysis of graph structures at any desired level of
detail or scale without being tied to a fixed number of nodes or a specific discretization.

Mixup for Data Augmentation The core idea of Mixup [40] is to generate synthetic training
examples by taking convex combinations of pairs of existing samples and their corresponding labels.
Given two input samples xi and xj with their respective labels yi and yj , a new synthetic sample
(x̃, ỹ) is created as x̃ = λxi + (1 − λ)xj , ỹ = λyi + (1 − λ)yj . where λ ∈ [0, 1] is a mixing
coefficient. This encourages the model to behave linearly in-between training examples, leading to
smoother decision boundaries and improved generalization.

Applying Mixup directly to graph-structured data presents challenges because graphs are not inher-
ently Euclidean objects. To perform Mixup for graphs, one typically first maps the graphs into a
suitable Euclidean representation [21, 13]. For example, GraphMAD [21] maps the graphs to a latent
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Figure 1: Graphon estimation pipeline: observed graphs lead to motif frequency extraction and
INR-based recovery.

space and performs nonlinear mixup, while G-Mixup [13] performs mixup in the graphon domain.
Once graphs Gi and Gj are available as Euclidean representations zi and zj respectively, a mixed
representation z̃ = λzi + (1− λ)zj can be computed. The subsequent step, which can be non-trivial,
is to generate a new graph G̃ from this mixed representation z̃ that can be used for training a graph
classification model.

Problem Formulation. The primary problem addressed in the graphon estimation literature, and in
this work, is to recover the underlying graphon W ∗ given one or more observed graphs.
Problem 1 (Graphon Estimation). Given a set of observed graphs G = {G1, G2, . . . , GP }, where
each Gp has np vertices and is assumed to be sampled (conditionally independently) from an unknown
true graphon W ∗, i.e., Gp ∼ Gnp(W

∗), the goal is to estimate W ∗.

In the literature, early methods aimed at solving Problem 1 by means of histogram estimators and
stochastic block models [5, 18, 6, 1, 11]. Other non-parametric approaches, like Universal Singular
Value Thresholding (USVT) [7], aimed to recover underlying network structures but often faced
computational or resolution limitations. More recent scalable techniques include those using INRs.
For instance, IGNR [34] often leverages GW distances [24, 37, 35] for alignment, while methods
like SIGL [3] further advance INR-based estimation.

Our work proposes a novel method for solving Problem 1 by directly learning an INR to match
empirical moments (subgraph counts) from the observed graph(s), thereby bypassing latent variables
and computationally expensive metric optimizations. Moreover, we leverage our proposed solution
to Problem 1 to design MomentMixup, a novel mixup strategy for graph data augmentation. Mo-
mentMixup performs mixup in the space of empirical moments, offering a novel way to generate
augmented graph data informed by the underlying generative structure.

3 Moment Matching Neural Network (MomentNet)

In the following subsections, we introduce our proposed method, MomentNet, for learning the
graphon. We also provide the fundamental theorem upon which our model is built.

3.1 Methodology

We explain the two steps in our method to estimate the graphon W given the set of sampled graphs
denoted by G = {Gp}Pp=1. A schematic view of our method is presented in Figure 1.

Step 1: Computing density of motifs. For each graph in our dataset G, we count the occurrences of
specific motifs. The density of an identified motif is then calculated as the ratio of its observed count
to the total number of possible ways that particular motif could appear in a graph of the same size.
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We use the ORCA method [15] to count the number of graphlets in the graph, and then we convert
the graphlet count into motif counts. This aggregation is needed because our analysis cares only
about how often each subgraph pattern appears in total, not about the exact placement of individual
nodes within those patterns; see Fig. 1 in [15] for an illustration. We parallelize the use of the ORCA
method for computing motif counts across the graphs in our dataset, thereby gaining a significant
speed-up in processing time. ORCA can count motifs with up to five nodes, and its method can be
extended to handle larger motifs. Once these motif-based statistics are calculated from the graphs,
we no longer use the graphs themselves for subsequent steps. This approach significantly reduces
computational overhead. Mathematically, we consider a set F of |F| distinct motif types. For each
graph Gp in our dataset, its empirical motif density vector is m(p) ∈ R|F|. The overall motif density
vector m for the dataset is currently computed as the simple average:

m =
1

P

P∑
p=1

m(p). (3)

While Eq. (3) treats each graph equally, a more general approach could involve a weighted average,
mw =

∑P
p=1 wpm

(p) (where wp ≥ 0 and
∑P

p=1 wp = 1). Such weights wp could, for example,
depend on graph properties like size (np), potentially giving more influence to larger graphs, which
might yield more stable density estimates. Our present work employs the simple average, with the
exploration of weighted schemes as a potential future refinement.

Step 2: Training the Moment network The moment network is defined as a combination of INR
with a moment-based loss function. This step consists of three components described as follows:

1. INR: Our methodology employs an INR fθ to model the graphon, that receives the latent
coordinates (ηi, ηj) and outputs the estimated graphon value Ŵθ(ηi, ηj), as explained in
Section 2.

2. Moment estimator: With the graphon estimated by the INR function fθ, we can compute
the induced motif density for any given motif F . This is achieved by substituting Ŵθ in
place of W in (2). Since we can not compute the integral directly, we approximate it using
Monte Carlo integration techniques. By generating a sufficient number of random samples L
from the distribution induced by the graphon, we can estimate the integral. More precisely,
we sample L samples of k latent coordinates η(l)1 , . . . , η

(l)
k , where η

(l)
i ∼ U [0, 1]. Then we

estimate t′(F, Ŵθ) as

t̂′(F, Ŵθ) =
1

L

L∑
l=1

 ∏
(i,j)∈EF

Ŵθ(η
(l)
i , η

(l)
j )

∏
(i,j)/∈EF

(1− Ŵθ(η
(l)
i , η

(l)
j ))

 (4)

The Monte Carlo estimator t̂′(F, Ŵθ) is differentiable with respect to the INR parameters
θ. Since the INR fθ is a neural network parameterized by θ (and thus differentiable with
respect to θ), the estimator t̂′(F, Ŵθ), which is constructed as an average of terms derived
from fθ outputs at fixed sample points η(l), is consequently also differentiable with respect
to θ. This characteristic is vital as it allows the use of gradient-based optimization algorithms
to train the INR parameters θ when this estimator is incorporated into a loss function. A
proof of unbiasedness for this approach, i.e., showing that E[t̂′(F, Ŵθ)] = t′(F, Ŵθ), is
provided in Appendix D. The vector of estimated moments (e.g., motif densities) derived

from the INR outputs is denoted as m̂(θ) =
[
t̂′(F1, Ŵθ), t̂

′(F2, Ŵθ), . . . , t̂
′(F|F|, Ŵθ)

]⊤
.

3. WMSE: We use weighted mean squared error as a loss function to train our INR. Given the
empirical moment vector m, based on sampled graphs and computed using Eq. (3), and the
estimated moments based on the INR as m̂(θ), the loss function is

L(θ) =

|F|∑
i=1

wi (mi − m̂i(θ))
2
. (5)

In our experiments, we adjust the importance of different factors by assigning weights (wi).
We calculate these weights as the inverse of how strong each factor (mi) appears in our data

5



(wi =
1
mi

). This weighting method balances the impact of each moment, preventing the
most frequent ones (larger mi) from having a large effect on the learning process.

The training process described above, optimizing the parameters θ of the INR fθ to minimize the
weighted mean squared error between empirical and estimated motif densities, yields our final
graphon estimate Ŵθ = fθ. This estimated graphon is inherently scale-free due to the continuous
nature of the INR. Furthermore, the entire estimation procedure operates in polynomial time with
respect to the number of nodes and motifs considered. A detailed complexity analysis is provided in
Appendix E.

3.2 Theoretical characterization

We present our main theorem bounding the cut distance between the true graphon W ∗ and the graphon
Ŵθ estimated by our proposed INR. This result combines insights from the concentration of empirical
motif densities in the Gn(W ) model [5] with the inverse counting lemma relating motif distances to
cut distance, and an assumption about the neural network’s ability to approximate empirical motif
densities. Supporting lemmas and the proof of this theorem are provided in Appendix B.

Let G1, . . . , Gp be P graphs, each with n vertices, sampled independently from the graphon model
Gn(W

∗) according to the graphon W ∗. The empirical motif density of F based on these samples is
t̄(F,W ∗) = 1

P

∑P
p=1 t(F,Gp), where in a slight abuse of notation we denote by t(F,Gp) the motifs

densities computed from the motif counts of graph Gp.

We consider an INR fθ with parameters θ, whose estimated graphon is denoted by Ŵθ. The motif
densities corresponding to this estimated graphon are denoted by t̂θ(F, Ŵθ). The INR is trained to
directly output t̂θ(F, Ŵθ) values that approximate the empirical densities t̄(F,W ∗). Also, let Fk

denote the set of all non-isomorphic simple graphs with exactly k vertices and let Nk = |Fk| be the
number of such graphs. As a preliminary step, we formalize the performance requirement we use to
characterize our neural network next (see Appendix B.2 for a justification).

Assumption 1 (Neural Network Approximation Capability). The parameters θ of the INR Ŵθ are
obtained such that for a fixed approximation error ϵa > 0, the estimated motif densities t̂θ(F, Ŵθ)
satisfy

|t̂θ(F, Ŵθ)− t̄(F,W ∗)| < ϵa, for all F ∈ Fk. (6)

With the previous definitions, and those of Lemma 2 in Appendix B, we are in a position to present
our main result, stated in Theorem 1.
Theorem 1 (Cut Distance Bound for INR Estimated Graphons). Let ϵa > 0 be the approximation
error achieved by the network as stated in Assumption 1, and δM = 3−k2

be the motif deviation
threshold. Assume n > k(k−1)

δM
and

Nk · 2 exp

(
−Pn

4k2

(
δM
2
− k(k − 1)

2n

)2
)

< ζ, (7)

where ζ > 0 is a desired confidence level. Then, with probability at least 1 − ζ, the cut distance
between the neural network estimated graphon Ŵθ and the true graphon W ∗ is bounded by η =

22C√
log2 k

, with C = max{1, ∥W1∥∞, ∥W2∥∞}, as

dcut(Ŵθ,W
∗) < η. (8)

A detailed proof of Theorem 1, along with necessary definitions and supporting lemmas, can be found
in Appendix B. This result demonstrates that if the INR can accurately approximate the empirical
motif densities (Assumption 1), and if enough data (characterized by P and n) is available to ensure
the empirical motif densities are close to the true graphon motifs (Lemma 1), then the estimated
graphon is likely to be close to the true graphon in cut distance.

Although condition (7) may seem restrictive, note that (i) it decays exponentially with the number of
graphs P and their size n considered, so it can be made arbitrarily small by considering larger datasets
and (ii) although it increases with k (and therefore with Nk), the size of the subgraphs considered k
is usually small (up to 5 nodes at most).
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4 Moment Mixup

Data augmentation is a crucial technique in machine learning, particularly in domains like graph
learning, where labeled data can be scarce or expensive to obtain [9]. By synthetically expanding
the training dataset with new, plausible examples, data augmentation helps to improve model gener-
alization, reduce overfitting, and enhance robustness. In the context of graph learning, developing
effective augmentation strategies is challenging due to the complex, non-Euclidean nature of graph
data, where direct analogies to image or text augmentation methods are not always feasible.

In this section, we introduce MomentMixup, a novel approach for data augmentation in graph
learning. The process begins by generating novel moment profiles through convex combinations of
moment vectors, where each vector mk is derived from sampled graphs belonging to a distinct graph
class (e.g., mnew =

∑
αkmk, with αk ≥ 0,

∑
αk = 1). This interpolated moment vector, mnew,

is then used as the input to MomentNet, which subsequently defines a new graphon distribution,
Wnew(ηi, ηj), consistent with these synthesized moments. Finally, new graphs are sampled from
Wnew(ηi, ηj) and integrated into the training set. The pseudocode of MomentMixup is provided in
Algorithm 1 in Appendix G.
Proposition 1. A convex combination of graphons is not equivalent to the corresponding convex
combination of their vectors of moments, with the exception of the edge density moment.

Proof of Proposition 1 using a counterexample is provided in Appendix F. MomentMixup is devel-
oped based on the key insight from Proposition 1. This foundational understanding distinguishes
MomentMixup and offers it as an alternative to existing methods like G-Mixup [13]. The core
intuition underpinning MomentMixup is that newly generated graph samples should exhibit clear
structural proximity to a specific class (i.e., similar motif counts), thereby ensuring the augmented
data reinforces class-specific structural characteristics. We contend that this particular intuition,
that a generated sample is structurally close to a target class, may not always be reliably achieved
through G-Mixup’s graphon interpolation strategy because of Proposition 1. Furthermore, a detailed
reproducibility analysis was unable to substantiate the original paper’s claims regarding G-Mixup’s
superiority over other data augmentation methods [22].

5 Numerical Experiments

In this section, we evaluate the performance of MomentNet and MomentMixup using various
synthetic and real-world datasets widely used in the literature. The primary deep learning components
of our experiments were executed on an Nvidia A100 GPU. Separately, empirical graph moments
were computed using the ORCA toolkit [15], with its execution parallelized across an AMD EPYC
7742 64-Core Processor.

5.1 MomentNet Evaluation

To comprehensively evaluate our proposed MomentNet, we focus on two critical dimensions. First,
we examine its effectiveness in the primary task of graphon estimation, determining how accurately it
can capture the underlying distribution of graphs. Second, we address the practical applicability of
our model by testing its scalability. This involves assessing its performance and runtime when applied
to both large graphs (high number of nodes) and collections of smaller graphs, which are crucial
considerations for real-world applications. We use L = 20000, which is the number of samples to
compute the density of moments of MomentNet using Eq. 4 in both experiments.

5.1.1 Graphon Estimation

We use the 13 graphon distributions used in the literature [3, 34]. The list of graphon distributions with
their plot is provided in Appendix G. To build our experimental dataset, we adopt the graph generation
approach utilized in [34]. From each graphon, we then generate 10 distinct graphs of varying sizes,
specifically containing {75, 100, . . . , 275, 300} nodes respectively. We treated the INR architecture
as a hyperparameter to account for function complexity, noting that a simple one-layer MLP [17]
with 64 neurons sufficed for non-complex graphons, while more complex cases (like Stochastic
Block Models) required architectures such as SIREN [29] to accurately represent high-frequency
details. This reflects the known limitations of modeling complex functions with small networks;
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(a) Performance comparison of MomentNet compared to other graphon estimation approaches.

(b) Comparison of performance scalability of Moment-
Net with SIGL.

(c) Comparison of runtime scalability of MomentNet
with SIGL.

Figure 2: Overall comparison of MomentNet performance and scalability.

the specific best-performing architecture for each graphon is provided in the supplementary code
repository. For comparison, following INR training, we generate the graphon using 1000 uniformly
sampled equidistant latent variables over the interval [0, 1]. The GW distance [36] is then computed
between this estimate and the ground truth graphon. For our method, we implemented the same
steps described in section 3, considering the motifs provided in Fig. 5. To evaluate the performance
of our graphon estimation, we benchmark it against several established baseline methods. These
include universal singular value thresholding (USVT) [7], sorting-and-smoothing (SAS) [6], implicit
graph neural representation (IGNR) [34], Graph-Wasserstein barycenters (GWB) [35], and scalable
implicit graphon learning (SIGL). For a consistent comparison, graphons estimated by the IGNR
and SIGL baselines are sampled at a resolution of 1000, mirroring our own evaluation protocol.
Furthermore, for SAS and USVT, we zero-pad the adjacency matrices of the observed graphs to this
target resolution of 1000 before their respective graphon estimation procedures are applied; this input
processing strategy is similar to those employed in [3, 34].

The results are provided in Fig. 2a. Based on the GW loss, our method outperforms the scalable
state-of-the-art approach in 9 out of 13 graphons. Notably, our approach achieved superior results
for graphons 10 and 11, where the state-of-the-art baseline (SIGL) struggled more. This difficulty
might stem from the specific structures of graphons 10 and 11, which can challenge SIGL’s reliance
on accurately learning latent variables for its GNN-based node ordering and subsequent graphon
estimation. Alongside the GW loss comparison, we assessed our graphon estimation via centrality
measures, and the findings, detailed in Appendix J, affirmed our method’s performance.

5.1.2 Scalability Evaluation

For experimental evaluations, we use the graphon W (ηi, ηj) = 0.5 + 0.1 cos(πηi) cos(πηj) (Fig-
ure 1) for generating graph instances across multiple independent realizations for each node size
n ∈ {10, . . . , 510}. In each realization, 10 graphs of size n are generated; MomentNet’s target
motif counts are averaged from these, while SIGL processes them according to its methodology.

8



Reported performance metrics are averaged over these realizations, allowing methods to leverage a
comprehensive set of samples.

The estimation error results (Figure 2b) show that MomentNet achieves strong performance, with
error decreasing as n increases. By leveraging multiple graph instances, MomentNet demonstrates
near-optimal performance even on relatively small graphs, attributed to more accurate motif den-
sity estimation, aligning with theory. In contrast, SIGL’s error, while node-dependent, does not
substantially improve from multiple graph instances, offering only slight gains for small graphs,
resulting in inferior overall performance. A potential explanation is SIGL’s reliance on accurate
latent variable estimation. The specific graphon W (ηi, ηj) = 0.5 + 0.1 cos(πηi) cos(πηj) (Figure 1)
makes this challenging, as its construction ensures edge probabilities near 0.5, leading to high vari-
ance (W (1−W ) near maximum). This high variance can obscure latent structure. MomentNet’s
averaging directly reduces density estimate variance. However, for SIGL, if each of the 10 graphs
individually fails to resolve latent positions due to high variance, more such graphs may not overcome
this limitation as effectively as methods that directly average structural features.

Regarding runtime (Figure 2c), MomentNet’s average runtime, despite variance, scales more favorably
with increasing nodes compared to SIGL, showing a clear advantage for n > 300. The variance in
MomentNet’s runtime is due to its early stopping criteria (see Appendix E for detailed complexity
analysis). Further experimental results are provided in Appendix K.

5.1.3 Ablation Study: Choice of Moments

The robustness of MomentNet is demonstrated by its strong performance using a relatively small,
fixed set of motifs. We conducted an ablation study to investigate the impact of moment selection,
with results for Graphons 2 and 4 (from Table 7) presented in Table 1. A key finding is that while
performance generally improves as more motifs are added (indicated by lower GW distance), this
trend is not strictly monotonic. We observed minor performance dips, for instance, after incorporating
the seventh and eighth motifs for Graphon 2, a behavior also seen with Graphon 4.

This non-monotonicity suggests that not all motifs contribute equally; some higher-order motifs
may introduce statistical noise, as they are often rare and thus typically require more samples for
accurate approximation. Critically, these fluctuations are minor within a strong overall trend, and
adding motifs beyond the first six provides no significant advantage. Our experiments affirm that a
practical and powerful graphon estimation can be achieved using a fixed set containing all motifs up
to a small node count k. While an adaptive motif selection strategy remains a valuable avenue for
future exploration, the current approach is robust and highly effective.

Table 1: Ablation of motif count vs. GW distance (Avg ± Std). Motif count indicates the cumulative
number of motifs used (up to 15, which is all motifs of size ≤ 5).

Motif Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GW Graphon 2 .089 .100 .036 .031 .029 .021 .024 .027 .026 .022 .023 .020 .020 .018 .020
Std Graphon 2 .012 .015 .008 .008 .008 .003 .003 .006 .002 .003 .005 .003 .002 .001 .002

GW Graphon 4 .151 .060 .037 .018 .017 .014 .018 .018 .013 .011 .012 .010 .010 .010 .010
Std Graphon 4 .009 .017 .012 .005 .005 .002 .004 .006 .003 .001 .002 .002 .001 .002 .001

5.2 MomentMixup Evaluation

To evaluate the performance of our MomentMixup framework, we conducted graph classification
experiments on several real-world datasets: AIDS [27], IMDB-Binary [39], IMDB-Multi [39], and
Reddit-Binary [39]. Detailed descriptions of these datasets are provided in Appendix K. To ensure
a fair comparison with prior work, we adopted the same data splitting methodology as reported in
previous literature [3, 13]. For data augmentation, we treated αmix, Nnodes, Ngraph, and Nsample as
hyperparameters in Algorithm 1 and the best parameters are provided in Appendix K. We employ the
GIN architecture [38] as the graph classification model.

Table 2 presents the model’s accuracy on the test set. The results demonstrate that our method achieves
a better performance gain over the standard G-Mixup approach on three datasets. As highlighted in
the previous section, our method demonstrates a distinct advantage on datasets composed of smaller
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graphs, such as AIDS, where it notably outperforms techniques like SIGL. While our results on the
Reddit-Binary dataset, which features very large graphs and where SIGL performs strongly, were
influenced by the experimental choice of using a limited set of nine motifs, this contrast further
illuminates a key insight: the optimal choice of mixup method can be highly dependent on graph
characteristics, particularly size. Our approach appears particularly well-suited for capturing structural
nuances in smaller graphs where fewer motifs can still provide rich representative information.

Table 2: Classification accuracy of G-Mixup, MomentMixup, and baselines on different datasets.

Dataset IMDB-B IMDB-M REDD-B AIDS
#graphs 1000 1500 2000 2000
#classes 2 3 2 2
#avg.nodes 19.77 13.00 429.63 15.69
#avg.edges 96.53 65.94 497.75 16.2

GIN
No Augmentation 71.55±3.53 48.83±2.75 91.78±1.09 98±1.2
G-Mixup w/ USVT 71.94±3.00 50.46±1.49 91.32±1.51 97.8±0.9
G-Mixup w/ SIGL 73.95±2.64 50.70±1.41 92.25±1.41 97.3±1
MomentMixup 74.30±2.70 50.95±1.93 91.8 ± 1.2 98.5±0.6

6 Conclusions

In this paper, we introduced a novel, scalable graphon estimator leveraging INRs via direct moment
matching, called MomentNet. This approach bypasses latent variables and costly GW optimizations,
offering a theoretically grounded, polynomial-time solution for estimating graphons from empirical
subgraph counts, with provable guarantees on its accuracy. We further proposed MomentMixup, a new
data augmentation technique that performs mixup in the moment space, then obtains the estimated
graphon using MomentNet, and finally samples new graphs from this graphon. Our empirical results
validate the effectiveness of our estimator, demonstrating superior or comparable performance against
state-of-the-art methods in graphon estimation benchmarks, and show that MomentMixup improves
graph classification accuracy by generating structurally meaningful augmented data.

Despite its strengths, our method’s reliance on a pre-selected set of moments for graphon estimation
is a limitation; performance can degrade if these moments are insufficient or noisy. Additionally,
modeling a single graphon (per class for MomentMixup) may not capture highly heterogeneous
graph data. Future work could address these by developing adaptive moment selection techniques
and exploring extensions to learn mixtures of graphons. Further enhancements include adapting our
moment-based approach for attributed or dynamic networks and integrating feature learning into the
estimation process, broadening the applicability of our framework.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is both written in the abstract and at the end of the introduction
section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The primary constraints of this study, along with potential future research
directions to tackle these, are detailed in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Proofs, assumptions and lemmas are either explicitly mentioned in the result
or provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We address this part in the appendix by explaining full details of neural net
models and hyperparameters of our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The supplementary material includes the code used in the experiments, and we
will also upload it to GitHub after the review process if the paper gets accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The full details of the experiments are written in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments were conducted over multiple trials, and the resulting error
metrics are reported as their mean and standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: At the beginning of the experiments section, we detail the hardware used to
run each part of the model and also present a plot of our method’s runtime.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that we have read, understood, and adhered to the applicable code
of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impact in Appendix L.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t use those data in our experiments.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Methods adopted from the literature were either re-implemented by us based
on their published descriptions, with due credit given to the original sources via citation, or,
where publicly available code from the original authors was utilized, its use is acknowledged
in our GitHub repository.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

17



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code will be published on GitHub, with the URL provided in this paper.
Additionally, all datasets will be made available on GitHub.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our method does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Related Work

Graphon Estimation Graphon estimation aims to recover the underlying generative structure of ob-
served networks. Classical approaches include methods based on histogram estimators by partitioning
nodes according to degree or other structural properties [5, 18, 6], and fitting stochastic block models
(SBMs) or their variants, which can be viewed as piecewise constant graphon estimators [1, 11].
Universal singular value thresholding (USVT) [7] offers a non-parametric approach for estimating
graphons from a single adjacency matrix, particularly effective for low-rank structures. However,
many of these methods face challenges in terms of computational cost for large graphs, achieving
resolution-free approximation, or may rely on specific structural assumptions (e.g., piecewise constant
for SBMs).

More recently, scalable graphon estimation techniques have gained prominence. For example, some
works aim at minimizing distances between graph representations but often involve computationally
expensive metrics like the GW distance [24, 37, 35], which can be a bottleneck for large networks.
The advent of INRs has opened new avenues for continuous, resolution-free graphon estimation. For
instance, IGNR (Implicit Graphon Neural Representation) [34] proposed to directly model graphons
using neural networks, enabling the representation of graphons up to arbitrary resolutions and efficient
generation of arbitrary-sized graphs. IGNR also addresses unaligned input graphs of different sizes
by incorporating the Gromov-Wasserstein distance in its learning framework, often within an auto-
encoder setup for graphon learning. Subsequently, SIGL (Scalable Implicit Graphon Learning) [3]
further advanced INR-based graphon estimation by combining INRs with Graph Neural Networks
(GNNs). In SIGL, GNNs are utilized to improve graph alignment by determining appropriate node
orderings, aiming to enhance scalability and learn a continuous graphon at arbitrary resolutions, with
theoretical results supporting the consistency of its estimator. While these INR-based techniques
offer significant advantages in terms of resolution-free representation and handling unaligned data,
they still implicitly involve latent variable modeling or rely on GW-like objectives for alignment.
Our proposed method builds upon the representational power of INRs but distinguishes itself by
directly recovering the graphon via moment matching. This avoids the need for latent variables,
complex metric computations like GW, and provides a theoretically grounded estimation framework
that naturally handles multiple observed graphs by matching aggregated empirical moments.

Data Augmentation for Graph Classification Data augmentation is crucial for improving the
generalization of GNNs and other graph learning models, especially when labeled data is scarce.
Mixup [40], which creates synthetic examples by linearly interpolating pairs of samples and their
labels, has shown remarkable success in various domains. Its adaptation to graph data has been ex-
plored through several avenues, addressing challenges such as varying node counts, lack of alignment,
and the non-Euclidean nature of graphs. For instance, Wang et al. [33] proposed interpolating hidden
states of GNNs. Particularly relevant to our work are G-Mixup [13] and GraphMAD Navarro and
Segarra [21], which recognize the difficulties of direct graph interpolation and propose to augment
graphs for graph classification by operating in the space of graphons. GraphMAD Navarro and
Segarra [21] projects graphs into the latent space of graphons and implements nonlinear mixup
strategies like convex clustering. G-Mixup [13] first estimates a graphon for each class of graphs
from the training data. Then, instead of directly manipulating discrete graph structures, G-Mixup
interpolates these estimated graphons of different classes in their continuous, Euclidean representation
to obtain mixed graphons. Synthetic graphs for augmentation are subsequently generated by sampling
from these mixed graphons. This technique has also been adopted as an augmentation strategy in the
evaluation pipelines of some graphon estimation studies for downstream tasks [3].

B Proof of Theorem 1

B.1 Supporting Lemmas

We rely on the following established and derived results. Lemma 1 is an original contribution of this
work, while Lemma 2 is Theorem 3.7 (b) in Borgs et al. [5] and it is included here for completeness.

Lemma 1 (Concentration of Empirical Motifs). Let F be a simple graph with k = |VF | vertices. For
P ≥ 1 graphs G1, . . . , GP , each sampled independently from Gn(W

∗), and for any error tolerance
ϵs > 0, the probability that the empirical motif density t̄(F,W ∗) = 1

P

∑P
p=1 t(F,Gp) deviates from
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the true motif density t(F,W ∗) is bounded as

P[|t̄(F,W ∗)− t(F,W ∗)| ≥ ϵs] ≤ 2 exp

(
−Pn

4k2

(
ϵs −

k(k − 1)

2n

)2
)
, (9)

for ϵs >
k(k−1)

2n .

Proof. Let Xp = t(F,Gp) for p = 1, . . . , P . The graphs Gp are independent samples from Gn(W
∗),

so the random variables Xp are independent and identically distributed.

We leverage concentration properties of t(F,Gn(W
∗)) in Borgs et al. [5, Lemma 4.4], stating that

t(F,Gn(W
∗)) is concentrated around t(F,W ∗) with probability

P[|t(F,Gn(W
∗))− t(F,W ∗)| > δ] ≤ 2 exp(−nδ2/(4k2)). (10)

This implies that the variable Z = t(F,Gn(W
∗))− t(F,W ∗) behaves like a sub-Gaussian random

variable [32]2. Comparing the exponent −nδ2

4k2 from (10) with the sub-Gaussian tail exponent − δ2

2σ2 ,
we see that t(F,Gn(W

∗))− t(F,W ∗) is sub-Gaussian with parameter σ2
Z = 2k2

n .

The variables we are averaging are Xp = t(F,Gp) with Gp ∼ Gn(W
∗). Let µn = E[Xp] =

E[t(F,Gn(W
∗))]. The centered variables fulfill Xp−µn = (t(F,Gp)−t(F,W ∗))−(E[t(F,Gp)]−

t(F,W ∗)). Subtracting a constant (the bias E[t(F,Gp)]− t(F,W ∗)) from a sub-Gaussian variable
preserves its sub-Gaussian property with the same parameter. Thus, Xp − µn are independent,
zero-mean, and σ2-sub-Gaussian with σ2 = σ2

Z = 2k2

n .

The average of P independent σ2-sub-Gaussian random variables is (σ2/P )-sub-Gaussian [32]. Let
Ȳ = 1

P

∑P
p=1(Xp − µn) = t̄(F,W ∗)− µn. Then Ȳ is

(
2k2

nP

)
-sub-Gaussian. The tail bound for Ȳ

is

P[|Ȳ | ≥ δ] ≤ 2 exp

(
− δ2

2 · 2k2

nP

)
= 2 exp

(
−δ2nP

4k2

)
. (11)

Substituting Ȳ = t̄(F,W ∗)− µn, we get the concentration bound for the empirical mean around the
expected mean:

P[|t̄(F,W ∗)− µn| ≥ δ] ≤ 2 exp

(
−δ2nP

4k2

)
. (12)

We are interested in the deviation of t̄(F,W ∗) from the true motif density t(F,W ∗). We use the
triangle inequality to relate this deviation to the deviation from the mean µn

|t̄(F,W ∗)− t(F,W ∗)| ≤ |t̄(F,W ∗)− µn|+ |µn − t(F,W ∗)|. (13)
Let Bn = |µn − t(F,W ∗)| be the bias of the empirical estimate. It is known from the theory of
graph limits (e.g., related to Borgs et al. [5, Lemma 4.3]) that this bias is bounded by Bn ≤ k(k−1)

2n .
If the deviation from the true density is at least ϵs, i.e., |t̄(F,W ∗)− t(F,W )| ≥ ϵs, then it must be
that |t̄(F,W ∗)− µn| ≥ ϵs −Bn. This implication requires ϵs > Bn for the bound to be meaningful.
Thus, for ϵs > Bn

P[|t̄(F,W ∗)− t(F,W ∗)| ≥ ϵs] ≤ P[|t̄(F,W ∗)− µn| ≥ ϵs −Bn]. (14)
Using the inequality (12) with δ = ϵs −Bn

P[|t̄(F,W ∗)− t(F,W ∗)| ≥ ϵs] ≤ 2 exp

(
− (ϵs −Bn)

2nP

4k2

)
. (15)

Introducing the upper bound for the bias, Bn ≤ k(k−1)
2n

P[|t̄(F,W ∗)− t(F,W ∗)| ≥ ϵs] ≤ 2 exp

−
(
ϵs − k(k−1)

2n

)2
nP

4k2

 (16)

= 2 exp

(
−Pn

4k2

(
ϵs −

k(k − 1)

2n

)2
)
. (17)

2A random variable Y is σ2-sub-Gaussian if E[eλY ] ≤ eλ
2σ2/2 for all λ ∈ R, which implies the tail bound

P[|Y | ≥ δ] ≤ 2e−δ2/(2σ2).

21



This bound is valid when ϵs >
k(k−1)

2n , as required by the lemma statement.

Lemma 2 (Motif Proximity Implies Cut Distance Proximity (Borgs et al. [5], Theorem 3.7 (b))).
For any integer k ≥ 1, if the motif distance between two graphons W1 and W2 fulfills |t(F,W1)−
t(F,W2)| < δM = 3−k2

for every simple graph F ∈ Fk, then the cut distance between W1 and W2

is upper bounded by

dcut(W1,W2) ≤ η =
22C√
log2 k

, (18)

where C = max{1, ∥W1∥∞, ∥W2∥∞}.

B.2 A comment on Assumption 1

This assumption is fundamentally supported by the Universal Approximation Theorem (UAT) [8,
14, 16]. The UAT posits that a neural network with sufficient capacity (e.g., an adequate number of
neurons in one or more hidden layers and appropriate non-linear activation functions) can approximate
any continuous function to an arbitrary degree of accuracy on a compact domain. In our context,
the INR fθ models the graphon W : [0, 1]2 → [0, 1]. The motif density t(F,W ) (as defined in
Equation 1) is a continuous functional of W , meaning small changes in W lead to small changes
in t(F,W ). Consequently, if the INR fθ can approximate any continuous graphon function, it can
learn a specific fθ such that the motif densities of the graphon estimated by the INR t(F, fθ) are
arbitrarily close to some target values. Given that our estimated motif densities t̂θ(F, Ŵθ) are Monte
Carlo approximations of t(F, fθ), they too can approach these target values (the empirical densities
t̄(F,W ∗)) as the approximation of the underlying function by fθ improves as the number of Monte
Carlo samples L increases. The assumption thus relies on the INR’s capacity to learn a suitable
graphon function fθ and the optimization process’s ability to find the parameters θ that make the
resulting motif estimates t̂θ(F, Ŵθ) match the empirical observations t̄(F,W ∗).

B.3 Proof of Theorem 1

Proof of Theorem 1. Our goal is to bound the cut distance dcut(Ŵθ,W
∗) by η, which is achieved if

we can show that |t̂(F, Ŵθ) − t(F,W ∗)| < δM for all simple graphs F with |VF | = k and where
the values of both η and δM are provided in Lemma 2.

Consider any graph F ∈ Fk. Using the triangle inequality, we can bound the difference between the
neural network’s motif estimate and the true graphon motif

|t̂θ(F, Ŵθ)− t(F,W ∗)| ≤ |t̂θ(F, Ŵθ)− t̄(F,W ∗)|+ |t̄(F,W ∗)− t(F,W ∗)|. (19)

By Assumption 1 on the neural network’s training performance, we guarantee

|t̂θ(F, Ŵθ)− t̄(F,W ∗)| < ϵa =
δM
2

, (20)

for every F ∈ Fk.

Now we need to bound the second term in the right-hand side of (19), the deviation of the empirical
motif density from the true motif density |t̄(F,W ∗)− t(F,W ∗)|. We use Lemma 1 with the sampling
error tolerance set to ϵs =

δM
2 . For this lemma to apply, we require ϵs >

k(k−1)
2n , which is equivalent

to δM
2 > k(k−1)

2n , or n > k(k−1)
δM

. This condition is enforced in the theorem statement.

For a specific graph F ∈ Fk, the probability that the sampling error is large is bounded by Lemma 1

P
[
|t̄(F,W ∗)− t(F,W ∗)| ≥ δM

2

]
≤ 2 exp

(
−Pn

4k2

(
δM
2
− k(k − 1)

2n

)2
)
. (21)

Let Pfail,F denote this upper bound for a single graph F ∈ Fk. However, we require the sampling
error |t̄(F,W ∗)− t(F,W ∗)| to be less than δM

2 for all graphs F ∈ Fk simultaneously. By the union
bound, the probability that there exists at least one graph F ∈ Fk for which the sampling error is δM

2
or more is at most the sum of the probabilities for each individual graph

P[∃F ∈ Fk s.t. |t̄(F,W ∗)− t(F,W ∗)| ≥ δM
2

] ≤
∑

F∈Fk

Pfail,F . (22)
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Since |VF | = k for all F ∈ Fk, the bound Pfail,F is identical for all these graphs. The sum is thus
Nk · Pfail,F , where we recall that Nk = |Fk|. The condition (7) in the theorem is precisely set to
ensure that this total probability of failure is less than the desired confidence level ζ

Nk · 2 exp

(
−Pn

4k2

(
δM
2
− k(k − 1)

2n

)2
)

< ζ. (23)

Therefore, with probability at least 1 − ζ (over the random graph samples Gp), the event that
|t̄(F,W ∗)− t(F,W ∗)| < δM

2 holds for all F ∈ Fk occurs.

Conditioned on this high-probability event, and using the neural network approximation in Assump-
tion 1, we have for every F ∈ Fk

|t̂θ(F, Ŵθ)− t(F,W ∗)| ≤ |t̂θ(F, Ŵθ)− t̄(F,W ∗)|+ |t̄(F,W ∗)− t(F,W ∗)| < δM
2

+
δM
2

= δM .

(24)
Since |t̂θ(F, Ŵθ)− t(F,W ∗)| < δM holds for all F ∈ Fk, Lemma 2 implies that the cut distance
between the estimated graphon Ŵθ and the true graphon W ∗ is less than η

dcut(Wθ,W ) < η, (25)

with probability at least 1− ζ, concluding the proof.

C Equation (7) Bound’s Applicability in Realistic Regimes

Assuming a small motif error δM is achievable, we now show that the overall probabilistic bound
from (7) is non-vacuous for realistic dataset sizes. Table 3 shows the minimum value of ζ (left-hand
side of equation (7)) for k = 4, a conservatively large motif error of δM = 0.07 (which is orders of
magnitude larger than our empirical results) and various numbers of graphs P and nodes n.

Table 3: Minimum value of ζ in equation (7) for varying values of P and n.

n
P

400 600 800 1000 1200 1400 1600 1800 2000

200 11.63 11.45 11.27 11.10 10.93 10.76 10.59 10.43 10.26
250 9.93 9.04 8.22 7.48 6.81 6.19 5.63 5.13 4.66
300 7.87 6.37 5.16 4.18 3.39 2.74 2.22 1.80 1.46
350 5.97 4.22 2.97 2.10 1.48 1.04 0.74 0.52 0.37
400 4.42 2.68 1.62 0.99 0.60 0.36 0.22 0.13 0.08
450 3.21 1.66 0.86 0.44 0.23 0.12 0.06 0.03 0.016

Although values > 1 are uninformative as probabilities, the table clearly shows the bound’s exponential
decay. Crucially, the guarantee becomes meaningful for realistic data regimes. For example, the
REDDIT-B dataset has P = 2000 graphs with an average n ≈ 497. Our analysis shows that in a
comparable setting (n = 450, P = 2000), the failure probability ζ is a practically useful 0.016. This
confirms that the theoretical conditions for our guarantee to hold are met within realistic data regimes.

D Unbiasedness of Monte Carlo Estimator for an INR-Based Graphon
Moment Estimator

Let F = (VF , EF ) be a graph, where VF is a set of k = |VF | vertices and EF is the set of edges. Let
fθ : [0, 1]2 → [0, 1] be an INR parameterized by θ, which models the probability of an edge existing
between two nodes based on their latent variables ηi, ηj ∈ [0, 1], and its estimated graphon is denoted
by Ŵθ.

The likelihood of observing the graph structure F given a specific set of latent variable assignments
η = {ηv}v∈VF

and the INR model fθ is given by

Pθ(η;F, Ŵθ) =
∏

(i,j)∈EF

Ŵθ(ηi, ηj)
∏

(i,j)/∈EF

(1− Ŵθ(ηi, ηj)). (26)
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The quantity t′θ(F, Ŵθ) is defined as this likelihood integrated over all possible configurations of the
latent variables in the k-dimensional unit hypercube

t′θ(F, Ŵθ) =

∫
[0,1]k

Pθ(η;F, Ŵθ)dη, (27)

where dη =
∏

v∈VF
dηv .

The L-sample Monte Carlo estimator for t′θ(F, Ŵθ) is given by

t̂′θ(F, Ŵθ) =
1

L

L∑
l=1

P (η(l);F, Ŵθ). (28)

For this estimation, each sample η(l) = [η
(l)
v1 , . . . , η

(l)
vk ] is a vector where each component η(l)v (for

v ∈ VF ) is drawn independently from the uniform distribution U [0, 1].

D.1 Unbiasedness of the Estimator

Theorem 2. The Monte Carlo estimator t̂′θ(F, Ŵθ) is an unbiased estimator of t′θ(F, Ŵθ).

Proof. To show that the Monte Carlo estimation t̂′θ(F, Ŵθ) is an unbiased estimator of t′θ(F, Ŵθ),
we need to prove that E[t̂′θ(F, Ŵθ)] = t′θ(F, Ŵθ).

The expectation of the estimator is:

E[t̂′θ(F, Ŵθ)] = E

[
1

L

L∑
l=1

Pθ(η
(l);F, Ŵθ)

]

=
1

L

L∑
l=1

E[Pθ(η
(l);F, Ŵθ)] (by linearity of the expectation). (29)

Since each sample η(l) is drawn independently from the same uniform distribution, therefore its pdf
is p(η) = 1 on [0, 1]k, the expectation E[Pθ(η

(l);F, Ŵθ)] is the same for all l. Let this common
expectation be E[Pθ(η;F, Ŵθ)], whose value is

E[Pθ(η;F, Ŵθ)] =

∫
[0,1]k

Pθ(η;F, Ŵθ)p(η)dη

=

∫
[0,1]k

Pθ(η;F, Ŵθ)) · 1 dη (since p(η) = 1 on [0, 1]k)

= t′θ(F, Ŵθ),

according to (27). Substituting this back into (29)

E[t̂′θ(F, Ŵθ)] =
1

L

L∑
l=1

t′θ(F, Ŵθ)

=
1

L
(L · t′θ(F, Ŵθ))

= t′θ(F, Ŵθ).

Thus, E[t̂′θ(F, Ŵθ)] = t′θ(F, Ŵθ), which shows that the Monte Carlo estimator t̂′θ(F, Ŵθ) is an
unbiased estimator of t′θ(F, Ŵθ). This means that, on average, the estimator will yield the true value
of the integral defined by fθ and the graph structure F .

E Time Complexity of MOMENTNET

Stage 1: parallel motif–density extraction. For each graph Gp = (Vp, Ep) let np = |Vp|,
ep = |Ep| and dp = maxv∈Vp deg(v) be the number of nodes, number of edges, and maximum
degree of the graph Gp. ORCA [15] counts all 2−4-node graphlets in

TORCA(Gp) = O
(
epdp + npd

3
p

)
.
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Because every graph can be processed independently, we dispatch the P graphs to M workers
(M≤P ). Hence the wall-clock preprocessing time is

Tstage 1 = O
(⌈

P
M

⌉
max

p

(
epdp + npd

3
p

))
.

With one worker per graph (M = P ) this shrinks to the single-graph cost that dominates (maxp).

Stage 2: training the Moment network. Define:

• L: number of Monte-Carlo samples per epoch;

• Ne: number of training epochs;

• CINR: cost of one forward/back-prop through the INR for a single edge probability;

• |θ|: total number of trainable parameters.

Each motif instance F of size |VF | ≤ 4 invokes the INR at most six times, a constant. One epoch
therefore costs

Tepoch = O
(
LCINR + |θ|

)
, Tstage 2 = O

(
Ne (LCINR + |θ|)

)
.

Overall wall-clock complexity.

TMomentNet = O
(⌈

P
M

⌉
max

p
(epdp + npd

3
p) +Ne (LCINR + |θ|)

)
.

Comparison with SIGL in Sparse vs. Dense Regimes

SIGL [3] requires message-passing GNN training, histogram building and INR fitting; with Ne

epochs its wall-clock cost is TSIGL = O(PNen
2
T ), where nT = maxp np.

• Sparse regime (dmax = O(1)⇒ ep = O(np)):

– MOMENTNET: T = O
(
⌈ PM ⌉nT +Ne (LCINR + |θ|)

)
;

– SIGL: T = O(PNen
2
T ).

Here MomentNet grows linearly in nT (plus the network-training term), whereas SIGL is
quadratic. In practice we repeatedly observe MomentNet to be faster when graphs have
ep = O(np) even for very large np.

• Dense regime (Erdős–Rényi with pconn=0.5 implies dmax≈nT /2 and ep = Θ(n2
T )):

– MOMENTNET: T = O
(
⌈ PM ⌉n

4
T +Ne (LCINR + |θ|)

)
;

– SIGL: T = O(PNen
2
T ).

Asymptotically, SIGL’s n2
T term is smaller than MomentNet’s n4

T . Yet empirical runs on
dense ER graphs with pconn =0.5 still show MomentNet to be faster once (i) Stage 1 is
fully parallelised and (ii) the constants behind GNN message passing and histogramming
dominate SIGL’s quadratic term. Thus, the theoretical advantage of SIGL in dense graphs
does not necessarily translate into shorter wall-clock times. Furthermore, MomentNet
utilizes a two-stage process. The initial stage involves computing motif counts from the
input graphs. Following this, the graphs are discarded. The second stage, which our
experiments show to be the dominant phase of our method, then trains an INR using a
vector of average moments derived from these counts. This design provides a significant
reason for our method’s improved speed, particularly in dense scenarios. By isolating the
computationally expensive motif counting to a preliminary step, this cost is bypassed during
the subsequent, dominant INR learning phase.

With graph-level parallelism, MOMENTNET is provably linear in the number of edges for sparse
networks and remains competitive on dense networks because its constant factors are smaller and its
training cost is independent of the graph size.
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E.1 Justification for Practical Scalability Over SIGL

The theoretical complexity analysis highlights that in the dense regime, MOMENTNET’s Stage 1 cost
is bounded by O(⌈ PM ⌉n

4
T ), which is asymptotically worse than SIGL’s O(PNen

2
T ). However, as

demonstrated in our empirical results (Figure 2c), MOMENTNET is practically faster on large, dense
graphs. This is due to two critical factors:

1. Loose Theoretical Bound and Small Empirical Constant for ORCA: The worst-case
O(n4

T ) bound for ORCA’s 4-node motif counting is known to be non-tight. We conducted an
empirical analysis by measuring the wall-clock execution time for counting 4-node graphlets
on a sequence of dense graphs with node counts n ranging from 30 to 400.

Empirical Analysis of ORCA Runtime We modeled the relationship between runtime
T (n) and node count n using a linear regression on log-transformed data, T (n) ≈ c·nk. Our
results determined the practical growth rate to be nearly cubic, with an exponent of k ≈ 3
(R2 ≈ 0.97). Crucially, the fitted constant factor was extremely small, c ≈ 2.97× 10−8.
This empirical finding confirms that the algorithm is highly efficient on dense graphs,
ensuring that MOMENTNET’s theoretical worst-case cost is practically masked by SIGL’s
larger constant factors and overheads until nT becomes very large.

2. Strategic Subsampling Capability: Our method’s performance relies on the moment
vector m, which is robustly estimated by averaging moments from multiple, smaller graphs
(P graphs of size np). MOMENTNET’s theoretical guarantee (Theorem 1 and Figure 2b)
allows us to strategically subsample a single large input graph into a collection of smaller
graphs, effectively reducing the dominant maxp np in Stage 1. This capability lets us trade
off np for P to minimize runtime while preserving near-optimal performance, a flexibility
SIGL lacks. SIGL must process the full-size graph to properly learn latent representations,
directly locking its runtime to the high cost of a single, large nT .

Therefore, MOMENTNET’s practical speed advantage stems from a combination of a lower-than-
worst-case empirical complexity in Stage 1 and a flexible sampling strategy that SIGL cannot
utilize.

E.2 Subsampling Effect on Scalability

The scalability evaluation in Figure 2 demonstrates the conditions under which MomentNet achieves
a computational advantage over SIGL. A key insight from our analysis is that SIGL’s performance
deteriorates significantly on smaller graphs due to its dependence on stable latent variable estimation.
This limitation benefits our approach: by subsampling a very large graph into a smaller, more
manageable collection of subgraphs, we can maintain near-optimal estimation quality while drastically
reducing the computational cost. In contrast, running SIGL directly on these smaller subgraphs is
ineffective, as its accuracy drops off steeply.

To further validate the benefit of subsampling in the large-graph regime, we constructed a dataset
consisting of ten large graphs, each containing 2,000 nodes, sampled from the dense-graph graphon
class used in our scalability analysis (Section 5.1.2). We then extracted ten 50-node subgraphs
from each 2,000-node graph and used these smaller subgraphs as inputs for both methods. The
results, summarized in Table 4, confirm that MomentNet outperforms SIGL in both accuracy (lower
GW Loss) and runtime under this efficient subsampling strategy. Crucially, while SIGL’s runtime
increases sharply with full graph size, our method maintains comparable performance even when
utilizing these smaller subgraphs.

Table 4: Performance comparison on large graphs (2,000 nodes) using a subsampling strategy (10
extracted 50-node subgraphs per large graph).

Method Training Runtime (s) GW Loss Motif Counting Runtime (s)
MomentNet 54.83± 18.69 0.0548± 0.0016 1.59± 0.24
SIGL 207.89± 18.4 0.1085± 0.0156 -
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F Proof of Proposition 1

Let W1,W2 : [0, 1]
2 → [0, 1] be two graphons and fix α ∈ (0, 1). Denote their convex combination

by
Wα = αW1 + (1− α)W2.

Edge density (a linear functional). For the single–edge motif Fe on vertices VFe
= {1, 2} and

EFe
= {(1, 2)}, the induced density is

t′(Fe,W ) =

∫
[0,1]2

W (η1, η2) dη1 dη2 = E[W (η1, η2)].

Because the integrand is linear in W , we immediately have

t′(Fe,Wα) = α t′(Fe,W1) + (1− α) t′(Fe,W2),

so the edge density behaves affinely under convex combinations.

The V –shape motif. Let F be the V –shape (three-vertex path) on vertex set VF = {1, 2, 3} and
edge set EF = {(1, 2), (1, 3)}. Its induced density is

t′(F,W ) =

∫
[0,1]3

W (η1, η2)W (η1, η3)
[
1−W (η2, η3)

]
dη1dη2dη3. (30)

Plugging Wα into (30)

t′(F,Wα) =E
[(
αW1 + (1− α)W2

)
12

(
αW1 + (1− α)W2

)
13

(
1− αW1 − (1− α)W2

)
23

]
=α3 E

[
(W1)12(W1)13(1− (W1)23)

]
+ (1− α)3 E

[
(W2)12(W2)13(1− (W2)23)

]
+ mixed terms, (31)

where, to simplify notation, we used (·)ij to denote that the graphon inside the parenthesis is evaluated
on (ηi, ηj) and “mixed terms” contain products in which at least one factor comes from W1 and
another from W2. Because these mixed terms generally do not cancel, the right-hand side of (31)
does not reduce to the affine combination

α t′(F,W1) + (1− α) t′(F,W2), (32)

except in degenerate cases (e.g. W1 = W2 or α ∈ {0, 1}).

Concrete counter-example. Take constant graphons W1(ηi, ηj) = p1 and W2(ηi, ηj) = p2 with
p1 and p2 being constants satisfying 0 < p1 ̸= p2 < 1. Then Wα(ηi, ηj) = pα = αp1 + (1− α)p2,
and

t′(F,Wi) = p 2
i (1− pi), t′(F,Wα) = p 2

α(1− pα),

for i ∈ {1, 2}. However,

p 2
α(1− pα) ̸= αp 2

1 (1− p1) + (1− α) p 2
2 (1− p2)

whenever p1 ̸= p2 and α ∈ (0, 1), confirming that the V –shape moment is not affine in W .

Conclusion. Edge moments are linear in the graphon, but higher-order induced moments involve
non-linear (polynomial) combinations of W . Consequently, a convex combination of graphons
preserves edge moments but fails to preserve the remaining components of the motif-moment
vector.

G Methods Details

G.1 Latent Variable Invariance of MomentNet

The graphon model and our proposed model to learn it exhibit invariance to the specific ordering
or labeling of latent variables. This means that the estimated graphon is unchanged under measure
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preserving transformations [5]. In other words, if the underlying structure of a graphon is rearranged
or relabeled, MomentNet can still accurately capture the essential underlying connectivity patterns.
To illustrate this crucial property, we conduct an experiment using an SBM graphon, more precisely
the one indexed by 12 in Table 7. For this experiment, we utilize the same dataset that was generated
for the performance comparison of MomentNet discussed in Section 5. The learned graphons for
three different realizations of this experiment are presented in Figure 3. It is evident that all three
estimated graphons closely resemble the ground truth graphon, which is depicted in Figure 4. Also,
the three estimated graphons reflect the same underlying structure, and all of them share a similar
GW loss, which is a loss function invariant to measure preserving transformations. This essentially
means that, no matter which of the three depicted graphons we sample graphs from, the underlying
structure of all these graphs will be the same. This outcome strongly verifies that MomentNet’s
primary mechanism involves matching the moments of the graph, without caring about the ordering
of the latent variables. Consequently, and in contrast to other methodologies, its estimated graphon
accurately reflects the ground truth structure, allowing for differences only up to a permutation of the
latent variable locations.

(a) Estimated SBM graphon (Sample 1). (b) Estimated SBM graphon (Sample 2).

(c) Estimated SBM graphon (Sample 3).

Figure 3: Three samples of estimated graphons derived from a SBM.
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G.2 MomentNet Generalization

To test the generalization capabilities of MomentNet beyond standard metrics like the GW loss and
centrality measures, we conducted an additional experiment focusing on moment extrapolation.
Following the experimental setup described in the paper, we trained a model exclusively on the nine
motifs corresponding to 2- to 4-node subgraphs (F0 to F8). We then evaluated its ability to accurately
predict the densities of a different, unobserved set of subgraphs: the 5-node motifs (motif indices 10
through 30 in the ORCA paper [15]). The relative error for each extrapolated moment is presented in
Table 5. The highly accurate estimations, with a median relative error of less than 2%, demonstrate
that MomentNet successfully learned the true underlying continuous data distribution (the graphon)
from the low-order moments, allowing it to accurately extrapolate high-order structural properties.

Table 5: Extrapolation Error: Relative error (%) of MomentNet’s estimated moments for unobserved
5-node motifs (Indices 10–30), after training only on 2- to 4-node motifs (Indices 1–9).

Motif Rel. Err. (%) Motif Rel. Err. (%) Motif Rel. Err. (%) Motif Rel. Err. (%) Motif Rel. Err. (%) Motif Rel. Err. (%)

10 2.224 14 0.205 18 0.154 22 1.102 26 3.087 30 11.086
11 1.536 15 1.031 19 0.371 23 2.468 27 1.753
12 1.785 16 1.899 20 1.744 24 0.140 28 2.062
13 0.073 17 0.462 21 1.502 25 1.043 29 4.010

G.3 Monte Carlo Sampling Variance

Based on the relatively high quality of the results achieved by MomentNet, we hypothesize that
stable convergence during training is contingent upon a sufficiently low variance in the Monte Carlo
estimation of the motif densities (as described in the moment estimator paragraph of Section 3.1,
Equation 4). To investigate this hypothesis directly, we designed an experiment to measure the
gradient variance as a function of the number of Monte Carlo samples, L. For this test, the parameters
(θ) of the INR model were held constant while we estimated the gradient’s standard deviation over
1,000 runs for varying numbers of samples, L. The results, summarized in Table 6, show a clear
inverse relationship: the standard deviation consistently decays as L increases. This finding supports
our hypothesis and underscores the importance of using a sufficient number of samples, L, to ensure
stable and efficient optimization.

Table 6: Gradient Stability vs. Monte Carlo Samples (L). The standard deviation of the gradient
decreases consistently with the number of Monte Carlo samples, supporting the need for a sufficiently
large L for stable optimization.

Monte Carlo Samples (L) Mean Gradient Std Dev Gradient

100 0.013005 0.004484
500 0.013107 0.002031

1000 0.013030 0.001387
5000 0.013019 0.000647

10000 0.013052 0.000439
20000 0.013009 0.000325
50000 0.013013 0.000193

100000 0.013019 0.000134
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G.4 MomentMixup Pseudocode

Algorithm 1 MomentMixup Augmentation

Input: αmix: float, mixing coefficient (0 ≤ αmix ≤ 1).
Gi,Gj : list of graphs, graph datasets for classes i and j.
yi, yj : integer, label for classes i and j.
Nsample: integer, number of graphs to sample from each class dataset to compute average

moments.
Nnodes: integer, number of nodes for each new graph.
Ngraphs: integer, number of augmented graphs to generate.

Output: Gaug: list of graphs and labels, newly generated augmented graphs.
1: ▷ Compute average moment vector for class i
2: Si ← Randomly select Nsample graphs from Gi
3: mi ← 1

Nsample

∑
G∈Si

ComputeGraphMoments(G)

4: ▷ Compute average moment vector for class j
5: Sj ← Randomly select Nsample graphs from Gj
6: mj ← 1

Nsample

∑
G∈Sj

ComputeGraphMoments(G)

7: mtarget ← αmix ·mi + (1− αmix) ·mj ▷ Compute target mixed moments
8: ytarget ← αmix · yi + (1− αmix) · yj ▷ Compute the label for the new samples
9: Waug ← MomentNet(mtarget) ▷ Trains MomentNet for mtarget

10: Gaug ← [] ▷ Initialize list for augmented samples
11: for k ← 1 to Ngraphs do
12: Gnew ← SampleGraph(Waug, Nnodes) ▷ Sample new graph
13: Add (Gnew, ytarget) to Gaug
14: end for
15: return Gaug

H List of Graphons

Table 7: Table of Graphons

W (x, y)

1 xy

2 e(−(x0.7+y0.7))

3 1
4 (x

2 + y2 +
√
x+
√
y)

4 1
2 (x+ y)

5 (1 + e(−2(x2+y2)))−1

6 (1 + e(−max{x,y}2−min{x,y}4))−1

7 e(−max{x,y}0.75)

8 e(−
1
2 (min{x,y}+

√
x+

√
y))

9 log(1 + max{x, y})
10 |x− y|
11 1− |x− y|
12 0.8I2 ⊗ 1[0, 12 ]

2

13 0.8(1− I2)⊗ 1[0, 12 ]
2

The graphons are also visualized in Figure 4.
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Figure 4: Representation of the graphons defined in Table 7.

I Selected Motifs

F0 F1 F2 F3 F4 F5 F6 F7 F8

Figure 5: Motifs up to four nodes.

J Centrality Measures

In real-world graph statistical analysis, centrality measures are of significant interest to researchers.
Building upon the work of Avella-Medina et al. [2], who demonstrated the computability of these
measures on graphons, we use several centrality metrics to further evaluate the quality of the estimated
graphons. Specifically, we employ:
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• Degree Centrality: This measure quantifies the number of direct connections a node possesses.

– High Value: Indicates a node with many direct connections, often acting as a local hub with
numerous immediate interactions. Such a node is highly active in its local neighborhood.

– Low Value: Suggests a node with few direct connections, implying less immediate activity or
influence within its local vicinity.

• Eigenvector Centrality: This identifies influential nodes by considering that connections to other
highly-connected (and thus influential) nodes contribute more significantly to a node’s score. It
measures how well-connected a node is to other well-connected nodes.

– High Value: A node with high eigenvector centrality is connected to other nodes that are
themselves influential. This node is likely a key player within an influential cluster or a leader
among leaders.

– Low Value: A node with low eigenvector centrality is typically connected to less influential
nodes or has relatively few connections overall. Its influence is not strongly amplified by the
influence of its neighbors.

• Katz Centrality: This measure considers all paths in the graph, assigning exponentially more
weight to shorter paths while still accounting for longer ones. It uses an attenuation factor α, which
determines the weight given to longer paths: smaller values of α emphasize shorter paths, while
larger values give more importance to longer paths, up to a theoretical limit to ensure convergence.

– High Value: Indicates a node that is reachable by many other nodes through numerous paths,
with shorter paths contributing more. This node is generally well-connected throughout the
network, both directly and indirectly, and can efficiently disseminate or receive information.

– Low Value: Suggests a node that is not easily reachable by many other nodes or is primarily
connected via very long paths. Its overall influence or accessibility within the network is limited.

• PageRank Centrality: Originally developed for web pages, PageRank assesses a node’s importance
based on the number and quality of its incoming links. A link from an important node carries more
weight than a link from a less important one. It uses a damping factor β, representing the probability
that a random walker will follow a link to an adjacent node, while (1 − β) is the probability they
will jump to a random node in the graph, ensuring that all nodes receive some rank and preventing
rank-sinking in disconnected components.

– High Value: A node with high PageRank centrality receives many “votes” (incoming connections)
from other important nodes. This indicates that significant entities within the network consider
this node to be important or authoritative.

– Low Value: A node with low PageRank centrality receives few incoming connections or is
primarily linked by less important nodes. It is not widely recognized as important by other
influential nodes in the network.

The mathematical formulations for these graphon-based centrality measures are adopted directly from
Avella-Medina et al. [2], corresponding to equations (7), (8), (9), and (10) in their paper, respectively.
For a detailed analysis, we focus on graphons 1 and 2, as specified in Table 7. We compute both
analytical and sample-based centrality measures, establishing these as baselines for comparison
with our results. The analytical computations directly apply the aforementioned formulas from
Avella-Medina et al. [2]. For the sample-based approach, we generate discrete graph instances by
drawing samples from the ground truth graphon and subsequently compute the centrality measures
within this discrete domain. Further details regarding each graphon are presented in the subsequent
subsections.

J.1 Graphon 1: The (xy) Model

The analytical centrality measures formulas for this graphon are as follows:

• Degree Centrality:
Cd(x) =

x

2

• Eigenvector Centrality:
Ce(x) =

√
3x
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• Katz Centrality:
Ck

α(x) = (6− 2α) + 3αx

• PageRank Centrality:
Cpr

β (x) = (1− β) + 2βx

These measures are for the given latent variable x ∈ [0, 1], after computing its centrality vector, we
normalize it before comparison with discrete graph centralities [2]. Since the ordering for these
experiments is important, we create a new dataset of 20 graphs with 100 nodes each, preserving the
latent variables for all the nodes. The experiment results are illustrated in Figure 6. Our results show
that centrality measures from the MomentNet-predicted graphon (blue lines in the figure) are close to
the analytical computations (ground truth, black dashed lines). Furthermore, these graphon-based
centralities by MomentNet also provide a good approximation for centrality measures computed over
discrete graph samples (red dots).

Figure 6: Centrality measures: MomentNet vs. analytic computation for the xy graphon.

J.2 Graphon 2: The (e(−(x0.7+y0.7))) Model

To test the generalizability and consistent performance of our method across varying complexities, we
replicated the experiment on a more complex graphon. The analytical centrality measures formulas
for this graphon are as follows:

• Degree Centrality:
Cd(x) = 0.7492 e−x0.7

• Eigenvector Centrality:

Ce(x) =
e−x0.7

√
0.473

• Katz Centrality:

Ck
α(x) = 1 +

0.7492α e−x0.7

1− 0.473α
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• PageRank Centrality:

Cpr
β (x, β) = (1− β) +

β

0.7492
e−x0.7

The experiment results are illustrated in Figure 7. Similar to the previous experiment, after computing
the centrality measures on the graphon and analytically, we normalize them to compare them with
the discrete graph measurement. As the plots show, similar to the previous graphon, our estimation is
very close to the ground truth results obtained by analytical calculation.

Figure 7: Centrality measures: MomentNet vs. analytic computation for the e(−(x0.7+y0.7)) graphon.

K Extra Scalability Evaluations

We conducted an additional experiment to evaluate the scalability of SIGL and MomentNet. For
this assessment, rather than focusing on SIGL’s known weaknesses in latent variable estimation, we
selected graphon number 5 from Table 7, a model that both methods accurately estimate. We generate
10 graphs for each node size n ∈ {10, 20, . . . , 810}.
Figure 8 illustrates the scalability of MomentNet and SIGL in terms of both performance, measured
by GW loss, and average runtime, as a function of the number of nodes. Subfigure (a) of Figure 8
reveals that MomentNet (blue line) maintains a consistently low GW loss across the tested range
of node sizes, indicating stable performance. In contrast, SIGL’s (red line) GW loss starts notably
higher for smaller networks but decreases substantially as the number of nodes increases, eventually
matching or even slightly outperforming MomentNet’s loss for larger networks.

However, subfigure (b) of Figure 8 highlights a significant difference in computational efficiency:
MomentNet’s average runtime exhibits only a modest and gradual increase with the number of nodes.
Conversely, SIGL’s runtime escalates sharply, demonstrating significantly poorer scalability.

Consequently, while SIGL might offer a marginal advantage in GW Loss for very large graphs,
MomentNet’s vastly superior runtime scalability makes it a more practical and favorable approach,
particularly for applications involving large-scale networks where computational resources and time
are critical factors.
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(a) Comparison of performance scalability of Moment-
Net with SIGL.

(b) Comparison of runtime scalability of MomentNet
with SIGL.

Figure 8: Scalability Comparison of MomentNet and SIGL

L MomentMixup Evaluation Details

Our experimental evaluation is conducted on four diverse benchmark datasets widely used in graph
classification research. Table 8 provides a detailed overview of these datasets, outlining their specific
characteristics and the nature of their respective classification tasks.

Table 8: Description of the benchmark datasets used for evaluation. Each dataset represents a different
type of graph structure and classification task.

Dataset Description Classification Task Citation
IMDB-B Movie collaboration graphs; nodes represent ac-

tors/actresses, and an edge connects two ac-
tors/actresses if they appear in the same movie.

Binary genre classi-
fication.

[39]

IMDB-M A multi-class version of IMDB-B, representing
movie collaborations with similar graph construc-
tion.

Multi-class genre
classification.

[39]

REDD-B Social network graphs from Reddit; nodes repre-
sent users, and an edge indicates an interaction
(e.g., one user commented on another’s post).

Binary community
(subreddit) classifi-
cation.

[39]

AIDS Bioinformatics graphs representing molecules;
nodes are atoms, and edges are covalent bonds
between them.

Binary classifi-
cation based on
anti-HIV activity
(active vs. inactive).

[27]

M Social impacts

The methods presented for graphon estimation via moment-matching INRs and data augmentation
through MomentMixup, while offering powerful tools for understanding network structures and
enhancing graph-based machine learning, are not without potential societal risks if deployed without
careful consideration. For instance, in social network analysis, if the empirical moments used for
graphon estimation are derived from graphs reflecting existing societal biases (e.g., in representation
or connectivity), both the estimated graphons and synthetic graphs generated via MomentMixup
could inadvertently perpetuate or even amplify these biases. This could lead to inequitable outcomes
when models trained on such data are used for applications like resource allocation, recommendation
systems, or public policy modeling. Similarly, in critical domains such as epidemiology or finan-
cial systems, inaccuracies in graphon estimation or the generation of unrepresentative augmented
data could lead to flawed predictions, potentially resulting in misguided interventions or financial
instability. While graphon estimation offers a level of abstraction, careful attention must also be paid
to ensure that the process does not inadvertently leak sensitive information from the original graph
data, especially when dealing with networks containing personal or confidential details. Therefore,
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it is crucial for practitioners to be acutely aware of these potential pitfalls. This includes critically
examining input data and chosen moments for biases, rigorously validating the fidelity and repre-
sentativeness of estimated graphons and generated graphs, and thoughtfully considering the ethical
implications of their application, particularly in domains with direct and significant societal impact.
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