
Simulating Inconsistencies in Task-oriented Dialog

Anonymous ACL submission

Abstract

Most existing dialog models are trained on001
static dialog datasets or in an interactive way002
with user simulators, and evaluated in the same003
way. Such methods mostly make an ideal hy-004
pothesis that the user behaves consistently to005
the goal. Nevertheless, inconsistent behaviors006
are often observed from real users due to un-007
predictable mind changes or language under-008
standing errors. In this paper, we give a sys-009
tematic investigation of the inconsistent prob-010
lem in real-world dialog systems and introduce011
three kinds of inconsistencies, namely Goal012
Change, Action Disloyalty and Understanding013
Deviation. We propose a user model to simu-014
late those three kinds of inconsistencies, which015
can be used to examine the model robustness.016
The simulation model is further utilized to sup-017
port Reinforcement Learning and inconsistent018
data augmentation, which boosts the perfor-019
mance of pipeline and end-to-end dialog mod-020
els under inconsistent situation.021

1 Introduction022

Recently, there has been a growing interest in task-023

oriented dialog system in both academic and indus-024

trial circles (Chen et al., 2017; Zhang et al., 2020b).025

Besides modularized tasks such as language under-026

standing (Zheng et al., 2020), dialog state tracking027

(Henderson et al., 2014; Wu et al., 2019a) and pol-028

icy learning (Takanobu et al., 2019, 2020a), the029

evaluation of dialog system has a pivotal role in030

improving system performance and robustness.031

Existing evaluation methods for task-oriented032

dialogs can be categorized into three paradigms,033

including static evaluation based on collected034

datasets, interactive evaluation with human and035

user simulators. Evaluation with static datasets can-036

not handle previously unseen cases and does not037

take the diversity and interactiveness of dialogs into038

account (Lei et al., 2018; Wu et al., 2019a). Human039

evaluation can give more reliable judgments, but is040

rather costly and not scalable with large numbers041

Hotel: east-area, 5-star

Train: Sunday, arrive 11:13 

I want a 5-star hotel in the east. 

Sorry, there is no 5-star hotel in the east area.  

How about 4-star?

There is one called ABC hotel. Address is …  

I want to go there on Saturday by train.

What time would you like to arrive by on Saturday?  

Oh, sorry, I’ll go on Sunday and arrive by eleven thirteen. 

Would you like Tr123? It will arrive at 11:30 on Sunday. 

I mean eleven thirteen, please.  

Tr121 will arrive at 11:13. 

Thanks, bye!

Goal Change

Action Disloyalty

Understanding Deviation

Figure 1: Inconsistencies when talking with real users.
Real human may change their mind or make wrong ac-
tions. There are also understanding deviation problems
such as ASR error.

of interactions required (Su et al., 2016b; Lipton 042

et al., 2018). Automatic interactive evaluation with 043

user simulators could both save cost and ensure 044

diversity, but the discrepancy between simulated 045

and real users still remains a short-coming (Peng 046

et al., 2018; Wu et al., 2019c). 047

Although each evaluation method has its own 048

advantage and disadvantage, they all depend on an 049

ideal hypothesis that the users behave consistently 050

in the dialog. Under such hypothesis, the user goal 051

remain unchanged in existing interactive evaluation 052

methods, and the users (real or simulated) are re- 053

quired to give responses which is consistent to the 054

constant goal (Peng et al., 2018; Takanobu et al., 055

2019). However, the real world users do not neces- 056

sarily act in this way. As shown in Figure 1, users 057

could adaptively adjust their goals according to 058

their needs and information obtained in the dialog 059

context. Inevitably, the users will sometimes make 060

mistakes and give actions which are irrelevant to 061

their goals and the current topic. The systems may 062

1



also make mistakes in understanding users’ utter-063

ances, leading to irrelevant user intents. Therefore,064

it is important to take the user characteristics into065

consideration when evaluating a system, since dif-066

ferent types of user behaviors can be extremely067

different and can affect model performance. Never-068

theless, existing studies based on dialog-act level069

interactions neglect this issue (Peng et al., 2018;070

Takanobu et al., 2019).071

To better understand the interactive robustness072

in real world dialogs, we systematically summarize073

the ideal consistency hypothesis into three types:074

Goal Consistency, Action Loyalty and Understand-075

ing Correctness, which are breakable in real world076

interactions with humans. We need to explore077

how the performance of dialog system changes078

when those hypotheses are broken to give a more079

systematic evaluation to the dialog models. We080

therefore simulates three types of inconsistent phe-081

nomenons: Goal Change, Action Disloyalty and082

Understanding Deviation, which are targeted to083

the above hypotheses. We integrate a user simula-084

tion model with the ability to induce inconsistent085

interactions, and use it to interact with dialog sys-086

tems to simulate the environment with inconsistent087

phenomenons.088

We conduct experiment on the MultiWOZ089

dataset (Budzianowski et al., 2018), which is a090

widely used large-scale multi-domain task-oriented091

dialog benchmark, to investigate the robustness of092

different system models when dealing with the in-093

consistent problems. An in-depth analysis is given094

on how each kind of inconsistencies influences the095

system performance. By building a user model096

with inconsistent simulation ability, we can realize097

a more realistic training environment for the inter-098

active reinforcement learning tasks to improve the099

robustness of pipeline dialog system. Meanwhile,100

we collected an augmented dialog dataset using101

the inconsistency simulator, which can be used to102

boost the performance of end-to-end models.103

The contribution of this study can be summa-104

rized as follows:105

• We give a systematic definition of three types106

of inconsistencies in real-world dialog.107

• In allusion to these inconsistencies, we build a108

user simulator with the ability to induce incon-109

sistent interactions to test the model robust-110

ness under such situations.111

• We further utilize the user model to provide112

an RL environment and a data augmentation 113

toolkit to improve the model robustness of 114

pipeline and end-to-end dialog models under 115

inconsistent situations. 116

2 Related Work 117

2.1 Dialog System 118

Existing task-oriented dialog systems mainly fall 119

into two categories: pipeline systems and end-to- 120

end systems. Pipeline agents are constructed with 121

several components including Nature Language 122

Understanding (NLU) (Hakkani-Tür et al., 2016; 123

Devlin et al., 2019), Dialog State Tracking (DST) 124

(Wu et al., 2019b; Heck et al., 2020), Dialog Policy 125

(Shah et al., 2016; Schulman et al., 2017), and Na- 126

ture Language Generation (NLG) (Wen et al., 2015; 127

Peng et al., 2020b). End-to-end agents (Zhang 128

et al., 2020a) use a single model to generate textual 129

response directly. Recently, pre-trained language 130

models for end-to-end dialog modeling (Peng et al., 131

2020a; Hosseini-Asl et al., 2020) are developed 132

and demonstrate favorable performance. 133

2.2 Dialog Evaluation 134

Evaluation has always been an important topic of 135

task-oriented dialog. As evaluating with static data 136

does not take the diversity and interactiveness of 137

dialog into account, interactive evaluation would be 138

a better approach. Evaluating by communicating 139

with human (Ultes et al., 2013; Su et al., 2016a; 140

Schmitt and Ultes, 2015) can get reliable results 141

but is extremely costly. Automatic evaluation by 142

interacting with user simulator (Araki and Doshita, 143

1996; Eckert et al., 1997; Schatzmann et al., 2007; 144

Asri et al., 2016) is able to save both time and 145

resource but the gap between simulators and real 146

users still remains a shortcoming. In-depth analysis 147

(Takanobu et al., 2020b) and evaluation platforms 148

such as pydial (Ultes et al., 2017) and Convlab (Lee 149

et al., 2019; Zhu et al., 2020) have been presented 150

to evaluate dialog evaluation systemically. 151

2.3 Dialog Robustness 152

Recently, researchers have shown an increased in- 153

terest in the robustness of task-oriented system is 154

attracting more and more research attention. Gan- 155

hotra et al. (2020) introduce naturalistic variation 156

and investigate the impact of it on dialog systems. 157

Irregular human behaviors like user goal change 158

(Ma, 2013; Ma and Fosler-Lussier, 2014) are also 159

important issues. For textual noises, Liu et al. 160
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(2021) systemically studies the robustness of NLU161

models. Great efforts have also been made to de-162

velop training methods to improve the robustness163

(Su et al., 2018; Fazel-Zarandi et al., 2017; Pereira164

et al., 2021) of dialog models. However, very little165

research has been carried out on how the inconsis-166

tent interactions affect system robustness.167

3 Inconsistencies168

In this paper, we define and implement three types169

of inconsistencies in task-oriented dialog: Goal170

Change, Action Disloyalty and Understanding De-171

viation. Fig 2 illustrates the differences between172

ideal setting and inconsistent setting. In ideal eval-173

uation setting, user goal is consistent and it deter-174

mines user actions while system can understand175

user actions perfectly. In other words, gt+1 = gt,176

at ∈ gt and ut = at hold for any dialog turn t.177

However, in practical conversations, those consis-178

tencies are often broken. We present an incon-179

sistent evaluation environment with gt+1 6= gt,180

at /∈ gt and ut 6= at to test models’ robustness181

when facing such challenge.182

tg

+1tg

ta tu

(a) Ideal setting

tg

+1tg

ta tu

(b) Inconsistent setting

Figure 2: Difference between ideal setting and inconsis-
tent setting. g, a and u stand for user goal, user action
and system understanding while t denotes the number
of dialog turn.

3.1 Goal Change183

According to user’s motivation, we introduce two184

types of goal change: passive and active goal185

change.186

Passive Goal Change Sometimes, user query187

could not be satisfied according to the knowledge188

base and system will return a negative response.189

For example, the user wants to book a 5-star hotel 190

in a certain area where such hotel does not exist. 191

In these cases, after knowing that their constraints 192

are unreasonable, users have to change their goals. 193

We simulate such passive goal change by first sam- 194

pling an unsolvable initial goal ginit and change it 195

to a new solvable goal ginit → gnew when get the 196

negative feedback from system. 197

Active Goal Change Real users have their free 198

will and they have the possibility to change their 199

mind actively at any time in the real dialog. To sim- 200

ulate this behaviour, goal change ginit → gnew is 201

allowed to occur at any turn t regardless of whether 202

the system gives a negative response. In order to 203

ensure the naturalness and completion of the dialog, 204

only one constraint of the goal will be changed and 205

the new goal gnew is guaranteed to be solvable. 206

3.2 Action Disloyalty 207

There are mainly two kinds of disloyal actions. One 208

is relevant to user goal but is wrong while the other 209

is totally not relevant to the goal. 210

Wrong Action Sometimes, users may make 211

some mistakes on some information which is rel- 212

evant to their goal and current topic. For instance, 213

user may may provide an incorrect departure date 214

when booking a ticket. We simulate such user be- 215

haviour by perturbing an action at = awrong /∈ gt 216

at a random sampled turn. Then the mistake will be 217

corrected at a following turn at+k = acorrect ∈ gt. 218

Irrelevant Action As real users are not nec- 219

essary to follow the pre-defined dialog schema 220

strictly, they may talk about something irrelevant 221

to the goal. We simulate this behaviour by ran- 222

domly inserting utterances with irrelevant actions 223

at = airr /∈ gt. Inserted action airr is randomly 224

sampled from other domains which are not in user 225

goal. 226

3.3 Understanding Deviation 227

According to the source of mistake, we defined two 228

types of understanding deviation: natural mistake 229

and extra perturbation. 230

Natural Mistake As we know, no existing NLU 231

model could guarantee a 100% performance even 232

without any extra perturbation. As a result, com- 233

paring to ideal setting where user and system com- 234

municate at action-level, there always exist under- 235

standing mistakes when system need to understand 236

textual utterances. We call those NLU mistakes 237
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natural mistakes. We monitor those understand-238

ing deviation during the dialog and study how they239

affect the whole dialog.240

Extra Perturbation As there is more text-level241

noise in real dialog than in collected datasets, it242

is necessary to study system’s robustness to those243

extra perturbation. We introduce four perturbation244

methods from a text augmentation toolkit LAUG1:245

word perturbation, text paraphrasing, speech recog-246

nition and speech disfluency. Those perturbation247

methods are randomly applied on some utterances248

and we study how robust system models are to249

these extra understanding mistakes.250

4 Experimental Setup251

4.1 Dataset252

# Training Dialogs 8,438
# Validation Dialogs 1,000
# Test Dialogs 1,000
# Domains 7
# Entities in Database 3116
Avg. # Turns per Dialog 13.7

Table 1: Statistics of MultiWOZ 2.1.

We instantiate our inconsistent simulating on253

MultiWOZ corpus. MultiWOZ is a widely used254

multi-domain task-oriented dialog dataset. We use255

the 2.1 version of MultiWOZ2 and Table 1 shows256

its statistics. There are seven domains including257

train, taxi, restaurant, hotel, attraction, hospital and258

police with over three thousand entities in database.259

We choose it as the representative dataset for our260

experiments due to its challenging multi-domain261

setting and rich knowledge base.262

4.2 Base Models263

Type Name
Pipeline MLE
Pipeline PG(Shah et al., 2016)
Pipeline PPO(Schulman et al., 2017)
E2E DAMD(Zhang et al., 2020a)
E2E SOLIST(Peng et al., 2020a)

Table 2: List of the base dialog models in our experi-
ments.

1https://github.com/thu-coai/LAUG
2https://github.com/budzianowski/

multiwoz/blob/master/data/MultiWOZ_2.
1.zip

As Table 2 shows, we conduct our experiments 264

based on five dialog system models which can be 265

divided into two main categories: pipeline models 266

and end-to-end models. We evaluate and compare 267

their robustness under inconsistent setting. As such 268

robustness is mainly on policy-level, we name the 269

pipeline systems using the name of policy method 270

while keeping other components the same. We 271

adopt BERT-NLU model for both user and system 272

sides. Dialog states are updated by rule according 273

to the output of NLU. As linguistic diversity is not 274

the main target of our tests, user and system NLG 275

are set as template-based to reduce unstable facts. 276

As for end-to-end agents, system NLU and NLG 277

are not required while user side follows the settings 278

above. 279

The implements for BERT-NLU, rule-DST and 280

template-NLG are from Convlab2. We adopt a 281

T5-base model for SOLOIST while the other four 282

models are also Convlab2 version. 283

POL POL

Dialog Act

Dialog Act

(a) Ideal setting

POL

NLG

NLU

POL

NLU

NLG

Text Perturbation

Action Perturbation

(b) Inconsistent setting

Figure 3: Evaluation frameworks of pipeline models.
Blue parts stand for user side while orange ones are for
system.

4.3 Evaluation Setup 284

Our evaluation framework is mainly based on Con- 285

vlab23. System models are automatically evaluated 286

by interacting with a user simulator. User goals 287

are sampled by a goal model which simulating the 288

data distribution and user actions are generated by 289

a agenda-based user policy according to the user 290

goal. We report the complete rate, success rate, 291

and inform F1 in our experiments. Among these 292

metrics, we pay the most attention to success rate 293

because we want to evaluate whether the dialog can 294

3https://github.com/thu-coai/ConvLab-2
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System
Consistent Inconsistent
Comp Succ Inform Comp Succ Inform

MLE-Pipeline 53.6 52.1 66.4 33.8(-36.9%) 30.1(-42.2%) 50.4(-24.1%)

PG-Pipeline 53.7 52.6 65.8 34.1(-36.4%) 31.0(-41.0%) 49.5(-24.7%)

PPO-Pipeline 71.1 69.5 68.4 55.5(-21.9%) 44.1(-36.5%) 56.1(-18.0%)

DAMD-E2E 37.9 33.4 54.0 33.0(-12.9%) 22.2(-33.5%) 45.5(-15.7%)

SOLOIST-E2E 74.4 36.8 62.8 60.1(-19.2%) 22.7(-38.5%) 45.9(-26.9%)

Table 3: Main results of robustness evaluation. We present the complete rate, success rate and inform F1 perfor-
mance. The percentage in brackets represents the relative performance decline rate. The bold results represent the
highest performance, and the green ones stand for the most robust model.

finally succeed under the interference of inconsis-295

tent perturbations throughout the dialog process.296

POL

NLG

NLU

E2E

(a) Ideal setting

POL

NLG

NLU

E2E

Text Perturbation

Action Perturbation

(b) Inconsistent setting

Figure 4: Evaluation frameworks of end-to-end mod-
els.

For pipeline agents, the ideal setting is directly297

communicating with user policy at action-level as298

Fig 3 shows where there is no action perturbation299

or understanding deviation. In inconsistent setting,300

NLG and NLU are adopted to introduce natural un-301

derstanding mistakes. Extra text perturbations are302

four methods (word perturbation, text paraphras-303

ing,speech recognition and speech disfluency) from304

LAUG toolkit, with a possibility of 10% for each305

method per utterance. Action-level perturbations306

including goal change and action disloyalty are ap-307

plied on user agenda policy. 50% dialogs contain308

passive goal changes while the other 50% contain309

active changes. Each user turn has a 20% probabil-310

ity of becoming an inserted utterance with irrele-311

vant action. Although wrong action and active goal312

change have different user motivation, their imple-313

ments are the same (perturb one action and then 314

correct it) because user goal is invisible to system 315

agent. So we do not present experimental results 316

about wrong action because it is duplicated. 317

Fig 4 demonstrate the evaluation frameworks of 318

end-to-end agents. Because end-to-end agents can 319

only input and output text, user NLG and NLU 320

are necessary. Thus, the ideal setting of end-to- 321

end models can not avoid natural understanding 322

mistakes. For inconsistent setting, we use the same 323

text-level and action-level perturbations to pipeline 324

settings. 325

5 Robustness Evaluation 326

5.1 Main Results 327

We conducted experiments in both the ideal and 328

inconsistent setting to study the robustness of the 329

base models. Table 3 is the is the result of the 330

comparison of the two settings. Each result is an 331

average of 5 runs with 1000 dilogs at a time. Sig- 332

nificant performance decline can be observed on 333

all models. In general, the pipeline models have 334

high performance in the ideal setting while the end- 335

to-end models are more robust in the inconsistent 336

setting. But please note that due to the difference 337

the evaluation frameworks of pipeline and end-to- 338

end models, their results could not be compared 339

directly in ideal setting. Among the three pipeline 340

models, PPO has both the best and the most robust 341

performance while MLE and PG have similar per- 342

formance on all metrics and settings. Although the 343

result of DAMD is the lowest, its relative perfor- 344

mance drop under inconsistent setting is the least. 345

SOLOIST has the highest complete rate and a bet- 346

ter success rate than DAMD but its robustness is 347

relatively poor. Among the three metrics, the suc- 348

cess rate of the model decreased the most which 349

indicate that addressing the inconsistent issues in 350

dialog process and finally successfully completing 351
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them is challenging.352

5.2 Ablation Studies353

In order to investigate how each type of inconsis-354

tency influences the performance of models, we355

conduct in-depth ablation studies. We adopt goal356

change, action disloyalty and understanding devia-357

tion separately and analyze their ablation results.358

model Comp Succ Inform
MLE 40.6(-24.2%) 37.7(-27.6%) 56.7(-14.6%)

PG 40.4(-24.7%) 39.5(-24.9%) 56.3(-14.4%)

PPO 61.4(-13.6%) 58.3(-16.1%) 57.1(-16.5%)

DAMD 32.1(-15.3%) 26.8(-19.7%) 52.9(-2.0%)

SOLOIST 71.3(-4.2%) 30.0(-18.5%) 60.1(-4.3%)

(a) Passive goal change only.

model Comp Succ Inform
MLE 46.8(-12.7%) 45.3(-13.1%) 58.7(-11.6%)

PG 47.8(-11.0%) 47.5(-9.7%) 60.3(-11.8%)

PPO 65.8(-14.7%) 61.9(-10.9%) 63.5(-7.2%)

DAMD 32.9(-13.2%) 27.4(-18.0%) 50.0(-7.4%)

SOLOIST 61.6(-17.2%) 32.1(-12.8%) 60.3(-4.0%)

(b) Active goal change only.

Table 4: Results when include goal change only. Re-
sults of passive and active goal change are represented
separately. The possibility of both type are set to 50%
which is same to the settings of main experiment.

Goal Change Table 4 shows the results when359

include goal change only. On the whole, larger per-360

formance decline occurs on passive goal change.361

Though active goal is more unpredictable, it only362

changes one slot constraint per time due to our363

setting. While passive goal change may change364

multiple constraint in order to get a new solvable365

goal which could be the reason why it is more chal-366

lenging. According to the success rate results, end-367

to-end models are relatively more robust to passive368

goal change while pipeline agents are more robust369

to active changes. PPO is the most robust model370

against passive changes among the pipeline models371

while PG is very robust to active changes. Both372

type of goal change have little impact on Inform F1373

metrics to the two end-to-end models. SOLOIST374

only loses very little complete rate when facing375

passive goal change and it is quite robust to active376

change in the perspective of success rate.377

Action Disloyalty As Sec 4.3 states, we only378

present the results of irrelevant action. PPO has379

the highest performance on all three metrics while380

model Comp Succ Inform
MLE 40.6(-24.2%) 37.7(-7.6%) 56.7(-14.6%)

PG 52.0(-3.2%) 51.5(-2.1%) 62.7(-4.7%)

PPO 70.3(-11.2%) 66.9(-3.7%) 65.3(-4.5%)

DAMD 37.5(-1.1%) 33.0(-1.2%) 51.6(-4.4%)

SOLOIST 50.2(-32.5%) 26.2(-28.8%) 45.5(-27.5%)

Table 5: Irrelevant Action only.

DAMD is the most robust to irrelevant perturbation. 381

Apart from DAMD, PG and PPO also have only 382

small performance decline. However, SOLOIST is 383

particularly not robust to irrelevant actions which 384

could be the biggest weak point of SOLOIST. 385

model Comp Succ Inform
MLE 52.5(-2.1%) 48.9(-6.1%) 65.2 (-1.8%)

PG 48.7(-9.3%) 45.6(-13.3%) 60.7(-7.8%)

PPO 71.1(-0.0%) 62.4(-10.2%) 66.8(-2.3%)

(a) Natural Mistake change only.

model Comp Succ Inform
MLE 51.9(-3.2%) 47.7(-8.4%) 64.3(-3.2%)

PG 47.9(-10.8%) 44.7(-15.0%) 60.5(-8.1%)

PPO 69.4(-2.4%) 61.7(-11.2%) 66.0(-3.5%)

(b) Nature Mistake and Extra Perturbation.

Table 6: Ablation results of understanding deviation.

Understanding Deviation Table 6 shows the re- 386

sults of pipeline agents when only understanding 387

deviation exists. As the understanding ability of 388

end-to-end models can not be ablated, we only 389

study pipeline models here. All three models are 390

quite robust to understanding deviation. Relatively, 391

MLE is the most robust one while PG is most sen- 392

sitive to understanding mistakes. 393

Figure 5: Relationship between the number of NLU
errors and the success rate of PPO.

In order to investigate why models are robust to 394
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Speaker Utterance
User Well, I’m looking for a hotel. I need a place to stay in the uh, the east please. It should have free

wifi.
System What area of town would you like to be in? Is there a price range you prefer? I have 6 different

options for you!
User In the east preferably. I don’t care about the price of the hotel.
System I’d recommend Express by Holiday Inn Cambridge. Would you like some information on it?

Their address in our system is listed as 15 - 17 Norman way, Coldhams business park.
User I’d like their phone number if you have it available, please.
System Here is the hotel phone number, 01223866800.
User I need find information about restaurant, can you help that with? Are there any Thai restaurants?

I’d like a moderate priced one.
System I don’t have anything meeting that criteria. Can I look for something else?
User I want to find a expensive priced restaurant.
System There’s a place called Sala Thong. It is in the west area.
User I want to leave by 05:00.
System Is there anything else I can help you with?
User May I also get the address for the restaurant?
System Their address is 35 Newnham Road Newnham. 01223323178 is the restaurant phone number.
User Actually , I’m all set. Thank you! Bye!

Table 7: Dialog cases of PPO agent under inconsistent setting. As the original dialogs are too long, we only present
part of them, and some utterances are abbreviated. The colored text are the inconsistent parts.

understanding mistakes, we make a statistics of the395

number of NLU errors which is shown in Fig 5. We396

found that the success rate is relatively stable when397

NLU error number is less than 5 while it drops398

rapidly when there are more than 5 errors. This re-399

sult indicates that system policies has the ability to400

save the dialog from several NLU mistakes which401

is the reason why they are robust to understanding402

deviation even extra perturbations are added. For403

example, system agent can request for some infor-404

mation again when fail to understand it and user405

may reply to it in a way that can be successfully406

understood.407

5.3 Case Study408

Tab 7 present some dialog cases with typical in-409

consistencies. The red part in the first dialog is an410

understanding deviation case. System NLU fails411

to recognize the area information “east” at the first412

time. System agent ask for it in the following turn413

and get the answer again. In the green parts, user414

simulator changes its price constraint after know-415

ing there’s no such restaurant. The blue utterance is416

an inserted irrelevant action. System agent ignores417

it and they continue to talk about restaurant in the418

following turns.419

6 Augmentation420

6.1 Data Augmentation421

For supervised methods, training with targeted422

additional data is a straightforward but effective423

way to improve robustness. We present an In-424

Consistency Enhanced version of training data: 425

MultiWOZ-ICE by data augmentation. Step one, 426

we run and record 15000 interactive conversations 427

between inconsistent user simulator and a rule- 428

based system policy from Convlab2 with high per- 429

formance. Step two, we discard all failed dialogs 430

and there are 11027 dialogs remaining. These di- 431

alogs are divided into 9:1 for training and valida- 432

tion. Note that text perturbations are not included 433

in step one. Instead, we adopt LAUG to introduce 434

text-level noise at the final step three because we 435

want to get noisy text with correct dialog act labels. 436

All the action-level and text-level perturbation of 437

augmentation are using the same settings to the 438

main experiment. 439

model Comp Succ Inform
MLE 38.9(+25.8%) 34.8(+21.4%) 52.7(+12.5%)

DAMD 35.8(+57.1%) 23.9(+15.2%) 48.7(+37.6%)

SOLOIST 69.4(+65.0%) 24.3(+11.3%) 51.0(+32.5%)

Table 8: Results under inconsistent setting after train-
ing on MultiWOZ-ICE. Numbers in brackets are per-
formance recover rates (performance_recover / perfor-
mance_drop). Red stand for the biggest recover.

After we construct the augmented training data, 440

we fine-tune the three supervised models on it. 441

Note that for MLE agent, the NLU model is also 442

enhanced by perturbed data augmented by LAUG 443

toolkit. Table 8 shows the performance recover of 444

MLE, DAMD and SOLOIST after training on the 445

augmented data. In terms of success rate, MLE 446

recovers the most because the policy model is di- 447
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rectly tuned by augmented dialog act data. The two448

end-to-end models recover less on success rate but449

more on complete rate and Inform F1. As the suc-450

cess rate does not increase much and the training451

with the auto-generated data will affect the natu-452

ralness of the output utterance, data augmentation453

may not be a very suitable method to enhance the454

pre-trained end-to-end model like SOLOIST.455

6.2 Environment Augmentation456

For reinforcement learning based models, we train457

the policy interactively in an inconsistent environ-458

ment to enhance their robustness to it. As PG and459

PPO are pipeline agents, their NLU models are also460

the LAUG-enhanced version as MLE. The results461

of them are shown in Tab 9. The recover rates of462

PG and PPO are similar to MLE, which indicates463

that pipeline agents could recover more success rate464

through augmentation. PPO has a higher recover465

rate of complete and success than PG.466

model Comp Succ Inform
PG 38.8(+24.0%) 34.9(+18.6%) 52.4(+17.8%)

PPO 60.3(+30.8%) 49.2(+20.1%) 63.0(+16.3%)

Table 9: Results of inconsistent setting after reinforce-
ment learning in augmented environment.

7 Conclusion and Discussion467

In this paper, we investigate the effect of breaking468

the ideal consistencies in task-oriented dialog. We469

define and simulate three types of inconsistencies470

including Goal Change, Action Disloyalty and Un-471

derstanding Deviation along with two sub-type for472

each of them. We conduct a robustness evalua-473

tion and the significant performance decline when474

models facing those inconsistent challenges indi-475

cates that it is dangerous to use clean and ideal476

data and settings for the training and evaluation477

of task-oriented dialog system. We also carry out478

an in-depth ablation study to investigate the model479

robustness to different types of inconsistencies. We480

find that pipeline agents and end-to-end models481

have different characteristics when under different482

inconsistencies. We augment the data and environ-483

ment to fine-tune dialog models and experimental484

results demonstrate that these augmentation meth-485

ods can improve the robustness of them. However,486

such improvement is quite limited, so more future487

efforts are supposed to made in order to develop488

more effective approaches for addressing the natu- 489

ralistic dialog inconsistencies. 490
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madan, and Milica Gašić. 2018. MultiWOZ - a 503
large-scale multi-domain Wizard-of-Oz dataset for 504
task-oriented dialogue modelling. In Proceedings of 505
the 2018 Conference on Empirical Methods in Nat- 506
ural Language Processing, pages 5016–5026, Brus- 507
sels, Belgium. Association for Computational Lin- 508
guistics. 509

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang 510
Tang. 2017. A survey on dialogue systems: Re- 511
cent advances and new frontiers. Acm Sigkdd Ex- 512
plorations Newsletter, 19(2):25–35. 513

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 514
Kristina Toutanova. 2019. Bert: Pre-training of 515
deep bidirectional transformers for language under- 516
standing. In Proceedings of the 2019 Conference of 517
the North American Chapter of the Association for 518
Computational Linguistics: Human Language Tech- 519
nologies, Volume 1 (Long and Short Papers), pages 520
4171–4186. 521

Wieland Eckert, Esther Levin, and Roberto Pierac- 522
cini. 1997. User modeling for spoken dialogue sys- 523
tem evaluation. In 1997 IEEE Workshop on Auto- 524
matic Speech Recognition and Understanding Pro- 525
ceedings, pages 80–87. IEEE. 526

Maryam Fazel-Zarandi, Shang-Wen Li, Jin Cao, Jared 527
Casale, Peter Henderson, David Whitney, and Al- 528
borz Geramifard. 2017. Learning robust dialog 529
policies in noisy environments. arXiv preprint 530
arXiv:1712.04034. 531

Jatin Ganhotra, Robert C Moore, Sachindra Joshi, and 532
Kahini Wadhawan. 2020. Effects of naturalistic vari- 533
ation in goal-oriented dialog. In Proceedings of the 534
2020 Conference on Empirical Methods in Natural 535
Language Processing: Findings, pages 4013–4020. 536

Dilek Hakkani-Tür, Gokhan Tur, Asli Celikyilmaz, 537
Yun-Nung Chen, Jianfeng Gao, Li Deng, and Ye- 538
Yi Wang. 2016. Multi-domain joint semantic frame 539
parsing using bi-directional rnn-lstm. Interspeech 540
2016, pages 715–719. 541

8

https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547


Michael Heck, Carel van Niekerk, Nurul Lubis, Chris-542
tian Geishauser, Hsien-Chin Lin, Marco Moresi, and543
Milica Gasic. 2020. Trippy: A triple copy strategy544
for value independent neural dialog state tracking.545
In Proceedings of the 21th Annual Meeting of the546
Special Interest Group on Discourse and Dialogue,547
pages 35–44.548

Matthew Henderson, Blaise Thomson, and Steve549
Young. 2014. Word-based dialog state tracking with550
recurrent neural networks. In Proceedings of the551
15th Annual Meeting of the Special Interest Group552
on Discourse and Dialogue (SIGDIAL), pages 292–553
299, Philadelphia, PA, U.S.A. Association for Com-554
putational Linguistics.555

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,556
Semih Yavuz, and Richard Socher. 2020. A sim-557
ple language model for task-oriented dialogue. Ad-558
vances in Neural Information Processing Systems,559
33:20179–20191.560

Sungjin Lee, Qi Zhu, Ryuichi Takanobu, Xiang Li,561
Yaoqin Zhang, Zheng Zhang, Jinchao Li, Baolin562
Peng, Xiujun Li, Minlie Huang, et al. 2019. Con-563
vlab: Multi-domain end-to-end dialog system plat-564
form. arXiv preprint arXiv:1904.08637.565

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun566
Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity:567
Simplifying task-oriented dialogue systems with sin-568
gle sequence-to-sequence architectures. In Proceed-569
ings of the 56th Annual Meeting of the Association570
for Computational Linguistics (Volume 1: Long Pa-571
pers), pages 1437–1447, Melbourne, Australia. As-572
sociation for Computational Linguistics.573

Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li,574
Faisal Ahmed, and Li Deng. 2018. Bbq-networks:575
Efficient exploration in deep reinforcement learning576
for task-oriented dialogue systems. In Proceedings577
of the AAAI Conference on Artificial Intelligence,578
volume 32.579

Jiexi Liu, Ryuichi Takanobu, Jiaxin Wen, Dazhen Wan,580
Hongguang Li, Weiran Nie, Cheng Li, Wei Peng,581
and Minlie Huang. 2021. Robustness testing of lan-582
guage understanding in task-oriented dialog. In Pro-583
ceedings of the 59th Annual Meeting of the Associa-584
tion for Computational Linguistics and the 11th In-585
ternational Joint Conference on Natural Language586
Processing (Volume 1: Long Papers), pages 2467–587
2480.588

Yi Ma. 2013. User goal change model for spoken589
dialog state tracking. In Proceedings of the 2013590
NAACL HLT Student Research Workshop, pages 91–591
97.592

Yi Ma and Eric Fosler-Lussier. 2014. A discriminative593
sequence model for dialog state tracking using user594
goal change detection. In 2014 IEEE Spoken Lan-595
guage Technology Workshop (SLT), pages 318–323.596
IEEE.597

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan- 598
deh, Lars Liden, and Jianfeng Gao. 2020a. Soloist: 599
Few-shot task-oriented dialog with a single pre- 600
trained auto-regressive model. arXiv preprint 601
arXiv:2005.05298. 602

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, 603
and Kam-Fai Wong. 2018. Deep Dyna-Q: Inte- 604
grating planning for task-completion dialogue policy 605
learning. In Proceedings of the 56th Annual Meet- 606
ing of the Association for Computational Linguistics 607
(Volume 1: Long Papers), pages 2182–2192, Mel- 608
bourne, Australia. Association for Computational 609
Linguistics. 610

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun 611
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao. 612
2020b. Few-shot natural language generation for 613
task-oriented dialog. In Proceedings of the 2020 614
Conference on Empirical Methods in Natural Lan- 615
guage Processing: Findings, pages 172–182. 616

Lis Pereira, Xiaodong Liu, Hao Cheng, Hoifung Poon, 617
Jianfeng Gao, and Ichiro Kobayashi. 2021. Targeted 618
adversarial training for natural language understand- 619
ing. In Proceedings of the 2021 Conference of the 620
North American Chapter of the Association for Com- 621
putational Linguistics: Human Language Technolo- 622
gies, pages 5385–5393. 623

Jost Schatzmann, Blaise Thomson, Karl Weilhammer, 624
Hui Ye, and Steve Young. 2007. Agenda-based user 625
simulation for bootstrapping a pomdp dialogue sys- 626
tem. In Human Language Technologies 2007: The 627
Conference of the North American Chapter of the As- 628
sociation for Computational Linguistics; Compan- 629
ion Volume, Short Papers, pages 149–152. 630

Alexander Schmitt and Stefan Ultes. 2015. Interaction 631
quality: assessing the quality of ongoing spoken dia- 632
log interaction by experts—and how it relates to user 633
satisfaction. Speech Communication, 74:12–36. 634

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec 635
Radford, and Oleg Klimov. 2017. Proximal 636
policy optimization algorithms. arXiv preprint 637
arXiv:1707.06347. 638

Pararth Shah, Dilek Hakkani-Tur, and Larry Heck. 639
2016. Interactive reinforcement learning for task- 640
oriented dialogue management. 641

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas- 642
Barahona, Stefan Ultes, David Vandyke, Tsung- 643
Hsien Wen, and Steve Young. 2016a. On-line active 644
reward learning for policy optimisation in spoken di- 645
alogue systems. arXiv preprint arXiv:1605.07669. 646
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